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Message from the Organizing Committee

As researchers achieve unprecedented technological breakthroughs in natural language processing, the
need to understand the systems underlying these advances is more pertinent than ever. BlackboxNLP,
now in its sixth iteration, has played an important role in bringing together scholars from a diverse
range of backgrounds in order to rigorously study the behavior, representations, and computations of
“black-box” neural network models. Our workshop showcases original, cutting-edge research on topics
including but not limited to:

* analysis of representations via probing and related techniques;

* explanation methods such as feature attribution, free-text explanations, or structured explanations;
* interdisciplinary methods (e.g., from neuroscience, cognitive science, computer vision, etc.);

* interpretable architectures and neural network modules;

* mechanistic interpretability and reverse engineering of neural computations;

* open-source tools for analysis, visualization, and/or explanation;

* opinions about the state of interpretability and explainable NLP; and

* targeted evaluations using simplified or formal languages.

The sixth BlackboxNLP workshop will be held in Singapore on December 7, 2023, hosted by the
Conference on Empirical Methods in Natural Language Processing (EMNLP). 29 full papers and 17
non-archival extended abstracts were accepted for in-person and online presentations, from a total of 66
submissions. This year’s workshop will also feature 19 papers on interpretability from the Findings of
the ACL: EMNLP 2023, as well as two invited talks and a panel discussion with experts in the field.

BlackboxNLP 2023 would not have been possible without the high-quality peer reviews submitted
by our program committee, as well as the logistical assistance provided by the EMNLP organizing
committee. We gratefully acknowledge financial support from our sponsors, Google and Apple. Our
invited speakers, panelists, authors, and presenters have allowed us to put together an outstanding
program for all participants to enjoy.

Welcome to BlackboxNLP! We look forward to seeing you in Singapore and online.

Yonatan Belinkov
Sophie Hao

Jaap Jumelet
Najoung Kim
Arya McCarthy
Hosein Mohebbi
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Knowledge-grounded Natural Language Recommendation Explanation

Anthony Colas™, Jun Araki?, Zhengyu Zhou?,
Bingqing Wang?, Zhe Feng’
"University of Florida
?Bosch Research North America
acolas1@ufl.edu
{jun.araki, zhengyu.zhou2, bingging.wang, zhe.feng2}@us.bosch.com

Abstract

Explanations accompanying a recommendation
can assist users in understanding the decision
made by recommendation systems, which in
turn increases a user’s confidence and trust in
the system. Recently, research has focused on
generating natural language explanations in a
human-readable format. Thus far, the proposed
approaches leverage item reviews written by
users, which are often subjective, sparse in lan-
guage, and unable to account for new items
that have not been purchased or reviewed be-
fore. Instead, we aim to generate fact-grounded
recommendation explanations that are objec-
tively described with item features while im-
plicitly considering a user’s preferences, based
on the user’s purchase history. To achieve this,
we propose a knowledge graph (KG) approach
to natural language explainable recommenda-
tion. Our approach draws on user-item features
through a novel collaborative filtering-based
KG representation to produce fact-grounded,
personalized explanations, while jointly learn-
ing user-item representations for recommenda-
tion scoring. Experimental results show that
our approach consistently outperforms previ-
ous state-of-the-art models on natural language
explainable recommendation metrics.'

1 Introduction

Current approaches to natural language (NL) ex-
plainable recommendation focus on generating user
reviews (Chen et al., 2018; Wang et al., 2018a; Li
etal., 2020, 2021; Yang et al., 2021). Instead of pro-
viding a justification for the item recommendation,
the models learn to output language that is com-
monly found in personal reviews. This reliance on
reviews poses three problems: 1) The explanations
are not objective, because users typically review
items based on their sentiment (Wu et al., 2018),
Wperﬁ)rmed at Bosch Research.

'Our code and datasets are available at: https://github.
com/boschresearch/KnowRec.

1

2) Reviews are often sparse, because they describe
a user’s own experience (Asghar, 2016), 3) Sys-
tems that rely on reviews cannot account for new
items which have never been purchased before, nor
can they provide justifications for item catalogs
which may not have reviews available. Given this,
it may be difficult for a user to reason as to why
an item was recommended, hindering the user’s ex-
perience (Tintarev and Masthoff, 2015). The user
may then lose trust in such systems which do not
provide objective and accurate explanations.

We propose KnowRec, a KG-grounded ap-
proach to natural language explainable recommen-
dation which not only personalizes recommen-
dations/explanations with user information, but
also draws on facts about a particular item via
its corresponding KG to generate objective, spe-
cific, and data-driven explanations for the recom-
mended item. For example, given the movie ‘“Paths
of Glory”, previous work aims to generate expla-
nations such as “it’s not the best military movie”
and “good performances all around”, which are
subjective, not specific to a given movie, and re-
lies on data from pre-existing reviews. Instead,
by leveraging an item KG such as <director, Stan-
ley Kubrick>, <conflict, World War 1>, <country,
France>, a more objective and precise explanation
can be produced such as: “A World War I French
colonel defends three soldiers. Directed by Stan-
ley Kubrick.” The item features of ‘World War I’,
‘colonel’, and ’defends three soldiers’ in the expla-
nation objectively describe the movie, while they
can implicitly reflect the user’s preferences for war
movies, based on his/her purchase history.

KnowRec is also more advantageous than prior
work in terms of scalability to unpurchased items.
Previously, KG-based recommendation systems
have effectively addressed the cold-start problem
by linking users and items through shared at-
tributes (Wang et al., 2019, 2020, 2021). Similarly,
there exists a kind of cold-start problem for new

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 1-15
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items in recommendation explanation that rely on
reviews. KnowRec demonstrates KGs can help
solve this problem through existing item-level fea-
tures by adapting KG-to-text (Koncel-Kedziorski
et al., 2019; Ke et al., 2021; Colas et al., 2022) el-
ements into explainable recommendation, produc-
ing item-level explanations to justify a purchase.
The KG-based approach is particularly important
for recommendation scenarios in special domains
where personal reviews are not available and the
review-based approaches are impractical.

Our approach presents several algorithmic nov-
elties. First, inspired by work on KG Recommen-
dation (Wang et al., 2020) and KG-to-Text (Co-
las et al., 2022), we devise a novel user-item KG
lexical representation, viewing the input through
collaborative filtering lens, where users are graphi-
cally represented via their previous purchases and
connected to a given item KG. Our representation
differs from previous work on explainable NL gen-
eration which relies on ID and sparse keyword fea-
tures. Previous work extracts keywords from re-
views to represent the user and item, linearizing
all such features to encode and produce an NL ex-
planation (Li et al., 2020, 2022). Next, KnowRec
adapts a graph attention encoder for the user-item
representation via a new masking scheme. Finally,
the encoded KG representation is simultaneously
decoded into a textual explanation, while we in-
novatively dissociate the joint learned user-item
representation to compute a user-item similarity
for recommendation scoring.

To evaluate our approach, we first devise a
method of constructing (K G, Text) pairs from
product descriptions as described in Section 5,
where we extract entities and relations for the item
KGs. We construct two such datasets from the
publically available recommendation datasets to
evaluate our proposed model for both the explana-
tion and recommendation task and focus on natural
language generation (NLG) metrics for the expla-
nation task as in previous work. We adapt and
compare previous baseline models for the recom-
mendation explanation task as described in Sec-
tion 6, where we substantially outperform previous
models on explanation while achieving similar rec-
ommendation performance as models that rely on
user and item ID-based features.

2 Related Work

2.1 Explainable Recommendation

Previous works on NL explainable recommenda-
tion focus on generating user-provided reviews,
where the output is typically short, subjective, and
repetitive (Chen et al., 2018; Hou et al., 2019; Wang
et al., 2018b; Yang et al., 2021; Li et al., 2017,
2020, 2021; Hui et al., 2022). Extractive-based
approaches have been proposed to score and select
reviews as explanations (Chen et al., 2018; Li et al.,
2019). Conversely, generative approaches (Yang
etal., 2021; Li et al., 2017, 2020, 2021; Sun et al.,
2020; Hui et al., 2022) leverage user/item features
to generate new reviews as explanations. Currently,
the task is still limited by review data, thus these
models cannot adequately handle new items. Un-
like previous work, we introduce KGs to the ex-
plainable recommendation task to provide objec-
tive, information-dense, specific explanations. Our
approach can then handle new items which have
not been reviewed yet.

Inspired by recent advancements in explainable
recommendation models like (Li et al., 2021), we
enhance BART (Lewis et al., 2020), renowned for
graph-to-text tasks, to incorporate user-item knowl-
edge graphs. This adaptation enables us to gen-
erate recommendation scores along with natural
language explanations.

2.2 Knowledge Graph Recommendation

Leveraging KGs for recommendation systems has
gained increasing attention (Wang et al., 2019,
2020, 2021; Xie et al., 2021; Du et al., 2022).
In neighborhood-based methods (Hamilton et al.,
2017; Welling and Kipf, 2016; Velickovi€ et al.,
2018), propagation is performed iteratively over
the neighborhood information in a KG to update
the user-item representation. While recent work
has produced explanations via KGs, these works
focus on structural explanations such as knowledge
graph paths (Ma et al., 2019; Fu et al., 2020; Xian
et al., 2019) and rules (Zhu et al., 2021; Chen et al.,
2021; Shi et al., 2020), which are not as intuitive
for users to understand. We focus on generating
NL explanations, which has been shown to be a pre-
ferred type of explanation (Zhang et al., 2020). For
a fair comparison, we compare to prior work that
produces NL explanations. Unlike these works, we
aim to generate NL explanations instead of using
paths along the KG as explanations.



Xo 2) User-Item Encoder ] userretated info
[] temrelatedinfo |i!

1) User's Item Graph Representation

Jasn

[uonuouv |nqo|{)J
uonuaNY [2qo[0)|

J

Wy

[iEny
w195

wonuNY
w198

[

Collaborative KG Representation

3a) Rating Prediction

Sunea

[uouueuv wqolg}

1

3b) Explanation Generation:

wonwny
w198

aAIssaIfoy-omy

-{I-(-)-g-ieue[dxa

Figure 1: Illustration of KnowRec. 1) The User’s Item KG Representation Module. 2) The Global and User-Item
Graph Attention Encoder. 3) The Output Module for rating prediction and explanation.

2.3 Knowledge Graph-to-Text Generation

In KG-to-Text, pre-trained language models such
as GPT-2 (Radford et al., 2019) and BART (Lewis
et al., 2020) have seen success in generating fluent
and accurate verbalizations of KGs (Chen et al.,
2020; Ke et al., 2021; Ribeiro et al., 2021; Colas
et al., 2023). We devise an encoder for user-item
KGs and a decoder for both the generation and rec-
ommendation tasks. Specifically, we formulate a
novel masking scheme for user-item KGs to struc-
turally encode user and item features, while gen-
erating a recommendation score from their latent
representations. Thus, our task is two-fold, fusing
elements from the Graph-to-Text generation and
KG recommendation domains.

3 Problem Formulation

Following prior work, we denote I/ as a set of users,
7 as a set of items, and the user-item interaction
matrix as Y € RUIXIZI where v, = 1 if user
u € U and item v € 7 have interacted. Here, we
represent user v as the user’s purchase history u =
{vyi }, where v,,; denotes the i-th item purchased by
user u in the past. Next, we define a KG as a multi-
relational graph G = (V, £), where V is the set of
entity vertices and £ C VxR xV is the set of edges
connecting entities with a relation from R. Each
item v has its own KG, g,, comprising an entity
set V), and a relation set R, which contain features
of v. We devise a set of item-entity alignments
A={(v,e)lv € Z,e € V}, where (v, e) indicates
that item v is aligned with an entity e.

Given a user u and an item v represented by its
KG g,, the task is to generate an explanation of
natural language sentences E, , as to why item
v was recommended for the user u. As in previ-
ous multi-task explainable recommendation mod-
els, KnowRec calculates a rating score 1, that

measures u’s expected preference for v. By jointly
training on the recommendation and explanation
generation, our model can contextualize the embed-
dings more adequately with training signals from
both tasks.

4 Model

Figure 1 illustrates our model with the user-item
graph constructed through collaborative filtering
signals, an encoder, and inference functions for
explanation generation and rating prediction.

4.1 Input

The input of KnowRec comprises a user u repre-
sented by the user’s purchase history {v,; } and an
item v represented by its KG g,, as introduced in
Section 3. Let v. denote the item currently consid-
ered by the system. The item v, is aligned with one
of the entities through .4 and becomes the center
node of g,, as shown in Figure 1.

Because our system leverages a Transformer-
based encoder, we first linearize the input into a
string. For the user u = {vy;}, we initialize it by
mapping each purchased item v,; into tokens of
the item’s name. For the item v represented by
gv, We decompose g, into a set of tuples {t,;},
where t,; = (Vc, Tvj, i), Twj € Vo, and 15 €
R.,. We linearize each tuple ¢, into a sequence of
tokens using lexicalized names of the nodes and the
relation. We then concatenate all the user tokens
and the item tokens to form the full input sequence
z. For example, suppose the current item v, is
the book Harry Potter, the KG has a single tuple
(Harry Potter, author, J.K. Rowling), and the user
previously purchased two books The Lord of the
Rings and The Little Prince. In this case, input
sequence x* = The Lord of the Rings The Little
Prince Harry Potter author J.K. Rowling.



We map the tokens to randomly initialized vec-
tors or pre-trained word embeddings such as those
in BART (Lewis et al., 2020), obtaining X
[...;Vui;...;Tyj;... ] where V,,; and T,; are
word vector representations of v,; and t,;, respec-
tively. Unlike previous work on KG recommen-
dation (Wang et al., 2020) where users/items are
represented via purchase history and propagated
KG information, our system infuses KG compo-
nents to provide a recommendation and its natu-
ral language explanation. Our system also differs
from prior studies on explainable recommendation
in that while they focus on reviews and thus en-
code users/items as random vectors with additional
review-based sparse token features as auxiliary in-
formation (Li et al., 2021), we directly encapsulate
KG information into the input representation.

4.2 Encoder

Collaborative KG Representation. Because
KnowRec outputs a natural language explanation
grounded on KG facts, as well as a recommenda-
tion score for the user-item pair, we need to con-
struct a user-item-linked KG to represent an in-
put through its corresponding lexical graph feature.
To do so, we leverage collaborative signals from
Y, combining u with v by linking previously pur-
chased products v,,; to the current item v, from g,,,
forming a novel lexical user-item KG. Additionally,
we connect all previously purchased items together
in order to graphically model collaborative filtering
effects for rating prediction, as illustrated in Fig-
ure 1. Note that the relations between previously
purchased items and the current items do require a
lexical representation for our model. The resulting
graph goes through the Transformer architecture,
as described below.

Global Attention. Transformer architectures have
recently been adopted for the personalized ex-
plainable recommendation task (Li et al., 2021).
We similarly leverage Transformer encoder lay-
ers (Vaswani et al., 2017), referred to as Global
Attention, to encode the input representation with
self-attention as:

v

(1)
where X is the output of the [-th layer in the en-
coder, and dj, is a tunable parameter. QQ, K, and

QK'
X; = Attn(Q, K, V) = softmax <
vy,

Q=X W K=X,_ ,WF,
V=X_,W/

4

V represent the Query, Key, and Value vectors,
respectively, each of which is calculated with the
corresponding parameter matrix W in the [-th layer.
Note that the transformer encoder may be initial-
ized via a pre-trained language model.

User-Item Graph Attention. We further propose
User-Item Graph Attention encoder layers, which
compute graph-aware attention via a mask to cap-
ture the user-item graph’s topological information,
which runs in parallel with the Global Attention
encoder layers.

We first extract the mask M, € R™*™ from the
user-item linked KG, where m is the number of
relevant KG components, i.e., nodes and edges that
are lexically expressed in the KG (edges between
vy; and v, not included). In M, each row/column
refers to a KG component. M;; = 0 if there is a
connection between component ¢ and j (e.g., “J.K.
Rowling” and “author”) and —oco otherwise. In
addition, we assume all item components, i.e., the
previous purchases and the current item, are mutu-
ally connected when devising M.

For each layer (referred to as the [-th layer), we
then transfer its input X;_; into a component-wise
representation Xlg_1 € R™*9, where d is the word
embedding size. Motivated by Ke et al. (2021),
we perform this transfer by employing a pooling
layer that averages the vector representations of
all the word tokens contained in the correspond-
ing node/edge names per relevant KG component.
With the transferred input Xf_l, we proceed to en-
code it using User-Item Graph Attention with the
graph-topology-sensitive mask as follows:

XY = Attnpy (Q, K/, V')
Q/K/T
vy,

2

= softmax ( + Mg) V.

where query Q', key K’, and value V' are com-
puted with the transferred input and learnable pa-
rameters in the same manner as Equation (1).
Lastly, we combine the outputs of the Global
Attention encoder and the User-Item Graph Atten-
tion encoder in each layer. As the two outputs have
different dimensions, we first expand Xlg to the
same dimension of X; through a gather operation,
i.e., broadcasting each KG component-wise rep-
resentation in f(f to every encompassing word of
the corresponding component and connecting those
representations. We then add the expanded 5(‘? to
X through element-wise addition, generating the



[-th encoding layer’s output:
X, = gather(f(lg) + X, 3)

Note, in this section, we illustrate the Global At-
tention encoder, User-Item Attention encoder, and
their combination with single-head attention. In
practice, we implement both encoders with multi-
head attention as in Vaswani et al. (2017).

4.3 Rating Prediction

For the rating prediction task, we first separate
and isolate user u and item v features via masking.
Once isolated, we perform a mean pool on all their
respective tokens and linearly project u and v to
perform a dot-product between the two new vector
representations as follows:

iu = pOOZmean (XL + mu)Wu
Xy = poolmean(x L +m,)W" 4

Tup = dot(Xy, Xy),

where m,, and m,, are the user and item masks that
denote which tokens belong to the user and item,
W5 are learnable parameters, and L refers to the
last layer of the encoder.

4.4 Explanation Generation

Before generating a final output text for our expla-
nation, we pass the representation through a fully
connected linear layer as the encoder hidden state
and decode the representation into its respective
output tokens through an auto-regressive decoder,
following previous work (Lewis et al., 2020).

4.5 Joint-learning Objective

As previously noted, our system consists of two
outputs: a rating prediction score 7, and natural
language explanation £, ,, which justifies the rat-
ing by verbalizing the item’s corresponding KG.
We thus perform multi-task learning to learn both
tasks and manually define regularization weights
A, as in similar multi-task paradigms, to weight
the two tasks. Taking £, and L. to represent the
recommendation and explanation cost functions,
respectively, the multi-task cost £ then becomes:

L= )\T‘ET + )\eﬁea (5)

where A\, and A, denote the rating prediction and
explanation regularization weights, respectively.

We define £, using Mean Square Error (MSE)
in line with conventional item recommendation and
review-based explainable systems:

1 .
L= —— Z (Tu,v - ru,v)27 (6)

‘U| ’I‘ ueUNVET

where r,, ,, denotes the ground-true score.

Next, as in other NLG tasks (Lewis et al., 2020;
Zhang et al., 2020), we incorporate Negative Log-
Likelihood (NLL) as the explanation’s cost func-
tion L.. Thus, we define £, as:

|Eu,u|

1 1
Le= s e —logpi* (7)
UiE . 2 (B 2 8%

ueEUNVEL

where p* is the probability of a decoded token e’
at time step t.

5 Dataset

Although KG-recommendation datasets exist, they
do not contain any supervision signals to NL de-
scriptions. Thus, to evaluate our explainable recom-
mendation approach in a KG-aware setting and our
KnowRec model, we introduce two new datasets
based on the Amazon-Book and Amazon-Movie
datasets (He and McAuley, 2016): (1) Book KG-
Exp and (2) Movie KG-Exp.

Recall that our task requires an input KG along
with an NL explanation and recommendation score.
Because it is more efficient to extract KGs from
text, rather than manually annotate each KG with
text, we take a description-first approach, automati-
cally extracting KG elements from the correspond-
ing text. Given the currently available data, we
leverage item descriptions as a proxy for the NL
explanations, while constructing a user-item KG
from an item’s features and user’s purchase history.

We first extract entities from a given item de-
scription via DBpedia Spotlight (Mendes et al.,
2011), a tool that detects mentions of DBpe-
dia (Auer et al., 2007) entities from NL text.
We then query for each entity’s most specific
type and use those types as relations that con-
nect the item to its corresponding entities. We
construct a user KG via their purchase history,
e.g. [Purchasey, Purchases, ...Purchase,], as
a complete graph where each purchase is connected.
Finally, we connect all the nodes of the user KG
to the item KG, treating each user purchase as a
one-hop neighbor of the current item. To ensure the
KG-explanation correspondence, we filter out any



sentences in the explanation in which no entities
were found. To measure objectivity, we calculate
the proportion of a given KG’s entities that appear
in the explanation, called entity coverage (EC) (de-
fined in Appendix B.2). We summarize our dataset
statistics in Table 1 and present a more comprehen-
sive comparison in Appendix A.2.

6 Experiments

6.1 Evaluation Metrics

We assess explainable recommendation following
prior work: 1) on the recommendation performance
and 2) on the explanation performance. For the ex-
planation generation task, we employ standard natu-
ral language generation (NLG) metrics: BLEU (Pa-
pineni et al., 2002) and ROUGE (Lin, 2004). We
measure diversity and the detail-oriented features
of the generated sentences using Unique Sentence
Ratio (USR) (Li et al., 2020, 2021), and use EC,
instead of feature coverage ratio, for coverage due
to our non-review-based explanations.

6.2 Baseline Models

Previous models were primarily designed for user
review data. To assess the effectiveness of our
approach, we compare it to existing explanation
generation baselines. These baselines include mod-
els that utilize user and item IDs, as well as those
that employ word-level features. Additionally, we
adapt several existing baselines to the context of
explainable recommendation in a knowledge graph
(KG) setting, addressing the need for adaptation,
as the existing models were originally designed for
user review data.

Att2Seq (Dong et al., 2017) was designed for
review generation, where we adapt it to the item
explanation setting. As in (Li et al., 2021), we
remove the attention module, as it makes the gen-
erated content unreadable.

NRT (Li et al., 2017) is a multi-task model for
rating prediction and tip generation, based on user
and item IDs. As in previous work, we use our
explanations as tips and remove the model’s L2
regularizer (Li et al., 2020, 2021), which causes the
model to generate identical sentences.

Transformer (Vaswani et al., 2017; Li et al.,
2021) treats user and item IDs as words. We adapt
the model first introduced for review generation
by Li et al. (2021) while integrating the KG entities
and relations instead of the review item features.

PETER (Li et al., 2021) utilizes both user/item
IDs and corresponding item features extracted from
user reviews to generate a recommendation score,
explanation, and context related to the item fea-
tures. The model also develops a novel PETER
mask between item/user IDs and corresponding
features/generated text. As our task does not take a
feature-based approach, for a fair comparison we
remove the context prediction module and input
the whole KG into the model as the corresponding
item features.

PEPLER (Li et al., 2022) is an extension of
PETER, where the transformer is replaced with a
pre-train language model, namely GPT-2 to gener-
ate both recommendation scores and explanations.
We take the best-performing setting for a fair com-
parison, namely using the MLP setting for recom-
mendation scores.

In addition to NRT, PETER, and PEPLER, as
in previous work, we compare with two traditional
baselines for recommendation: PMF (Mnih and
Salakhutdinov, 2007) and SVD++ (Koren, 2008).

6.3 Implementation

We train our newly proposed KnowRec model
on two settings of the Book and Movie KG-Exp
datasets, a full training set and a few-shot setting,
where 1% of the data is used. Because our method
provides item-level explanations based on KGs, we
split the datasets based on their labeled descrip-
tion/explanation, and as such, we experiment in a
setting where items in the test set can be unseen dur-
ing training. By doing so, we handle a unique case
that has not been considered in previous research
relying on item reviews. The train/validation/test
sets are split into 60/20/20. For KnowRec, we use
BART as our pre-trained model, with a Byte-Pair
Encoding (BPE) vocabulary (Radford et al., 2019).
For more details regarding our experimental set-
tings please see Appendix B.1.

7 Results and Analysis

7.1 Explanation Results

In Table 2, we evaluate the models’ text reproduc-
tion performance using BLEU and ROUGE (R)
metrics, while also examining their explainability
through USR and EC analysis.

For BLEU and ROUGE, KnowRec consistently
outperforms all baselines, achieving a BLEU-4
score of 10.71 and ROUGE-L F1 score of 27.71
on Movie KG-Exp and a BLEU-4 score of 12.60



Name #Users #Items #Interactions KG #Es #Rs #Triples EC  Desc. Words/Sample
Book KG-Exp 396,114 95,733 2,318,107 Yes 195110 392 745699 71.45 Yes 99.96
Movie KG-Exp 131,375 18,107 788,957 Yes 59,036 363 146,772 71.32 Yes 96.35

Table 1: Statistics of our Book KG-Exp and Movie KG-Exp benchmark datasets. #Es, #Rs, and Desc. denote

number of entities, number of relations, and if the dataset contains parallel descriptions.

Dataset Model BLEU-1 BLEU-4 USR R2-F R2-R R2-P RL-F RL-R RL-P EC
Att2Seq 8.86 0.39 030 2.08 141 847 8.07 11.65 949 044
NRT 11.76 0.57 0.03 150 140 325 7.20 11.70 8.05 0.98
Movie Transformer 8.67 0.18 033 121 091 655 658 954 9.69 0.82
KG-Exp PETER 14.66 399 055 5.07 426 11.66 15.06 16.67 23.03 10.58
PEPLER 11.68 0.13 046 056 0.63 054 890 1092 9.53 0.78
KnowRec 37.02 10.71 0.83 1549 15.12 18.15 27.71 28.71 37.10 67.97
Att2Seq 19.51 1.85 043 5.08 3.76 12.15 1298 16.55 20.89 0.86
NRT 21.06 259 0.10 6.18 4.88 11.44 15.57 18.67 2436 1.57
Book Transformer 16.90 201 0.12 5.68 423 11.94 13.66 15.57 26.87 2.08
KG-Exp PETER 27.93 839 0.71 11.94 1036 18.68 21.24 23.30 28.02 17.39
PEPLER 16.07 1.20 090 239 263 226 13.03 1634 1224 0.74
KnowRec 38.53 12.60 0.92 19.78 19.44 23.22 28.29 29.43 35.28 69.50

Table 2: Comparison of explanation generation models on the Movie KG-Exp and Book KG-Exp datasets.

and ROUGE-L F score of 28.29 on Movie KG-
Exp. This suggests that previous baselines, de-
signed for review-level explanation, are inadequate
to produce longer and more objective explanations.
Specifically, of the baselines, PETER which uti-
lizes the whole lexical input, adapts best. However,
KnowRec makes use of user-item graph encodings,
which may lead to better generation of the item KG
features mentioned in the ground truth texts. While
PEPLER (Li et al., 2022)’s pretrained approach
aids in fluent sentence generation, KnowRec excels
in generating contextually relevant words around
feature-level terms. Unlike PEPLER, which creates
concise reviews based on user-item IDs, KnowRec
utilizes graph attention to interconnect related com-
ponents for comprehensive NL text explanations.

In terms of explainability, KnowRec also gen-
erates much more diverse sentences (USR), espe-
cially compared to models that do not leverage
pre-trained models. Note that while PEPLER has a
comparable USR score to KnowRec on the Book
KG-Exp dataset, it does not similarly produce high-
quality and related sentences according to the NLG
metrics. Our results show that while the ground
truth is based on item-level features, the generated
output is still personalized as further discussed in
Section 7.5. Also note the high discrepancy in EC,
where the entity-level features are generated in the
output text. As our goal is to generate objective and
specific explanations, the EC can help real-world
users understand what a certain recommended prod-

uct is about and how it compares to other products.
Therefore, it is crucial that explainable models cap-
ture these features when producing justifications
for recommendations.

7.2 Few-shot Explanation Results

Real-world recommendation systems may face low-
resource problems, where only a small amount of
training data with few item descriptions is available
but an item database exists. To reflect this practical
situation, we also evaluate a few-shot setting where
the training data is 1% of its total size.

As in previous experiments, we set the user-item
size for KnowRec to 5. We show the results of
this few-shot experiment in Table 3. KnowRec
consistently and significantly outperforms other ex-
plainable baselines on both the Book and Movie
datasets in terms of text quality, sentence diversity
(USR), and entity representation (ER), showing
our approach is effective even in data-scarce sce-
narios. Like KnowRec, PEPLER also leverages a
pre-trained model, namely GPT-2. However, unlike
KnowRec, the model does not adapt well to gener-
ating item-specific explanations. The second best
model, PETER, fully leverages the KG features
in their approach. However, such a model does
produce diverse sentences. Note that those models
that completely rely on user and item IDs, fail to
produce quality explanations, as noted by their re-
spective BLEU and ROUGE scores, showing the
task to be more complex than previous explana-



Dataset Model BLEU-1 BLEU-4 USR R2-F R2-R R2-P RL-F RL-R RL-P EC
Att2Seq 2.63 0.00 0.00 0.00 0.00 0.00 273 425 263 0.01
Movie NRT 8.78 032 0.01 1.84 1.08 11.73 7.12 10.17 17.97 0.07
KG-Exp Transformer 12.23 027 0.16 124 1.07 354 697 954 12.00 1.18
(Few-shot) PETER 12.28 0.68 036 233 145 1249 12.00 13.18 18.03 544
PEPLER 12.58 041 0.01 126 144 1.18 10.73 12.63 1038 0.11
KnowRec 33.89 7.53 0.87 13.41 12.60 17.67 24.48 25.63 35.66 63.92
Att2Seq 16.58 1.53 022 4.68 3.10 15.58 13.30 15.28 21.32 0.26
Book NRT 19.12 2.19 001 6.11 436 1399 15.18 20.47 16.78 1.19
KG-Exp Transformer 12.69 122 0.08 3.60 3.16 8.65 977 15.64 1058 1.57
(Few-shot) PETER 18.38 287 045 7.2 5.07 17.50 14.74 17.66 17.52 423
PEPLER 7.96 026 0.02 0.67 0.63 083 7.59 10.07 7.04 0.54
KnowRec 28.93 7.94 0.93 17.28 16.05 22.45 24.84 25.19 36.60 60.46

Table 3: Comparison of explanation generation models on the Movie KG-Exp and Book KG-Exp datasets in the

few-shot learning setting (1% of training data).

Book KG-Exp Movie KG-Exp

Model All Few All Few

R M R M R M R M
PMF 350 335 350 335 |331 308 332 3.08
SVD++ 1.03 080 1.01 0.64 |1.20 079 125 098
NRT 098 074 1.07 073 |1.17 093 123 097
PETER 1.01 079 103 082 |124 103 124 1.00
PEPLER | 096 0.72 107 072 |114 091 127 0.96
KnowRec | 1.04 0.75 1.04 072 |1.22 092 121 093

Table 4: Performance comparison on the recommenda-
tion task with respect to RMSE and MAE, denoted as R
and M on the table respectively.

BLEU-41 USRT RL-Ft | RMSE| MAE/

KnowRec 7.94 0.93 24.84 | 1.04 0.78
- Recomm. 8.32 093 2490 | - -
-UIG Att. 7.75 091 24.80 | 1.03 0.78

Table 5: Ablation study on the Book KG-Exp (Few-
Shot) dataset. ‘Recomm.” means the joint learning with
recommendation scoring, and ‘UIG Att.” denotes the
user-item graph attention.

tion tasks relying on repetitive, short, and already
existing user reviews.

7.3 Recommendation Performance

Table 4 shows the recommendation performance
on all KG Explanation datasets. We report the Root
Mean Square Error (RMSE) and Mean Absolute
Error (MAE) metrics to evaluate the recommenda-
tion task. As shown, all results except PMF are
relatively close. PMF significantly underperforms
due to the cold start problem presented on new
items. KnowRec achieves performance compara-
ble to other strong baselines, despite KnowRec be-
ing the only model that uses lexical features for the
recommendation task, while the other models learn
the task through user/item IDs. Thus, KnowRec

may need more data to learn these parameters. Ad-
ditionally, because we learn the recommendation
task through lexical features, our model provides
an interpretable solution that could be directly com-
pared to the produced NL explanations.

7.4 Ablation Study

We perform ablation studies to analyze the effects
of the recommendation and user-item graph com-
ponents on Book KG-exp as shown in Table 5.
Due to computational resources, we performed the
study on the few-shot setting. We first examine
the results of KnowRec without the recommenda-
tion module in the second row (- Recomm.). By
removing the ‘Recomm’ component, the perfor-
mance on the NLG metrics improves, as the task
is now a single-objective generative task instead
of a multi-objective. We next study the effects of
the User-Item Attention encoders on KnowRec’s
explainability and recommendation performance
(- UIG Aft). As shown by - UIG Att., even with
a smaller training dataset of 1% of the full data,
by removing this component, we observe a slight
decrease in the NLG metrics, BLEU and ROUGE,
and less diverse sentences (USR). The representa-
tion and attention masking on the user-item graph,
which connects and encodes the local item infor-
mation, may therefore give a better representation
of the input which is in turn decoded to produce an
explanation. This may be further expressed within
larger datasets. Furthermore, from the NLG metric
results, we can infer from Table 5 that our rating
module does not significantly hinder the perfor-
mance of the generation component of KnowRec.



7.5 Qualitative Analysis

To grasp KnowRec’s effectiveness, we analyze
explanations from Movie/Book KG-Exp test sets.
These explanations are both grammatically smooth
and adept at (1) integrating robust item features
for factual insights and (2) tailoring personalized
content based on diverse user purchase histories
(examples in Appendix C, Table 7).

Consider the first two rows of the table, pertain-
ing to the movie Journey to the Center of the Earth.
We can see two different (but syntactically simi-
lar) generated explanations for two different users.
In one case, the user has bought mystery and fan-
tasy movies such as Stitch in Crime, Columbo, and
The Lord of the Rings, and the output integrates
related words such as investigates and mysterious
to personalize the explanation. The second case
mentions classic and novel, possibly because the
second user’s purchase history involves Disney clas-
sics and movies based on novels such as The Hardy
Boys and Old Yeller. While the input KG does not
explicitly state that Journey to the Center of the
Earth is a novel, such information may be inferred
from the KG’s relation and supported through the
user’s related purchases. In both cases the output
closely matches the ground truth, verbalizing item
features from the KB such as Jules Verne and mag-
netic storm, suggesting that our model is robust
in describing the explanation content, while still
implicitly reflecting the user’s purchase history.

8 Conclusion

We propose KnowRec, a Knowledge-aware model
for generating NL explanations and recommen-
dation scores on user-item pairs. To evaluate
KnowRec, we devise and release a semi-supervised
large-scale KG-NL recommendation dataset in the
book and movie domain. Extensive experiments
on both datasets demonstrate the suitability of our
model compared to recently proposed explainable
recommendation models. We hope that by propos-
ing this KG-guided task, we will open up avenues
to research focused on detailed, objective, and spe-
cific explanations which can also scale to new items
and users, rather than the current review-focused
work. In future work, we plan to incorporate user-
specific KGs and other pre-trained language mod-
els into our model in order to verbalize both user
and item-level feature explanations.

9 Limitations

While our approach generates objective, descriptive
explanations while implicitly capturing personal-
ized aspects of a user’s purchase history, currently
our dataset labels are limited to item-specific ex-
planations, with the book-related KGs typically
containing author-related information, and thus
more information-dense than the movie-related
KGs. These limitations are due to the currently
available datasets, and future work can explore con-
structing a more personalized user-item KG for
explainable recommendation. Furthermore, we rep-
resent users through their item purchase history
in our approach. Therefore, while we handle the
zero-purchase case for items (items that have not
been purchased before), the zero-purchase case for
users (users without a purchase history) is outside
the scope of our work. In the future, we will extend
our approach to user-attributed datasets to handle
such cases.

10 Ethics Statement

All our experiments are performed over publicly
available datasets. We do not use any identifiable
information about crowd workers who provide an-
notations for these datasets. Neither do we perform
any additional annotations or human evaluations
in this work. We do not foresee any risks using
KnowRec if the inputs to our model are designed
as per our procedure. However, our models may
exhibit unwanted biases that are inherent in pre-
trained language models. This aspect is beyond the
scope of the current work.
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A Dataset Details

A.1 Source Data

Amazon product data: The Amazon product
dataset is a large-scale widely used dataset for prod-
uct recommendation containing product reviews
and metadata from Amazon. Data fields include
ratings, texts, descriptions, and category informa-
tion (He and McAuley, 2016). Because the dataset
contains item descriptions, we can leverage such
data to extract entities and relations to construct
a KG that matches the textual description. Thus,
these descriptions provide objective, item-distinct

12

explanations as to why a user may have purchased a
product. Although a user may not have reviewed an
item, the dataset provides an existing description of
the item, allowing models to produce explanations
for such items. To keep our datasets large-scale, we
focus on Amazon Book and Amazon Movie 5-core,
the two largest Amazon product datasets.

A.2 Dataset Comparison

Table 6 summarizes existing popular rec-
ommendation system datasets utilized for
both the explainable recommendation and

KG recommendation task.
traditional recommendation features, KG-
recommendation features, and explainable
recommendation features. Last.FM (Wang et al.,
2019), Book-Crossing (Wang et al., 2020), Movie-
Lens20M (Wang et al., 2020), and Amazon-book
(KG) (Wang et al., 2019) are popular benchmarks
for the KG-recommendation task but contain
no NL explanation features. Yelp-Restaurant,
Amazon Movies & TV, and TripAdvisor-Hotel
have been recently experimented with for the
explainable recommendation task (Li et al., 2020),
but lack KG data and rely on user reviews as
proxies for the explanation. In contrast, our
datasets, referred to as Book KG-Exp and Movie
KG-Exp contain both KG and the corresponding
parallel item descriptions associated with those
KGs as explanations. Compared to Book KG-Exp,
the Movie KG-Exp dataset contains fewer amount
of unique KG elements, with 59,036 to 195,110
and 745,699 to 146,772 unique entities and KG,
while having similarly sized explanations.

We report both

A.3 Dataset Statistics

We provide detailed statistics on both the Book KG-
Exp and Movie KG-Exp datasets in Figure 2. As
seen in Figures 2(a) and 2(b), the distributions of
KGs with respect to the number of tuples shows
similar long-tail distributions in both datasets. We
observe from Figures 2(c) and 2(d) that a similar
trend of long-tail distributions exists for both with
respect to explanation lengths, where the lengths in
the book dataset tend to skew more right than the
lengths in the movie dataset.

B Experiment Details

B.1 Hyper-parameters and Settings

As in (Li et al., 2021), we adapt the baseline codes
to our setting and set the vocabulary size for NRT,



Words/

Name #Users  #ltems  #Interactions KG #Es #Rs  #Triples  Desc S

ample
Last.FM 23,566 48,123 3,034,796 Yes 58,266 9 464,567 No -
Book-Crossing 276,271 271,379 1,048,575 Yes 25,787 18 60,787 No -
Movie-Lens20M 138,159 16,954 13,501,622 Yes 102,569 32 499,474 No -
Amazon-book (KG) 70,679 24,915 847,733 Yes 88,572 39 2,557,746 No -
Yelp-Restaurant 27,147 20,266 1,293,247 No - - - No 12.32
Amazon Movies 7,506 7,360 441,783 No - - - No 14.14
TripAdvisor-Hotel 9,765 6,280 320,023 No - - - No 13.01
Book KG-Exp 396,114 95,733 2,318,107 Yes 195110 392 745,699  Yes 99.96
Movie KG-Exp 131,375 18,107 788,957  Yes 59,036 363 146,772 Yes 96.35

Table 6: Comparison of widely used datasets divided by task: KG-Recommendation (top), Explainable Recommen-
dation (middle), and KG Explainable Recommendation (bottom).
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Figure 2: Distributions for number of tuples (Figures 2(a) and 2(b)) and tokens (Figures 2(c) and 2(d)) per sample.

ATT2Seq, and PETER to 20,000 by keeping the
most frequent words. For PETER and PEPLER,
we set the number of context words to 128. For
all approaches, including KnowRec, we set the
length of explanation to 128, as the mean length
is about 94 for both datasets. For KnowRec, we
use an embedding size of 512, using a Byte-Pair
Encoding (BPE) vocabulary (Radford et al., 2019)
of size 50,256, with 2 encoding layers. Follow-
ing KG generation work (Ribeiro et al., 2021), we
split the tokens in the linearized graph with their
corresponding label: [user], [graph], [head], [re-
lation], and [tail]. For both datasets, we set the
batch size to 128 and max user and KG size to 64
and 192, respectively. We set the max node and
edge length to 60. We experiment with A\, and A\,
and find that 0.01 and 1 give us the best BLEU per-
formance without affecting the recommendation
prediction scores as in (Li et al., 2022). See Fig-
ure 3 for an analysis of Movie KG-Exp (Few-shot).
The model’s parameters were trained for 20 epochs
and optimized via Adam (Kingma and Ba, 2015)
with a learning rate of le-3 and Adam ¢ of 1e-08,
and the gradients were clipped at 1.0. All other
attention-related hyper-parameters were the same

as used in previous work (Lewis et al., 2020). We
decoded the text via beam search (Hokamp and Liu,
2017) with a beam size of 5. Experiments were per-
formed on NVIDIA RTX 3090 GPUs. We evaluate
the model based on the validation set’s total loss
instead of BLEU score due to computational limita-
tions, saving the top 10 models for testing, because
the model with the least loss does not necessarily
result in the best NLG metrics.

Effect of A, on KG-Exp (Few-Shot)

—— Movie
—— Book

BLEU-4 Score (Avg)
w w o o ~ ~
o n o wn o wn

>
n

0.0 02 0.4 0.6 08 10
Ar Value
Figure 3: Effect of A\, on the BLEU-4 score for the

Book and Movie KG-Exp datasets. We average all top
10 runs for a more comprehensive comparison.
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Because of computation limitations, for evalua-
tion purposes, we randomly sample and evaluate on
1% of the test set, containing 4,491 and 1,456 sam-
ples for the Book and Movie datasets respectively.
Note, that the size of the test set is comparative to
other text generative tasks such as KG-to-text (Gar-
dent et al., 2017) and summarization (Yu et al.,
2022).

B.2 Entity Coverage

We define entity coverage (EC) as the percentage of
unique entities, originating in an item KG, which
appears in the recommendation explanation. More
formally, for each head and tail entity e in an item
KG’s set of entities E, we calculate the token over-
lap in the explanation output for those entities. The
EC score ranges in [0, 1], where we report the per-
centage value in our results. The Book KG-Exp
and Movie KG-Exp had an EC score of 71.45%
and 71.32%, indicating that a descriptive, objec-
tive explanation should have a high EC score. The
formula for EC is defined as:

# K G entities foundin output
#KG entities

or is the recall of the entities in a KG.

C Generated Examples

Table 7 presents some examples generated by
KnowRec from the Book and Movie KG-EXP
datasets. As discussed in Section 7, we find the
examples to be fluent and grammatical, while in-
corporating both item features and implicit user
information based on a user’s purchase history.
The generated examples closely match the ground
truth, while integrating some language derived
from the user. Note, that our aim here is to il-
lustrate examples that showcase the implicit user
preferences, instead of showing those generated
outputs which most closely match the ground truth
descriptions. As with other state-of-the-art NLG
models, KnowRec does have a tendency to hallu-
cinate by adding extra information that may not
be necessarily accurate. As can be by the NLG
metrics in Table 2, KnowRec relieves the halluci-
nation problem by incorporating the user-item KG
information. Such limitations may be additionally
improved by leveraging more dense background
KGs to generate from, while also incorporating
user purchase history item features.
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Item Graph Representation

Generated Explanation

Ground Truth Explanation

Stitch in Crime

’ Jules Verne

writer

Columbo

Journey to the
Center of the Earth

The Lord of the

disease

a scientist (jules verne) investigates
a magnetic storm that sends a
mysterious beam of light from earth
to the center of earth.

jules verne’s professor lindenbrook
leads a trip through monsters, mush-
rooms and a magnetic storm.

Treasures

magnetic storm

Rings, Trilogy magnetic storm ‘
a group of scientists, inspired by jules verne’s professor lindenbrook
- fules Verne ‘ jules verne’s classic novel, take a  leads a trip through monsters, mush-
) trip to the magnetic storm at the rooms and a magnetic storm.
writer
center of the earth.
Journey to the
R Center of the Earth
disease
‘Walt Disney

ashley gardner is a ny times and

usa today bestselling author ashley

Skywalker Strikes

comicscreator
|

Black Canary and
Zatanna,
Bloodspell

Batgirl Vol. 1,
Silent Knight

Silver Surfer
Volume 1, New
Dawn

T
publisher

‘ DC Comics ‘

-
comicscharacter

Batgirl ‘

comicscharacter -

comicscharacter

Supergirl ‘

on batman for dc comics. he is
the author of numerous books for
young readers, including supergirl,
the ultimate guide to character de-
velopment and batgirl, a guide to
writing for comics, both published
by image.

Nice D ‘ USA Today ‘ usa today bestselling author. under ~ gardner is pseudonym for ny times
ice Dragons . - . . .
Finish Last Ay Grdine the pseudonym jennifer ashley, she  bestselling author jennifer ashley.
— meWSPAPEr e rson® has collectively written more than

- Murder in St 70 mystery and historical novels.

Silent Circle :
Giles
I “person -
newspaper

The Traitor in the [P ‘

Tunnel ’ NY Times ‘

kelley puckett is an american comic  kelley puckett has been writing
Kelley Puck . . .

Star Wars vol. 1, clley ket Betuas ‘ book writer best known for his work  comics for far too long, by general

consensus. he has worked on such
series as batman adventures, bat-
girl and kinetic and supergirl for dc
comics.

Jurrasic World

Best of the
Incredible Dr. Pol

( ) animal [ )
The Incredible Dr. ot
Pol - Season 2 B

your favorite dr. pol vet and his
pet dog return for a second season
of this hilarious and heartwarming
animated adventure.

from sick goats to sick pet pigs, dr.
pol and his colleagues have their
hands full with a variety of cases
and several animal emergencies.

Linda Ravenscroft

How to Draw and
Paint Fairies

Mermaids in
Paradise , an Artist
''s Coloring Book

person

(How to Draw and
Paint Fairyland , a
Step-by-step Guide
oLl S

automobile

’ wide range ‘

linda ravenscroft is an award-
winning children’s book author and
illustrator who has illustrated a
wide range of books and mag-
azines, including the best-selling
how to draw and paint series.

linda ravenscroft has produced a
wide range of images in fairyland
motifs, including fine art prints, ex-
clusive giftware, and fantasy art
books.

Table 7: Examples generated by KnowRec on the Book/Movie KG-Exp datasets. In the first column, we follow the
format of user-item KG representation in Figure 1, where red nodes represent a user’s purchase history and blue
nodes represent an item KG. For clarity and brevity, we only show the relevant parts of the item graphs. In the
second column, the bold words are the item features directly coming from the item KG representation, whereas the
underlined words are the features implicitly captured by KnowRec, based on the user’s purchase history.
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Emergent Linear Representations in World Models of Self-Supervised
Sequence Models

Neel Nanda*
Independent

Abstract

How do sequence models represent their
decision-making process? Prior work suggests
that Othello-playing neural network learned
nonlinear models of the board state (Li et al.,
2023a). In this work, we provide evidence
of a closely related linear representation of
the board. In particular, we show that prob-
ing for “my colour” vs. “opponent’s colour”
may be a simple yet powerful way to inter-
pret the model’s internal state. This precise
understanding of the internal representations
allows us to control the model’s behaviour
with simple vector arithmetic. Linear rep-
resentations enable significant interpretability
progress, which we demonstrate with further
exploration of how the world model is com-
puted.!

1 Introduction

How do sequence models represent their decision-
making process? Large language models are ca-
pable of unprecedented feats, yet largely remain
inscrutable black boxes. Yet evidence has accu-
mulated that models extract features — articulable
properties of the input® — and represent them in its
internal activations (Geva et al., 2021; Bau et al.,
2020; Gurnee et al., 2023; Belinkov, 2022; Burns
et al., 2022; Goh et al., 2021; Elhage et al., 2022a).
A key first step for interpreting them is understand-
ing how these features are represented. Mikolov
et al. (2013c¢) introduce the linear representation
hypothesis: that features are represented linearly
as directions in activation space. This would be
highly consequential if true, yet this remains con-
troversial and without conclusive empirical justifi-
cation. In this work, we present novel evidence of

"Equal contribution. neelnanda27@gmail.com,
ajyl@umich.edu

!Code available at https://github.com/ajyl/mech_
int_othelloGPT

“Note that our use of the term refers to a higher-level notion

than its more common use in deep learning terminology, i.e.,
an individual neuron.

Andrew Lee*
University of Michigan
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Figure 1: The emergent world models of OthelloGPT
are linearly represented. We find that the board states
are encoded relative to the current player’s colour
(MINE vs. YOURS) as opposed to absolute colours
(BLACK vs. WHITE).

linear representations, and show that this hypothe-
sis has real predictive power.

We build on the work of Li et al. (2023a), who
demonstrate the emergence of a world model in
sequence models. Namely, the authors train Oth-
elloGPT, an autoregressive transformer model, to
predict legal moves in a game of Othello given
a sequence of prior moves (Section 2.2). They
show that the model spontaneously learns to track
the correct board state, recovered using non-linear
probes, despite never being told that the board ex-
ists. They further show a causal relationship be-
tween the model’s inner board state and its move
predictions using model edits. Namely, they show
that the edited network plays moves that are legal
in the edited board state even if illegal in the orig-
inal board, and even if the edited board state is
unreachable by legal play (i.e., out of distribution).

Critically, the original authors claim that Othel-
loGPT uses non-linear representations to encode
the board state, by achieving high accuracy with
non-linear probes, but failing to do so using linear

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 16-30
December 7, 2023. ©2023 Association for Computational Linguistics



probes. In our work, we demonstrate that a closely
related world model is actually linearly encoded.
Our key insight is that rather than encoding the
colours of the board (BLACK, WHITE, EMPTY),
the sequence model encodes the board relative to
the current player of each timestep (MINE, YOURS,
EMPTY). In other words, for odd timesteps, the
model considers BLACK tiles as MINE and WHITE
tiles as YOURS, and vice versa for even timesteps
(Section 3). Using this insight, we demonstrate that
a linear projection can be learned with near perfect
accuracy to derive the board state.

We further demonstrate that we can steer the se-
quence model’s predictions by simply conducting
vectoral arithmetics using our linear vectors (Sec-
tion 4). Put differently, by pushing the model’s
activations in the directions of MINE, YOURS, or
EMPTY, we can alter the model’s belief state of
the board, and change its predictions accordingly.
Our intervention method is much simpler and in-
terpretable than that of Li et al. (2023a), which
rely on gradients to update the model’s activations
(Section 4.1). Our results confirm that our inter-
pretation of each probe direction is correct, but
also demonstrates that a mechanistic understanding
of model representations can lead to better con-
trol. Our results do not contradict that of Li et al.
(2023a), but add to our understanding of emergent
world models.

We provide additional interpretations of the se-
quence model using linear operations. For example,
we provide empirical evidence of how the model
derives empty tiles of the board, and find additional
linear representations, such as tiles being FLIPPED
at each timestep.

Finally, we provide a short discussion of our
thoughts. How should we think of linear versus
non-linear representations? Perhaps most interest-
ingly, why do linear representations emerge?

2 Preliminaries

In this section we briefly describe Othello, Othel-
1oGPT, and our notations.

2.1 Othello

Othello is a two player game played on a 8x8 grid.
Players take turns playing black or white discs on
the board, and the objective is to have the majority
of one’s coloured discs by the end of the game.
The board always starts with the middle 4 tiles
filled with black and white tiles. At each turn, when

a tile is played, all of the opponent’s discs that are
enclosed in a horizontal, vertical, or diagonal row
between two discs of the current player are flipped.
The game ends when there are no more valid moves
for both players.

2.2 OthelloGPT

OthelloGPT is a 8-layer GPT model (Radford et al.,
2019), each layer consisting of 8 attention heads
and a 512-dimensional hidden space. We use the
model weights provided by Li et al. (2023a), de-
noted there as the synthetic model. The vocabulary
space consists of 60 tokens,? each one correspond-
ing to a playable move on the board (e.g., A4).

The model is trained in an autoregressive manner,
meaning for a given sequence of moves m;, the
model must predict the next valid move my.

Note that no a priori knowledge of the game
nor its rules are provided to the model. Rather,
the model is only given move sequences with a
training objective to predict next valid moves, by
randomly sampling sequences of games from a
game tree. This training objective differs from
that of models like AlphaZero (Silver et al., 2018),
which are trained to play strategic moves to win
games.

2.3 Notations

Transformers. Our transformer architecture
(Vaswani et al., 2017) consists of embedding and
unembedding layers Emb and Unemb with a se-
ries of L transformer layers in-between. Each trans-
former layer [ consists of H multi-head attentions
and a multilayer perception (MLP) layer.

A forward pass in the model first embeds the
input token at timestep ¢ using embedding layer
Emb into a high dimensional space 2y € R”. We
refer to m?eT as the start of the residual stream.
Then each attention head Att",Vh € H and MLP
block at layer [ add to the residual stream:

ghmid — g4 Z At (xh)
heH
xf‘,Jrl _ :Ci_mid + ML.Pl (xft_mid)

Each attention head AttfZ computes value vec-
tors by projecting the residual stream to a lower
dimension using Att!.V, linearly combines value

3The game always starts with 4 tiles in the center of the
board already filled.



xo xl x2 %3 x4 x5 mﬁ x7
Randomized 37 351 339 355 348 347 344 345
Probabilistic 61.8
Linear { BLACK, WHITE, EMPTY} 622 748 749 75.0 750 749 748 744
Non-Linear {BLACK, WHITE, EMPTY} 634 88.6 933 963 97.5 983 987 98.3
Linear {MINE, YOURS, EMPTY} 909 948 97.2 983 99 994 99.6 99.5

Table 1: Probing accuracy for board states. OthelloGPT linearly encodes the board state relative to the current
player at each timestep (MINE vs. YOURS, as opposed to colours BLACK or WHITE.

vectors using Attlh.A, and projects back to the
residual stream using Att?.O:

h(z) = (Attn}. A ® Attnl.O - Attn}. V) - &

where ® notates a tensor product. A final pre-
diction is made by applying Unemb on 2%, fol-
lowed by a softmax.

Probe Models. We notate linear and non-linear
probes as p* and p”. Our linear probes are sim-
ple linear projections from the residual stream:
pMxl) = softmax(Wal), W € RP*3. The di-
mension D x 3 comes from doing a 3-way classifi-
cation.* Non-linear probes are 2-layer MLP mod-
els: p”(z!) = softmax(WiReLU(Waa!)), Wy €
RIX3 Wy € RP*H | Li et al. (2023a) classify
the colour at each tile (BLACK, WHITE, EMPTY).
Our insight is to classify the colours relative to the

current turn’s player (MINE, YOURS, EMPTY).

3 Linearly Encoded Board States

In this section we describe our experiments to find
linear board state representations.

3.1 Experiment Setup

Rather than encoding the colour of each tile
(BLACK, WHITE, EMPTY), OthelloGPT encodes
each tile relative to the player of each timestep
(MINE, YOURS, EMPTY) — for odd timesteps, we
consider BLACK to be MINE and WHITE to be
YOURS, and vice versa for even timesteps.

In order to learn the weights of our linear probe,
we train on random game sequences until a valida-
tion loss on a set of 512 games converges according
to a patience value of 10. In practice, our linear
probes converge after around 100,000 training sam-
ples. We test our probes on a held out set of 1,000
games.

*In practice, because we are predicting the state of all 64
tiles, the shape of our probe is D x 64 x 3.
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We train a different probe for each layer [. Hy-
perparameters are provided in the Appendix.

3.2 Results

Table 1 shows the accuracy for various probes.

We include four baselines. The first is a linear
probe trained on a randomly initialized GPT model.
We also include a probabilistic baseline, in which
we always choose the most likely colour per tile at
each timestep, according to a set of 60,000 games
from training data. The next two baselines are
probe models used in Li et al. (2023a): a linear
and non-linear probe trained to classify amongst
{BLACK, WHITE, EMPTY}.

Our linear probes achieve high accuracy by layer
4. Unbeknownst previously, we show that the
emerged board state is linearly encoded.



4 Intervening with Linear Directions

In this section we demonstrate how we intervene
on OthelloGPT’s board state using linear probes.

4.1 Method

An inherent issue with probing is that it is corre-
lational, not causal (Belinkov, 2022). To validate
that our probes have found a true world model, we
confirm that the model uses the encoded board state
for its predictions.

To verify this, we conduct the same intervention
experiment as Li et al. (2023a). Namely, given an
input game sequence (and its corresponding board
state BB), we intervene to make the model believe in
an altered board state B’. We then observe whether
the model’s prediction reflects the made-believe
board state B’ or the original board state B.

Our intervention approach is simple (Figure 2):
we add our linear vectors to the residual stream of
each layer:

 —x+ apﬁ(x)

where d indicates a direction amongst { MINE,
YOURS, EMPTY} and « is a scaling factor. In
other words, to flip a tile from YOURS to MINE,
we simply push the residual stream at every layer
in the MINE direction, or to “erase” a previously
played tile, we push in the EMPTY direction. > ©

Note that this intervention is much simpler than
that of Li et al. (2023a). Namely, Li et al. (2023a)
edits the activation space (x) of OthelloGPT using
their non-linear probes. More specifically, they use
non-linear probes to predict board state B, then
compute gradients had the correct board state been
the target board state B’, and finally use the gradi-
ents to update the activation space of OthelloGPT
rather than the weights of the probe model. Instead,
we perform a single vector addition.

4.2 Experiment Setup

For our intervention experiment, we adopt the same
setup and metrics as Li et al. (2023a). We use
an evaluation benchmark consisting of 1,000 test
cases. Each test case consists of a partial game
sequence (B) and a targeted board state B’.

>We experiment with intervening on different layers. See
Appendix for more details.

®We use the TransformerLens library: https://github.
com/neelnanda-io/TransformerLens.
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Flipping colours Avg. # Errors
Null Intervention Baseline 2.723
Non-Linear Intervention 0.12
Linear Probe Addition 0.10
Erasing Avg. # Errors
Null Intervention Baseline 2.73
Non-Linear Intervention 0.11
Linear Probe Addition 0.02

Table 2: Error rates from interventions. We measure
the number of false positives and false negatives in
the top-N predictions post-intervention, where N is the
number of legal moves in the target board state B’.

We measure the efficacy of our intervention by
treating the task as a multi-label classification prob-
lem. Namely, we compare the top-/NV predictions
post-intervention against the groundtruth set of le-
gal moves at state B’, where N is the number of
legal moves at B’. We then compute error rate, or
the number of false positives and false negatives.

Li et al. (2023a) only considers the scenario of
flipping the colour of a tile. To also validate our
EMPTY direction, we also experiment with “eras-
ing” a previously played tile by making it empty.

4.3 Results

Table 2 shows the average error rates after our inter-
ventions. A null intervention measures the number
of errors by comparing pre-intervention predictions
on post-intervention groundtruths. Our interven-
tions are equally effective as that of gradient-based
editing (Li et al., 2023a), and confirms that our in-
terpretation of each linear direction matches how
the model uses such directions.

5 Additional Linear Interpretations

The linear representation hypothesis is of interest
to the mechanistic interpretability community be-
cause it provides a foothold into understanding a
system. The internal state of the transformer, the
residual stream, is the sum of the outputs of all pre-
vious components (heads, layers, embeddings and
neurons) (Elhage et al., 2021). Albeit the residual
stream consisting of linear and non-linear trans-
formations, linear functions of the residual stream
allow us to identify where a computation of inter-
est takes place, or trace how a representation of
interest evolves over a forward pass.

In this section we leverage our newfound linear
representation of board state to provide additional



interpretations of OthelloGPT, as proof of concept
of how discovering linear representations unlocks
downstream interpretability applications.

5.1 Interpreting Empty Tiles

Here we interpret how OthelloGPT derives the sta-
tus of empty tiles.

The EMPTY Circuit. A key insight for EMPTY
is that input tokens each correspond to a tile on the
board (i.e., A4), and once played, the tile can only
change colour but remains non-empty.

We view OthelloGPT as using attention heads to
“broadcast” which moves have been played: given
a move at timestep ¢, attention heads write this
information into other residual streams. This infor-
mation (PLAYED) can be represented as following.
First, each move m (A4) is embedded: Emb[m].
Then the model writes this information to other
residual streams using linear projections A¢¢.V and
Att.O (Section 2.3):

PLAYEDy (m) = Emb[m|QAtt,.VQAtt,.O

For each attention head in the first layer,” we
compute the cosine similarity between PLAYED
and the pp\ppy direction:

max CosSim(PLAYEDy, (1), piypry (1))
€

Since the two terms encode opposite information,
we expect a high negative cosine similarity.

We observe an average similarity score of -0.862
across all 60 squares,g, confirming that pgypry 1S
encoding NOT PLAYED. This tells us that pgypry
is a linear function of the token embeddings.

This also implies that OthelloGPT knows which
tiles are empty by 2%~ after the first attention
heads but before the MLP layer. On a binary clas-
sification task of EMPTY vs. NOT-EMPTY from
1,000 games in our test split, our probe achieves
an accuracy of 76.8% and 98.9%, when project-
ing from the residual stream before and after the
attention heads from the first layer.

"Knowing which moves were PLAYED (i.e. show up in
the input sequence), should not depend on any other computa-
tion, and thus we expect this information to be written by the
attention heads in the first layer.

8The center 4 squares can never be empty.
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Figure 4: Examples of attention heads from the first
layer attending to moves that are YOURS (left) or MINE
(right).

Logit Attribute for EMPTY. The previous anal-
ysis is based on the weights of the model. Here
we provide an alternative analysis by studying the
activations during inference.

First, we select a move m (A4) that we wish
to explain. We then construct a “clean” and “cor-
rupt” set of partial game sequences (N=4,569). Our
clean set always includes m, while our corrupt set
replaces all timesteps with m in the clean set with
an alternative move. We ensure that all games in
our corrupt set remain legal sequences. Finally, we
study the difference in probability that m is empty,
according to our probes, in our two sets. Namely,
we project the outputs from each attention head
onto the EMPTY direction and apply a softmax:

PEMPTY[m] (o) = Softmax(o * péMPTY[m})

where o is the output from each attention head.
Figure 3 shows the difference in probability that
A4 is empty, between our clean and corrupt inputs,
measured in each attention head of the first layer.
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Linear { FLIPPED, NOT-FLIPPED }

74.76  85.75 91.62 9482 9644 97.13 96.82 96.3

Table 3: F'1 score for probing on FLIPPED tiles. In addition to the board state, the model also linearly encodes

concepts such as flipped tiles per timestep.

The figure decomposes two scenarios: when A4
was originally played as MINE or YOURS. This is
because some attention heads only attend to moves
that are MINE (4, 7), while some only attend to
YOURS (1, 3, 8), which we show below.

5.2 Attending to MY & YOUR Timesteps

We find that some attention heads only attend to
either MY or YOUR moves. Figure 4 shows two
examples: at each timestep, each head alternates
between attending to even or odd timesteps. Such
behavior further indicates how the model computes
its world model based on MINE and YOURS as
opposed to BLACK and WHITE.

5.3 Additional Linear Concepts: FLIPPED

In addition to linearly representing the board state,
we find that OthelloGPT also encodes which tiles
are being flipped, or captured, at each timestep. To
test this, we modify our probing task to classify be-
tween FLIPPED vs. NOT-FLIPPED, with the same
training setup described above. Given the class im-
balance, for this experiment we report F'1 scores.
Table 3 demonstrates high F'1 scores by layer 3.

We also conduct a modified version of our inter-
vention experiment, in which we always randomly
select a flipped tile at the current timestep to in-
tervene on. Then, instead of adding either pRy .,
pg\{OURS, or péMPTY, we subtract pl’}LIPPED. This tests
whether the FLIPPED feature is causally relevant
for computing the next move, by exploring whether
this is sufficient to cause the model to play valid
moves in the new board state. We get an average
error rate of 0.486, compared to a null intervention
baseline rate of 1.686.

One can consider FLIPPED tiles as the differ-
ence between the previous and current board state.
One might naturally think that a recurrent com-
putation could derive the current board state by
iteratively applying such differences. However,
transformer models do not make recursive com-
putations!® Also, the derivative property of cap-
tured tiles being encoded in later layers might be

Doing so would require our transformer model to have
the same number of layers as the maximum game sequence
length of 60.
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analogous to observations from previous studies of
language models that show low-level lexical prop-
erties being encoded in lower layers and syntax and
semantics being mostly captured in higher layers
(Tenney et al., 2019).

54

Although we find board state representations and
their causality on move predictions, we find that
they do not explain the entire model. Namely, if
our understanding is correct, we expect the model
to compute the board state before computing valid
moves. However, we find that in end games, this is
not the case.

To check for the correct board state, we apply our
linear probes on each layer, and check the earliest
layer in which all 64 tiles are correctly predicted.'®
To check for correct move predictions, we project
from each layer using the unembedding layer, and
check the earliest layer in which the top-N move
predictions are all correct, where N is the number
of groundtruth legal moves.

Figure 5 plots the proportion of times the board
state is computed before (or after) valid moves
(first y-axis). We also overlay the average earliest
layer in which board or moves are correctly com-
puted (second y-axis, aqua and lime curves). To
our surprise, we find that in end games, the model
often computes legal moves before the board state
(black bars). We henceforth refer to this behavior
as MOVEFIRST, and share some thoughts.

Multiple Circuits Hypothesis

End Game Circuits. First, MOVEFIRST starts
to occur around move 30, which is the mid-point of
the game. Second, MOVEFIRST occurs more fre-
quently as we near the end of the game (increasing
black bars). Interestingly, in Othello, starting from
the mid-point, there are progressively fewer empty
tiles than there are filled tiles as the board fills up.
Also note that as the game progresses, it becomes
more likely for every empty tile to be a legal move.

One possible explanation for this phenomenon
is that in the end game, it may be possible to pre-

19Tt might be the case that legal moves could be predicted
without 100% accuracy of the board state. We try variants (see
Appendix), but observe similar trends.
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the game progresses.

dict legal moves with simpler circuits that do not
require the entire board state. For instance, perhaps
it combines EMPTY with other features such as IS-
SURROUNDED-BY-MINE or IS-BORDER and so
on.

Multiple Circuits. Interestingly, the model still
uses the board state at end games. To demon-
strate this, we run our intervention experiment on
1,000 end games,“ and still achieve a low error
rate of 0.112.'> We thus hypothesize that Othel-
1oGPT (and more broadly, sequence models) con-
sist of multiple circuits. Another hypothesis is that
residual networks make “iterative inferences” (Sec-
tion 5.5), and for end games, OthelloGPT uses
simpler circuits in the early layers and refines its
predictions at late layers using board state.

End Game Board Accuracy. We observe that
board state accuracy drops near end games. This
can be seen by the growing red bars, but also by
measuring per-timestep accuracy of our probes (see
Appendix). It is unclear whether 1) the model does
not bother to compute the perfect board state, as
alternative circuits allow the model to still correctly
predict legal moves, or 2) the model learns an alter-
native circuit because it struggles to compute the
correct board state at end games.

Memorization. Note that in the first few
timesteps, the board and legal moves are some-
times both computed in the same layer (dark grey
bars). This may be due to memorization: 1) these

""'We intervene on a timestep > 30
2Non-intervention baseline: 1.988.
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predictions both occur at the first layer, and 2) there
are only so many openings in an Othello game.

5.5 TIterative Feature Refinements

Figure 6 visualizes OthelloGPT’s “iterative infer-
ence” (Jastrzebski et al., 2018; Belrose et al., 2023;
Veit et al., 2016; nostalgebraist, 2020), or itera-
tive refinement of features. For each layer, we
plot the projected board states using our probes,
and projected next-move predictions using the un-
embedding layer. Multiple evidence of iterative
refinements are provided in the Appendix.

6 Discussions

6.1 On Linear vs. Non-Linear
Interpretations

One challenge with probing is knowing which
features to look for.!3 For instance, classifying
{BLACK, WHITE} versus { MINE, YOURS} leads to
different takeaways, which illustrates the danger of
projecting our preconceptions. What might seem
“sensible” to a human interpreter (BLACK, WHITE)
may not be for a model. In hindsight, given the
symmetric game-play of Othello, encoding MINE,
YOURS is perfectly sensible for the model (For
more examples of non-obvious, sensible features,
see (McCoy et al., 2019; Nanda et al., 2023)).
More broadly, what is sensible, or alternatively,
how we choose to interpret linear or non-linear en-
codings, can be relative to how we see the world.
Suppose we had a perfect world model of our phys-
ical world. Further suppose that if and when it

BFor a longer discussion on probing, see Appendix.
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Figure 6: Iterative refinements: the top row shows each layer projected using our linear probes. The bottom row
shows the model’s predictions for legal moves at each layer, by applying the unembedding layer on each layer.

computes a gravitational force between two ob-
jects (Newton’s law), we discover a neuron whose
square root was the distance between two objects.
Is this a non-linear representation of distance? Or,
given the form of Netwon’s law, is the square of
the distance a more natural way for the model to
represent the feature, and thus considered a linear
representation? As this example shows, what con-
stitutes a natural feature may be in the eye of the
beholder.

6.2 On the Emergence of Linear
Representations

Linear representations in sequence models have
been observed before: iGPT (Chen et al., 2020),
which was autoregressively trained to predict next
pixels of images, lead to robust linear image rep-
resentations. The question remains, why do linear
feature representations emerge? What linear repre-
sentations are currently encoded in large language
models? One reason might be simply that matrix
multiplication can easily extract a different subset
of linear features for each neuron. However, we
leave a complete explanation to future work.

7 Related Work

We discuss three broad related areas: understanding
internal representations, interventions, and mecha-
nistic interpretability.

7.1 Understanding Internal Representations

Multiple researchers have studied concept represen-
tations in sequence models. Li et al. (2021) train
sequence models on a synthetic task, and uncover
world models in their activations. Patel and Pavlick
(2022) demonstrate that language models can learn
to ground concepts (e.g., direction, colour) to real
world representations. Burns et al. (2022); Marks
and Tegmark (2023) find linear vectors that en-
code “truthfulness”. Probing techniques have also
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been used to extract linguistic characteristics in sen-
tence embeddings (Conneau et al., 2018; Tenney
et al., 2019). Researchers have also used struc-
tural probes to uncover syntactic structures in word
embeddings (Hewitt and Manning, 2019) and lan-
guage models (Eisape et al., 2022). Prior to current
day language models, word embeddings (Mikolov
et al., 2013b,a) built vectoral word representations.

Linear representations are found outside of lan-
guage models as well. Merullo et al. (2022) demon-
strate that image representations from vision mod-
els can be linearly projected into the input space of
language models. McGrath et al. (2022) and Lover-
ing et al. (2022) find interpretable representations
of chess or Hex concepts in AlphaZero.

7.2 Intervening On Language Models

A growing body of work has intervened on lan-
guage models, by which we mean controlling their
behavior by altering their activations.

We consider two broad categories. Paramet-
ric approaches often use optimizations (i.e. gra-
dient descent) to locate and alter activations (Li
et al., 2023a; Meng et al., 2022a,b; Hernandez
et al., 2023; Hase et al., 2023). Meanwhile,
inference-time interventions typically apply linear
arithmetics, for instance by using “truthful” vec-
tors (Li et al., 2023b), “task vectors” (Ilharco et al.,
2022), or other “steering vectors” (Subramani et al.,
2022; Turner et al., 2023).

7.3 Mechanistic Interpretability

Mechanistic interpretability (MI) studies neural net-
works by reverse-engineering their behavior (Olah
et al., 2020; Elhage et al., 2021). The goal of MI
is to understand the underlying computations and
representations of a model, with a broader goal
of validating that their behavior aligns with what
researchers have intended. Such framework has
allowed researchers to better understand grokking



(Nanda et al., 2023), superposition (Elhage et al.,
2022b; Scherlis et al., 2022; Arora et al., 2018), or
even individual neurons (Mu and Andreas, 2020;
Antverg and Belinkov, 2021; Gurnee et al., 2023).

8 Conclusion

In this work we demonstrated that the emergent
world model in Othello-playing sequence models
is full of linear representations. Previously unbe-
knownst, we demonstrated that the board state in
OthelloGPT is linearly represented by encoding
the colour of each tile relative to the player at each
timestep (MINE, YOURS, EMPTY) as opposed to
absolute colour (BLACK, WHITE, EMPTY). We
showed that we can accurately control the model’s
behaviour with simple vector arithmetic on the in-
ternal world model. Lastly, we mechanistically
interpreted multiple facets of the sequence model,
analysing how empty tiles are detected, and linear
representations of which pieces are flipped. We
find hints that multiple circuits might exist for pre-
dicting legal moves in the end game, as well as
further evidence that residual networks iteratively
refine their features across layers.
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Hyperparameter | Value
Optimizer AdamW
Learning Rate le-2
Weight Decay le-2
Betas 0.9, 0.99
Validation Step 200
Validation Size 512
Validation Patience 10

Table 4: Hyperparameters used for our linear probes.
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Figure 7: Intervention results depending on layers in-
tervened.

A Hyperparameters for Linear Probes

Table 4 provides hyperparameters used for our lin-
ear probes.

B Intervening on Different Layers

In practice there are a lot of ways to intervene using
linear vectors. Figure 7 demonstrates different er-
ror rates depending on which layers are intervened.
From our experiments, we observe that either a
sufficient number of layers need to be intervened
for OthelloGPT to alter its predictions. We offer a
couple of hypotheses for this. First, we hypothesize
that this is because of the residual structure of trans-
former models, and while each layer may write
additional information into the residual streams,
there may still be information from earlier layers
that the model uses. A somewhat related hypothe-
sis is that OthelloGPT might be demonstrating the
Hydra effect (McGrath et al., 2023), in which lan-
guage models demonstrate the ability to self-repair
its computations after an intervention.

C Multiple Circuits

In Section 5.4, we find hints that OthelloGPT some-
times computes moves before boards at end games.

28

Namely, we check the earliest layers in which the
board is correctly predicted with 100% accuracy.
Could it be that at end games, legal moves can be
predicted without needing the entire board? To this
point, we experiment with variations of this exper-
iment. In Figure 8, we check the earliest layer in
which at least 90% of the board is first correctly
computed. In Figure 9, we check the earliest layer
in which the “minimum set” of tiles are correctly
computed, where the minimum set is set of tiles
that make each legal move playable (see Figure 10
for example). Despite a looser criteria for board
state, we still see OthelloGPT computing moves
before boards at end games.

Interestingly, our probes lose accuracy starts to
drop in the end game as well (Figure 11). It is
unclear whether 1) the model does not bother to
compute the perfect board state, as alternative cir-
cuits might exist at end games, or 2) the model
learns an alternative circuit because it struggles to
compute the correct board state at end games.

D Evidence of Iterative Feature
Refinements

As mentioned in Section 5.5, OthelloGPT demon-
strates multiple evidence of iterative feature re-
finements: 1) Board state accuracy (as well as
FLIPPED) improves from layer to layer (Table 1,
3). 2) Next-move predictions also improve from
layer to layer. Table 5 reports the top-1 error rate
when applying the unembedding layer on every
layer using our test set from Section 3. As a base-
line, we apply the same unembedding layer from
OthelloGPT to the residual streams of a randomly
initialized GPT model. 3) Linear probes across
layers share similar directions. Figure 12 plots
the cosine similarity between all linear probes, av-
eraged across all 64 tiles and directions (MINE,
YOURS, EMPTY).

E On Principled Ways of Probing

Probing has produced both excitement and skepti-
cism amongst researchers (Belinkov, 2022). Here
we provide our learnings regarding probing.

One criticism of probes is whether the discov-
ered features are actually used by the model, i.e.,
correlation vs. causation. Intervention is com-
monly used to study causality (Giulianelli et al.,
2018; Tucker et al., 2021), but have often reached
mixed conclusions (Belinkov, 2022). While both
linear and non-linear probes have demonstrated
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Figure 10: Example of “minimum set” of tiles that
make move G2 legal.

successful interventions (Li et al., 2023b; Turner
et al., 2023), linear probes are much easier to inter-
pret, as they imply that features simply correspond
to vectoral directions.

Another challenge is knowing which features
to probe for, which can lead to pitfalls. Taking
OthelloGPT as an example, classifying { BLACK,
WHITE} versus { MINE, YOURS} leads to different
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Figure 11: Accuracy per timestep for our linear probes.

takeaways, which illustrates the danger of project-
ing our preconceptions.

Speaking of incorrect takeaways, our last point
concerns the expressivity of probe models. With an
expressive-enough probe, there is a danger of the
probe computing or memorizing the desired fea-
ture that one is looking for, rather than extracting
(Pimentel et al., 2020a; Saphra and Lopez, 2019).
Still, some researchers view linear classification
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Table 5: Top-1 error rates when applying the unembedding layer to earlier layers. As a baseline we apply Othel-
1o0GPT’s unembedding layer on a randomly initialized GPT model.
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Figure 12: Cosine similarity scores between linear
probes across layers.

as inadequate (Pimentel et al., 2020b; Saphra and
Lopez, 2019). We view our work as evidence that
linear probes do have interpretable and controllable
power, and anticipate these findings to generalize
to larger language models.
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Abstract

Large language models (LLMs) have displayed
an impressive ability to harness natural lan-
guage to perform complex tasks. We explore
whether we can leverage this ability to find and
explain patterns in data. Specifically, given a
pre-trained LLM and data examples, we apply
interpretable autoprompting (iPrompt) to gener-
ate a natural language string explaining the data.
iPrompt iteratively generates explanations with
an LLM and reranks them based on their per-
formance when used as a prompt. Experiments
on a wide range of datasets, from synthetic
mathematics to natural language understand-
ing, show that iPrompt can yield meaningful
insights by accurately finding dataset explana-
tions that are human-interpretable. Moreover,
iPrompt is reasonably efficient, as it does not
require access to model gradients and works
with relatively small models (e.g. 6 billion
parameters rather than >100 billion). Finally,
experiments with scientific datasets show the
potential for iPrompt to aid in scientific discov-

ery. !

1 Introduction

Large language models (LLMs) have attained an
extraordinary ability to harness natural language
for solving diverse problems (Devlin et al., 2018),
often without the need for finetuning (Brown
et al., 2020; Sanh et al., 2021). Moreover, LLLMs
have demonstrated the capacity to excel at real-
world problems, such as mathematics (Lewkowycz
et al., 2022), scientific question answering (Sa-
dat and Caragea, 2022), predicting brain re-
sponses (Schrimpf et al., 2021), and classifying
proteins and chemical compounds (Taylor et al.,
2022).

In this work, we probe whether we can lever-
age the learned skills of an LLM to discover and
explain patterns in a dataset. To do so, we invert

"*Equal contribution. All code for using the methods and
data here is made available on Github.
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Natural-language
explanation

Dataset

Input: 3 1 Output: 4

Input: 4 7 Output: 11 —> Add the inputs

Input: 5 9 Output: 14 LLM

Figure 1: We use interpretable autoprompting to explain
datasets, inverting the standard prediction problem to
instead find a natural language explanation of the data
using a fixed, pre-trained large language model.

the typical problem of fitting an LL.M to data and
instead ask whether we can use a fixed LLM to pro-
duce a natural language string explaining dataset
patterns.

Our approach to this problem centers around
prompting. Prompting has emerged as an effective
method for adapting LLMs to new datasets (Liu
et al., 2021a); a prompt string is combined with
each example in a dataset before querying an LLM
for an answer. While prompts were initially con-
structed manually, recent work has shown success
in autoprompting, automatically finding a prompt
via optimization (Shin et al., 2020; Li and Liang,
2021; Deng et al., 2022; Zhou et al., 2022). Here,
we study interpretable autoprompting (iPrompt),
which aims to find a semantically meaningful nat-
ural language prompt that explains a key charac-
teristic of the data. For example, given a dataset
of examples of addition,e.g. 2 5=7...3 1=
4, iPrompt yields the natural language explanation
Add the inputs (see Fig. 1). iPrompt works by us-
ing a pre-trained LLM to iteratively propose and
evaluate different candidate explanations.

For evaluation, we curate a diverse collection
of datasets written in natural language (Table 1)
and measure iPrompt’s ability to accurately explain
a ground-truth pattern. We find that iPrompt out-
performs baseline methods in accurately finding
a correct description; moreover, the generated de-
scriptions are interpretable, allowing human audit-
ing and enabling strong generalization when used

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 31-55
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as a prompt in a new setting (i.e. when used for a
different LLM). On real-world sentiment classifica-
tion datasets, Finally, we find that iPrompt is able
to extract information from real-world scientific
datasets.

2 Related work

Problems related to dataset explanation The
problem statement presented in this work closely
resembles the widely studied problems of sym-
bolic regression (Augusto and Barbosa, 2000;
Schmidt and Lipson, 2009), program synthe-
sis (Gulwani et al., 2017; Manna and Waldinger,
1980), text/table summarization (Kryscinski et al.,
2019; Liu et al., 2018), and pattern discovery in
data-mining (Hand, 2007). iPrompt can be viewed
as an algorithm for symbolic regression, in which
the set of allowable symbols consists of seman-
tically meaningful natural language strings. One
recent work proposes the task of inferring prompts
that improve supervised prediction (Honovich et al.,
2022), which we generalize here to diverse use
cases for dataset explanation.

Prompting and autoprompting. With the ad-
vent of large-scale models, prompting (i.e. find-
ing the right prompt to use to query an LLM for
a given task) has exploded as an area of inquiry,
often yielding impressive improvements in perfor-
mance (Brown et al., 2020; Petroni et al., 2019;
Liu et al., 2021a) and spurring a line of work aim-
ing to make prompting easier (Strobelt et al., 2022;
Lu et al., 2022; Bach et al., 2022; Logan IV et al.,
2022). Recently, autoprompting (i.e. automatically
searching for a prompt or prompt-embedding via
optimization) has emerged (Li and Liang, 2021;
Liu et al., 2021b) to improve the process of prompt-
ing, with methods such as prefix-tuning (Li and
Liang, 2021), P-tuning (Liu et al., 2021b), prompt-
tuning with rules (Han et al., 2021), knowledge-
able prompt tuning (Hu et al., 2021) and many
more (Liu et al., 2021a). These strategies use gra-
dient descent to find a set of “adapter” parameters
that maximize model performance, but do not re-
quire that the new parameters map back to tokens
in discrete space, rendering them uninterpretable.
A few methods tackle the more difficult problem
of searching for prompts that can be expressed in
natural language tokens. RLPrompt (Deng et al.,
2022) searches for such a prompt using reinforce-
ment learning and one recent work (Honovich et al.,
2022) queries an LLM to produce a prompt. Auto-
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Prompt (Shin et al., 2020) performs autoprompting
via input gradients (see Sec. 3). These methods
effectively alter a model’s predictions, but do not
constrain the discovered prompts to be semantically
meaningful, resulting in prompts that are difficult
to interpret (Webson and Pavlick, 2021). Another
related work directly finetunes an LLM to describe
the difference between two datasets (Zhong et al.,
2022). One recent work proposes a method for
interpretable autoprompting similar to the one here,
with a focus on improving prediction performance
rather than on explaining data patterns (Zhou et al.,
2022).

Alternative methods for neural-network inter-
pretation A popular method for interpreting neu-
ral networks is to inspect an LLM’s individual pre-
dictions via feature importances (Lundberg et al.,
2019; Ribeiro et al., 2016), feature-interaction im-
portances (Singh et al., 2019; Tsang et al., 2017),
extractive rationales (Zaidan and Eisner, 2008; Sha
et al., 2021), or natural language explanations for
individual predictions (Hendricks et al., 2016; Cam-
buru et al., 2018). These works can provide mean-
ingful insights for individual predictions, but it is
difficult to parse them into an understanding of an
entire dataset. Alternatively, one can investigate
whether an LLM’s learned representations via prob-
ing (Conneau et al., 2018; Liu and Avci, 2019) or by
directly analyzing a model’s internal weights and
activations (Wang et al., 2021; Olah et al., 2018;
Meng et al., 2022). However, these approaches
are limited in their ability to generate previously
unknown descriptions of data.

3 Methods: Defining the task and
approach

3.1 Task: Dataset Explanation

Given a dataset comprised of input-output string
pairs {(z%,y1),..., (", y")}, the goal is to pro-
duce a “semantically meaningful” natural language
string that explains the relationship between x and
y. We require that a string consists of human-
understandable text rather than a sequence of incon-
gruous tokens. For example, in the dataset shown in
Fig. 1, given samples of data performing addition,
our task is to recover text synonymous to Add the
inputs. This dataset explanation can then be used
for various downstream tasks, such as prompting a
different LLM.



Table 1: Dataset Explanation Tasks. Each collections
contains # different task. Roman numerals correspond
to the use cases in Fig. 1. For full details on each dataset,
see Appendix A.2.

GPT-2 (1.5B) GPT-Neo (2.7B)

GPT-J (6B) GPT-3 (175B)

Collection #  Description

1) Synthetic math 10  Mathematical functions (i), (ii)

2) Allen NLI 10  Language tasks (i), (ii)

3) Instr. induction 20  Language tasks (i), (ii)

4) Sentiment 4 Sentiment classification (i), (ii)

5) Proteins/chemicals 3  Protein/chemical properties (iii)

6) Language fMRI 20  Excitation of fMRI voxel (iii),(iii X Subtract 4
Datasets Table 1 shows the collections of

datasets we study: (1) Synthetic math — datasets
that require inferring an underlying mathemati-
cal function based on numeric input and outputs;
(2) Allen NLI (ANLI) and (3) Instruction induc-
tion (Honovich et al., 2022) — diverse language
tasks (Wang et al., 2022) with easily verifiable
descriptions (e.g. Find a country’s capital). (4)
Sentiment — a collection of sentiment classification
datasets in different domains. For collections (1-3),
there is a ground-truth prompt available for eval-
uation. For example, when adding two numbers
(Fig. 1), the rule checks whether a description con-
tains any of the keywords add, sum, or +. We also
study scientific datasets on (5) proteins/chemicals,
and (6) fMRI with full details given in Sec. 6.

3.2 Approach: iPrompt

We now detail approaches for the general prob-
lem of autoprompting before covering interpretable
autoprompting. We specify autoprompting as a
discrete search problem. Given a dataset of n
input-output pairs {(z!, y'), ..., (", y™)} and a
pre-trained LLM f that returns the log-probability
of a given string, autoprompting finds a natural
language explanation § maximizing:

n
§ = argmax Zf (render(s,xi,yi)) (1
seS i=1

The render function is a problem-specific function
that renders a natural language string from the
prompt s and each example in the dataset (2%, y").
We use S to indicate the set of fluent strings, under
some notion of syntactic fluency. This constraint
is used to ensure prompts are readable, and poten-
tially generalize to downstream LLMs. Solving
this search problem exactly is intractable.

A core assumption of this objective is that se-
mantically accurate prompts lead a model to assign
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Figure 2: Prompt-based reranking depends on model
size. Large models (GPT-J 6B and GPT-3) align
prompts correctly to tasks. The model is given the
prompt Return the ___of the inputs., where ___ is filled
in with the shown prompt keyword before querying the
output given two inputs numbers in a string. Darker
indicates a higher accuracy, and high accuracy along the
diagonal indicates that the correct prompt induces the
highest accuracy.

higher probability to the correct output. To check
this assumption, we analyze four datasets from the
inverse synthetic math collection that share com-
mon structure for the inputs and prompts. Each
dataset admits a prompt of the form Return the ___
of the inputs., then is given two input numbers and
queried for the output.

Fig. 2 shows the accuracy of different models
at performing these tasks across different input
prompts.” For small models, the prompts are un-
successful, but for large models (GPT-J 6B and
GPT-3), the model is accurate if and only if given
the correct prompt.® This result suggests that, at
least for large models, the search for a prompt that
maximizes performance correlates well with the
underlying task. We will see in Fig. 4 that dataset
explanation depends on this ability.

Baseline: AutoPrompt AutoPrompt (Shin et al.,
2020) targets the objective posed in Eq. (1) us-
ing a gradient-based local search. AutoPrompt
searches for § following the gradients of the ob-
jective Eq. (1) with respect to individual tokens in

The accuracy is normalized for each task using softmax
in order to visualize the effect of differing prompts.
3For details on each model, see Table A4.



(i) Proposal (ii) Reranking

Combine the numbers Combine the numbers

In: 310ut: 4
Y Our: ) sum in order
In: 59 Out: 14

Compute the output
Combine the numbers

Sum the numbers ‘

Sum in order

Prompt:

Compute the output

(iii) Iterate with exploration
|

Combine the numbers

Combine the arguments

In: 55 Out: 10

In: 9 3 Out: 12

Sum all inputs ‘
In: 18 Out: 9

Prompt: Combine the arguments

Sum the numbers ‘

Sum all inputs ‘

Figure 3: Overview of iPrompt. iPrompt first proposes
candidate prompts, then ranks them based on their per-
formance as a prompt, then truncates and regenerates
them. This entire process is repeated until performance
stops improving.

Combine the numbers ‘

. It discretely changes individual words in § and
then checks whether or not the newly updated 3
improves the objective score. The use of gradients
allows AutoPrompt to find an effective prompt 3,
but makes it difficult to find answers that satisfy
the fluency constraint S.

Baseline: Zero-shot suffix decoding LLMs

themselves can be directly used to predict

prompt strings.  Following Honovich et al.,

we give the model a prompt string which

contains data examples (e.g. [In: 25 Out: 7.
2

To compute the output from the input, __,)

y’L
and

template
sample the output to recover a prompt S using

nucleus sampling.*

Proposed method: interpretable autoprompt-
ing iPrompt (Fig. 3) is an iterative local search
algorithm that alternates between three steps: (i)
proposing candidate prompts, (ii) reranking candi-
date prompts, (iii) exploration.

(i) Proposal: Candidate prompts are generated by
extending the zero-shot LLM generation. Given
a data instance as a prefix, we sample a number
of candidate prompts. The maximum length of

*We also consider averaging the model’s output logits
across all examples in the dataset before decoding the out-
put, but find that it does not improve performance (see Ap-
pendix A.4).
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each candidate is pre-specified and fixed. For ex-
ample, in the add-two-numbers task (Fig. 3), we
may generate four candidates: { Combine the num-
bers, Return the output, Sum in order, Compute the
output}.

(i1) Reranking: Given candidates, the objective
Eq. (1) is evaluated for each candidate prompt s.
The top few candidates which maximize the objec-
tive are kept, e.g. narrowing down the candidates
to {Combine the numbers, Sum in order).

(iii) Iterate with exploration: Each of the top
candidates from reranking is truncated at a random
position. These truncated candidates are used as a
prefix when generating new candidate prompts via
suffix decoding. For example, we may randomly
select the start of the previous candidates and fill
in the endings: {Combine the ___, Sum ___} —
{Combine the numbers, Combine both arguments,
Sum the numbers, Sum all inputs).

The algorithm is repeated until identifying a suit-
ably strong 3, e.g. Sum the numbers. Steps (i) and
(iii) ensure that prompts remain fluent, while step
(i1) improves the score of the prompts on the ob-
jective. Computationally, iPrompt only requires
running inference on the pre-trained LLM, yield-
ing a significantly lower memory requirement than
methods such as AutoPrompt which require access
to the LLM’s gradients.

4 Experimental Setup

We consider two sets of experiments. Firstin Sec. 5,
we explore iPrompt’s ability to rediscover a correct
and fluent prompt on the variety of simple instruc-
tion datasets (Table 1, top) with known answers.
Experiments test the ability of the model to recover
a known prompt while also remaining fluent in a
way that generalize to human readers and to other
language models. In Sec. 6 we apply iPrompt to
scientific datasets (Table 1, bottom).

Language Models For the main set of experi-
ments, we always generate prompts using GPT-J, a
6 billion parameter model (Wang and Komatsuzaki,
2021). We restrict prompts to {6,12} tokens for
sentiment classification and 6 tokens for the re-
maining data collections in Table 1. For generaliza-
tion experiments, alternative models are tested with
the generated prompts including OPT and GPT-
3 (Zhang et al., 2022; Brown et al., 2020). See
Appendix A.4 for a full discussion of experimental
details and Appendix A.3 for experiments on more



Table 2: Performance for dataset explanation. Dataset
from Table 1 (1-3). Accuracy measured via (1) Human-
evaluation (H, normalized %), (2) Mean Reciprocal
Rank across the collection (M) and (3) 1-best correct-
ness (C, %). For all metrics, higher is better.

iPrompt AutoPrompt Suffix

H/M/C H/M/C H/M/C
Math 60/0.69/60 25/0.14/13 20/0.08/03
ANLI 56/0.41/37 21/0.07/07 25/0.06/01
Induction 42/0.35/28 21/0.09/08 23/0.04/01

models (e.g. Galactica (Taylor et al., 2022)) and
more datasets.

Evaluation metrics Our main evaluation mea-
sures each prompt’s closeness to groundtruth via
three metrics: (1) Correct — whether the gener-
ated explanation contains one of a set of problem-
specific keywords. (2) MRR — Mean reciprocal
rank measuring the rank of the first task-correct
prompt. Given a set of datasets D = {Dy, ..., Dn},
we compute: MRR = ﬁ ZE'I fank; » Where rank;
is the one-indexed rank of the first correct expla-
nation. (3) Human — The human evaluation scores
between the top-generated explanation and a pre-
specified groundtruth explanation, when instructed
“You are given a groundtruth description along with
a generated one. On a scale of 1 (worst) to 5 (best),
how interpretable and accurate is the generated de-
scription?”. The mean human evaluation score
(ranging from 1 to 5) is normalized.

As a secondary evaluation, we measure general-
ization ability when we evaluate explanations based
on accuracy as a prompt for other models. Accu-
racy is computed following (Brown et al., 2020;
Raffel et al., 2020): using exact matching with
beam search, a beam width of 4, and a length
penalty of o = 0.6.

5 Results and Analysis

5.1 Dataset explanation recovery

Table 2 compares prompting methods across three
diverse data collections. The Human evaluation
scores are much higher for iPrompt than the base-
lines, suggesting that it finds prompts which are
both accurate and human-interpretable. Similarly,
the MRR and Correct scores show that iPrompt con-
siderably improves in finding accurate explanations.
See all generated explanations in Appendix A.3.

SHuman evaluation scores are averaged over 4 PhD stu-
dents in machine learning not affiliated with the study.
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Figure 4: Comparison of model accuracy with correct
prompt and iPrompt ability to find the correct prompt
across each individual task (single-task MRR). Prompt
recovery ability is dependent on the model’s ability to
perform the task.

Table 3: Generalization accuracy (zero-shot) with the
prompts generated with GPT-J as the LLM across dif-
ferent models.

Correct P Auto No

Prompt 1Prompt Prompt prompt
GPT-J 6.7B* 54.0 51.5 41.6 16.3
€ OPT6.7B 12.7 19.3 18.9 8.4
= GPT 20B 76.1 54.4 232 8.5
GPT-3 175B 76.0 62.1 40.8 28.4
_. GPT-J6.7B* 9.0 4.7 1.9 2.0
E OPT 6.7B 10.7 6.7 4.7 7.9
< GPT20B 31.0 14.2 5.6 4.0
GPT-3 175B 37.6 11.7 2.7 7.7

To assess the best-case absolute accuracy of the
approach, we note it is impossible for the approach
to recover the prompt if the underlying LLM can-
not solve the task. Fig. 4 plots the prompt recovery
performance (MRR) against the underlying LLM’s
accuracy (when using the groundtruth prompt) for
each dataset. When the model can solve the task,
iPrompt does well on recovery. However for many
tasks the model has low accuracy even with the cor-
rect prompt, putting a ceiling on the performance
of iPrompt.

5.2 Generalization accuracy of prompts

The generalization accuracy of generated prompts
across different LLMs can inform how well a
prompt captures an underlying pattern in the data.
Table 3 shows the generalization accuracy when
testing the prompts generated using GPT-J (Table 4)
on different LLMs. The prompts maintain effec-
tiveness across most models. For the Math datasets,
the iPrompt prompts elicit improvement over the
baselines and approach the accuracy of the cor-
rect prompt. For the ANLI datasets, all prompts



induce poor performance. Notably, the gap be-
tween iPrompt and AutoPrompt is larger for larger
models (i.e. GPT 20B and GPT-3); this suggests
that, by generating fluent prompts, iPrompt gen-
erates more generalizable descriptions. Similarly,
iPrompt shows strong results on sentiment analy-
sis datasets across a variety of models including
GPT-3 (see Appendix A.1).

Table 4 shows the top-ranked explanation gener-
ated by each method for selected datasets. iPrompt
often finds an explanation that is indicative of the
underlying relationship, even if the phrasing is not
perfect. For example, for the add two numbers
dataset, it finds Create a function named ‘sum. The
prompts found by iPrompt also read as fairly fluent
strings compared to AutoPrompt, which produces
an incoherent set of tokens.

5.3 Model ablations

We run ablation experiments to analyze the three
steps of iPrompt: (1) Proposal, (2) Reranking, and
(3) Iteration. We use the Math and ANLI datasets
and run on a maximum of 5000 data points using 5
shots in context for prompt generation.

(1) Proposals are partially guided by examples.
During the proposal stage, iPrompt prefixes poten-
tial prompts with dataset examples. Table 5 con-
siders variants of this stage that remove input and
output examples during the proposal stage. Note
that the system still has access to the full examples
during the reranking stage. We find that the system
can achieve decent performance on Math simply by
iterating. However for ANLI, the model needs to
at least see the inputs/outputs during the proposal
in order to find accurate prompts.

(2) Reranking zero-shot recovers better
prompts. iPrompt uses zero-shot accuracy to rank
prompts. As we have examples of the task, we
could instead use in-context few-shot prompting
for ranking. Prior work suggests that prompt word-
ing is less influential as the number of in-context
examples increases (Webson and Pavlick, 2021).
Table 5 shows that using these examples in-context
for reranking does, in fact, considerably hamper
prompt recovery. We further find that the LLM
used for reranking is more important than the LLM
used for proposals (see Appendix Fig. A3).

(3) Iteration improves performance Finally, Ta-
ble 5 shows that without multiple iterations, perfor-
mance drops nearly to zero (Fig. A2 shows more
details on loss as a function of iterations).
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6 Scientific investigations with iPrompt

We now investigate whether iPrompt can explain
patterns in scientific datasets. Specifically, we ana-
lyze the Galactica model (Taylor et al., 2022) with
6.7 billion parameters. We query whether it can de-
scribe differences in protein sequence before inves-
tigating a neuroscience problem; see Appendix A.5
for similar experiments in a chemical toxicity set-
ting.

Differentiating protein sequences We investi-
gate whether iPrompt can explain the differences
between two groups of proteins. We use protein
sequences and keywords from Swiss-Prot (Bairoch
and Boeckmann, 1991) (a high-quality subset of
Uniprot (Consortium, 2015)) to construct two
datasets: each dataset contains two groups of pro-
teins, which are differentiated based on their key-
words.® The first dataset, which we call Cyto,
has proteins with either the keyword Cytoplasm
or Membrane. The second dataset, which we call
Binding, has proteins with either the keyword RNA-
binding or ATP-binding. Each group is randomly
downsampled to 100 proteins and iPrompt is run
with the same hyperparameters as when finding
chemical compounds.

We make this problem more challenging by feed-
ing the model the raw protein sequence (not the
protein name) which ranges from hundreds to thou-
sands of amino acids. Each input is presented with
the following text: Here is a protein sequence:\n
[Protein Sequence \n Answer: followed by Yes for
a one group and No for the other. Table 6 shows re-
sults for identifying whether the elicited prompt
contains one of the relevant keywords for each
dataset (e.g. Cytoplasm). Despite the difficult in-
put format, the correct keywords are successfully
identified for both the Cyfo and Binding datasets
better than for the Baseline (which again contains
empty inputs).

Scientific investigation into an fMRI natural lan-
guage dataset We now explore using iPrompt
in a simple neuroscience experiment. A central
challenge in neuroscience is understanding how
and where semantic concepts are represented in the
brain. A recent seminal study (Huth et al., 2016)
explores this question by investigating where dif-
ferent natural language categories are represented
in the human neocortex. Specifically, the authors

®We search for reasonably popular but non-cooccuring
keywords in the proteins; see details in Fig. AS



Table 4: Examples of generated explanations by iPrompt and AutoPrompt. See all prompts in Appendix A.3.

Human-written prompt iPrompt

AutoPrompt

Return the sum of the inputs

Math

Return the square of the input
Differentiate between prime/non-prime integers

Create a function named ‘sum
Input number and return its square
Are these pairs of integers prime

>:Returns Adding togetherFont accomplish
Cal impl qApplySquare fiat
ropheospels&& Norestricted

Differentiate vegetarian/non-vegetarian foods

Differentiate the subject in a sentence based on
gender

ANLI

Return a synonym
Translate english to spanish
Return a country’s capital city

Are you a vegetarian?
Predict the gender (F =

what is a synonym for
please write English meaning in Spanish
Which city is the capital and

compliedthe whether methamphetamine provided comp

< endoftext > -> M Fundamental FG Fav

Word termOn English meanings
the ththebb volunt
Ang Suppose AUTHthe beh Assassins

Table 5: Algorithmic ablations for each stage of iPrompt.
Gives prompt recovery (MRR) achieved by ablating
each stage. Averaged over 3 random seeds.

MRR

Math  ANLI

iPrompt 0.557 0.278

(1) Proposal w/o inputs+outputs 0.400 0.015
w/o inputs 0463 0.244

w/o outputs 0.539 0.255

(2) Reranking ~ w/ in-context examples  0.071  0.152
(3) Iteration No iteration 0.075 0.050

Table 6: iPrompt performance at differentiating protein
sequences. For both the Cyro and Binding datasets, the
correct keywords are succesfully identified better than
for the Baseline. Results are averaged over 12 random
seeds; error bars are standard error of the mean.

iPrompt iPrompt

(Cyto) (Binding) ~ Daseline
MRR 024008 008+004 003+001
Recall @5 0254013 0.17+0.11 0.05+ 0.05
Recall @20 083 +0.11 033+014 023+ 009

collect functional MRI (fMRI) responses as human
subjects listen to hours of narrative stories. They
then build a predictive model of these responses
for each voxel (i.e. a small region in space) in the
brain, which takes as input the words contained in
the stories (and other features). To interpret these
individual voxel models, they cluster the words in
the narrative stories into 12 groups and manually
annotate them, resulting in 12 categories, such as
tactile, visual, and professional. Finally, they view
the spatial mapping of these 12 concepts (projected
onto low dimensions) across the brain using their
individual voxel models.

We revisit a small piece of this study’s analy-
sis through the lens of iPrompt. Specifically, we
ask whether iPrompt could generate plausible cat-
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egories that are well-represented across the brain
but differ from the manually identified 12. We
fit a predictive model for each voxel, following
the pipeline of the original study (details in Ap-
pendix A.8). We then use the resulting models to
identify a list of the top-15 words which most ex-
cite each voxel. For example, the top-15 words that
excite the best-predicted voxel are: sheet, edges,
diameter, strips, cardboard, copper, steel, colored,
coloured, leaf, wire, cap, paper, shaped, tin. To
identify a plausible semantic category, we construct
a template string as follows: The following list of
words all belong to the same semantic category:
__\n\n sheet, edges, ..., shaped, tin. We then use
iPrompt (again with a GPT-6B parameter model)
to generate a category by filling in the blank (re-
stricted to a single token). To make iPrompt more
effective, for each voxel we use iPrompt on a set
of examples consisting of 15 permutations of the
top-15 words, allowing finding patterns that are not
overly sensitive to the word-ordering.

Given the top categories for each voxel, we ana-
lyze the mapping of recurring categories across the
neocortex. We aggregate the top-15 inferred cate-
gories’ over the top-15 best-predicted voxels and
find that the most frequently inferred categories are:
material, color, surface, text, & fabric.
Interestingly, these are sensible quantities that dif-
ferent voxels could reasonably be selective for. We
spatially map each of these identified categories
(e.g. material) across the 10,000 best-predicted
voxels by using the LLM in a second way. For
each voxel, we condition the LLM (again GPT-6B)
on the top-15 words list, and evaluate the predicted
probability for each category, i.e. The following
list of words all belong to the same semantic cat-
egory: sheet, edges, ..., shaped, tin The semantic
category they all belong to, in one word, is ___. The

"We apply stemming and remove stopwords before choos-
ing the best categories.



) ) ) 0 Material !
Figure 5: Representations of the iPrompt-elicited con-

cepts material (blue) and color (red) across the sur-
face of the neocortex are spatially clustered and smooth.
Only the top 10,000 best-predicted voxels are shown, re-
maining voxels are shown in black. Only the right hemi-
sphere is shown (see both hemispheres, which show
consistent smoothness in Fig. A6).

higher this predicted probability, the more selective
we infer that a voxel is for the category. Fig. 5
shows these predicted probabilities for the top-two
inferred categories (material and color) across the
cortex of a human subject.

While there is no groundtruth for this seman-
tic map, one noteworthy feature of the resulting
map is that it is spatially smooth (quantitatively,
Fig. A8 shows that the variance of the map among
neighboring pixels is significantly lower than we
would expect by shuffling the map’s values). This
is non-trivial, as nowhere in the modeling process
was spatial information incorporated: each voxel
was modeled independently and the displayed pre-
diction was queried independently. We expect the
underlying map to be smooth, both due to local
connectivity in brain regions and also because the
BOLD signal measured by fMRI does not have
perfect spatial resolution. Thus, the fact that our
inferred map is smooth suggests that (i) something
about these categories is genuinely captured by
the representation in the human brain, and (ii) that
the iPrompt approach was able to reflect at least
some of it. Beyond the two categories shown, the
five categories generated by iPrompt exhibit spatial
smoothness across the neocortex (Fig. AS8).

7 Conclusion and Discussion

iPrompt makes a meaningful step towards finding
natural language prompts that are both accurate and
human-interpretable. We show this method can
be used to recover dataset descriptions, produce
transferable prompts, and provide explanations for
experimental data. One future direction could elicit
targeted information from data via the use of a
template. For example, one may use iPrompt to ex-
tract feature importance by prepending the learned
prompt with the string “To get the answer from
the inputs, the most important inputs are ___ . As
another example, in a scientific study such as the
fMRI study in Sec. 6, a scientist interested in a
particular topic (e.g. fear) may investigate that par-
ticular topic by making a more specific template
(e.g. How are these words related to the concept of
“fear”?).

While we focus on text, iPrompt could be ap-
plied generally settings where an LLM performs
well. For example, in computer vision, an inter-
pretable autoprompt may look like a mask of an
image, and in vision-language models, an inter-
pretable prompt may be a description of a vision
task, e.g. find the largest shape in this image.
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A Appendix

A.1 Sentiment classification results

For sentiment evaluation, we learn a prompt within the template Input: “${input}”{prompt}.® We use
positive and negative as positive and negative labels and require the LLM to rank the two options. Human-
written prompts are adapted to this template from open-source prompts available through PromptSource
(Bach et al., 2022).

Table A1 shows results on the sentiment analysis datasets. As prompts for GPT-J, iPrompt outperforms
not only AutoPrompt, but also the manually-written prompt on all four datasets. Interestingly, the average
performance of human-written prompts on GPT-J is very low, unlike the prompts generated by iPrompt.
This indicates that models at 6B parameter scale may be brittle to the choice of prompt, even among a
set of reasonable options, and iPrompt (and to an extent, AutoPrompt) is able to discover how to phrase
prompts so that models of this scale can complete the task.

When sentiment prompt generalization is tested on GPT-3, we find that iPrompt prompts outper-
form human-written prompts on two of the four datasets. When tested on GPT-3, iPrompt prompt 7o
summarize this review! : outperforms all PromptSource IMDB prompts that use the same verbalizer
(positivelnegative). When its prompts are tested on GPT-3, baseline AutoPrompt only slightly outperforms
testing with no prompt at all.

Table A2 shows the best prompt produced by each method for each sentiment dataset. iPrompt often
learns to recreate significant examples from the dataset, as a prompt. Fig. A1 shows loss across training
step for each method and dataset, across three random seeds. We see that AutoPrompt often finds a
prompt with slightly lower loss on the training data, although its prompts lead to worse generalization, as
reported in Table Al. Each training step represents a single word swap (in the case of AutoPrompt) or the
truncation and generation of a new prefix (in the case of iPrompt).

Different from the other experiments in this paper, for sentiment classification, we initialize AutoPrompt
with random tokens instead of all the, as we find AutoPrompt fails to find an effective solution for longer
prefix lengths when all tokens are initialized to the. To accommodate for a complex input-output
relationship, we test prompts of length 12 as well as length 6.

Accuracy is measured on the test set when available; otherwise, it is measured on a held-out 25% of the
train set.

Table A2: Best-of-three prompts generated by each method on sentiment classification datasets. (Human-written
prompts are best-of-eight and taken from PromptSource (Bach et al., 2022)).

Task Method Prompt
AutoPrompt Fur resultolandgroundur augmented

Financial phrasebank Human-written prompt ~ How does the author of the news headline feel?

phras iPrompt <input> neutral > The result was due to: "

AutoPrompt uclear cend Koretravel NAACP curses SicAstings production received
Human-written prompt ~ The movie review in negative/positive sentiment is:

IMDB . ) .
iPrompt This movie needs to be put up on my profile as my
AutoPrompt Whether{{ anotherath<lendoftextl> how

Rotten Tomatoes Human-written prompt ~ What sentiment does the writer express for the movie?
iPrompt what words would you try to add to help you express that
AutoPrompt BryceSpecificalyWASHINGTONRatedam

SST-2 Human-written prompt ~ What is the sentiment expressed in this text?
iPrompt It is clear from the sentence that all three actors have something

81n initial experiments, we find that performance drops significantly when learning a prompt that comes before the input.
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Table Al: Zero-shot accuracy on sentiment classification datasets: SST-2, Rotten Tomatoes, IMDB, and the
Financial Phrasebank (Socher et al., 2013; Malo et al., 2014; Pang and Lee, 2005). Generation with GPT-J 6B and
evaluation on both on the original GPT-J model and GPT-3 (text-davinci-002). Errors are standard errors of the
mean.

Human- . No
written iPrompt AutoPrompt prompt
., FFB 27019 793+21 740+09.1 47.5
[EI: RT 589+31 848+09 73.0+£438 59.2
O SST-2 584+28 867+£10 767+39 60.9
IMDB 66.0+32 879+14 86.7£1.2 58.6
« FFB 396+1.6 572469 282 +£3.1 39.1
[E': RT 82.7+33 774128 57.8£3.5 54.8
o SST2 90.5+39 824+£23 61.8+£7.0 58.4
IMDB 75.6+33 86.6+1.1 70.0 £ 6.5 66.2
ffb_train imdb_train
rt_train iPrompt Loss

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of iterations

Figure A1: Loss plots for methods across sentiment analysis datasets, showing AutoPrompt and iPrompt across
three random seeds.
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A.2 Data/model details

Table A3: Details for each dataset. For details on Instruction induction, see (Honovich et al., 2022) and for details
on Distribution differences, see (Zhong et al., 2021).

Task name Samples Description Example
fibonacci_one 10 Given an input X, return the xth fibonacci number. Given the input x is 8, the output f(x) is 21.\n\n
double_one 10 Given an input x, return 2*x. Given the input x is 6, the output f(x) is 12.\n\n
exp_one 10 Exponentiate the input to get the output. Given the input x is 8, the output f(x) is 2980.96.\n\n
square_one 10 Square the input to get the output. Given the input x is 2, the output f(x) is 4.\n\n
first_two 100 Return the first of the inputs. Given the input numbers 7 and 8, the answer is 7.\n\n
add_two 100 Return the sum of the inputs. Given the input numbers 9 and 7, the answer is 16.\n\n
subtract_two 100 Return the difference of the inputs. Given the input numbers 5 and 4, the answer is 1.\n\n
divide_two 100 Return the quotient of the inputs. Given the input numbers 2 and 7, the answer is 2/7.\n\n
multiply_two 100 Return the product of the inputs. Given the input numbers 3 and 3, the answer is 9.\n\n
max_two 100 Return the maximum of the inputs. Given the input numbers 1 and 1, the answer is 1.\n\n
task1191_food_veg_nonveg 101 Return whether the input food dish is vegetarian (yes or ~ Input: Haq Maas Answer: no\n
no).
task1149_item_check_edible 119 Return whether the input item is edible (yes or no). Input: vase Answer: no\n
task1146_country_capital 231 In this task, you are given a country name and you need  Input: Saint Pierre and Miquelon Answer: Saint-Pierre\n
to return the capital city of the given country
task1147_country_currency 232 You are given a country name and you need to return the  Input: Senegal Answer: CFA Franc BCEAO\n
currency of the given country.
task1509_evalution_antonyms 551 In this task, you are given an adjective, and your jobisto  Input: paper Answer: scissor\n
generate its antonym. An antonym of a word is a word
opposite in meaning to it.
task183_rhyme_generation 999 Given an input word generate a word that rhymes exactly ~ Input: think Answer: sync\n
with the input word. If not rhyme is found return "No"
task107_splash_question_to_sql 2031 In this task you are expected to write an SQL query that  Input: What are the order ids and customer ids for or-
will return the data asked for in the question. An SQL  ders that have been Cancelled, sorted by their order dates?
query works by selecting data from a table where certain ~ Answer: SELECT order_id , customer_id FROM cus-
conditions apply. A table contains columns where every  tomer_orders WHERE order_status_code = "Cancelled"
row in that table must have a value for each column. Every ~ ORDER BY order_date\n
table has a primary key that uniquely identifies each row,
usually an id. To choose which columns are returned you
specify that after the "SELECT" statement. Next, you use
a "FROM" statement to specify what tables you want to
select the data from. When you specify a table you can
rename it with the "AS" statement. You can reference
that table by whatever name follows the "AS" statement.
If you want to select data from multiple tables you need
to use the "JOIN" statement. This will join the tables
together by pairing a row in one table with every row in
the other table (Cartesian Product). To limit the number
of rows returned you should use the "ON" statement. This
will only return rows where the condition...
task088_identify_typo_verification 6499 The given sentence contains a typo which could be one  Input: A laege display of apples, pears, and oranges An-
of the following four types: (1) swapped letters of a word ~ swer: laege\n
e.g. 'niec’ is a typo of the word ’nice’. (2) missing letter
in a word e.g. "nic’ is a typo of the word ’nice’. (3) extra
letter in a word e.g. “nicce’ is a typo of the word "nice’.
(4) replaced letter in a word e.g "nicr” is a typo of the word
’nice’. You need to identify the typo in the given sentence.
To do this, answer with the word containing the typo.
task1336_gender_classifier 6500 Return the gender of the person in the input sentence. Input: Justin made me feel discouraged. Answer: M\n
task092_check_prime_classification 6500 In this task, you need to output ’Yes’ if the given numberis  Input: 9319 Answer: Yes\n
a prime number otherwise output 'No’. A "prime number’
is a a whole number above 1 that can not be made by
multiplying other whole numbers.
Table A4: Models analyzed here.
Model name Huggingface identifier Citation
GPT-2 (1.5B) gpt2-x1 (Radford et al., 2019)
OPT (2.7B) facebook/opt-2.7b (Zhang et al., 2022)
GPT-Neo (2.7B) EleutherAI/gpt-neo-2.7B (Black et al., 2021)
Flan-T5 (3B) google/flan-t5-x1 (Chung et al., 2022)
GPT-J (6B) EleutherAI/gpt-j-6B (Wang and Komatsuzaki, 2021)
OPT (6.7B) facebook/opt-6.7b (Zhang et al., 2022)
Galactica (6.7B) facebook/galactica-6.7b (Taylor et al., 2022)
GPT-Neo (20B) EleutherAI/gpt-neox-20b (Black et al., 2022)

GPT-3 (175B)

text-davinci-002 (OpenAl API)

(Radford et al., 2021)
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A.3 iPrompt results extended

We consider discriminators of varying sizes, with GPT-J (6B) as a prompt generator. We also compare
generators of varying sizes with GPT-J (6B) as a prompt discriminator. Models considered are of
{125M,1.3B,2.7B,6B} parameters from the GPT-Neo/GPT-J language model family. Results are
shown in Fig. A3. Performance varies smoothly across model sizes, with the highest performance when
using the largest model for both reranking and generation. Reranking appears slightly more important
than generation. When using a 1.3B parameter model for generation, MRR drops only slightly, from
0.418 to 0.399, while when using a 1.3B parameter model for reranking, MRR drops to 0.211. In general,
prompt recovery performance improves smoothly with reranking model size.

Fig. A2 plots the progress of iPrompt across iterations, comparing runs on Math datasets (blue) to runs
on ANLI datasets (gray). iPrompt appears to make most of its progress during the first 20% of training and
then continue to slowly decrease the average loss. Running for more iterations on additional datapoints
would likely increase performance.

iPrompt Loss

6.0 1 —— Math
—— ANLI

5.59

4.5 A

4.0

0 50 100 150 200 250 300
Number of iferations

Figure A2: iPrompt performance across training, average(ii across three random seeds and all tasks from Math
datasets (Blue) and ANLI (Gray).
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Figure A3: iPrompt performance across different size language models for the prompt proposal and reranking steps.
Values are mean reciprocal rank of first accepted prompt averaged across 20 tasks and 3 random seeds.
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Table AS: Performance of Galactica at prompt recovery, including DD datasets (Zhong et al., 2022, 2021).

iPrompt AutoPrompt Suffix

Math 0.2 0.09 0.025
ANLI 0.39 0.0025 0.085
MRR Induction 0.14 0.098 0.056
DD 0.064 0.0082 0.066
Math 0.12 0.075 0
Correct ANLI 0.34 0 0.025
Induction 0.071 0.087 0.02
DD 0.043 0 0.052
Math 0.0073 O 0
ANLI 0.01 0 0.00032
BLEU-Top Prompt 1/ 4/ ction 0022 0 0.0027
DD 0 0 0.0015
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Table A6: Examples of top-generated prompts for each method: GPT-J main datasets.

autoprompt
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cause and effect
common concept
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first two

first word letter
informal to formal
larger animal
letters list

max two

multiply two
negation

num to verbal
orthography starts with
rhymes

second word letter
sentence similarity
sentiment
singular to plural
square one
subtract two

sum

synonyms
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sql

task1146 country capital
task1147 country currency
task1149 item check edible
task1191 food veg nonveg
task1336 peixian equity eval-
uation corpus gender classi-
fier

task1509 evalution antonyms
task183 rhyme generation
taxonomy animal

translation en-de

translation en-es

translation en-fr

word in context

(= 18 the the subst

>:Returns Adding togetherFont accomplish
the bectheBut But

REG Kinect virginity developed mosquit The
777N
""Fair 62 disgust 92 81

soughtWomen surgicalthe Percentage treated
says transit Farethe doubles dollars

&8&wl +# 123 270 Earthquake

baptpi produce347)."''

Binding decode wr detect shortest numeric
Exception Ps< endoftext >the the

CLASSIFIEDthe themselves strongly Plays Chamber

fluidsthethethethethe
spendingthethethethethe
ruits="# multipl integer multiplied False
performs antiv Sizethe NULL NULL
irritatedthedd respectfully Protectivethe
nextbusiness wordevery morphpp

Steal batter dating: unfold testosterone
i mascot okay kk

value %%%% Math

positively optimistic&8&& negative
Enhanced shorthand Lets pluralbetweenthe
Cal impl gApplySquare fiat
ignorethethethethethe
Photosthethethethethe
Word termOn English meanings

thethethethethe

ropheospels&& Norestricted

Ang Suppose AUTHthe beh Assassins
aaaathecurrency Nib Sc

no the870830 yes

compliedthe whether methamphetamine provided comp

< endoftext > -> M Fundamental FG Fav

contrad orously inverted ironically trans
quarterdream dug}. Thro rhy

programmingQ errorsBefore admitting mont
H prob Hyper Forthe

the ththebb volunt

IRthe< endoftext >thethe the

("nSame distinguishedthethe

Choose a pronoun for each sentence
Create a function named ~sum

The noun to its opposite (

What would each sentence be if

Find a noun that includes all

Find the difference between largest
"Divide each digit by

Write a function called double_

Input this into your calculator (
Implement a function to find Fib

Find first digit of given number

Make a program that reads in

These are questions on simple sentences
What is the most common animal

Given the following list of tokens
Implement a version of max()

'How do you multiply a

I found these four mistakes below
Output each number below in the

Name of two homophones

Find the missing word for all

Who gave the answer "o

3 (5 marks). The

I'm voting "negative”

Given a noun and its plural

Input number and return its square
Write a function to find difference
Add two numbers together and then
what is a synonym for

This word scramble is to test

Are these pairs of integers prime

How Do You Connect SQL To

Which city is the capital and
Ireland. Which currency is spoken
coffee and beans are fruits.

Are you a vegetarian?

Predict the gender (F =

find words with the opposite meaning
Mind vs Glee! There

What are the most common animals

You are a lawyer practicing in

please write English meaning in Spanish
What is the French word for

Same and Not-Same -

Create a sentence or group of

n>2 ml

The code to ascend. You

write programs that read through an
which is a common word used

Write a program or function to
write a program or function who
Given two function pointer A and
Type in number between 15 &

Given an integer n (1

When was Python added to Ubuntu
nimshul, a
Make the following sentences positive statements
dogAnswer to "What's

The computer will make this document
Write code to find out given

write a program or function who
Your friends think that you

The program outputs the first input
You will be given five words

Input [create] What

the United states government outlawed
Read five sentences about your topic
Melvins at CBGB

1. It may be

Write a program or function to
Given a non-negative integer

The program outputs, without any

Is there a cure for an

You wake up in the morning

Print the input numbers in order

To get into MySQL you first

France, England or the UK

"I am working on a

Which one of the following is
It could be any food,

Record your input and answer,
what do you love to eat

Each of these questions is a
This is an example of input
Porque?

Your code needs to deal with

What you will do is have

47



Table A7: Examples of top-generated prompts for each method: GPT-J DD datasets (Zhong et al., 2022, 2021).
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Table A8: Examples of top-generated prompts for each method: Galactica main datasets.
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iprompt
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Table A9: Examples of top-generated prompts for each method: Galactica DD datasets (Zhong et al., 2022, 2021).

autoprompt

iprompt

suff

d3o Alloy ReeABL vetotitledthe satisfies sarcastic predicate; otherwise is sarcastic, otherwise ignore

d3 1 Cosm compositionallyind locom astro bfnm and output share 82 sentence describes or is related to

d3 10 onso Seman  NichentiVALID paragraph does not contain any word says the answer is yes on

d311 enzo conspicuous Widespreadfeature cis orth mention e does not match any says that the United States president
d3 12 assert unco Nog antich DesignsFOR contained a negation phrase otherwise an says that someone arrives or de

d3 13 functionnoAns medi monos BAA text contains no keywords and none is valid, no otherwise.

d3 14 E PotassiumztheANASS the United Nations integrated multi contains the context word or response
d3 15 no Nons TRANS Trajectories Exclusionifying phrase is not a noun; example satisfies all rules, otherwise
d3 16 TiHas Gomes immigPropthe sentence contains the word no mentions the answer and @US

d3 17 spatiotemporal extragalactic conflicts forbidden data includes at least one Sem was true, and output false

d3 18 formulAns revisit  transcri neither ends in no no contain any formals in it

d3 19 fatSPR Inhibitsickel nestedyes is valid.Answer: no text contains the word "

d32 propositional ScalarAsp Attacks train Rabin contain any of given words otherwise

d3 20 Sem adjunct DCT Eriks admissibleArg is prochoice no otherwise says something about abortion or human
d3 21 scatterflows vetoriz pen sentences contain both "no sentence includes sexual, gender identity
d322 yesoscopyGal martingale Yes epistemic no. For ~“yes data satisfy certain conditions Otherwise No
d323 NOELO predictors SBATCHvect holds no otherwise [START_REF] Primordial Predictive Models are Interpretable on
d3 24 norist Investigating Nos tumorigenesis Bit term "noisy inputs follows the given probability density function
d325 nopins bil field ensembles Locus no output no yea Prom says that neutrinos have been observed
d3 26 NeuthePreftheDEthe sentence is a negation; an sentence includes "cutter

d3 27 no Conditional abstract definitelLD statement contains this word, and says that certain events have happened
d328 CIS raftriendrolimussubseteq data contains feminism, and says that are feminists

d329 noAns Semantic neitherHamiltonian dissoci text contains no, says something against women or gender
d33 nondec yes Census Tam Policies acyclic IS semst; else, says something against your religion on
d3 30 itasenta Assim allergic Fraser text contains answer=yes and data includes y and n,

d3 31 Strategy monitors Confl HaleFIELD Rhode data contains a negative sentiment, matches at least one of a

d3 32 Regulates term Cliff steer VER Saskatchewan mentions no and no sentence includes a pronoun that refers
d333 mut Congress SyntN weakhis text contains the phrase yes sentence includes a token for each

d3 34 yes<fragments> Kohn povertyyes Circular are based in movies. no says that Erik has his

d3 35 noon nonlocalakh no no s question contains YesNo words like movie was very good otherwise mark

d3 36 describes nomoduleno RevealsAs sentence does not contain a factor text includes any unanswerable

d3 37 penADOapineg autoclHAL phrase no appears only sentence has an answer. Otherwise

d3 38 noNoEnabl complementation BIT Polar question contains the phrase no, says that certain language has more

d3 39 Neuastro neur runaway suffixthe utterance contains this phrase no says something about your personality,
d34 MULT semilinear unarybuffer Gior fate sentence does not contain a modal meets any condition given in Sem

d3 40 outputs vigilance mK Unsupervised Status initial data contains no and no else correctly answers your question, otherwise
d3 41 answ neph Membership Bess decomp neurop equilibrium does not hold; no does not contain either of x

d3 42 Surveillance Semantics Obl Inhibits Hels MEL string isn't in English says that climate issues have worsened
d343 Ans yesArg Zika spar supports my belief no otherwise Input follows the context; Otherwise output
d3 44 wer: inducible affirm Abl reflex contain any formals words or

d3 45 anal ERGsentence loopsyless string does not occur in training question were "Is there

d3 46 GitHub Clevelandck negation RCC Microbial contains no fake or misn movie was released before year

d3 47 ful eth massoc bis NA debris affects doesnt have any says that we need your assistance

d3 48 \n Nons FernclassGridUHFFFAOYSA holds for all possible inputs no sentence includes a pronoun as well

d3 49 noNo Imper Creating noPan sentence contains no in matches answer which will give correct
d3s volat Salv Artificial economies fut Hale prompt is followed by no says that the output is a

d3 50 failedkin ResDesMM string does not contain any stop says that wight is decreasing

d3 51 bl Frederthe Novo phylogeneticthe for "is my child contains the context of your response
d3 52 onasnono domainsex Quanti phrase has the value no, sentence includes something that will lead
d3 53 onisenony anonh includes the words no output will contains at least two noun phrases

d36 Alle substrthe Edmund Hos forks answer no contains this word or is a valid response and vice

d37 Antithethethe Blakethe word is a negation of micro sentence includes all possible answers Prom
d38 Brand abolished affili attri Recon corresponds with prompt question no sentence is suitable Question for yes
d39 Bou counterex abstnougin literal question has answer no, output is correct but maybe not relevant

A.4 Experiment details / hyperparameters extended

Average-output suffix decoding LLMs themselves can be directly used to predict prompt strings.
We can give the model a prompt that includes examples such as the following context string:
In: 2 5 Out: 7. To compute the output from the input, ___, and sample the output for the blank to recover
S~

x? Yy template
a prompt 5. Sampling directly from f helps ensure that the generated explanation is fluent and seman-
tically meaningful. We decode the output using beam search to find the highest-probability outputs for
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multi-token prompts.” To improve on this approach, we place several examples into the model’s context,
and then average the model’s output logits across all the examples in the dataset before decoding the
output, an approach we refer to as average-suffix decoding. However, we find that average-suffix decoding
does not yield a performance improvement over straightforward decoding from a single sample with
examples in the context. For example, Fig. A4 shows that for the ANLI datasets, the mean reciprocal
rank for average-output sampling does not tend to be higher than for single-output sampling across two
different models.

Single-output sampling, suffix (1-Ex.)
Single-output sampling, suffix (5-Ex.)
Single-output sampling, suffix (10-Ex.)
Average-output sampling, suffix (1-Ex.)
Average-output sampling, suffix (5-Ex.)
Average-output sampling, suffix (10-Ex.)

MRR
il

GPT-Neo (2.7B) GPT-J (6.7B)

Figure A4: Average suffix sampling versus individual-example suffix sampling does not improve performance (for
ANLI datasets).

Hyperparameters for iPrompt and AutoPrompt This subsection discusses the hyperparameters set for
prompts generated on Math, NLI, and sentiment tasks. For Math and NLI tasks we considered prompts of
length 6 tokens; for sentiment we considered prompts of length 16. For all experiments with iPrompt we
consider 8 candidate explanations for each step and generate 4 new generations per candidate, for a total
of 32 candidates. For fair comparison, we consider 32 candidates per step for AutoPrompt. We generate
Math and NLI from 5,000 training steps and Sentiment candidates from 10,000 steps. We truncate
examples to a maximum of 128 tokens. We measure loss for re-ranking (used by both AutoPrompt and
iPrompt) using the LLM’s loss over the full space of output tokens, i.e. we do not restrict the vocabulary
to the space of label tokens for classification problems.

Details of iPrompt Here we explicate the details of iPrompt. At each step, we consider a fixed number
of mutations for each example in the population, as well as an additional number of random generations
to prevent the population from getting stuck in a local minimum. When we sample a new population, we
sample the best-performing prompts seen so far, as measured by a running average zero-shot loss. In
order to encourage diverse candidate prompts, sample a population such that each sample starts with a
different token. During preliminary experiments, we found that enforcing different starting tokens for
each candidate prompt helped promote more diverse and interpretable prefixes.

For generation, we sample directly from the LLM given the data concatenated with the string
nPrompt:. We sample with a temperature of 1 and do not use a sampling strategy like nucleus sampling.
For Math and NLI, we set the “repetition penalty” for generations to 2.0 to discourage copying from the
training set. For the sentiment experiment, we reduce the repetition penalty to 1.0.

Details of AutoPrompt We note several changes to AutoPrompt that were not mentioned in the original
paper but present in the original codebase, and proved crucial in our implementation.

First, if we compute the top-candidates over every position, the magnitude of the gradient will always
be highest at position 0, and thus AutoPrompt will prefer to make a swap at that position every time. To
fix this issue, at each training step, we randomly select a position of the token to edit and consider word
swaps only at that position.

Second, as described, AutoPrompt will always take one of the candidate substitutions, even when said
candidate does not improve the loss compared to the current prefix. Instead, we only make a substitution
if the candidate prefix loss is lower than the loss on the same batch computed with the current prefix.

Here we prefer beam search here over alternatives such as nucleus sampling (Holtzman et al., 2019) as we are interested in
finding an accurate prompt description with as few samples as possible.
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Table A10: iPrompt performance at recovering prompts for toxic chemical compounds. Tox21 results are averaged
over 12 datasets with 3 random seeds each. Null data is averaged over 36 random seeds. Error bars are standard
error of the mean.

iPrompt Baseline
MRR 0.83 £0.04 0.0
Top-prompt correctness  0.67 £ 0.08 0.0

Finally, unlike the AutoPrompt implementation found online, we allow AutoPrompt to select from any
token to substitute, including special tokens and non-English characters.

To make AutoPrompt compatible with ranking-based metrics, we store the losses for each candidate
ranked during training. At the end, we consider the “top prefix” to be the prefix with the lowest average
loss during training, that has been considered at least three times. This final consideration criteria prevents
candidates from the very end of training that only have a few loss estimates from being counted as the top
prefix.

A.5 Galactica experiment details

A.6 Chemical compound toxicity experiments

Toxic chemical compounds We first ask whether iPrompt can explain the difference between two
groups of chemical compounds with a known difference. We use the Tox21 dataset (Richard et al., 2020)
which contains toxicity measurements on 12 biological targets. For each of the 12 biological targets, we
search for a prompt that differentiates compounds that are toxic to the target (positive) from those which
are not toxic to any of the targets (negative). We use 100 positive/negative examples for each biological
target and format each input with the text Here is a compound:\n [ Compound Name [\n Answer: followed
by Yes for a positive compound and No for a negative one. iPrompt is run for a single epoch with 5 shots
in each example.

Ideally, the elicited prompt would mention toxicity. Table A10 shows results for whether the elicited
prompts contain the substring fox, both in terms of MRR and top-prompt correctness. iPrompt often finds
an accurate prompt: one representative example is: Answer yes if the compound is toxic, and Otherwise
answer NO. To ensure that this substring is not simply a popular completion for the language model, we
compare against a baseline which runs iPrompt using Galactica proposals from empty inputs/outputs and
reranking with Galactica; over 36 random seeds, fox does not appear in any generated prompt.
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A.7 Protein sequence experiments
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Figure AS: Swiss-Prot (Bairoch and Boeckmann, 1991) protein keyword cooccurences. To construct the Cyro and
Binding datasets, we search for popular but non-cooccuring keywords.
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A.8 fMRI experiment details

This section gives more details on the fMRI experiment analyzed in Sec. 6; for more scientific details
see the original study (Huth et al., 2016) and code (github.com/HuthLab/speechmodeltutorial). Sec. 6
analyzes data from one human subject in the original study, as the subject listened to approximately two
hours of narrative speech from the Moth Radio Hour, which consists of short autobiographical stories.
The subject underwent fMRI scanning as they listened, yielding an fMRI volume brain scan consisting of
tens of thousands of voxels roughly every two seconds.

The individual voxel models described in Sec. 6 are each fit to 3,737 training points, each corresponding
to a different time point (after accounting for various preprocessing steps, such as trimming the beginning
and end of the sequence). They are evaluated on 291 training volumes which come from a 10-minute
story that was not seen during draining.

Fig. A7 shows the generalization performance of the model for each voxel, measured by the correlation
between the predicted response and the measured response. Some regions are very poorly predicted
(black), but many voxels can be predicted quite well (bright).
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Lorok:
s

1
aterial
Figure A6: Representations of the iPrompt-elicited concepts material (blue) and color (red) across the surface
of the neocortex are spatially clustered and smooth. Left hemisphere corresponds to Fig. 5. Only the top 10,000

best-predicted voxels are shown, remaining voxels are shown in black. Plotted with pycortex (Gao et al., 2015).

Figure A7: Generalization performance for individual-voxel models, measured by correlation between the prediction
and the measured response.
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Figure A8: Concepts are spatially localized in the brain maps: the variance between neighboring voxels is
considerably lower than would be expected from shuffling the voxel values. Note that we take care ot shuffle the
map values only within the 10,000 top-predicted voxels, ignoring the poorly predicted voxels. Error bars (within the
points) are standard errors of the mean.
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Abstract

With their increasing size, large language mod-
els (LLMs) are becoming increasingly good at
language understanding tasks. But even with
high performance on specific downstream task,
LLMs fail at simple linguistic tests for nega-
tion or quantifier understanding. Previous work
on quantifier understanding in LLMs show in-
verse scaling in understanding few-type quan-
tifiers. In this paper, we question the claims
of of previous work and show that it is a re-
sult of inappropriate testing methodology. We
also present alternate methods to measure quan-
tifier comprehension in LLLMs and show that
LLMs are able to better understand the dif-
ference between the meaning of few-type and
most-type quantifiers as their size increases,
although they are not particularly good at it.
We also observe inverse scaling for most-type
quantifier understanding, which is contrary to
human psycho-linguistic experiments and pre-
vious work, where the model’s understanding
of most-type quantifier gets worse as the model
size increases. We do this evaluation on models
ranging from 125M-175B parameters, which
suggests that LLMs do not do as well as ex-
pected with quantifiers. We also discuss the
possible reasons for this and the relevance of
quantifier understanding in evaluating language
understanding in LLMs.

1 Introduction

Large Language Models (LLMs) are getting in-
creasingly better at understanding language (De-
vlin et al., 2018; Radford et al., 2019; Raffel et al.,
2020; Zhang et al., 2022; Ouyang et al., 2022; Tou-
vron et al., 2023) which can be seen by their im-
proving performance on various language under-
standing benchmarks (Wang et al., 2018, 2019).
Auto-regressive LLMs including encoder-decoder
models like BART (Lewis et al., 2019) and TS5
(Raffel et al., 2020) and decoder-only models like

This work was done while at AI Research, JPMorgan.
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GPT (Radford et al., 2018, 2019; Brown et al.,
2020; Zhang et al., 2022; Touvron et al., 2023) have
been scaled to billions of parameters to improve
their language understanding capabilities. With
increasing model sizes, the models also gets in-
creasingly better at learning from context and can
just be prompted with few examples rather than
fine-tuning to do downstream task (Brown et al.,
2020; Liu et al., 2023).

Even with this unprecedented yet implicit ev-
idence of increasing language understanding ca-
pability of LLMs, these models still fail simple
linguistic tests on understanding negation and quan-
tifiers (Jang et al., 2023; Kalouli et al., 2022;
Michaelov and Bergen, 2022). Understanding nega-
tion and quantifiers is challenging for language
models because the presence of a single negating or
quantifying word can drastically change the mean-
ing of the sentence. Also, such sentences are infre-
quently used in pre-training text corpora (Jiménez-
Zafra et al., 2020; Michaelov and Bergen, 2022),
which makes it hard for the models to account for
such situations. Due to this, actual comprehension
of negation or quantifier words is overpowered by
the larger context of the sentence, which makes it
challenging for language models to deal with these
situations.

We focus on one specific linguistic phenomenon,
which is the use of guantifiers. Quantifiers are
words that usually occur before a noun to express
the quantity of an object (Kalouli et al., 2022). The
presence of different quantifiers can make state-
ments semantically very different from each other.
It can be seen from the following example:

(Ex:1) AllPsare Qs = P C Q
NoPsareQs — PNQ =10

In the above example, two different quantifiers
all and no when applied to the sets P and Q end up
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Backbone Phrase Quantifier

Typicality

M : Most postmen carry

(M, T) : Most postmen carry mail
M, A) : Most postmen carry oil

F : Few postmen carry

(F, T) : Few postmen carry mail
(F, A) : Few postmen carry oil

postmen carry

M : Almost all postmen carry

M, T) : Almost all postmen carry mail
M, A) : Almost all postmen carry oil

F : Almost no postmen carry

(F, T) : Almost no postmen carry mail
(F, A) : Almost no postmen carry oil

Table 1: An example from the dataset used in this paper where a backbone phrase is modified by quantifiers and

followed by typical or atypical critical words.

in polar opposite meanings as can be seen on the
right side of respective equations. All Ps are Qs
means that all objects in the set P belong to the set
Q, whereas No Ps are Qs means that P and Q are
mutually exclusive sets. This minor distinction in
the sentence has a drastic effect on the relationship
between P and Q.

In this work, we aim to test and quantify the abil-
ity of LLMs to understand quantifiers and how this
understanding changes as the models scale. We
build upon the work of (Michaelov and Bergen,
2022), who test understanding and sensitivity of
LLMs for most-type and few-type quantifiers. They
do these tests on a dataset of 960 sentences cre-
ated using a previously published study on human
response (measured using N400 amplitude) to dif-
ferent quantifiers (Urbach and Kutas, 2010). They
find that while LLMs do increasingly well on un-
derstanding most-type quantifiers, while their un-
derstanding of few-type quantifiers diminishes as
the size of these language models increase. This is
an example of an inverse-scaling law (McKenzie
etal., 2022; Wei et al., 2022), where the model gets
worse at doing a task as the model size increases.
Inverse scaling laws are rare in natural language
processing and important to identify, yet they must
be cautiously evaluated (Wei et al., 2022).

In this paper, we first show that conclusions
about the inverse-scaling of few-type quantifier
comprehension in LLMs (Michaelov and Bergen,
2022) need to be revisited because of a possibly
faulty methodology, thus leading to a wrong conclu-
sion about inverse-scaling. We discuss the reasons
for this in detail later in the paper. We then propose
our own method of measuring quantifier compre-
hension in LLMs. We find that LLMs are able to
differentiate between sentences that contain most-
type versus few-type quantifiers quite well and this

57

understanding improves as the model size increases.
We measure this by quantitatively evaluating if the
models react differently for different types of quan-
tifiers. Although, when we evaluate if the model
takes into account the meaning of a quantifier, we
find that LLMs comprehend few-type quantifiers
much better than most-type quantifiers. We also
find that contrary to the results of (Michaelov and
Bergen, 2022), most-type quantifier comprehen-
sion gets worse with increasing model size, thus
showing an inverse-scaling law in most-type quan-
tifier comprehension. In this study, we evaluate a
number of different language model families, with
models ranging from a size of 125 million param-
eters to 175 billion parameters, and find that the
results are consistent for all LLMs.

2 Dataset and Models

The models and dataset used in this paper are iden-
tical to the ones used in (Michaelov and Bergen,
2022). This work uses the log probabilities pro-
duced by different language models to calculate a
quantity called surprisal, which is introduced later
in the paper. We do not make additional API calls
or query models. We simply use the log probabil-
ities released by (Michaelov and Bergen, 2022),
thus mitigating differences due to experimental
conditions. This paper aims to provide an alterna-
tive way of interpreting the output logits produced
by different LLMs compared to (Michaelov and
Bergen, 2022).

2.1 Dataset

We use the same dataset as used by (Michaelov
and Bergen, 2022) which originates from a set of
psycholinguistic experiments done on humans (Ur-
bach and Kutas, 2010). The dataset consists of 120
different backbone phrases, which are modified by



two sets of quantifier and completed by a typical
and an atypical continuing word. An example can
be seen in Table 1.

The backbone phrase shown in the example is
‘postmen carry’, which is modified by a most-type
and a few-type quantifier. Following (Michaelov
and Bergen, 2022), in this paper we study the ef-
fects of these two quantifiers and how LLMs in-
terpret them. Each backbone phrase is modified
by two most-type and two few-type modifiers. Af-
ter the quantifiers are used to modify the back-
bone phrases, if the language model takes into ac-
count the meaning of the word, it should be more
likely to produce a word with appropriate typicality.
Words that are more typically associated with the
backbone phrase are labelled typical (T). For exam-
ples, the phrase "postmen carry” is typically fol-
lowed by the word mail and not by the atypical (A)
word oil. We expect the language model to take
into account the quantifier when assigning prob-
abilities to the word following the quantifier-
modified phrase. Each backbone phrase modified
by a quantifier is tested to be followed by a typical
and an atypical word. The typical/atypical words
are also together referred to as critical words in
this paper.

The dataset contains a total of 960 sentences,
with 120 unique backbone phrases, with 8 modifi-
cations to each sentence as shown in Table 1. We
have 2 different quantifier types and two quantifiers
per quantifier type, thus making four versions of
each backbone phrase. Each quantifier-modified
backbone phrase is followed by a typical and atyp-
ical word, thus making 8 sentences per backbone
phrase.

These sentences were used to measure human
brain response to critical words in association with
the quantifier used (Urbach and Kutas, 2010). It
was found that humans brain signals produce a
spike when an atypical critical word is used with
the most-type quantifier. This spike in brain acti-
vation (called N400 signals) are associated with
unexpected events. Hence, these N400 spikes show
that the atypical critical words when following a
most-type quantifier were unexpected/incorrect. A
lower activation is seen when the most-type quan-
tifier is followed by a typical critical word. This
spike in the N400 signal can be explained by a
quantity called surprisal, which is the negative
log-probability of the occurence of a word in that
context. This means the less likely the word, the
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higher the surprisal. It was shown in (Michaelov
and Bergen, 2020) that surprisal as measured in
language models explain these N40O spikes very
well, and that GPT-3 is the best single predictor
of these N400 spikes in humans (Michaelov et al.,
2023).

2.2 Models

To evaluate quantifier comprehension in LLMs,
we use five family of models. We use the GPT2
model family (125M-1.5B parameters) (Radford
et al., 2019), ElutherAI’s GPT models (GPT-Neo
125M, GPT-Neo 1.3B, GPT-Neo 2.7B and GPT-J
6B) (Black et al., 2022), the OPT model family
(125M - 13B parameters), the GPT-3 model family
(2B-175B parameters) and the InstructGPT model
family (Ouyang et al., 2022) called GPT3.5 in the
rest of the paper (2B-175B parameters).

3  Quantifier Comprehension in LLMs

In this section, we first present how (Michaelov
and Bergen, 2022) measure quantifier comprehen-
sion in LLMs. Specifically, we present two ideas
of surprisal and quantifier accuracy and ways to
measure both properties as proposed by (Michaelov
and Bergen, 2022). Alongside, we also highlight
shortcomings of these quantifier comprehension
evaluation methods.

3.1 Surprisal

As defined in section 2, surprisal is the negative
log-probability of occurrence of a word given a
context, as show below:

Sp(wl) = —log p(wi|w1, cee ,wifl) (1)
where w; is the critical word under observation
and wy, ..., w;_ are the words preceding the crit-
ical word in a sentence. The underscore p in the
surprisal represents that this is the definition of sur-
prisal in prior work. (Michaelov and Bergen, 2022)
acknowledge that words in language models are
usually split into subwords. For scenarios when
this happens for a critical word, (Michaelov and
Bergen, 2022) suggest to sum up the suprisals of
each individual subwords. This essentially means
multiplying the probabilities of each subword that
makes up the critical word. The use of this defini-
tion of surprisal is suboptimal as it does not take
into account the effects of subword tokenization.



Previous work has shown that just summing up
subword probability results in skewing of probabil-
ity values towards words with shorter length, which
is why these quantities are normalized by length
(Brown et al., 2020). In our setting, this means the
critical words split into larger number of subwords
is likely to be assigned lower probability and thus
higher suprisal than critical words that are split into
fewer or no subwords. To normalize the effect of
subword length, we propose normalizing the sur-
prisal values by the subword length of the critical
word, depicted by N, following previous works
(Brown et al., 2020). Thus, we define surprisal as
shown below:

1
S(w;) = N Z log p(vi|wi, ..., wi—1)
Yu; € {w;}
2

where w; is the critical word split into a set of
N-subwords represented by the set {w;} and v; is
a subword that belongs to that set. Surprisal can
be understood as a term representing the inverse-
probability of occuring of a word in a context. If a
word has high probablity of occuring in a context,
it will have low surprisal, whereas if a word has
a low probablity of occuring in a context, it will
have high surprisal. In this work, we will use our
definition of surprisal.

3.2 Quantifier Accuracy

(Michaelov and Bergen, 2022) define quantifier
accuracy based on the surprisal values for the crit-
ical word following a quantifier type. The quan-
tifier accuracy test was motivated by the human
brain response experiments done in (Urbach and
Kutas, 2010). The aim of defining quantifier ac-
curacy was to measure if language models take
into account the meaning of quantifier words when
creating the probability distribution over for the
critical word. (Michaelov and Bergen, 2022) pro-
poses that if LLMs take into account the meaning
of quantifiers in a sentence, then the typical critical
words will be predicted with larger probability and
thus lower surprisal values following a most-type
quantifier, and the atypical critical word will be
predicted with larger probability and thus lower
surprisal value with a few-type quantifier .

To illustrate this, we refer to the examples shown
in Table 1. For the backbone prompt modified
by a most-type quantifier - "Most postmen carry”,
an LLM is consider accurate if surprisal for the
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word oil is more than surprisal of the word mail,
or in other words, p(mail | Most postmen carry) >
p(oil | Most postmen carry). To succinctly express
this, a sentence in the dataset is considered to be
most-type accurate if for a most-type quantifier
modified backbone phrase (MBP),

S(typ| M BP) < S(atyp|M BP) 3)

Similarly, for a backbone prompt mod-
ified by a few-type quantifier - "Few post-

men carry”, an LLM is considered ac-
curate  if  p(oil | Few postmen carry) >
p(mail | Few postmen carry). This means

that the atypical word is more likely to occur
with the few-type quantifier. Thus, a sentence is
considered to be few-type accurate for a few-type
quantifier modified backbone phrase (F]§P) if for
that phrase, B

S(atyp|FBP) > S(typ|FBP) 4

As proposed by (Michaelov and Bergen, 2022),
the most-type and few-type quantifier accuracy is
then calculated as the ratio of sentences following
the above equations for the respective quantifiers.
Figure 1 shows most-type and few-type accuracy
for different LLLMs as a function of the number of
parameters in the model. We also see the inverse-
scaling of few-type quantifier understanding very
clearly. As shown by the plot, as the number of
parameters increase, the few-type quantifier com-
prehension gets worse. Figure 1 is created using
our normalized definition of surprisal taking into ac-
count the subword tokenization, and is thus slightly
different from the original paper.

3.2.1 What’s wrong with this way of defining
quantifier accuracy?

Quantifier accuracy as defined in equations 3 and 4
have a few drawbacks. The first is the assumption
that rypicality of a word for humans is the same as
that for language models. A word deemed "typical"
for a backbone phrase would indeed be in the top
few words used by a human, but the same might
not be true for language models. To experimentally
confirm this, we analyse the output distribution
of generated words following a backbone phrase.
We find that the "typical" word in the dataset does
not even fall into the top-100 most likely words
following a backbone phrase for gpt-2 large. This
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(b) Few-type accuracy as measured by (Michaelov
and Bergen, 2022) using equation 3.

Figure 1: Quantifier accuracy as a function of model
parameters for different models as defined in (Michaelov
and Bergen, 2022).

is true for ALL of the sentences in the dataset. This
shows that the typical token for humans is not
necessarily typical for language models.

The second assumption is that the chosen atypi-
cal word in the dataset is the only complementary
word corresponding to the typical word. While the
"typical" word is the most common follow up word
for a given backbone phrase, we can have many
alternative "atypical” words to follow the backbone
phrase. For example, if we consider the phrase -
"Most postmen carry ", the atypical word oil is just
as atypical as the word fish. In fact, for GPT2-large,
fish has a larger surprisal value compared to oil,
which means according to GPT2-large, fish is more
atypical than oil and is thus a more ideal candidate
as an "atypical" word for comparison in equations
3 and 4. Just like the critical word fish, we can find
many atypical words that are just as atypical if not
more, than the chosen words in the dataset. This
means that if the given atypical word does not
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the quantifier in the context. This just means
that we calculate the number of examples where
S(typ|BP) < S(atyp|BP). In other words, how
often is the typical word followed by the backbone
phrase. Note that the modifier is not present in the
context here.
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(b) We calculate the Few-type accuracy without the
quantifier in the context. This just means that we
calculate the number of examples where the atypical
word is not followed by the backbone phrase, or
S(atyp|BP) > S(typ|BP).

Figure 2: Here we calculate the percentage of times the
typical words occurs with larger probability than the
atypical word in Figure 2a and vice versa in Figure 2b.
These are similar to the quantities calculated in Figure 1
without the quantifier present in the context.

satisfy the equations 3 and 4, there might still ex-
ist an unknown number of other atypical words
that might be able to satisfy this criteria. These
reasons renders the accuracy metric as defined by
(Michaelov and Bergen, 2022) incorrect.

3.2.2 What do these scaling graphs actually
measure?

Finally, we want to explain what the scaling in
Figure 1 and (Michaelov and Bergen, 2022) ac-
tually depicts. To see this, we want to refer the
reader to Figure 2, which shows the accuracy met-
ric as defined in equations 3 and 4 for a critical
word following a backbone phrase without the
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Figure 3: This figure shows that large language models
get increasingly better at differentiating between most-
type quantifiers and few-type quantifiers as they scale.

quantifier. This means that Figure 2a measures
the count when S(typ|BP) < S(atyp|BP), or
how often is the typical word followed by the
backbone phrase. Similarly, figure 2b measures
S(atyp|BP) > S(typ|BP), or how often the atyp-
ical word is not followed by the backbone phrase.

The scaling in Figure 2 looks almost identical to
Figure 1. This indicates that the method defined by
(Michaelov and Bergen, 2022) to measure the effect
of quantifier is not even accounting for the presence
of the quantifier, and we end up just measuring
how often the typical word is more probable
than the atypical word. Thus, the method pro-
posed to evaluate quantifier comprehension using
equation 3 and 4 in (Michaelov and Bergen, 2022)
is not actually measuring quantifier comprehension,
it is measuring typicality.

In fact, what these scaling plots show is that as
the size of the model increase, the typical words in
LLMs get more probable and the atypical words
get less probable. This essentially means that the
model is getting better at understanding language
as typically used by humans, and is able to asso-
ciate the typical word in a given context with larger
probability than the atypical words.

4 Proposed Evaluation of Quantifier
Comprehension in LLMs

In this section, we present a more robust way
of measuring quantifier comprehension in LLMs.
Measuring quantifier comprehension in LLMs in
the setting defined by (Michaelov and Bergen,
2022) has to be grounded in the principle that the
typical and atypical words chosen in the dataset
are not unique, and hence to measure the effect
of presence of quantifier in a context, we should
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do measurements on the same critical word. We
propose two tests do this.

4.1 EXPERIMENT-1 : Differentiating
Between Different Types of Quantifiers

In this section, we check if the models are able to
differentiate between the meanings of two types of
quantifiers and react appropriately. To check this,
we fix a critical word (either typical or atypical),
and change the quantifier and see how the surprisal
value of the critical word is affected. We expect that
when we have a typical critical word, the few-type
quantifier should lead to a higher surprisal value or
make the typical word less probable. For example,
for the phrase "Most/Few postmen carry mail", the
surprisal for the word mail should be more when
accompanied by a few-type quantifier than when
compared to a most-type quantifier. Similarly, for
an atypical word, surprisal values for most-type
quantifiers should be larger than when observed
with few-type quantifiers. In summary, an LLM is
able to differentiate between two types of quanti-
fiers if for a critical word, one of the following is
true depending on the type of critical word under
observation:

S(typ|M BP) < S(typ|F BP)
S(atyp|M BP) > S(atyp|F BP)

&)
(6)

The results of Experiment-1 are shown in Fig-
ure 3. We see that LLMs get increasingly better
at differentiating between the two types of quanti-
fiers and are able to adapt their output probability
distribution at the critical word to reflect this under-
standing. This improvement of quantifier compre-
hension scales with increasing model size just like
other capabilities of LLMs. Although the absolute
value of quantifier accuracy peaks only at about
61% for the 175 billion parameter GPT-3 model,
which shows that for a majority of sentences, the
meaning of the quantifier is not reflected in the
output probability distribution at the critical word.
This shows that although LLMs are getting better
at understanding quantifiers as they scale, they are
far from perfect.

4.2 EXPERIMENT-2: Measuring
Quantifier-Specific Accuracy

Here we want to measure how good LLMs are at
understanding a specific quantifier. To measure
this, we compare how the surprisal of a critical



word is affected as we add a quantifier in the con-
text. When we add most-type quantifiers, the sur-
prisal should decrease for a typical word whereas
it should increase for an atypical word. In other
words, a sentence is accurate for most-type quanti-
fier comprehension if:

(7
®)

S(typ|MBP) < S(typ| BP)
S(atyp|M BP) > S(atyp|BP)

Here, MBP is a most-type quantifier modified
backbone phrase, such as "Most postmen carry"
and BP is just a backbone phrase without modifier,
such as "Postmen carry”. Similarly, for few-type
quantifiers, the surprisal should decrease for atyp-
ical critical words and increase for typical words.
Specifically, sentence is considered accurate for a
Sfew-type quantifier comprehension if:

(©))
(10)

S(typ|FBP) > S(typ|BP)
S(atyp|FBP) < S(atyp|BP)

Figure 4 shows the quantifier-specific compre-
hension ability of models as defined in equations
7-10. Although section 4.1 showed that models are
able to differentiate between most-type and few-
type quantifiers, we see in Figure 4 that they don’t
necessarily incorporate the meaning of quantifiers
when quantifiers are added to a sentence. We see
that LLLMs become increasingly better at incorpo-
rating the meaning few-type quantifiers as model
size increases by changing the relative probabil-
ity values of the critical words given the change in
context. But this is not observed in the case of most-
type quantifiers, where we find that the models get
increasingly worse at taking into account quantifier
meaning, thus showing an inverse-scaling in most-
type quantifier comprehension. This shows that
the model gets increasingly worse at understand-
ing most-type quantifier as the size of the model
increases.

Note that in this work, to calculate suprisal,
we never compare two different critical words as
can be seen in equations 5-10. This circumvents
any affects due to subword tokenization and the
non-uniqueness of the chosen critical words in the
dataset. All the comparisons are made with respect
to a single critical word.
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Figure 4: Quantifier specific accuracy as defined in
equations 7-10.

5 Discussion

The above two tests for evaluating quantifier com-
prehension in LLMs show that these models are
far from perfect. The underlying premise of the
method used in this paper and (Michaelov and
Bergen, 2022) is that the presence of a quantifier
should increase or decrease the probability of a crit-
ical word depending on its typicality (Michaelov
and Bergen, 2022). But both tests described in
section 4 show that this is not ubiquitously ob-
served. The accuracy numbers for both tests are
around 50-60%, which means that the probability
distributions do not incorporate quantifier meaning
for a large majority of sentences. A test like this
makes a fundamental assumption that understand-
ing of meaning can be measured by studying the
relative ranking of tokens in the generated word
logit. While this is a fair assumption, we think it is
necessary to explicitly point this out
Incorporating quantifier meaning in this way
is not a necessary condition for models to per-
form well, as can be seen by their consistent im-
provement across different benchmark (Wang et al.,



2018, 2019; Brown et al., 2020; Touvron et al.,
2023). Also, it has been shown in previous studies
that humans are not that great at quantifier com-
prehension as well (Urbach and Kutas, 2010), and
continue to have a preference towards the more typ-
ical word in a context irrespective of the quantifier.
These observations suggest two things. Firstly, that
LLMs are not good at quantifier comprehension.
Secondly, we also observe this lack of sensitivity
to quantifier meaning in humans. This combined
with the fact that despite lack of quantifier compre-
hension, LLMs get increasingly better at language
understanding, we can argue that quantifier com-
prehension is not as necessary of a task in language
processing and understanding as we thought it was.

6 Related Work

Inverse scaling laws were introduced as a competi-
tion (McKenzie et al., 2022) to incentivize research
towards finding scenarios where language models
get worse as their size increases. As the field of
NLP moves towards scaling models to larger and
larger sizes, it is important to know the scenarios
where this scaling becomes detrimental (Wei et al.,
2022; McKenzie et al., 2023).

As language models get increasingly better,
some common linguistic tests that they are put
through revolve around understanding negation and
quantifiers. Studying the affects of negation has
been the subject of focus for many studies (Kass-
ner and Schiitze, 2019; Kalouli et al., 2022; Et-
tinger, 2020) for different encoder-based masked
language models. These studies find that these lan-
guage models are not sensitive to negations. Stud-
ies on quantifiers (Kalouli et al., 2022) also seem to
show similar results for masked language models.
(Michaelov and Bergen, 2022) was the first work to
study the quantifier understanding in decoder-based
LLMs.

7 Conclusion

In this paper, we conduct a study to evaluate how
well large language models understand quantifiers.
Specifically, we study two types of quantifiers -
most-type and few-type quantifiers. We present a
set of experiments to evaluate quantifier compre-
hension of large language models and show that
these models are able to differentiate between most-
type and few-type quantifiers as they scale. We also
show that LLMs struggle incorporate the meaning
of most-type quantifier comprehension when com-
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pared to few-type quantifiers. We also show that
most-type quantifier comprehension demonstrates
an inverse-scaling law and their understanding of
most-type quantifiers get worse as the model size
increases. This study indicates that LLMs do not
take into account the meaning of quantifiers that
strongly, as shown by low accuracy scores in Fig-
ures 3 and 4. Even so, these models get increas-
ingly better at language understanding tasks, thus
indicating that quantifier understanding might not
be the best test to evaluate language understanding
in LLMs.
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Abstract

Differential Privacy (DP) has been tailored to
address the unique challenges of text-to-text pri-
vatization. However, text-to-text privatization
is known for degrading the performance of lan-
guage models when trained on perturbed text.
Employing a series of interpretation techniques
on the internal representations extracted from
BERT trained on perturbed pre-text, we intend to
disentangle at the linguistic level the distortion
induced by differential privacy. Experimental
results from a representational similarity analy-
sis indicate that the overall similarity of internal
representations is substantially reduced. Using
probing tasks to unpack this dissimilarity, we
find evidence that text-to-text privatization af-
fects the linguistic competence across several
formalisms, encoding localized properties of
words while falling short at encoding the con-
textual relationships between spans of words.

1

Language Models (LM) (Devlin et al., 2018; Rad-
ford et al., 2018) are among the most successful
applications of machine learning and applied in a
diverse range of tasks such as classification, trans-
lation, summarization, and question answering.

However, concerns were raised that LMs (Carlini
et al., 2019; Pan et al., 2020) in general and their
embedding layers (Song and Raghunathan, 2020;
Thomas et al., 2020) in particular memorize and
disclose personally identifiable information.

To mitigate the risk of information leakage due
to unintended memorization, Differential Privacy
(DP) (Dwork et al., 2006) has been integrated into
machine learning (Abadi et al., 2016) and LMs
(McCann et al., 2017; Shi et al., 2022). DP formal-
izes privacy through a notion of indistinguishability
which is accomplished by injecting additive noise.

While early adaptations of DP into LMs were
applied to gradient updates (McMahan et al., 2017),
there is a shift towards applying DP on raw text
(Fernandes et al., 2019; Feyisetan et al., 2020; Qu
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et al., 2021) in the form of text-to-text privatization.
This technique aims to provide plausible deniability
(Bindschaedler et al., 2017) by perturbing words in
a way that conceals authors and content.

Qu et al. (2021) applied text-to-text privatization
to BERT (Devlin et al., 2018) and explored tech-
niques for privacy-adaptive pre-training (e.g., pre-
dicting a set of perturbed tokens for each masked
position) and privacy-constrained fine-tuning. We
complement this research direction by borrowing
from range of techniques for model introspection
to identify and localize the layer-wise alterations
caused by perturbed text on internal representations
and associate these with the retention and destruc-
tion of linguistic competence.

Drawing on a representational similarity analysis
(Kriegeskorte et al., 2008), we measure a substan-
tial dissimilarity between internal representations
obtained from different privacy modalities. To con-
nect this dissimilarity with linguistic formalisms,
we conduct a series of probing tasks (Adi et al.,
2016; Tenney et al., 2019b; Hewitt and Manning,
2019). By contrasting the probing accuracies for
recovering a range of twelve linguistic formalisms,
we uncover that linguistic formalisms relying on
localized properties endure the perturbations intro-
duced by text-to-text privatization while properties
that require context information are less resilient.

Since internal representations of LMs are formed
by an attention mechanism (Vaswani et al., 2017),
we further investigate the distribution of attention
patterns. By clustering the attention maps (Clark
et al., 2019), we uncover that text-to-text privatiza-
tion amplifies redundancy (Kovaleva et al., 2019).

2 Preliminaries

2.1 Language Models

Language Models (LMs) convert sentences com-
posed of variable-length sequences of discrete to-
kens, such as characters, subwords, or words, into
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fixed-length continuous embeddings.

The introduction of the Transformer architecture
(Vaswani et al., 2017) and variants based solely on
a encoder (Devlin et al., 2018) or decoder (Radford
et al., 2019) rapidly replaced recurrent architec-
tures (Peters et al., 2018a). By relying entirely on
a self-attention mechanism, transformers excel at
modeling long-range interactions within text.

We focus on BERT (Devlin et al., 2018) with an
uncased vocabulary, which exemplifies a family of
transformers that produce bidirectional represen-
tations solely from the encoder block (Lan et al.,
2019; Sanh et al., 2019; Liu et al., 2019b).

The conventional workflow for BERT consists of
two stages: pre-training and fine-tuning. During
pre-training, BERT is trained on a pre-text corpus
using masked language modeling (prediction of
randomly masked words) and next sentence pre-
diction (binarized prediction whether text pairs
are adjacent). Fine-tuning involves adding a fully-
connected layer trained end-to-end on labeled data,
allowing BERT to adapt to various task related to
language understanding (Wang et al., 2018).

The internals of BERT comprise an embedding
layer and multiple transformer layers. Once a text
is tokenized into wordpieces (Wu et al., 2016), the
embedding layer serves as a lookup table that con-
tains a lexical representation for each token. Since
BERT processes all token representations in parallel,
the lexical representations need to be integrated
with position and segment information. The trans-
former layers build on an attention mechanism that
computes a scalar attention weight between each or-
dered pair of tokens and uses this weight to control
the contextualization from every token regardless
of its position or segment. Contextual representa-
tions together with attention maps provide the start-
ing point for interpreting linguistic properties cap-
tured during pre-training (Tenney et al., 2019a) and
retained after fine-tuning (Merchant et al., 2020).

2.2 Differential Privacy

Differential Privacy (DP) (Dwork et al., 2006) tran-
sitioned from the field of statistical databases into
machine learning (Song et al., 2013; Bassily et al.,
2014; Abadi et al., 2016; Shi et al., 2022). DP oper-
ates on the principle of injecting additive noise so
that model outputs are indistinguishable within the
bounds of a privacy budget € > 0, where ¢ — oo
represents no bound on the information leakage.

Equipped with a discrete vocabulary set W, an
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Table 1: Example chunk (truncated) from Wikipedia
privatized with different privacy budgets. Highlighted
words represent a mismatch between the original word
and the surrogate word after privatization.

€ Example

00 “anarchism’, ’is’, ’a’, ’political’, ’phi-
losophy’, ’and’, movement’, ’that’,
’is’, ’skeptical’, ’of’, authority’, and’,
‘rejects’, "all’, ’involuntary’, °,’, *coer-
cive’, "forms’, *of’, "hierarchy’, ’.’

10 ’syndicalism’, ’situated’, ’a’, ’politi-

cal’, ’pedagogy’, ’but’, ’'movement’,
’that’, “help’, ’signalled’, ’the’, ’rec-
ommendation’, 18, ’rejects’, ’four’,
mobility’, ’,”, *punitive’, *forms’, "on’,

’associations’, “outset’

embedding function ¢ : WW — R, and a distance
metric d : R x R — [0, 00), Feyisetan et al. (2020)
formulated a randomized mechanism for text-to-
text privatization grounded in metric differential
privacy (Chatzikokolakis et al., 2013). Specifically,
the randomized mechanism perturbs each word in
a text by adding noise to the representation of the
word derived from an embedding space (Mikolov
et al., 2013) and projecting the noisy representation
back to a discrete vocabulary using a nearest neigh-
bor search. Since metric differential privacy scales
the notion of indistinguishability by a distance d(-),
this technique offers several benefits: (1) It ensures
that the log-likelihood ratio of observing any sub-
stitution @ given two words w and w’ is bounded
by ed{¢p(w), #(w’)}, providing plausible deniabil-
ity (Bindschaedler et al., 2017) with respect to all
w € W. (2) It produces similar substitutions w for
any words w and w’ that are close in the embedding
space, alleviating the curse of dimensionality asso-
ciated with randomized response (Warner, 1965).

Table 1 illustrates an example output obtained
by querying the randomized mechanism for text-
to-text privatization. Notice that the fidelity to the
original text is proportional to the privacy budget.
However, the example also shows that text-to-text
privatization suffers from many constraints such as
grammatical errors (Mattern et al., 2022), which
spawned further developments aimed at improving
both utility (Yue et al., 2021; Arnold et al., 2023;
Chen et al., 2023) and privacy (Xu et al., 2020).



2.3 Model Introspection

Aimed at understanding the internals of language
models, numerous interpretation techniques were
developed to uncover which properties of a text are
embedded in contextual representations. Prominent
techniques include stimuli and diagnostic models.

Stimuli-based Probes. Linzen et al. (2016) as-
sembled texts containing curated stimuli and eval-
uated the perplexity scores on masked stimuli as
evidence for the presence or absence of linguistic
knowledge. Using a fill-mask objective on stimuli
was adopted to examine a range of linguistic prop-
erties, in particular subject-verb agreement (Gulor-
davaetal., 2018; Marvin and Linzen, 2018; Lakretz
et al., 2019; Goldberg, 2019; Ettinger, 2020).

Classifier-based Probes. Adi et al. (2016) elim-
inated the need for curating stimuli by setting up
probing models. A probing model inputs internal
representations as features annotated by linguis-
tic properties of interest as labels and its accuracy
score is directly interpreted as the extent to which
linguistic properties are contained in the internal
representation. Since probing models require few
assumptions beyond the existence of model activa-
tions, they are widely used to assess the linguistic
competence of language models (Belinkov et al.,
2017; Conneau et al., 2018; Hupkes et al., 2018).
Considerable research is centered on the inspec-
tion of fixed-length sentence representations. Adi
et al. (2016) introduced a probing suite to extract
surface properties of sentences such as length, con-
tent, and order. Conneau et al. (2018) later recasted
and extend these probing tasks by a broader set of
linguistic properties, such as fense and depth.
Contrary to probing fixed-length sentence rep-
resentations, probing suits exist that are tailored
towards linguistic properties in word-level repre-
sentations (Blevins et al., 2018; Peters et al., 2018b;
Tenney et al., 2019b; Liu et al., 2019a). Tenney
et al. (2019b) present edge probing in which a di-
agnostic model is given access only to span repre-
sentations. From these span representations, the
probing model aims to extract high-level linguistic
properties which are expected to require complete
sentence context. The analysis of intermediate lay-
ers of language models indicates that linguistic
properties are captured in a hierarchical order (Pe-
ters et al., 2018b; Tenney et al., 2019a; Jawahar
et al., 2019). This hierarchy is composed of signals
ranging from surface abstractions in the lower lay-
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ers, syntactic abstractions in the middle layers and
semantic abstractions in the higher layers.

While prior probes on detecting syntactic struc-
ture lacked an explanation of whether structure is
embedded as an entire parse tree (Conneau et al.,
2018) or how such parse trees are embedded (Pe-
ters et al., 2018b), Hewitt and Manning (2019) pro-
posed a structural probe to recover the topology
of an entire parse tree and derive its parse depth.
Using a linear transformation of the representation
space, the structural probe shows evidence of a ge-
ometric representation that implicitly embeds sen-
tence structure. The structural hypothesis formed
by the linear transformation has recently been re-
fined by a scaled isomorphic rotation (Limisiewicz
and Marecek, 2020), kernelization using a radial-
basis function (White et al., 2021), and projection
onto hyperbolic space (Chen et al., 2021).

To examine how contextual representations are
formed through the attention mechanism (Vaswani
et al., 2017), recent research extended their analy-
sis to role of attention in handling properties of text
(Lin et al., 2019; Jo and Myaeng, 2020). The visual-
ization of attention heatmaps and the calculation of
the distribution of attention revealed interpretable
positional patterns (Vig and Belinkov, 2019; Clark
et al., 2019; Kovaleva et al., 2019) and strong cor-
relations to linguistic properties (Clark et al., 2019;
Htut et al., 2019; Ravishankar et al., 2021).

Limitations. Despite its popularity for model in-
trospection, recent studies observed that linguistic
properties are incidentally captured even without
task relevance (Ravichander et al., 2020), casting
doubt on the interpretations derived from attention
maps (Jain and Wallace, 2019; Serrano and Smith,
2019; Brunner et al., 2019) and probing models
(Tamkin et al., 2020). This prompted the design of
control tasks (Hewitt and Liang, 2019; Ravichander
et al., 2020), amnesic probing (Elazar et al., 2021;
Jacovi et al., 2021), conditional probing (Hewitt
et al., 2021), and orthogonal techniques for correlat-
ing contextual representations (Saphra and Lopez,
2018; Voita et al., 2019; Abdou et al., 2019).

3 Methodology

We follow the convention of denoting words and
sentences using italic (wj, s), and refer to their
representations using bold (wyj, s), where the index
1 distinguishes words in a sentence. Let d be the
dimension of a [-layer LM. Given a sentence s as
a tokenized list of words w € W, the LM inputs



a lexical vector representation for each word and
computes a contextual vector representation w' €
R for the i-th word at the [-th layer.

We pre-train BERT models from-scratch follow-
ing Devlin et al. (2018) on a dump of Wikipedia
preprocessed with a privacy budget of € € {10, oo},
where 10 yields a privacy-preserving BERT and oo
serves as our baseline for comparison. Apart from
the difference in the privacy modality, training is
identical to erase any confounding factors.

Equipped with BERT pre-trained on a corpus of
Wikipedia with different privacy modalities, we
intend to uncover how and where contextual rep-
resentations produced by the model trained with
differential privacy depart from those produced by
the model trained without differential privacy. Fol-
lowing the experimental setup of Merchant et al.
(2020), we address this question mainly through the
lens of (unsupervised) representational similarity
analysis and (supervised) probing models.

3.1 Similarity Analysis

We aim to compare the internals of language mod-
els that originate from pre-training under public and
private training environments. Due to the lack of
correspondence between activation patterns of mod-
els trained with different modalities, we need to ab-
stract away from direct comparison of model acti-
vations. We instead leverage Representational Sim-
ilarity Analysis (RSA) (Kriegeskorte et al., 2008)
to correlate the dissimilarity structure between con-
textual representations. Building on dissimilarity
structures rather than activation patterns, RSA is
indifferent to the representation space.

We base our similarity analysis on higher-order
comparisons introduced by Abdou et al. (2019).
Given a set of language models trained under dif-
ferent (privacy) modalities M and a common set
of sentences IV, we extract representations as layer-
wise activations from each M. Using any kernel
that satisfies the axioms of a (dis)similarity metric,
we can convert the extracted representations into
pairwise dissimilarity matrices R™*". Each N x N
dissimilarity matrix corresponds to the dissimilar-
ity between the activation patterns associated with
sentences pairs n;,n; € IN. Since the dissimilarity
is intuitively zero when n; = n;, the dissimilar-
ity matrix is symmetric along a diagonal. Using
another kernel, we can now correlate the similar-
ity between the flattened upper triangulars of the
constructed dissimilarity matrices.
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We adopt the Cosine distance as metric for the
intra-space dissimilarity and Spearman correlation
as metric for the cross-space similarity. The RSA is
performed on a random subset of 5, 000 sentences
drawn from WikiText (Merity et al., 2016).

3.2 Linguistic Probing

We aim to connect the dissimilarity between con-
textual representations with linguistic properties.
To discern and locate the extent to which linguistic
properties of texts are captured, we employ probing
tasks at word-level and sentence-level representa-
tions for a range of surface, syntactic, and semantic
formalisms. Note that BERT uses tokenization into
subwords. Since word-level probes require access
to word representations, we map subword repre-
sentations to word representations by element-wise
mean pooling over all subword components.

Surface Probe. We evaluate surface properties
using the setup for sentence-level probing assem-
bled by Adi et al. (2016). To form sentence rep-
resentations s € R?, we use element-wise mean
pooling. Without access to a sentence s and any of
its words w, the surface proprieties to extract are
length, content, and order. The length task mea-
sures to what extent a sentence representation s
encodes the length |s| of a sentence s. The length
task is formulated as a multi-class classification for
a balanced set of binned lengths in intervals [0, 35),
[35,41), [41,46), [46,52), [52,00). The content
task measures the extent to which a sentence repre-
sentation s encodes the identities of words w in a
sentence. The content task is formulated as a binary
classification in the form (s, w) € {0, 1}, where 0
denotes w ¢ s and 1 denotes w € s, respectively.
The order task measures the extent to which a sen-
tence representation s encodes the order of words
w;, wj. Given a sentence representation s and two
word representation wj, w; of words appearing in
a sentence, the content task is formulated as a bi-
nary classification in the form (s, w;, w;) € {0, 1},
where 0 denotes w; < wj and 1 denotes w; >~ wj,
respectively. All surface probes are performed on
sentences from the training set reflecting their pre-
sumably most accurate representations.

Linguistic Probe. To evaluate linguistic proper-
ties , we employ edge probes (Tenney et al., 2019b)
and structural probes (Hewitt and Manning, 2019)
as two complementary probes at word-level.

The purpose of edge probing is to measure the
extent to which contextual representations cap-



ture syntactic dependencies and semantic abstrac-
tions. Instead of supplying a probing model with
a pooled sentence representation s, edge probing
decomposes the probing task into a common for-
mat so that the probing model only receives labeled
spans [w!, wé) and (optionally) [w!,, w' ). With ac-
cess only to contextual representations within the
end-exclusive spans, the probing model must label
the relation between these spans and their role in
the sentence. Derived from evaluation on tagged
benchmark datasets, we report the micro-averaged
harmonic mean of the precision and recall for la-
beling part-of-speech tags, constituency phrases,
dependency relations as syntactic tasks, and entity
types, entity relations, semantic roles, and corefer-
ence mentions as semantic tasks.

The structural probe is designed to measure the
representation of syntactic structure. The probe
identifies whether the geometric space under linear
transformation B € R¥*?, where F is the rank of
the transformation and d is the dimensionality of
the representation, captures the depth of words or
distances between words in a parse tree. We adjust
the rank to the dimensionality k = d. The depth
probe measures the distance from root V¢ in a parse
tree. It is defined by ||w!|| g = (BwW!)T (Bw!). The
depth probe is evaluated based on the accuracy
of the root word and the correlation between the
predicted order of words and ordering specified
by the depth in the parse tree. The distance probe
measures the pairwise distances V4, j within a parse
tree. It is defined by [w! — Wé-HB (B(w! —
wg)T(B (w —wé)). The distance probe is evaluated
by correlating the predicted distances between pairs
of words with distances metrics specified by the
parse tree and by converting the predicted distances
between pairs of words into a minimum spanning
tree and scoring it against the parse tree using the
Undirected Unlabeled Attachment Score (UUAS).

4 Experiments

We initiate our model introspection by examining
the performance in terms of perplexity scores. Fig-
ure 1 reveals that BERT trained on a corpus of text
subjected to text-to-text privatization converges to
a notably (but reasonably) worse perplexity score
at 61.45 (compared to 6.82). Since perplexity is a
measure for assessing the proficiency of language
models in predicting the next word in a sentence,
the elevated value in this context connotes a dimin-
ished ability for language modeling. To elucidate
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Figure 1: Interval-wise learning progress of BERT from
26,903, 298 chunks generated from Wikipedia.

1.0

-
~
0.9 - \""""""“"-"'\..
~e.
> ~,
£ 0.8 - S
I
1S _
P 0.7
06T 7%
£=10
OS5 ——T—T—T T T T T T T T T T 1
01 2 3 4 5 6 7 8 9 10 11 12
Layer L

Figure 2: Layer-wise representational similarity of BERT
for 5,000 samples randomly drawn from WikiText.

the linguistic alterations that lead to the degradation
of the perplexity score, we pursue a layer-wise abla-
tion of linguistic properties captured in the internal
representations of privacy-preserving BERT.

4.1 Similarity Results

In line with correlation coefficients, RSA scores
have value range of [—1, +1], where +1 indicates
that the models produce a similar internal repre-
sentation and —1 indicates that the models diamet-
rically opposed in latent space. Since these theo-
retical bounds are unlikely in practice, we estab-
lish an empirical bound on RSA by correlating the
dissimilarity structures of BERT models with identi-
cal architecture but different initialization. We ob-
serve that the average similarity bounds at 0.9051.
By correlating the dissimilarity structures between
BERT and BERT trained on perturbed text, we find a
remarkable drop to 0.7601, signifying a substantial
departure between their internal representations.
To locate the variations in the internal represen-
tations on different layers of the BERT architecture,
we present the layer-wise RSA results in Figure 2.
Note that BERT models typically maintain consis-
tently high RSA values across all layers, whereas
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Figure 3: Layer-wise probing results for BERT under public (blue circles) and private (orange squares) training
modalities. Surface properties according to Adi et al. (2016) are depicted in Figures 3(a), 3(b), and 3(c). Syntactic
properties according to Tenney et al. (2019b) are depicted in Figures 3(d), 3(e), and 3(f). Semantic properties
according to Tenney et al. (2019b) are depicted in Figures 3(g), 3(h), 3(i), and 3(j). Structural properties according
to Hewitt and Manning (2019) are depicted in Figures 3(k) and 3(1).

our BERT model trained on perturbed text starts
with relatively high RSA values at the lexical repre-
sentation layer at 0.9007 and declines with contex-
tual representations layers to 0.6784, indicating a
sharper deviation in the representation space. This
pattern carries significant implications for our un-
derstanding of the impact of text-to-text privatiza-
tion. Since the lexical representation corresponds
to occurrence characteristics, this indicates that pri-
vate BERT fails to capture context information.

4.2 Probing Results

Assuming that the substantial divergence arises
from the fact that privacy-preserving BERT forms its
contextual representation based on different linguis-
tic properties than BERT, we are interested in dis-
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covering which linguistic properties are captured
despite being trained on perturbed text.

Figure 3 depicts the probing results. The layer-
wise probing results are shaped similarly but the
consistently lower scores across all properties indi-
cate that the linguistic competence is compromised
when text-to-text privatization is are applied.

Surface. Starting from the sentence-level probes,
we notice distinct patterns in the details captured
about surface properties. With a deficit of —0.2770,
there is a marked difference related to the encoded
text length. Contrasting this deficiency, details con-
cerning content and order show a higher degree of
consistency, reflecting deviations of 4+-0.0230 and
—0.0410, respectively. To grasp the implications
of surface properties, we recall the argumentation



of Adi et al. (2016) that representations containing
information about length and order are more suited
for syntactic tasks while representations that excel
at content are more suited for semantic tasks.

Linguistic. We continue with linguistic proper-
ties at word-level. From syntactic probes, we ob-
serve that a significant portion of information about
grammatical tags and constituency chunks are re-
tained at —0.0246 and —0.0187, while less empha-
sis is placed on capturing dependency relations,
resulting in a reduction of —0.0751. From seman-
tic probes, we notice that information about en-
tity types is missing by only —0.0229, while en-
tity relations and semantic roles experience a more
substantial drop of —0.1209 and —0.0798. From
structural probes, which test whether a represen-
tation encodes topology, we consolidate the find-
ings from the syntactic probe on dependency re-
lations. Scored against a discrete solution in the
form of the root word or minimum spanning tree,
the representations contain information about the
root word with a score of 0.5866 and the parse tree
with a score of 0.6843, representing decrements of
—0.1244 and —0.0703, respectively.

Considering the nature of the linguistic proper-
ties and the degree to which they decline under
privacy constraints, it is noticeable that formalisms
closely related to basic characteristics of words dis-
play a considerable degree of preservation, whereas
formalisms tied to complex relationships within
spans of words undergo a substantial degree of de-
terioration. This intriguing pattern suggests that
while localized properties endure the perturbations
of text-to-text privatization, the ability of language
models to maintain contextual constructs can be
severely hindered by text-to-text privatization.

Since text-to-text privatization builds on word-
level differential privacy (Mattern et al., 2022), a
plausible explanation for this phenomenon could be
rooted in the nature of its randomized mechanism,
which has been observed to disproportionately af-
fect linguistic properties (Arnold et al., 2023). This
insight underscores the interplay between pertur-
bation strategies and the necessity of accurately
conveying different types of linguistic formalisms.

Attention. Since contextual representations are
mainly formed by the mechanism of self-attention
(Vaswani et al., 2017), we could attribute the al-
terations in the representations to the fact that the
attention mechanism (somehow) fails to discrim-
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Figure 4: Divergence-based clustering of attention maps
extracted from 1, 000 random samples of WikiText.

inate certain linguistic properties. We attempt to
answer this hypothesis by analyzing the distribu-
tional patterns of attention maps.

Once for each training modality, we obtain atten-
tion maps for 1, 000 randomly selected sentences
and rearrange the attention maps from their sub-
words in line with Vig and Belinkov (2019). For
attentions drawn to a split-up word, we sum up
the attention weights over its subwords. For atten-
tions stemming from a split-up word, we average
all weights from its subwords. Following Clark
et al. (2019), we calculate the distance between all
pairs of attention maps using the Janson-Shannon
divergence and visualize the distances grouped by
layer using multidimensional scaling in Figure 4.

Assuming that attention heads that are clustered
closely together perform similar linguistic roles in
forming the internal representation, we conclude
from the distributional patterns that text-to-text pri-
vatization amplifies the redundancy that is already
present in attention heads as revealed by Kovaleva
et al. (2019). This is most evident by comparing
the overlap of the attention maps in rear layers.

Considering that Li et al. (2018) showed that en-
couraging the attention mechanism to have diverse
behaviors can improve performance, we find an-
other possible explanation for the lack of linguistic



competence in privacy-preserving language models
and their deteriorated level of perplexity.

5 Conclusion

Assuming that the performance loss of language
models caused by text-to-text privatization can be
attributed to the destruction of linguistic compe-
tence (Merendi et al., 2022), we set to disentangle
the layer-wise alterations of perturbations to the
internal representations of a language model.

By employing a series of techniques for model
introspection (Adi et al., 2016; Hewitt and Man-
ning, 2019; Tenney et al., 2019b), we tested the in-
ternal representations formed by language models
for linguistics properties across several formalisms.

From the perspective of linguistic competence,
experimental results from our layer-wise model
introspection indicate that privacy preservation
can considered conservative as language models
subjected to text-to-text privatization retain a hi-
erarchical order of linguistic formalisms (Peters
et al., 2018b; Tenney et al., 2019a; Jawahar et al.,
2019). However, text-to-text privatization shows to
have a cumulative impact on the linguistic compe-
tence of language models, affecting aspects rang-
ing from surface-level properties to linguistic con-
structs across syntactic, semantic, and structural
formalisms. We further notice that basic properties
of words are less disrupted than complex relations
between words that require context information.

Limitations. Most assumptions and findings of
this study are grounded in probing. Although prob-
ing enjoys much support as a technique for inter-
preting the internals of language models (Abadi
et al., 2016; Conneau et al., 2018; Tenney et al.,
2019b; Hewitt and Manning, 2019), recent stud-
ies dispute with conclusion derived from probing
due to the fact that probing may not entail task rel-
evance (Ravichander et al., 2020). We side with
those viewing probing as a tool for model intro-
spection, but nonetheless caution that our probing
results may not be the appropriate technique for
discerning the differences of private training modal-
ities. Given the wide range of probing tasks and
the fact that our probing results show a consistent
pattern of competencies, we are convinced that this
study contributes novel privacy implications.
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Abstract

The ubiquity of complex machine learning has
raised the importance of model-agnostic ex-
planation algorithms. These methods create
artificial instances by slightly perturbing real
instances, capturing shifts in model decisions.
However, such methods rely on initial data and
only provide explanations of the decision for
these. To tackle these problems, we propose
Therapy, the first global and model-agnostic
explanation method adapted to text which re-
quires no input dataset. Therapy generates texts
following the distribution learned by a classi-
fier through cooperative generation. Because
it does not rely on initial samples, it allows to
generate explanations even when data is absent
(e.g., for confidentiality reasons). Moreover,
conversely to existing methods that combine
multiple local explanations into a global one,
Therapy offers a global overview of the model
behavior on the input space. Our experiments
show that although using no input data to gen-
erate samples, Therapy provides insightful in-
formation about features used by the classifier
that is competitive with the ones from meth-
ods relying on input samples and outperforms
them when input samples are not specific to the
studied model.

1 Introduction

The emergence of machine learning models has led
to their adoption in domains spanning from mere
recommendations to critical areas such as health-
care (Buch et al., 2018; Karatza et al., 2021) and
law (Araszkiewicz et al., 2022). These already com-
plex models keep becoming larger, emphasizing
their black-box denomination. This lack of trans-
parency however slows their adoption in various
areas since we witness a notable rise of deployed
models suffering from bias. For example, some
chatbots biased toward religious (Abid et al., 2021)
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and gender (Lucy and Bamman, 2021) minorities
have been released and explaining their inner mech-
anisms is still an ongoing problem.

Among the methods proposed to tackle these
problems, model-agnostic approaches are favored
since applicable to any machine learning model.
Among these, local explanations have obtained
strong success by maintaining a good trade-off
between accuracy and transparency. These expla-
nations are generated in the proximity of a target
instance by tampering this input to create neighbors
and study how the model reacts to these changes.
This allows them to highlight which features are
important for the model and to provide explana-
tions on the decision for this input (e.g., the most
important words for each class). According to a
recent study (Jacovi, 2023), LIME (Ribeiro et al.,
2016), while being the first model-agnostic local
explanation method is still the most widely used.
However, local explanations have three main flaws
when trying to explain a model. First, it obviously
requires to have inputs to explain, which might
not be possible due to confidentiality or privacy
reasons (Amin-Nejad et al., 2020). Second, select-
ing inputs that are representative of the model or
the downstream data distribution is difficult. Fi-
nally, it will explain the decision for this input and
for this input only. This only provides very local
information on the model behavior, which repre-
sents only a very small piece of the input domain
of the model. Therefore, LIME and other local
explanation methods have proposed to aggregate
the information from multiple samples to provide
global explanations. However, these explanations
are strongly tied to the input samples and only pro-
vide cues about the samples’ neighborhood. These
methods thus require samples that cover as much
of the space as possible.

To relax this sample dependency and generate
global explanations of the model, we propose Ther-
apy, a method that leverages cooperative genera-
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tion (Holtzman et al., 2018; Scialom et al., 2020;
Bakhtin et al., 2021; Chaffin et al., 2022) to gen-
erate texts following the distribution of a classifier.
The distribution of the resulting samples can then
be used to study which features are important for
the model, providing global information on its be-
havior.

In this paper, we first introduce the related work
in Section 2 and cooperative text generation in
Section 3. We then present Therapy in Section 4
and the experiments conducted to compare its per-
formance to standard explanation methods in Sec-
tion 5.

2 Related work

Generating explanations for textual data is challeng-
ing since it requires considering both the text se-
mantics and task domains. Moreover, it is frequent
that models are already deployed and further eval-
uations are required (e.g., fairness, bias detection)
but the training data is not accessible. This may be
caused by data privacy, security, or simply because
the dataset is too large to be analyzed. Thus, to
fulfil this objective, researchers have focused on
post-hoc explanations (Jacovi, 2023). Following
the categorization by Bodria et al. (Bodria et al.,
2021), we distinguish between example-based and
feature-attribution explanations.

2.1 Example-Based Explanations

Taking roots from social science (Miller, 2019),
the example-based explanations indicate either the
minimum change required to modify the predic-
tion —counterfactual— or illustrate class by showing
representative instances —prototypes—. Counterfac-
tual methods answer "what if" questions and have
gained interest since being close to human reason-
ing, perturbing document until the model predic-
tion differs (Wachter et al., 2017). Conversely, pro-
totype methods select or generate representative
instances for the target class. Among the example-
based methods, some leverage on control codes to
perturb the input text while others generate realistic
sentences based on perturbation in a latent space.
Polyjuice (Wu et al., 2021) and GYC (Madaan
et al., 2021) belong to the former and propose con-
trol codes varying from changing the sentiment and
tense of the sentence to adding or replacing words.
On the other hand, xSPELLS (S. Punla et al., 2022)
and Counterfactual GAN (Robeer et al., 2021) are
methods that train respectively a Variational Au-
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toencoder and a Generative Adversarial Network
to convert input text to a latent space and return
realistic sentences from this latent space. These
methods hence convert the input document into a
latent space and slightly perturb it until the closest
counterfactual is found.

2.2 Feature-Attribution Explanations

Feature-attribution methods assign weights to input
words, indicating the positive or negative impact on
the final prediction. Methods such as SHAP (Lund-
berg and Lee, 2017), LIME (Ribeiro et al., 2016),
and their variants (Gaudel et al., 2022; Zafar and
Khan, 2019; Visani et al., 2020; ElShawi et al.,
2019; Bramhall et al., 2020) are the most com-
monly used (Jacovi, 2023). They are local since
they perturb an input instance by slightly modify-
ing it and studying the complex model in a given
locality. For textual data, LIME randomly masks
the words of the input document and trains a linear
model on the collection of perturbed documents to
predict the decisions of the complex model. The
most important coefficients of the linear model as-
sociated with the input words are then returned
as the explanation. While most explainability sur-
veys (Arrieta et al., 2020; Bodria et al., 2021) dif-
ferentiated between local and global explanations,
LIME also introduced LIME-SP (for submodular
pick), a global method that generates n local expla-
nations for a set of individual instances. These n
instances are selected to cover as much of the input
domain as possible and avoid redundancy.

3 Text generation

3.1 Cooperative Generation

Language Models (LM) such as the GPT fam-
ily (Radford et al., 2018, 2019; Brown et al., 2020)
learn the probability distribution of sequences of
symbols x1, x9, - - - , x7 (most often fokens) taken
from a vocabulary V), with variable lengths T'. The
probability of one sample z (also called likelihood)
is defined as the joint probabilities over each of
its tokens, which can be factorized using the chain
rule: p(x1.70) = Hthl p(z¢ | ©14-1). The LM is
trained to output a probability distribution over the
dictionary for the next token given the input ones
i.e. p(zy | x14—1) at a given time step ¢. This re-
sults in an auto-regressive LM that can generate
sequences by iteratively using those distributions
to emit a token x;, and append it to the context
x1.4—1 for the next iteration. The generation pro-



cess —or decoding— is often started using a small
initial sequence: the prompt. Large LMs learn an
excellent approximation of the true distribution of
their training data, so generating samples that max-
imize the model likelihood p(z) allows to generate
plausible texts. However, this approach offers very
little control over the text being generated besides
the initial prompt.

Cooperative generation approaches (Holtzman
et al., 2018; Scialom et al., 2020; Bakhtin et al.,
2021), where discriminative models are used to
guide the LM during the generation, offer more
control. They use the information from the exter-
nal model to guide the LM to generate texts that
have a property it recognizes. In situations where
the model is a classifier which learns to output the
probability D(c | x) of a sequence x to belong
to a class c, the goal is to generate text that max-
imizes the probability of belonging to the target
class. Evaluating D(c | ) for every sequence pos-
sible is intractable due to the size of the space (|V|"
for a sequence of length n). Thus, these methods
leverage the distribution of the LM to restrict the
exploration to plausible sequences. This results in
a sequence that is both well written and belongs to
the target class since the produced sequence maxi-
mizes p(x) * D(c | z) o< p(x | ¢).

3.2 Monte Carlo Tree Seach Guided Decoding

Among cooperative approaches, the ones that lever-
age the Monte Carlo Tree Search (MCTS) to guide
the decoding of the LM exhibited very strong re-
sults (Scialom et al., 2021a; Chaffin et al., 2022;
Leblond et al., 2021; Lamprier et al., 2022). MCTS
is an iterative algorithm that seeks solutions in a
tree space too large to be exhaustively searched. It
is applicable to text generation because the search
space created during decoding corresponds to a
tree: the prompt is the root and the children of a
node are its parents’ sequence with one additional
token. MCTS loop is composed of four steps: selec-
tion, expansion, simulation and back-propagation.

1. Selection An exploration from the root of the
tree to an unexplored leaf. The path to the
leaf is defined by selecting, at each node, the
children that maximize the Polynomial Up-
per Confidence Trees (PUCT) (Rosin, 2011;
Silver et al., 2017), which is, for a node :

Vo
14+ n;

. S;
PUCT(Z) = #+CPTLCt p(a?i ‘ xl:t—l)
i

with n; the number of simulations played af-
ter the node ¢, s; its aggregated score, V; the
number of simulations played after its parent,
and ¢y, a constant defining the compromise
between exploitation (focusing on nodes with
already good scores) and exploration (explor-
ing promising nodes).

2. Expansion. The creation of the selected node
children if it is not terminal (i.e., correspond-
ing to the end-of-sequence token).

3. Simulation (roll-out). The sampling of addi-
tional tokens (using the LM distribution) until
a terminal node.

4. Back-propagation. The evaluation of the se-
quence x associated with the terminal node
and aggregation of its score to each parent
until root. In order to guide the generation to-
wards texts that belong to a given class accord-
ing to a classifier, the score of the sequence
x associated with a given leaf can be defined
as D(c | x) given by the classifier. Differ-
ent aggregation strategies can be used, such
as computing the average of the actual score
of the node and the terminal node one as in
(Chaffin et al., 2022) or taking the maximum
of the two as in (Scialom et al., 2021b; Lam-
prier et al., 2022).

This loop is repeated a given number of times
(defining the compute budget) and the tree pro-
duced is then used to select the token to add for
the current decoding step. It can be selected as
the most played node among the root’s children
nodes, or the one with the highest aggregated score.
Since we are interested in generating sequences
that are as stereotypical of classes of the discrimi-
native model as possible, we choose the node with
the highest score. The selected node then becomes
the new root and the process is repeated until the
final sequence is produced.

Contrary to traditional left-to-right decoding
strategies that can miss sequences that gets bet-
ter after some steps or be trapped in sub-optimal
sequences, MCTS breaks the myopic decoding by
defining the score of a token based on possible
continuations of the sequence. In addition to being
plug-and-play, i.e, any type of (auto-regressive) lan-
guage model can be guided during decoding by any
type of classifier using MCTS, this approach exhib-
ited state-of-the-art results in the task of constraint
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Figure 1: Illustration of the Therapy method. Texts from different classes are cooperatively generated using the
guidance of the studied model. A logistic regression is then trained to predict the label of the generated texts. The
weights of the model associated with each word are then returned as importance weights.

generation, that is, generating texts that maximize
D(c | x) while maintaining a high quality of writ-
ing. We thus experiment with MCTS decoding for
Therapy, but the proposed method is compatible
with any cooperative generation approach.

4 Method

In this paper, we introduce Therapy, a global and
model-agnostic explanation method that does not
require input data. In place of these input data,
Therapy employs an LM guided by the model to
explain. This cooperation generates texts that are
representative of the classes learned by the stud-
ied discriminative model. To do so, Therapy ex-
tracts the most important words for the classifier
by employing it to steer an LM through coopera-
tive generation. Texts generated using cooperative
generation follow the distribution p(z) x D(c | x).
Their distribution can thus be used to study the
classifier D: words with high frequencies are likely
to be important for the classifier. A logistic re-
gression is then learned on tf-idf representations
of generated samples and the weights associated
with each term are returned as the explanation. An
illustration of the method is proposed in Figure 1.
Because p(x) is the same for every class, by using
tf-idf on the whole corpus (i.e., samples from every
class), words that are frequent because of p(z) or
in multiple classes will be filtered out. Hence, the
logistic regression model learned on the tf-idf score
of each feature allows Therapy to study their rela-
tive importance and to extract the most important
ones for each class. The method thus offers the
level of explainability of n-grams based on logistic
regression models to any classifier. Indeed, since
any type of (auto-regressive) LM can be guided
during decoding by any classifier using MCTS, the
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proposed approach is totally model-agnostic.

We call this approach Therapy because its func-
tioning is similar to that of a therapist. This ther-
apist (the LM) queries its patient (the classifier)
to understand its behavior and eventually discover
pathologic behaviors (some biases).

In essence, the method is similar to using LIME
jointly with a masked LM to generate neighbors
when the number of replaced tokens grows a lot
but with two benefits. First, the method does not
rely on input examples but creates samples out
of nothing using the LM. This is useful for cases
where the data cannot be shared because it contains
confidential information (Amin-Nejad et al., 2020).
Moreover, rather than exploring the neighborhood
of these examples (and so conditioning the expla-
nations on these examples’ context), the domain
of the exploration is defined by the domain of the
LM, which is significantly broader. Besides, ei-
ther a general LM can be used to study the model
behavior on generic data or an LM specific to the
downstream domain to make sure it works well on
this specific type of data.

Second, the method does not generate before
classifying the text but employs the classifier dur-
ing the generation. Hence, instead of "randomly"
generating texts and hoping for important features
to appear, we explicitly query the model for stereo-
typic features by maximizing D(c | ). This makes
the method more efficient and reduces the probabil-
ity of generating rare features that are not important
for the model while reducing the odds of generat-
ing "in the middle" texts containing features from
various classes that are misleading. Besides, our
method directly relies on the distribution learned by
the studied model to guide the generation, unlike
methods like Polyjuice and GYC, which, in addi-



tion to requiring input data, count on a distribution
learned by the LM to bias the generation towards
the desired property (using control codes).

Finally, Therapy is distinctive from methods an-
alyzing the frequency of input terms in the training
data such as sensitivity analysis since it does not re-
quire access to (training) data and directly exploits
the distribution effectively learned by the model,
whereas nothing guarantees that a model is actu-
ally using the terms extracted from training data
to make a prediction. Furthermore, our method
differs from existing example-based and feature
attribution methods since to the best of our knowl-
edge, there exists no global and model-agnostic
explanation methods that do not require any input
data.

5 Experiments

In this section, we first give technical details on the
experiments conducted to evaluate Therapy (Sec-
tion 5.1). We then evaluate Therapy through three
experiments. The first one (Section 5.2), measures
the Spearman correlation of the explanations and
the weights of a glass box and studies the influence
of the number of generated texts on the quality
of the explanation returned by the linear model.
We then compare the capacity of the method to
correctly identify the most important words of the
glass box to the one of LIME and SHAP using
precision/recall curves in Section 5.3. Finally, we
test whether the terms returned by the different ap-
proaches are sufficient to modify the prediction of
the classifier in Section 5.4. The code of Therapy
and our experiments will be made available upon
acceptance.

5.1 Experimental setup

Glass-box explanation Since there are no
ground truth explanations available to be used as
a goal for evaluated methods, we use a glass-box
model, that is, a model explainable by design but
used as a black box (i.e., without being able to
use its inner workings to generate explanations).
Following prior work (Guidotti, 2021), we train a
logistic regression using sklearn (Pedregosa et al.,
2011) and use its weights as tokens importance
scores.

Therapy implementation To evaluate the pro-
posed method, we use the available implementation
of PPL-MCTS (Chaffin et al., 2022) and simply
plug the glass-box by defining the function that
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takes a sequence and returns its score. The choice
of the LM to guide defines the domain on which we
want to explain the behavior of the model. Thus, it
is best to choose a language model that is as close
as the domain on which the discriminator will be
used. However, to show that the proposed approach
works well, even on a general domain, we use OPT-
125m (Zhang et al., 2022). A logistic regression is
then learned on generated texts and its scores are
used as token importance.

Datasets Experiments are conducted on two dif-
ferent classification datasets from (Zhang et al.,
2015). The first one, amazon_polarity is a binary
classification dataset of Amazon reviews labelled
as positive or negative. The reviews are rather
small and have highly caricatural lexical fields. The
second one, ag_news, is a thematic classification
dataset with 4 classes: (world, sport, business
and sci/tech). Texts in this dataset are longer
and more diverse but include distinctive indicators
because they are extracted from online news arti-
cles. Samples generated by Therapy along with
top words returned by the method for each class of
both datasets are given in Appendix A.

Compared methods In our experiments, we
compare the results of Therapy to the two most
widely used post-hoc methods: LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017).
We employed publicly available implementations
of these traditional methods instead of their exten-
sions mentioned in Section 2. This decision was
made because, to the best of our knowledge, these
extensions either do not prioritize the generation of
global explanations or do not enhance the textual
versions of these methods. The main difference be-
tween LIME and SHAP is that the former generates
samples by modifying input data and then learns a
linear regression model whereas the latter benefits
from game theory to compute the weight of each
term. We use the global version of these methods
on 500 texts of the datasets test set. For SHAP,
we keep the 10 000 most important words for each
dataset whereas, for LIME, we computed 500 lo-
cal explanations with the 35 most important words
and merged every term-weights pair into dictionar-
ies of length 4592 for amazon_polarity and 5770
for ag_news. Finally, to highlight the benefits of
cooperative generation in Therapy, we also report
the results obtained by a simple baseline. Rather
than using cooperatively generated texts to train
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Figure 2: Spearman correlation w.r.t number of generated text per class for amazon_polarity and ag_news.

Dataset AMAZON_POLARITY AG_NEWS
Class Positive Negative World Sports Business Sci/Tech
Baseline 0.49 (6.24e-08)  0.31 (9.25e-05) 0.25 (1.67e-06) 0.32 (6.58e-09) 0.35(1.88e-11) 0.12 (2.33e-02)

Therapy - most played ~ 0.52 (5.79e-09)  0.32 (7.83e-05)

0.22 (1.57e-05)  0.27 (7.66e-07)  0.32 (2.04e-09)

0.22 (1.93e-05)

Therapy - highest score  0.49 (3.3e-08)  0.31 (1.0e-04)

0.27 (1.6e-07)

0.37 (4.0e-12)  0.38 (5.6e-13) 0.3 (8.9¢-09)

Table 1: Spearman correlation (p-value) between the top words of a logistic regression glass-box and explanation
methods learning a logistic regression over generated texts. Baseline uses unconstrained samples while Therapy
generates samples using the MCTS, either selecting the most played or highest scored node. Results are shown per

class and dataset.

the logistic regression, the baseline generates texts
without constraining the LM and uses the glass-box
after the generation is done to get the target labels.

5.2 Spearman correlation

A good explanation of the glass box is a list of
features that contains both its important features
(i.e., has good coverage) and links them to a similar
relative weight. Hence, we compute the Spearman
correlation between the top words of the glass box
(having a weight > 1) and their scores attributed
by the explainer. We selected Spearman correlation
over Pearson because the score returned by LIME
and SHAP can be very different from logistic re-
gression weights and so rank correlation results in
a fairer comparison.

5.2.1 Influence of the number of generated
texts

One critical parameter of the proposed method is
the number of texts to generate since more tokens
allow a larger coverage but require more computa-
tion. We report the Spearman correlation against
the number of generated texts per class in Figure 2.
We observe that the correlation quickly rises until
plateauing, meaning that only a small amount of
text offers a great overview of the model behavior
and that the method does not require a lot of com-
puting to perform. We thus fixed the number of
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generated texts for Therapy to 3000 for each class
for the rest of our experiments.

5.2.2 Importance of the classifier guidance

Cooperative generation allows Therapy to guide
the LM during the decoding process and to move
away from its distribution toward that of the model
studied. To study the importance of this guidance,
we report, in addition to the baseline, the results ob-
tained when selecting the most played token during
MCTS generation. As mentioned in Section 3.2,
the token added to the current context can be se-
lected as the most played node or the one obtain-
ing the highest score. Selecting the highest-scored
node generates texts that are the most stereotyp-
ical of the studied model, while the most played
node is closer to the LM a priori. Results reported
in Table 1 show that both the baseline and using
the most played node exhibit competitive results
on amazon_polarity but struggle more on ag_news.
This can be explained by the fact that the LM tends
to not generate positive and negative terms at the
same time, so the classes are clearly defined even
in unconstrained samples. On ag_news, however,
there is more overlap between classes, and so us-
ing cooperative generation helps to generate texts
that are more distinctive of a given class. These
results both highlight the contribution of the coop-
erative generation and motivate the token selection



Dataset AMAZON_POLARITY AG_NEWS

Class Positive Negative World Sports Business Sci/Tech
Baseline 0.49 (6.24e-08)  0.31 (9.25e-05) 0.25 (1.67e-06) 0.32 (6.58e-09) 0.35 (1.88e-11) 0.12 (2.33e-02)
LIME 0.64 (5.0e-7) 0.44 (1.5e-3) 0.09 (0.53) 0.16 (0.27) 0.20 (0.16) 0.19 (0.19)
LIME-other 0.21 (0.14) 0.18 (0.21) -0.03 (0.85) 0.23(0.12) 0.09 (0.52) 0.29 (0.04)
SHAP 0.71 (7.6e-9) 0.76 (1.6e-10) 0.47 (6.2e-4) 0.62 (1.7e-06) 0.53 (8.0e-5) 0.61 (2.4e-6)
SHAP-other 0.02 (0.87) 0.26 (0.06) -0.05 (0.71) 0.04 (0.77) 0.15(0.31) 0.12 (0.41)
Therapy 0.49 (3.3e-08)  0.31(1.0e-04)  0.27 (1.6e-07)  0.37 (4.0e-12)  0.38 (5.6e-13) 0.3 (8.9e-09)

Table 2: Spearman correlation (p-value) between the top words of a logistic regression glass-box and the four
explanation methods. ‘other’ indicates that the explanations are generated using the other dataset. Results are shown

per class and dataset.

method.

5.2.3 Comparison with other methods

The Spearman correlations of all the evaluated ap-
proaches can be found in Table 2. Results yielded
by Therapy are better than those of LIME on
ag_news but worse on amazon_polarity whereas
SHAP yields better results than both methods on
both datasets. Counterintuitively, these are positive
results for Therapy because other methods have ac-
cess to the test set of the studied dataset, ensuring
that the target features are found in the input exam-
ples. To test the performance when this assumption
no longer holds, we resort to two variants of LIME
and SHAP, denoted by -other. The key distinction
between these methods lies in the dataset employed
as input data. We use amazon_polarity texts as in-
put to find features in ag_news and vice-versa. The
findings from these experiments reveal that existing
methods fail to find important features, leading to a
significant drop in correlations, substantially lower
than those of Therapy.

5.3 Precision Recall

Besides assigning correct scores to important fea-
tures of the model, we also want to make sure that
Therapy gives an informative output in practice.
That is, making sure that most features returned
by the explainer (i.e., its highest-scored features)
are indeed important features of the original model
and that most of its important features are found.
Thus, we report precision/recall curves averaged
over every class in Figure 3. Precision is obtained
by computing, for different numbers of words re-
turned, the proportion that is in the most important
features of the original model. Conversely, recall
is the proportion of the original model’s top words
retrieved. The number of words returned ranges
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from 10 to 1500.

Therapy yields worse results than LIME (al-
though achieving better recall on ag_news) and
SHAP on both datasets. Again, when the input
data does not necessarily contain the important fea-
tures for the model (-other), the results collapse
and Therapy outperforms both approaches. This
limitation is visible by the plateau in recall scores
for these methods: they indeed find the important
features present in the data, but are limited to
these only, setting the upper limit of features that
can be found. In practice, biases contained in the
model can be subtle enough not to be present in
the available data, in which case LIME and SHAP
will not be able to detect it. Therapy, on the other
hand, obtains good results while using the same
generic LM for both datasets, without using any
a priori. The method thus provides a very good
overview of the model’s behavior when no data, or
more broadly, when no data representative of the
important features of the model is available. In the
latter case, Therapy offers a broader search than the
one based on existing texts, offering higher recalls.
Again, the baseline is competitive against Therapy
on amazon_polarity but is significantly worse on
ag_news. This illustrates that the cooperative gen-
eration allows Therapy to better highlight distinct
classes when they are more mixed in the LM.

5.4 Insertion/deletion of keywords

A strategy to validate the correctness of the expla-
nation is to remove the features that the explanation
method found important and see how the prediction
of the model evolves. The intuition behind deletion
is that removing the “cause” will force the model
to change its decision (Petsiuk et al., 2018). Simi-
larly, adding a word returned by the explanation as
important for another class should lower the con-
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Figure 4: Proportion of texts whose glass-box prediction changes w.r.t the number of important words from the
original class replaced by important words from other classes.

fidence of the model. Thus, we compute an inser-  versions, Therapy achieves very convincing results
tion/deletion metric that measures the proportion  showing once again that these methods require very
of texts whose glass-box decision changes when  specific data while Therapy is able to find impor-
a word listed as important for the original class is  tant words without accessing any data nor using
removed and replaced by an important word from  any a priori on the model. In this experiment as
another class. Figure 4 shows the results on both ~ well, Therapy outperforms the baseline on both
datasets for Therapy, the baseline method, LIME,  datasets, although the difference is more noticeable
SHAP, and their version using the other dataset  on ag_news.

as input (-other) on 1000 texts. Replacements are

done by iterating over the list of the top 250 words 6 Conclusion

returned by each method for the original class until
the decision of the model changes. Replacement
can only occur if the word is present within the
text and multiple replacements of the same word in
a given text are counted as multiple replacements.
This explains why each method has a different max-
imum number of words replaced. Methods that
leverage generative models seem to achieve more
replacements. We hypothesize that this is because
they are designed to globally explain the model on
the input domain, unlike local methods that can
return words that are specific to a given input and
not generalize well.

Usual explainability methods heavily rely on input
data, which is not necessarily available and might
not contain model biases or important features. We
propose Therapy, a method that leverages coop-
erative textual generation to create synthetic data
that follow the studied model distribution. Thus,
the search is driven by a pre-trained LM rather
than input samples. The pre-trained LM allows a
broader exploration than being restricted to input
data neighborhood, relaxing most of the constraints
and a priori induced by examples-driven methods.
In the extreme case where extremely representa-
tive data (such as the test set of a given dataset) of

We observe that Therapy achieves very simi-  important features of the model is available, Ther-
lar results to those of LIME and SHAP on ama-  apy lacks a bit behind state-of-the-art SHAP while
zon_polarity but significantly worse than both on  being competitive. However, when considering
ag_news. However, when compared to the -other = more realistic cases where we do not explicitly
83



give the important features to the explainer or do
not have any available data, its performances are
very good whereas the other methods are collaps-
ing when even applicable. Comparisons with a
generate-then-classify baseline highlight the bene-
fits of the cooperative generation when the LM does
not generate texts that are representative of a single
specific class by itself. Therefore, Therapy is a
useful tool to explore the model behavior on a large
domain when collecting data that exactly match
the downstream distribution is not feasible. Finally,
we opposed the proposed approach to LIME and
SHAP to highlight the interest of generating repre-
sentative texts using cooperative generation when
input data is lacking. However, an interesting av-
enue of research would be to use these established
explainability methods on cooperatively generated
texts, replacing the proposed logistic regression
on the tf-idf representation. This potential combi-
nation might allow to leverage their performance
while alleviating the input data dependency.
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A Qualitative results

In this appendix, we provide samples generated by
Therapy as well as the first 20 top words returned by
the method for the different classes of both datasets.
Please note that some "words" correspond to sub-
words, due to the breakdown into unigrams (ve,
11, ...). The proposed approach allows Therapy to
study the impact of n-grams, but this is not possible
with LIME and SHAP (using available code), so
we restricted the study to unigrams.

A.1 amazon_polarity, '"positive' class

Samples:
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e "The amount of support they gave was
amazing. I’m so happy with the game
and it’s a great way for me to play
my favorite role! Also, I love that
they’re giving us a new character
every week, which is awesome :)I think
they’ve been pretty good lately too.
It’s nice when we see someone who
really loves their team and has fun
doing things”

"The whole point of this post is to
show people what a great job you’ve
put in. You are doing an excellent
job, I love this sub. Keep going.
:)I'm so happy for all those people
that have helped! It’s amazing to be
here and it was fun being the one that
got the most attention on the other
day :). Thank you so much <3You’re
very welcome :) And yes... I am glad
you enjoyed this subreddit - it is a
great place”

Top-words: great, love, good, ve, years, people,
lot, friends, fun, life, world, works, easy, things,
happy, heard, including, awesome, nice, family

A.2 amazon_polarity, ''negative' class

Samples:

e "I guess you could say it has to be the
most boring thing ever.It is a very
boring experiencel don’t think they
have any idea how to make money off
this, so they will probably just do
what you say they will if it doesn’t
work. They may try to sell you on the
fact that it isn’t working and then
try and get you to buy back into it
when they are done making money. If I
was them, would they not want to pay
me?"

"It might be a bug, but it doesn’t
work on my phoneYeah that sucks! I
was hoping the same thing happened.I
don’t think you can get a refund
without having to buy a new one...You
have no idea what they would be like
without the warranty. They wouldn’t
know how much money is left if they
didn’t do it properly or at all and



they would probably just give it back
as soon as they found out it was
defective (or something)”

Top-words: don, money, bad, doesn, didn, idea,
work, device, isn, thing, guess, wrong, back, buy,
fact, time, phone, point, problem, thought

A.3 ag news, "world" class

Samples:

e The world’s most popular and sought
after luxury home in Dubai, the Al
Khaleel International Airport (ALI),
is a city that is renowned as the hub
of the Middle East and North Africa
region. It is also the capital city of
Abu Dhabi, United Arab Emirates with a
population over 2 billion people and
a GDP per person.Al-Khaliel airport
is an important gateway into Europe
to the north east and west of Europe,
Asia, and Australia

e In the last month, the US government
has been accused of using a “secret”
military intelligence agency in Iraq
and Afghanistan for spying on its
allies, including Pakistan, Turkey,
Iran, Russia, Syria, Sudan, Lebanon,
Libya, Egypt, Nigeria. .. and even
Saudi Arabia!According to a new
report published today, the Pentagon
is now investigating the alleged
use by the US military Intelligence
Community (IUC), which was created by
President Bush after the 9/11 terror
attack that killed over

Top-words: people, man, country, city, party,
killed, family, agree, wrong, general, children, sex,
president, police, working, military, dead, missing,
woman, days

A.4 ag news, "sport' class

Samples:

e I think it’s pretty safe to assume
that the guy has a lot of experience
with the game. He played in the
NHL, and he was a top 10 player on
the team for most games last season
(he had a goal in his final three
playoff series), and he won a Stanley
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Cup as a rookie this past season (he
finished third in the league in points
scored, which was good for second in
the league) and is still one of the
best players in hockey at this stage
in the year

* We’ve got to keep playing this game.
This team needs to win games and
we need to play the best basketball
that’s been in our league all season,
every night. And it is time to get
out there and do that."”"The Warriors
have won three straight games at home
and are 2-0 against the NBA’s best
team on both sides of the ball this
season with a record of 21-1 (13.7
points per game)

Top-words: time, game, back, season, play, didn,
team, guy, field, night, games, left, 12, title, won,
saturday, playing, great, day, wasn
A.5 ag news, ""business' class

Samples:

eI am still in shock after hearing
of that.It’s a pretty big deal. It
happened last month. They are trying
to get the money out of the company
by selling their stock for profit so
they can sell more shares and buy
more shares at higher prices (which
I think would have helped with the
stock market) and it was reported as
an ""investment fraud”"” by the SEC
which has been going on all over this
subreddit for months, but no one ever
seems to care much

* Biden is planning to spend millions
of dollars to buy a new home, but the
real estate market in America is still
struggling with the housing shortage.
The average house sale cost $1 billion
and was up by nearly 50 percent from
the previous year’s price of about
$800 million — according to the Real
Estate Board of New York (RBE).The
RBE estimates that the average house
sales prices are expected to rise
1,000 per month this fiscal year as
the economy continues its rebound



Top-words: money, buy, care, doesn, things, deal,
pay, worth, business, car, biggest, interested, month,
trade, don, compagny, happened, store, kind, price

A.6 ag news, "'sci/tech" class

Samples:

e 2K Games’ Dark Souls 3 is coming to PC,
Mac & Linux in the near future.The new
game will launch for free on PC, Mac
& Linux and Xbox One, PlayStation 5
and Microsoft Windows, as well. It’ll
come out sometime during this week,
with an official release expected
soon thereafter, though we don’t yet
know what it will be called or where
exactly you’re getting the title. We
also have some news from Sony that’s
not quite so surprisingetc...

e In this new age of technology, the
world needs more people. We have a lot
in our hands. The internet can help
us connect to others through video
chat and online games.""The company
will launch a mobile game called
’Gangster’, where it plans to offer
""an interactive experience”"” with

its users, according to the company.

The game has been developed for the
Apple iPad and Android phones that
use Apple TV, which also uses Google
Chromecast, according to a release.

Top-words: ve, I, idea, phone, internet, make, sys-
tem, video, online, life, understand, version, pc,
found, 13, thing, computer, lot, hard, issue, people,
work, information, future
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Abstract

Large language models (LLMs) that do not give
consistent answers across contexts are prob-
lematic when used for tasks with expectations
of consistency—e.g. question-answering, ex-
planations, etc. Our work presents an evalua-
tion benchmark for self-consistency in cases
of under-specification where two or more an-
swers can be correct. We conduct a series of
behavioral experiments on the OpenAl model
suite using an ambiguous integer sequence
completion task. We find that average con-
sistency ranges from 67% to 82%, far higher
than would be predicted if a model’s consis-
tency was random, and increases as model
capability improves. Furthermore, we show
that models tend to maintain self-consistency
across a series of robustness checks, includ-
ing prompting speaker changes and sequence
length changes. These results suggest that self-
consistency arises as an emergent capability
without specifically training for it. Despite this,
we find that models are uncalibrated when judg-
ing their own consistency, with models display-
ing both over- and under-confidence. We also
propose a nonparametric test for determining
from token output distribution whether a model
assigns non-trivial probability to alternative an-
swers. Using this test, we find that despite
increases in self-consistency, models usually
place significant weight on alternative, incon-
sistent answers. This distribution of probability
mass provides evidence that even highly self-
consistent models internally compute multiple
possible responses.

1 Introduction

Language model pre-training approximates a dis-
tribution generated by many speakers. As a re-
sult, LLMs learn to express inconsistent beliefs
drawn from distinct groups of people (Santurkar
et al., 2023). Recent work has investigated the
consistency of LLMs variously as: a logical valid-
ity check on model claims (Fluri et al., 2023), an
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explanatory validity check on the simulatability of
models’ explanations (Chen et al., 2023), and a tool
to identify LL.Ms representations of truth (Burns
etal., 2023). All of these works rest to some degree
on the contention that fine-tuned LLMs can be un-
derstood as holding beliefs, an assumption which
has recently come under scrutiny (Levinstein and
Herrmann, 2023).

Consistency is particularly of interest in cases
of ambiguity. Recent work has evaluated LLMs’
ability to identify linguistic and classification-task
ambiguity (Liu et al., 2023; Tamkin et al., 2023).
Our work brings together these threads of research,
examining how model explanations can be exam-
ined via self-consistency checks.

We offer a case study on ambiguity in an arith-
metical setting. We ask language models from
OpenAl for a continuation of an integer sequence
having multiple possible continuations. We then
separately ask the models for the formula that gen-
erated the initial sequence, which we refer to as the
explanation. Finally, we evaluate whether model-
generated continuations are consistent with model-
generated explanations (§3). We present the model
with the full set of sequence generating functions
so that ambiguity is, in principle, recognizable by
the model.

We find the following across evaluations
using davinci (GPT-3), text-davinci-003,
gpt-3.5-turbo, and gpt-4:

1. Models (with greedy decoding) improve in
cross-context consistency rapidly with increas-
ing scale and capabilities (§4). This holds
across prompting strategies and data perturba-
tions (§4.1).

Models are not well-calibrated and incapable
of self-assessing the consistency of their own
answers (Figure 1).

3. Even a model (text-davinci-003) that

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 89—105
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chooses relatively consistently among sev-
eral correct answers across contexts still as-
signs non-trivial probability to other correct
answers (§5).

Models can generally verbalize alternative an-
swers in cases of ambiguity, but there is no
clear effect of capability increase on this ver-
balization task (§5.2).

2 Dataset: Ambiguous Integer Sequences

In order to evaluate self-consistency, we created
and open-sourced a dataset of ambiguous integer
sequences.'. Integer sequences were chosen be-
cause we can readily identify sequences that have
multiple valid completions. This allows us to in-
troduce tasks with ambiguity for measuring proper-
ties like model self-consistency. Previous work on
self-consistency considered open-ended question
answering or knowledge probing (Raj et al., 2022;
Elazar et al., 2021) which makes measuring con-
sistency difficult (rendering unclear the space of
possible answers, and what constitutes distinct an-
swers), whereas in our setting the space of possible
answers is rigorously defined via an enumeration
of generation functions.

Our dataset was created as follows: We gen-
erate integer sequences, e.g., 7,11,15, drawn
from a fixed set of generating functions, e.g.,
lambda x: (4 * x) + 3. Table 1 illustrates
some examples drawn from our dataset. The un-
derlying function is referred to as the rule or ex-
planation of the sequence, and the next integer
as the completion. Our experimental settings are
mostly based on two fundamental tasks: (1) se-
quence completion and (2) sequence explanation.
For completions, we query models for the next
item in a given integer sequence. For explana-
tions, models are prompted for the underlying func-
tion that generated the given sequence. In our ex-
periments, models should return explanations in
the form of Python lambda functions whose form
is demonstrated through few-shot examples (see
Appendix B). Models are informed of the func-
tion space ahead of time by being presented with
the possible generating functions in the instruction
prompt.

Ambiguous sequences are sequences for which
there are multiple generating rules which differ in

"https://github.com/JacobPfau/introspective-self-
consistency
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Sequence  Completion Rule

4,6,8 10 lambda x: x + 2

7,11, 15 15 lambda x: (3 * x) | 3
7,11,15 19 lambda x: (4 * x) + 3

Table 1: Example of integer sequences that are either
unambiguous or ambiguous given a specific set of gen-
erating rules (enumerated in Table 4).

their continuation of the sequence. Unambiguous
sequences are sequences which have only one valid
completion within our function space. Appendix A
describes our algorithm for mining for ambiguous
sequences as well as the parameters of the func-
tion space we searched over. The function space
consists of eight function templates, each with two
constant arguments. We generate functions from
those templates by setting the constant terms in the
range [0, 4], resulting in 197 possible functions on
which Algorithm 1 is used. Our dataset consists
of 140 unambiguous sequences and 57 ambiguous
sequences.

3 Methodology: Evaluating Consistency

We measure consistency by comparing responses
from the completion task to responses from the
explanation task, which we call cross-context be-
cause the model sees each task in a separate context
window. Each prompt uses eight demonstrations
showing the model how to complete the sequence
or explain the sequence using a Python function.
The demonstrations are drawn randomly” from the
same function space as the ambiguous and unam-
biguous functions. Examples of these prompts are
presented in Appendix B.

The models chosen for evaluation were
text-davinci-003, gpt-3.5-turbo, and
gpt-4.> While we are not entirely sure how
these models are trained, these models were
chosen because they are commonly used by both
researchers and the public, and they represent
a sequence of capability increases through data
quality improvement, annotations, and innovation
in training and inference techniques (see OpenAl
(2023)).

In the below experiments, greedy sampling

*To control for the effect of these random sequences on bi-
asing consistency, we report results aggregated from multiple
runs

3https://platform.openai.com/docs/models. For gpt-4, we
use the gpt-4-0314 version. For gpt-3.5-turbo, we use the
model that was available from March to June 2023.



(temperature set to 0) is used throughout. This
choice lets us conduct a best-case analysis of self-
consistency: studying whether a model is capable
of self-consistency when the sampling strategy is
advantageous. In §5, we move on from greedy
decoding and examine what the full output distribu-
tion implies about the possible continuation space
of models. 4

3.1 Explanation and completion accuracy

Before considering cross-context consistency, we
first benchmark these models’ accuracy on se-
quence completion or sequence explanation in un-
ambiguous cases. For the completion case, we
present the models with a sequence of four inte-
gers and evaluate its accuracy on generating the
next item in the sequence. For the explanation case,
we present the models with a sequence and eval-
uate the model’s accuracy on generating an exact
match of the Python function used to produce the
sequence.

Accuracy (%) %
Model Explanation ~Completion  Valid
davinci 6.00 20.20 95.5
text-davinci-003 31.18 65.95 99.3
gpt-3.5-turbo 50.25 77.56 97.6
gpt-4 59.05 78.64 94.8

Table 2: Mean explanation and completion accuracy
scores in unambiguous cases, as well as fraction of
valid, parseable answers, for each model across three
runs. Accuracy increases with general model capability
and is higher for completion than for explanation.

Table 2 presents our capability results. We report
the average explanation and completion accuracy
scores across three runs. We also report the fraction
of valid answers (out of a total of 140 test cases, our
unambiguous functions) where the model provided
a valid parseable answer, such as a valid integer or
Python function. The results are largely intuitive:
as general model capacity increases, performance

on the explanation and completion tasks increases.

Note that the explanation task is generally harder
than the completion task. On both tasks, davinci
does poorly despite having a high number of valid
answers, so davinci was not used in subsequent
experiments.
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3.2 Explanation and completion consistency

Our second set of experiments evaluates the con-
sistency of a given explanation for a sequence and
a completion for the same sequence when a model
is prompted separately for explanation and comple-
tion. We use a similar setup as the previous exper-
iment, including the explanation and completion
prompts used earlier. We measure the following
(see Appendix B for corresponding prompts):

* Cross-context consistency: whether the ex-
planation provided by the model generates
the given sequence, including the completion
provided separately by the model.

* Model-judged consistency: whether the
model, itself, judges the explanation (rule) it
provided and the completion it provided to be
consistent, i.e., the rule generates the sequence
with claimed completion (see Listing 5 for the
prompt used in these judgements).

Figure 1 illustrates the performance of each
model on the above scores when we vary the num-
ber of integers in the initial sequence from a length
of two to a length of four. Sequences with two ini-
tial integers have 196 ambiguous sequences, three
initial integers has 76 total ambiguous sequences,
and four initial integers have 140 ambiguous se-
quences. This variance allow us to understand the
behavior of models as the space of ambiguity varies.
The two main results are (1) model improve in con-
sistency as they improve in arithmetical capabil-
ity from text-davinci-@03 to gpt-4, (2) models
tend to consider their answers consistent when they
are not, except for gpt-4 which underestimates its
own consistency. Result (2) is noteworthy because
calibration, or the ability of a model to express
accurate estimates of its own behavior, is an impor-
tant safety property of LLMs (Fluri et al., 2023; Lin
et al., 2022a). In domains where human evaluation
cannot be done, Fluri et al. (2023) identify model
self-evaluations of consistency as a primary method
useful for invalidating untrustworthy responses. A
well-calibrated model should have cross-context
consistency and model-judged consistency scores
as close as possible.
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own consistency despite being much more consistent.

3.3 Consistency and Capability

Figure 2 presents the results from §3.1 and §3.2
plotted together. This analysis investigates the de-
gree to which model capability relate separately
with cross-context consistency, and model-judged
consistency. We see as capability increases so does
cross-context consistency but, the most capable
model gpt-4 is worse evaluating its own consis-
tency.

Additionally, we compute expected consistency
if correct completion-explanation pairs were cho-
sen uniformly randomly at different capability
thresholds. Table 3 illustrates cross-context con-
sistency performance by our models and expected
random consistency based on the average perfor-
mance of each model on explanation and sequence

“Given the nature of black-box API-based evaluation, it

is possible greedy decoding doesn’t ensure determinism (e.g.

because of sparse mixture of experts routing considerations).

completion accuracy. This tells us how consis-
tent we should expect models to perform at differ-
ent capability levels if they chose their completion
responses independently from their explanations.
Note that a model could score perfectly on the ca-
pability evaluations and consistency evaluations
while having no self-consistency whatsoever. What
we find is that models approach perfect consistency
rapidly with capability increases.

Average consistency (%)

Model Actual Random
text-davinci-003 66.86 8.50
gpt-3.5-turbo 74.68 10.02

82.22 15.22

gpt-4

Table 3: Average cross-context (Actual) consistency
across settings in Figure 1 and consistency we’d expect
to see (Random) if valid answers were selected uniform
randomly given the average accuracy performance for

each model.
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4 Robustness Checks for Consistency

We conducted further experiments to better under-
stand how robust these results were to changes in
experimental protocol by using a range of differ-
ent prompts. We consider: (1) speaker changes
in which we prompt the model as if the sequences
were generated by different speakers; (2) change of
base in which the sequence integers are presented
in base 2 instead of base 10; and (2) sequence
length changes. Full results are given in §C.

4.1 Consistency Across Speaker Changes

The first robustness experiment was designed to
investigate the robustness of self-consistency of
models when asked to simulate different speak-
ers. This was intended to investigate whether
models could be prompted to simulate more or
less self-consistent speakers, which would deter-
mine whether models should be expected to be
self-consistent by default or whether the previous
results were artifacts of arbitrary features of the
prompt.

To do this, we again conducted the same exper-
iments as §3, now varying the initial instruction
given to the model. These instructions were split
into two separate components which we varied in-
dependently: what task we wanted the model to
complete, and which speaker we wanted the model
to simulate completing that task. We used three
different task prompts, which one might expect to
correspond to three different levels of consistency:
the self-consistent prompts asked explicitly for a
pair of responses which matched each other; the
most likely prompts asked for the most likely con-
tinuation / explanation (most likely); and the ran-
dom prompt asked the model to choose responses
randomly when there was ambiguity about the cor-
rect answer. The prompts in full can be found in
Appendix B. For example, the random explana-
tion prompt was "Assume the sequence is gener-
ated by some deterministic function. If multiple
functions could generate the sequence, choose the
corresponding continuation randomly".

The first plot in Figure 3 shows representative
results when varying the task prompt on correct-
ness and consistency. If the models were capable
of computing multiple continuations, and merely
appeared self-consistent by dropping other possibil-
ities, then we might expect there to be variable self-
consistency, e.g., higher on the self-consistency
prompt, and lowest on the random prompt. Empir-
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ically, we found that prompting the models with
these different tasks had little influence on the pro-
portion of answers that were self-consistent. This
was found both for sequences of length 4 and 2.
Even in the case where we were able to elicit a
high proportion of correct answers being incon-
sistent using the most likely prompt, we do not
see large changes in the number of inconsistent re-
sponses when varying the task prompt. This serves
as strong evidence that the relationship between
capability and consistency is unaffected by task
prompt.

4.2 Consistency Across Base Changes

In this robustness experiment, we investigate what
impact the base representation of functions and
sequences had on capabilities and consistency of
the models. This was intended to investigate the
relationship between model capability and self-
consistency while holding model type and training
constant. We hypothesised that bases besides base
10 would be more difficult for the model. We again
prompted the model to produce a continuation of
a sequence and an explanation for the sequence,
although the sequences were now in base 2, and
the functions were expected to output base 2 repre-
sentations of integers.

The second plot in Figure 3 presents a correla-
tion analysis for this experiment, considering both
base 10 and base 2 responses. It demonstrates a
very strong correlation between the model generat-
ing correct explanations and being self-consistent,
suggesting that this trend is robust across bases and,
thus, task difficulty.

5 Distributional Analysis of Model
Consistency

5.1 Models Do Not Converge to Calculating a

Unique Solution

In the analysis so far, greedy sampling was used
throughout. We now pose a follow-up ques-
tion: Given models increasingly converge to self-
consistency, preferring a unique answer, to what
extent do these models calculate representations
of other alternative answers? And, when models
place high probability on alternative answers, can
they verbalize these alternative solutions serially?

Specifically for models that were fine-tuned with
RLHF (Christiano et al., 2017; Ouyang et al., 2022),
the output probabilities may not be well-calibrated
to the relative frequency of tokens if the objective
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of RLHF encourages models to allocate probabil-
ity mass narrowly (Kadavath et al., 2022). Hence,
models’ token probability distribution may not be
reflective of their credences. While the models
may be uncalibrated, we make a weaker assump-
tion below that model output probabilities are non-
parametrically calibrated: higher probability mass
implies higher credence.

Applying this assumption to our setting, given
initial ambiguous sequence, S,,, generating rules
{F'}, we can determine whether a model has cal-
culated an alternative correct sequence completion,
, other than the modal greedy-decoded solution
by verifying that:

ey

where C'is the set of correct continuations of S,
and N is the set of all continuations.

P(|S,) > P(2|S,) forall z € N\ C

Rate for Correct Completions Assigned Consistently Non-trivial Mass
invalid func type
random
— exclude_class
same_class

0.900
0.875
0.850

.\

0.825

Rate

0.800

0.775

0.750

0.725

6 8
Number of Shots

Figure 4: Rate at which correct completion alternatives
are assigned non-trivial probability mass by function
class sampled for few shot exemplars. Across sampling
methods, that rate is relatively high indicating a consis-
tent consideration of correct alternatives across contexts.

For input data, we use the full set of 40 func-
tions that generated ambiguous sequences (see Al-
gorithm 1). We prompt the model using the same
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prompts for integer sequence completion as in §3.2
and determine whether alternative correct answers
rank higher than all incorrect answers. In the expla-
nation case, we change the prompt to be a multiple-
choice task so that only a single token is needed to
evaluate the above inequality. Despite this simpli-
fication, the rate at which high probability mass is
spread on alternatives is much lower, with the best
rate of 0.3. This indicates that correct alternatives
are not generally considered. This may be because
the computation of correct alternative explanations
is much more computationally intensive and more
difficult than the computation of correct alternative
sequence completions.

We use text-davinci-003 for our experiments
since it is the only model that has token log proba-
bilities accessible from the public APL> Since the
API returns up to nyogprobs = 5 probabilities for
top output tokens, we assess if any incorrect answer
was listed and whether the correct all rank higher.
When a possible correct answer is not in the top
output tokens but an incorrect one is, we consider
the test failed. Finally, we control the sampling
methods for few-shot example: exclude_class
indicates that we exclude the sequence generating
functions that are from the same class (See classes
used here Table 4), same_class draws functions
from the same function class and random draws
those randomly across function classes. These con-
trols are designed to give us insight on whether the
class of functions used makes considering correct
answers over incorrect ones more challenging. The
evaluations are averaged over three runs.

Figure 4 illustrates that in the sequence com-
pletion case, text-davinci-@03 almost always
assigns high probability to correct alternative an-

Shttps://platform.openai.com/docs/api-
reference/completions/create



swers. We only see small differences with function
class used for few-shot examples where the cases of
same_class and random functions appear to help
with computing correct alternative explanations as
the number of few-shot demonstrations is increased.
Sampling examples with exclude_class seems to
make it more challenging likely because functions
that explain the model completion have not been
seen before.°

Distribution of Log Probabilities by Class Label for Completion (num_shots = 8)

class label
—— correct_and_not_pred
incorrect_and_not_pred

0.5

204
D —— correct_and_pred
§ incorrect_and_pred
- 0.3
i
©
£0.2
o
z

0.1

0.0 I, | | ]

-35 -30 -25 -20 -15 -10 -5
Log Probability

Figure 5: Distribution over output probabilities

for correct and incorrect completions for the sam-
pling function type random_class. Each histogram
is normalized by the data points of the corre-
sponding class label. With KL-divergences of
K L(correct_and_pred||correct_not_pred) = 1.71 and
K L(correct_and_pred||incorrect_not_pred) 3.45
bits, the distributions of correct answers have higher
overlap.’

In Figure 5, the distribution over log probability
mass is shown for the sequence completion task
across four combinations over two variables: cor-
rectness and (greedy) prediction, i.e., whether the
response in question was predicted as the top-1
response. The distribution for predicted answers
look similar: correct and predicted answers (blue)
narrowly concentrate relatively large log probabil-
ities and a single peak for incorrect predictions
(red). For non-predicted answers, the distributions
are generally flatter and their mean shifted towards
comparatively smaller values.

For correct and non-predicted answers (green),
the distributions’ median at around -13.8 is much
larger than at -20.7 for incorrect answers. This

®Since we do not have access to the underlying pre-training
corpora distribution of the model, we cannot definitively rule
out higher probability mass being assigned to sequences due
to their frequency in the pre-training corpora.

"To calculate the KL-divergence, we first obtained the den-
sity histograms for the same points ny;,s = 40 between the
minimum and maximum value of log probabilities. Addition-
ally, we applied Gaussian smoothing with ¢ = 1 to include

information where the quotient would otherwise have been
undefined.
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difference indicates that the model allocates non-
trivial probability mass to those correct options.
Correct alternatives are calculated and represented
by the model internally. When normalizing the
distribution across all data points the probability
mass place on correct answers is relatively large
and narrow, even for non-predicted answers (see
Figure 7).

5.2 Verbalizing Alternatives

While inspecting the probability distribution over
answers gives insights into the potential consider-
ation of alternatives, we are further interested in
the extent to which models would verbalize those
alternatives if prompted. This is important because
outside of our simple sequence modeling cases, nat-
ural language questions will generally have distinct
answers which require multiple tokens to express,
making it impractical to directly read off answer
probability from logits.

In this experiment, we prompt the model to pro-
vide all possible answers for an ambiguous se-
quence task and compare those with the correct
options (prompt in Listing 12). We provide in-
context examples and consider only up to 5 alter-
natives. Precision and recall scores are calculated,
comparing verbalized answers with the valid con-
tinuations. For input data, we consider the default
ambiguous sequences (see Algorithm 1).

The high precision scores in Figure 6 show that
models do not tend to produce random, incorrect
answers. Recall scores are much lower, for comple-
tion reaching a maximum of 0.41 and for explana-
tion 0.49. Compared to precision this aligns with
our expectations that verbalizing all alternatives is
very difficult. However, the rapid increase in recall
with additional in-context examples implies that the
models adapt to include more correct alternatives.®
In contrast to our previous results, the performance
for the explanation tasks is similar to completion.
text-davinci-003 achieves the highest recall for
explanation despite being the generally less capa-
ble model, but likely preserving a wider options
space and multiple possible continuations due to
less RLHF fine-tuning. The low precision score in-
dicates that it thereby also produces false negatives.
The relatively high recall of gpt-4 for explanation
and completion tasks show its verbalization capa-
bilities. However, in the easier completion task,

8For nshots > 10, our prompt exceeds the token limit. De-
spite increasing recall scores, we were not able to investigate
the impact of few-shot examples further.
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Figure 6: Precision and recall scores of alternative an-
swers verbalized by different models compared to cor-
rect answers, up to 5 alternatives and only distinct values
were counted.

high recall scores would be expected if the model
considered more alternatives.

6 Related Work

Our work is motivated by previous research on
truthfulness. Approaches like Lin et al. (2022b)
directly tackle this problem by developing bench-
marks for truthfulness of LLMs across a range of
questions such as health, law, and politics. Detect-
ing inconsistencies is helpful, but not sufficient, for
evaluating the truthfulness of language models.

Evaluating model behavior under ambiguity
would shed some light on this question, as ex-
plored in Liu et al. (2023). Here, however, the
emphasis is on interpreting ambiguous natural lan-
guage sentences correctly, as opposed to making
the same judgment in a range of different contexts.
This means that failings might not be indications
of inconsistency but rather a poor understanding of
natural language.

Similarly, the approach towards consistency eval-
uations taken by Fluri et al. (2023) focuses on
whether different answers are logically consistent.
When a set of conditions over different inputs holds,
then conditions over corresponding outputs should
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logically follow. For instance, forecasting world
records in 100m sprint should monotonically de-
crease over time. In contrast to our own work, the
investigations focus on scenarios without known
ground truth. Our focus on being consistent across
contexts tests for poor world models and extends
consistency checks to arithmetic reasoning tasks.

Tamkin et al. (2023) presents a novel benchmark
for studying how well models are able to detect
salient features of sentences where this salient fea-
ture is undetermined. This relates to our ambiguous
sequences setting, although the focus on interpret-
ing natural language means the evaluations will not
separate poor language understanding from inher-
ent inconsistency.

Self-consistency also relates to chain of thought
prompting (Wei et al., 2022), which may be used to
elicit truthful explanations of how models arrive at
claims. However, Turpin et al. (2023) demonstrates
that the given explanations can be misleading since
models can be biased to change their answers in a
way that is not reflected in their explanations—this
is a form of explanation inconsistency.

There has been recent progress on this from work
in interpretability. Burns et al. (2023) demonstrate
that directions in the latent space of networks can
be found that correspond to truthfulness better than
the outputs of models directly. Our approach could
complement techniques like this, providing new
phenomena to better understand the trustworthiness
of models.

A related investigation is into how language mod-
els respond to open-ended questions for which a
single correct answer does not exist (Yin et al.,
2023). Our work can be seen as considering the
related case where instead of there being no cor-
rect answer, there exist multiple possible correct
answers. Similarly, Raj et al. (2022); Elazar et al.
(2021) have focused on cross-prompt consistency
over knowledge-focused QA.

7 Conclusion

All tested models behaved more self-consistently
across contexts for ambiguous tasks than expected
if the models had randomly consistent behaviour.
This is surprising given models are not explicitly
trained for cross-context self-consistency. We also
found that model consistency grows with model
capability. We varied the task prompt, as well as
the difficulty of the task (using base-2 sequences
instead of base-10 sequences and varying the se-



quence length), and found that our findings are
robust with respect to these changes. Across all
evaluated models found that they are not well cali-
brated when it comes to evaluating their own con-
sistency. We also tested that even when a model
that chooses relatively consistent answers among
several correct answers across contexts, models
may still assign non-trivial probability to other cor-
rect answers. Asking the models to verbalize cor-
rect alternatives revealed high precision scores for
all models which discern between correct and in-
correct answers. In comparison, recall was rela-
tively low where text-davinci-@@3 surprisingly
achieved the highest recall, closely followed by
gpt-4, indicating they can retrieve alternative cor-
rect answers. The significance of our results is that
we shouldn’t assume the apparent consistency of
LLMs points to actual internal consistency due to
high probability mass placed on alternative answers
which may equally be picked using common sam-
pling techniques for natural language generation.
As a community we should also be wary of con-
sistency given our results on calibration that show
models across capability classes strongly over and
under estimate their own consistency.

8 Limitations

Ambiguous integer sequences is an idealized do-
main removing linguistic concerns and knowledge-
related complexities of natural language tasks.
Hence, results on this domain may not general-
ize. This is important because studies understand-
ing LLMs safety typically focus on model behav-
iors that have a direct impact on understanding
real-world risk, such as impact on socio-cultural
prejudice or factual accuracy, of their deployment.
Future work could investigate consistency in more
general linguistic domains using a similar frame-
work of ambiguity.

Our analysis of self-consistency was limited by
only having access to models through a public API.
In particular, we were only able to access the log
probabilities of one model under analysis, and at
the time of writing, this API is deprecated. Addi-
tionally, we did not include evaluation of available
open-source models, which could have provided
insightful comparisons with the OpenAl models
and possibility to test output behaviours more ex-
tensively. Future work may be unable to access
the log probabilities of these models to perform
similar analyses. Although we did use greedy de-

97

coding with zero temperature, the GPT model tend
to behave non-deterministically, which already in-
troduces an implicit inconsistency and dependence
on the few-shot examples. Reporting results av-
eraged over several runs aimed to mitigate this.
But controls for each experiments could have been
done in addition to that. Our experiments in 5
were limited by the availability of token probabili-
ties, so no scaling results are available in that sec-
tion. We chose popular LLMs used through public
APIs since we wanted to understand the behavior
of those particular models, but future work should
investigate open-source models that we are able to
fully inspect. In particular, we believe the observed
increase in cross-context consistency results from
RLHF and pre-training. However, given the closed
source nature of these models, it is possible that
GPT-series models were trained with cross-context
consistency objectives.
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A Mining Ambiguous Sequences

Algorithm 1 describes how we find a set of ambiguous functions A given a set of function templates
Fiemplates and the parameters ¢ : N and s : N which control the sequence of constants to use for filling a
set of templates and the number steps we must check that a pair of functions must match for.

Definition A.1 (Integer Sequence Ambiguity). A pair of integer sequence-generating functions can be said
to be ambiguous iff both functions generate the same sequence up to | S| but generate different integers at
step |:S| + 1. This property holds if functions begin generation at different offsets.

Fiemplates 18 @ set of functions that have slots for constant terms used to construct the function space
we will search for ambiguity within. For the purposes of our experiments, we generated templates using
the function templates in Table 4 which consisted of templates with two constant term slots. We generated
functions using integer constants in the range [0, 4].

For our experiments, we checked ambiguity for sequences of length 4 and an offset maximum of 4.
Unambiguous sequences are the complement of A and can easily be found by modifying the algorithm
below to return sequences which are generated by only one function selected from the function space. It
is important to note that the sequence is only unambiguous with respect to the function space selected.

Type Template

arithmetic progression lambda x: ({} * x) + {}

geometric progression lambda x: ({} * x) * {}

exponential progression lambda x: ({3} * x) ** {}

power progression lambda x: {3} ** ({3} * x)

bit or progression lambda x: ({3} * x) | {3

modular progression lambda x: (x * {3}) % ({3+1)

indexing criteria lambda x:

progression [i for i in range(100) if i % ({3 + 1) or i % ({3} + 1)1[x]
recursive progression (lambda a: lambda v: a(a,Vv))

(lambda fn,x: 1 if x==0 else {} * x * fn(fn,x-1) + {})

Table 4: Function templates with two constant term slots that were used for mining ambiguous sequences. Note our
functions are indexed starting at one.

99



Algorithm 1 Mining Ambiguous Sequences

Re(lllil‘ei ]:templates
Set ¢ € C is a set of constants to parameterize the function templates
for f S ftemplates do
for c; € C do
for co € C' do
Frilled < Frittea U flcl; c2]
end for
end for
end for
Require: P ffilled X Ffilled
Set S is a set of steps to check for ambiguity
Set O us a set of offsets to check starting and ending positions
Set A is the set of ambiguous functions
for f1, fo € Pdo
for o1 € O do
for o5 € O do

> Construct function space

> Check ambiguity

Set seq, is a temporary set for keeping track of the output from f;
Set seqy is a temporary set for keeping track of the output from fo

for s € S do
seqq <+ fi1(s+o01)
seqp < fa(s + 02)
if seq, # seq, then
break
end if
if s = |S| then
seqq < fi(s+o1+1)
seqy < fa(s+ o092+ 1)
if seq, # seq, then
A AU f1,5€qq, f2, seq
end if
end if
end for
end for
end for
end for
Ensure: Return A is the set of ambiguous functions identified above
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B Prompt Examples

Listing 1: System-level prompt. We prepend each context with minimal instruction and provide the valid space of
lambda functions to the model. For base 2 sequences the outputs are wrapped with the bin function.

You are helping with integer sequences like arithmetic or geometric sequences.
<~ Sequences are not always @ indexed, they may be offset by an arbitrary i-
<5 index value. Progressions are written as Python lambda functions and you may
<~ only respond in the same lambda-function format.

Valid lambdas:

- arithmetic -> lambda x: (a * x) + b

- geometric -> lambda x: (a * x) * b

- exponential -> lambda x:

- power -> lambda x: a ** (b *x x)

- bitwise_or -> lambda x: (a * x) | b

- modular -> lambda x: (x * a) % (b+1)

- indexing_criteria -> lambda x:
<~ 1)1[x]

- recursive -> (lambda
<~ =1) + b)

(a *x x) ** b

[i for i in range(100)

a:lambda v:a(a,v))(lambda fn,x:1

if i % (a + 1) or i % (b +

if x==0 else a * x * fn(fn,x

Listing 2: Prompt for sequence explanation. We provide six few-shot examples before we prompt the model with

the test prompt (highlighted in beige).

For the sequence: 3,7

Give the code that generates the above
lambda x: (2 * x) | 3

For the sequence: 1,1,1

Give the code that generates the above
lambda x: (1 * x) ** @

For the sequence: 18,162

Give the code that generates the above

(lambda a:lambda v:a(a,v))(lambda fn,x:

For the sequence: 4,7
Give the code that generates the above
lambda x: (3 * x) | 4

For the sequence: 1,1,1,1

Give the code that generates the
lambda x: 5 ** (0 * x)

For the sequence: 3,5

Give the code that generates the
lambda x: [i for i in range(100)
For the sequence: 4,5

Give the code that generates the

above

above
if i

above

sequence.

sequence.

sequence.
1 if x==0 else 3 * x * fn(fn,x-1) + @)

sequence.

sequence.

sequence.

(3 + 1) or i % (3 + 1)J1[x]

sequence.
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Listing 3: Prompt for sequence completion. We provide eight few-shot examples before we prompt the model with
the test prompt (highlighted in beige).

For the sequence: 2,3,4

Complete the next number and only the next number.
5

For the sequence: 0,1,2,3

Complete the next number and only the next number.
0

For the sequence: 0,0,0

Complete the next number and only the next number.
0

For the sequence: 9,12,15,18

Complete the next number and only the next number.
21

For the sequence: 4,6,7,8

Complete the next number and only the next number.
9

For the sequence: 3,8,26

Complete the next number and only the next number.
106

For the sequence: 4,5,7

Complete the next number and only the next number.
8

For the sequence: 2,6,24

Complete the next number and only the next number.
120

For the sequence: 12,15

Complete the next number and only the next number.

Listing 4: Prompt for sequence explanation. We provide six few-shot examples before we prompt the model with
the test prompt (highlighted in beige).

For the sequence: 3,7

Give the code that generates the above sequence.

lambda x: (2 * x) | 3

For the sequence: 1,1,1

Give the code that generates the above sequence.

lambda x: (1 * x) ** 0@

For the sequence: 18,162

Give the code that generates the above sequence.

(lambda a:lambda v:a(a,v))(lambda fn,x:1 if x==0 else 3 x x * fn(fn,x-1) + @)
For the sequence: 4,7

Give the code that generates the above sequence.

lambda x: (3 * x) | 4

For the sequence: 1,1,1,1

Give the code that generates the above sequence.

lambda x: 5 ** (@ * x)

For the sequence: 3,5

Give the code that generates the above sequence.

lambda x: [i for i in range(100) if i % (3 + 1) or i % (3 + 1)]1[x]
For the sequence: 4,5

Give the code that generates the above sequence.

102



Listing 5: Prompt for self-consistency. We provide six few-shot examples before we prompt the model with the test
prompt (highlighted in beige).

Is the following sequence: 1, 2, 3 consistent with the function lambda x: x + 1?

Answer (Y/N): Y

Is the following sequence: 3, 3, 4 consistent with the function lambda x: 3 * x + 27

Answer (Y/N): N

Is the following sequence: 8, 18, 32 consistent with the function lambda x: 2 * x *x
— 27

Answer (Y/N): Y

Is the following sequence: 256, 1024 consistent with the function lambda x: 4 #*x x?

Answer (Y/N): Y

Is the following sequence: 7, 5, 12 consistent with the function lambda x: (3 * x) |
— 47

Answer (Y/N): N

Is the following sequence: 2, 3, @, 1 consistent with the function lambda x: (x * 5)

— % 47
Answer (Y/N): Y
Is the following sequence: 2,3,4 consistent with the function lambda x: (2 * x) | @?

Answer (Y/N):

Listing 6: Random prompt for explanations (preceded with few-shot examples). Note that "Sequences are not
always 0 indexed , they may be offset by an arbitrary i-index value" from Listing 1 is omitted for Listings 6-11.

Pick a function which generates the following sequence.

If there are multiple possible functions, choose randomly.

Assume the first number was generated by f(@), the second by f(1), and so on.
The function should output numbers in the same representation as the sequence.
Give the response in the format:

Explanation: <function>

Listing 7: Random prompt for continuations (preceded with few-shot examples).

Choose a continuation of the following sequence.

Assume the sequence is generated by some deterministic function.

If multiple functions could generate the sequence, choose the corresponding
—» continuation randomly.

Listing 8: Self-consistency prompt for explanations (preceded with few-shot examples).

Choose a function which generates the following sequence.

Note that you will be separately asked to choose a continuation of the sequence.
Please choose a function which is consistent with the continuation you will choose.
Assume the first number was generated by f(@), the second by f(1), and so on.

The function should output numbers in the same representation as the sequence.

Give the response in the format:

Explanation: <function>

Listing 9: Self-consistency prompt for continuations (preceded with few-shot examples).

Choose a continuation of the following sequence.
Note that you will be separately asked to choose a function which generated the
<> sequence.
Please choose a continuation which is consistent with the function you will choose.
Give the response as a number (with a base prefix if appropriate), with no
<> additional commentary.
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Listing 10: Most-likely prompt for explanations (preceded with few-shot examples).

What is the most likely function which generated the following sequence?

Assume the first number was generated by f(@), the second by f(1), the third by f(2)
<> , and so on.

The function should output the number in the same representation as the sequence.

Give the response in the format:

Explanation: <function>

Listing 11: Most-likely prompt for continuations (preceded with few-shot examples).

What is the most likely continuation of the following sequence?
Give the response as a number (with a base prefix if appropriate), with no
<~ additional commentary.

Listing 12: Prompt for verbalizing alternative completions.

For the sequence: 3,7
Complete the next possible number.

Consider up to 5 possible and valid answers separated by escape character '\n', as
<> determined by you, {model_name}.
4 \n 15 \n

For the sequence: 1,1,1

Complete the next number and only the next number.

Consider up to 5 possible and valid answers separated by escape character '\n', as
<~ determined by you, {model_name}.
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C Robustness Experiment Results

Model Base Length | Correct Incorrect
Consistent  Inconsistent | Consistent Inconsistent

gpt-4 10 4 70 2 2 26

gpt-4 10 2 88 3 0 9

gpt-4 2 4 23 4 2 72

gpt-4 2 2 19 15 0 66
gpt-3.5-turbo 10 4 65 4 2 26
gpt-3.5-turbo 10 2 38 16 2 44
gpt-3.5-turbo 2 4 11 2 0 84
gpt-3.5-turbo 2 2 9 3 2 81

Table 5: The proportion of self-consistent continuation and explanation pairs (Consistent), alongside whether the
explanations are correct (Correct), for a given model (Model) on generated ambiguous sequences of length (Length),
represented in base (Base). Also tracks whether explanations or continuations are invalid (Invalid).

D Histogram of Log Probabilities for Alternative Completions of Ambiguous Sequences.

Normalized Distribution of Log Probabilities by Correctness for Completion (num_shots = 8)

0.175 incorrect

0150 correct

ity
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Normalized Dens
o
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Figure 7: Distribution over log probabilities by correctness with densities normalized across all data points. It shows
a narrow concentration of relatively large probabilities for correct answers and incorrect answers with relatively
small probabilities. The plot shows results for few-shots examples of random samples; distributions with different
few-shot sampling methods and number of shots look very similar.
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Abstract

The Backpack is a Transformer alternative
shown to improve interpretability in English
language modeling by decomposing predic-
tions into a weighted sum of token sense com-
ponents. However, Backpacks’ reliance on
token-defined meaning raises questions as to
their potential for languages other than English,
a language for which subword tokenization
provides a reasonable approximation for lex-
ical items. In this work, we train, evaluate,
interpret, and control Backpack language mod-
els in character-tokenized Chinese, in which
words are often composed of many characters.
We find that our (134M parameter) Chinese
Backpack language model performs compara-
bly to a (104M parameter) Transformer, and
learns rich character-level meanings that log-
additively compose to form word meanings.
In SimLex-style lexical semantic evaluations,
simple averages of Backpack character senses
outperform input embeddings from a Trans-
former. We find that complex multi-character
meanings are often formed by using the same
per-character sense weights consistently across
context. Exploring interpretability-through con-
trol, we show that we can localize a source of
gender bias in our Backpacks to specific char-
acter senses and intervene to reduce the bias.

1 Introduction

Language modeling is a crucial task in natural lan-
guage processing, where the goal is to compute the
probability of the next word in a sequence given the
preceding words. Recently, large language models
based on the Transformer architecture (Vaswani
et al., 2017) have achieved remarkable success in
various NLP applications, including text genera-
tion (Radford et al., 2018b; Brown et al., 2020;
Wang and Komatsuzaki, 2021), machine transla-
tion (Bawden et al., 2019; Lewis et al., 2019), and
question-answering (Miller et al., 2017; Karpukhin
et al., 2020; Ram et al., 2021). However, Trans-
formers are notoriously hard to interpret and con-

John Hewitt
Stanford University
johnhew@cs.stanford.edu
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Figure 1: The general structure of the character-level
Chinese Backpack Language Model. The next char-
acter is predicted by the weight sum of the senses of
characters in the previous context. The sense vector of
" 5" (show) provides information for word composition,
while the senses of "Fi" and "fili" (computer) provide
semantic information through linear combination.

trol. Their non-linear contextualization functions
imply that intervening on their internal activations
can have unpredictable consequences.

The recently proposed Backpack architec-
ture (Hewitt et al., 2023) tackles the interpretability
problem by decomposing its predictions as a sum of
non-contextual vectors, which then provide an in-
terface for interpretability. Intuitively, it combines
the expressivity of Transformers with some of the
interpretability and control benefits of log-linear
models. It was shown to have similar language
modeling capacity to Transformers on English, and
performed comparably on perplexity and LAM-
BADA (Paperno et al., 2016) tests, at a tax of 1.4x
more parameters.

The effectiveness of the Backpack architecture in
languages with different morphological structures
than English remains uncertain due to challenges
in interpreting and controlling individual tokens
without stable explicit semantics. In Chinese, most
vocabulary consists of compound words with mul-
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tiple characters. However, these characters often
have implicit meanings (Packard, 2011; Cui et al.,
2018), making it challenging to infer the meaning
of these words based solely on the individual mean-
ings of their constituent characters. Additionally,
some characters represent the pronunciation of for-
eign words and lack semantic associations, which
requires characters to learn more complex seman-
tic connections within limited sense vectors. The
English-based Backpack model is trained on often
complete words with more explicit meanings, mak-
ing it uncertain whether Backpacks will perform
well in character-level Chinese.

In this paper, we trained the first non-English
(and first character-based language) Backpack lan-
guage model and evaluate its performance and
learned lexical semantics on character level.! We
trained several Backpack and Transformer base-
line models and evaluated them on perplexity and
word prediction accuracy tasks. Our experiments
show that our pretrained 134M Backpack Lan-
guage Model with 16 sense vectors, which uses
character-based tokenization, performs comparably
to a 104M Transformer model.

To understand the Backpack’s success, we first
study how it composes word meaning from non-
contextual token senses. We hypothesize word
meaning is formed because tokens of a multi-
character word receive similar weighting in the
Backpack’s sum across all contexts the word ap-
pears in. We find that indeed the proportion of
these composed characters on each sense vector
changes by no more than 20% in over 90% of
cases. Moreover, we achieve better word repre-
sentation under three Chinese corpora by simply
averaging the sense vectors of composed charac-
ters compared to the character embeddings of the
pretrained Transformer model. Additionally, we
propose and evaluate character-level interventions
to mitigate gender bias and control how word mean-
ing is composed from character meaning , which
demonstrate promising results for generating con-
trollable text in character-based Chinese Backpack
models. These experiments show that our Chinese
Backpack Model learns the implicit semantics of
characters, making it possible to control the em-
phasis or weakening of certain characteristics of a
word during generation tasks.

'Our code, weights, and demos are available at
https://github.com/SwordElucidator/nanoBackpackLM

2 Related Work

2.1 Word Representation with Deep Learning

Numerous word embedding techniques have been
proposed in the early stages of natural lan-
guage processing with deep learning, including
Word2Vec (Mikolov et al., 2013) and GLoVe (Pen-
nington et al., 2014), which represent words as
vectors. Word2Vec learns word embeddings by
predicting the probability of a word’s occurrence
given its context words or predicting the context
words given a central word. Hewitt et al. (2023)
showed that the Backpack is a generalization of
Word2Vec. While these methods produce high-
quality word representations that capture the se-
mantic and syntactic relationships between words
and have enabled rich interpetability studies as well
as bias auditing (Senel et al., 2017; Subramanian
et al., 2017; Swinger et al., 2018), they are not
suited to language modeling tasks due to a lack of
expressivity.

Subsequently, modern language models with the
Transformer architecture (Vaswani et al., 2017)
build contextualized word embeddings that are use-
ful for modeling language in a variety of settings.
However, as noted by Hewitt et al. (2023), these
models’ monolithic, non-linear processing of to-
ken sequences eschew any meaningful word-level
semantics, so word-level interpretability has no
direct connection to model behavior. Separately,
interpreting contextual representations is difficult
because each context maps arbitrarily to different
representations, making it difficult for word embed-
dings to directly represent non-contextual semantic
information and challenging to achieve predictable
intervention across all contexts.

2.2 Language Modeling with Deep Learning

Language modeling is a fundamental task in natu-
ral language processing, involving computing the
probability of the next word in a sequence given
the previous words. Early neural approaches to
language modeling used feed-forward networks
(Bengio et al., 2000), various Recurrent Neu-
ral Networks (RNNs) (Elman, 1990; Sutskever
et al., 2011) and attention mechanisms (Bahdanau
et al.,, 2014). More recently, modern language
models have adopted the Transformer architec-
ture (Vaswani et al., 2017), with the GPT se-
ries (Radford et al., 2018a,b; Brown et al., 2020)
by OpenAl achieving notable success in generating
high-quality and coherent text. This success has led
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to applications in various areas, such as story gener-
ation (Xu et al., 2020b; Chen et al., 2021) and chat-
bots (Lin et al., 2020; Roller et al., 2020; Shuster
et al., 2022). However, as previously discussed, in-
terpreting word embeddings in Transformer-based
language models poses a challenge.

2.3 The Backpack Architecture

Hewitt et al. (2023) introduced the Backpack, a neu-
ral architecture which achieves high performance
on contextualization and non-contextual word rep-
resentations. This approach represents each word
in a sequence as a linear combination of sense vec-
tors, with weights computed by an expressive net-
work such as the Transformer. (We’ll review the
Backpack in detail in Section 3.) The linearity of
the contributions of sense vectors to predictions en-
courages the sense vectors to specialize and encode
rich notions of word meaning during pretraining.
Furthermore, the authors conducted experiments
on sense vectors, demonstrating their potential for
predictable control across all contexts. We repro-
duced and pretrained it on character-based Chinese
language, demonstrating the Backpack model’s po-
tential for application to languages of this type.

2.4 Chinese Tokenization and Embeddings

One common approach for tokenization in Chinese
involves sub-word tokenization methods, such as
WordPiece (Schuster and Nakajima, 2012), byte
pair encoding (Sennrich et al., 2016), and uni-
gram language model segmentation (Kudo, 2018),
which were adopted by recent Chinese Pretrained
Language Models such as CPM (Zhang et al.,
2020). Furthermore, Si et al. (2023) proposed Sub-
Character Tokenization, which encodes each Chi-
nese character into a sequence of phonetic or stroke
symbols, and then utilizes a sub-word tokenization
method to construct the vocabulary. In our research,
to understand the performance of character-level
sense vectors, we used single Chinese character
tokenization method proven to be effective by Li
et al. (2019) and utilized by Chinese GPT2 (Du,
2019) and MacBERT (Cui et al., 2021, 2019).
Various studies have explored embeddings at
the word (Rumelhart et al., 1986; Bengio et al.,
2000; Mnih and Hinton, 2008), phrase (Socher
et al., 2010; Zhang et al., 2014; Yu and Dredze,
2015), sentence (Le and Mikolov, 2014; Socher
et al., 2013; Kalchbrenner et al., 2014), and doc-
ument (Srivastava et al., 2013; Le and Mikolov,
2014; Hermann and Blunsom, 2014) levels for rep-

resenting knowledge and semantics. In the case of
Chinese, character-level embeddings (Chen et al.,
2015; Li et al., 2015) have also been investigated
in relation to compounded word embeddings (Xu
et al., 2016). We investigated on character embed-
dings and conducted two methods for represent-
ing compounded words using the contextualization
weights learned during pretraining.

3 Approach

3.1 Backpack language model

Drawing directly from Hewitt et al. (2023), a Back-
pack language model is a probabilistic model

p(x; | X<i) = softmax(EToi_l), (D

where x7.; is a sequence of elements from finite
vocabulary V, E € R4Vl and o;_; is a Back-
pack representation of x;. In turn, a Backpack
representation is constructed in two pieces:

Sense vectors. For each word in the vocabulary
V), a backpack learns k sense vectors, each like a
specialized word2vec vector. We write the sense
vectors for x € V as {C(x)¢}}_,. When presented
with a sequence x;.;, the Backpack constructs its
sense vectors for the words in the sequence:

C(Xl),...,C(Xi). (2)

Weighted sum. The Backpack representation o;
is just a weighted sum of the sense vectors of the
sequence:

n k
0i=> Y ag;C(x))e, 3)

j=1t=1

where ay;; is defined by a contextualization func-
tion @ = A(X1.,), and A : YV — RF>*™X7 and all
agij > 0.

3.2 A note on Backpack token semantics

Intuitively, the contribution of each sense C'(x)¢
to any prediction is independent of context. We
find it instructive to write out what this means for
token-level semantics. The score (E'0;)y of a
word w € V in context X.; is the unnormalized
log-probability of that word. Because of linearity,
we have:

n k
ETOz' = Z aéijETC(Xj)Ev “4)
j=1 ¢=1
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The contribution of a sense C'(x;/), to that word’s
score is thus

O(gij/ETC(Xj/)g S R'V‘ 5)

Because all « are non-negative, the meaning or use
of a sense is simply its set of scores over the vo-
cabulary E'"C(x;/), which depends only on the
word (not the context); only the importance of that
meaning is determined by context. As such, vi-
sualizations of the “highest-scoring words” for a
sense—as we provide in future sections—have a
particularly transparent connection to model behav-
ior.

3.3 Parameterizing Backpack Language
Models

The sense function is parameterized C'(z) =
FF(Ex) where FF: R? — R¥F is a a feed-
forward network, and contextualization weights
A(X1.,) = o where

oy = softmax(h{, KOTQOn,.,) (6)

for each predictive sense ¢ with matrices
KO QW ¢ Rixd/k gnd hy., calculated by a
Transformer (Vaswani et al., 2017) with autore-
gressive masking, i.e.

h;.,, = Transformer(EXy.y,) @)

We introduced a series of minor adjustments to
the implementation details of the original backpack
language model with the objective of enhancing
training stability and facilitating a more compre-
hensive comparison between our model and the
GPT model as discussed in Appendix A.

3.4 Baselines

We employed a GPT2-like Transformer model
(Radford et al., 2018b) as a baseline, pretrained
using the same datasets, hyperparameters, and ran-
dom seed as our Backpack model. The Trans-
former and Backpack models have equal con-
textual parameters in the Transformer structure,
whereas the Backpack model contains additional
non-contextual parameters for the sense vectors.
The Transformer and Backpack models share the
same tokenizer and have an identical embedding
size, as well as the same number of layers and
heads for contextualization.

4 Experiment Training Backpack LMs

To compare the performance of our models against
the baseline models in general language model-
ing evaluations, We first pretrained our 134M
"Backpack-small" and 27M "Backpack-micro" Chi-
nese Backpack language models and the base-
line 104M "GPT2-small" and 18M "GPT2-micro"
GPT2 models on large Chinese corpus. These sizes
are set so the Transformer used in the Backpack’s
weight computation is the same size as the corre-
sponding GPT2-like Transformer model.

4.1 Data

For pretraining, we employed three corpora:
wiki2019zh (Xu, 2019a), news2016zh (Xu, 2019a),
and webtext2019zh (Xu, 2019a), which are com-
posed of 1.04 million Wikipedia entries, 2.5 mil-
lion news articles, and 4.1 million Q&As, respec-
tively, resulting in a total dataset size of 14.3G.
This dataset was used to pretrain ALBERT Chi-
nese (Xu, 2019b; Lan et al., 2020). To prepare the
data, we set aside 1% of the data for the test set
and 0.5% for the development set. The data was
randomly partitioned into blocks of size 1,024 for
each training step on each GPU.

4.2 Evaluation method

To evaluate the contextual performance of the Back-
pack and Transformer baseline models, we com-
puted perplexities on the test set of our web corpus.
We also used the Chinese WCPC dev set (Ge et al.,
2021), an open-ended Chinese cloze task similar to
LAMBADA (Paperno et al., 2016), which includes
4,827 test cases and is used for assessing top-1
word accuracy in word prediction with long-term
context, to evaluate the models’ ability to contex-
tualize and predict words accurately. Specifically,
each test case comprised a long sentence with at
least 150 Chinese characters, with the last signif-
icant word being masked and having a length of
2 to 4 characters. The objective of the task was
to predict the masked word, and we evaluated the
performance of the models based on their top-1
and top-3 accuracy. As this task was originally
tested on masked language models which can see
the sentence’s ending tokens, we designed a sam-
pling method to evaluate our autoregressive models
more fairly: we generated characters with beam
search until the length of the output tokens equaled
the length of the original sentence. We retained ten
generations from the beam in every step, penalized
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the outputs by adding the log probability of the
original ending characters, and then selected the
top generations.

4.3 Experimental details

The pretraining process for the Backpack-micro
and the GPT2-micro baseline models involved
training on 3 x RTX3090 GPUs, using a batch size
of 184,320 tokens for 500,000 gradient steps with
cross-entropy loss, the AdamW (Loshchilov and
Hutter, 2017) optimizer, 2,000 warmup steps, and
linear decay on the learning rate starting from 6e-4
used by karpathy (2023). The model with the best
performance on the dev set was retained by evalu-
ating at intervals of 1000 steps. The Transformer
structure comprised 6 layers, 6 heads, and an em-
bedding size of 384, with dropout disabled for flash
attention (Dao et al., 2022) in Torch 2.0. Three at-
tempts were made to improve parameterization of
the Backpack language model. Compared to the
original paper, one layer was removed from the con-
textualization layer of the Transformer structure to
match the size of the corresponding Transformer
model. 134M Backpack-small and GPT2-small
were pretrained on one A100 GPU with a batch
size of 245,760 tokens for 500,000 gradient steps,
using 16 sense vectors and a Transformer structure
comprising 12 layers, 12 heads, and an embedding
size of 768.

4.4 Results

During the experiment, it was observed that pre-
training the Backpack model was more challenging
to stabilize compared to the Transformer model,
although the overall loss curve of the 16-sense
vector Backpack LM was similar to the Trans-
former. Specifically, in the Backpack architecture,
the lack of layer normalization in the representation
0;’s weighted sum computation can cause dramatic
changes in the sense vectors and lead to gradient
explosion during pretraining when encountering
low-quality batches.

In general, the Backpack models achieve similar
perplexity scores compared to the GPT2-like Trans-
former model of similar scale and demonstrate sig-
nificantly improved accuracy in WCPC (Ge et al.,
2021) (Table 1).

WCPC is a challenging evaluation task as it re-
quires the model to have long-distance contextu-
alization ability and some world knowledge to de-
termine the masked word. For the WCPC score,
we found that our 134M Backpack-small tied with

223M ALBERT-xxlarge Chinese (Xu et al., 2020a)
on top-1 accuracy and tied with the most performed
MacBERT-large(Cui et al., 2021) in Chinese BERT
family baselines (Devlin et al., 2018; Liu et al.,
2019; Cui et al., 2020, 2021) on top-3 accuracy
using the ending words penalizing strategy. Our
strategy penalizes language models for generating
predictions that do not end the sentence, improv-
ing evaluation alignment with masked language
models.

5 Analysis of Lexical Structure

5.1 Sense Vectors

5.1.1 Visualizing Senses

Following the Backpack paper, we projected the
sense vectors of characters onto the vocabulary,
denoted as E'C(x), € RV, to illustrate the con-
tribution of the sense vectors towards predictions.
The outcomes are in Table 2 and you can find a
detailed version in the appendix (see Table 7). As
hypothesized, specific sense vectors automatically
captured word composition rules during pretrain-
ing, whereas others captured semantic relatedness
or associations.

5.1.2 Word Representations

In character-based languages, words are con-
structed through one or several characters in a com-
plex manner. Linguistic studies have examined
the morphological, orthographic, and phonolog-
ical information within compound words (Zhou
et al., 1999; Packard, 2011). However, we distin-
guish them into the following categories based on
whether the characters convey meaning individu-
ally and the implicit information density within the
characters. In detail, some words are composed of
characters with sub-meanings ("compound word"),
while some borrowed words from foreign lan-
guages only use the pronunciations of the char-
acters ("loanword"). There are also four-character
words that represent lengthy allusions, with the
characters representing the critical objects in the
allusion ("idiom").

We explored methods for better representing
these vocabularies based on the sense vectors of the
compositional characters to test lexical relationship
on the words with explicit meanings. Here are the
two methods that we explored.

Firstly, We purposed a method which involved
simply computing the average value of the sense
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Model PPL| WCPC top-1 ACCT WCPC top-3 ACC 1
Backpack-micro 16.25 2.98% 7.46%
GPT2-micro 16.66 2.44% 5.51%
Backpack-small 9.18 4.16% 10.6%
GPT2-small 8.87 4.27% 10.42%
BERT-base, Chinese - 7.3% 10.1%
RoBERTa-wwm-ext-base - 6.5% 9.8%
MacBERT-large, Chinese - 6.8% 10.6%
ALBERT-xxlarge, Chinese - 4.5% 6.5%

Table 1: Language modeling performance. The baseline WCPC accuracies are from the original paper. For

perplexity, lower is better; for accuracy, higher is better.

Sense Vector 10 (Word Composition)

Sense Vector 12 (Character Meaning Relatedness)

K (sky / day) ¥ (enter / advance / come in)

K (sky / day) 3 (enter / advance / come in)

(F)IE (distant land) (#H)FE (settle in)
(K)# (Tianjin City) (#H) A (enter)
(R)Z (Ancient India) ()% (march)
(R)HF (exceptional talent) () (attack)
(R)## (beautiful voice) (3F) & (make progress)

B (early) 3 (walk / step / pace)
% (night) W (must / will / certainly)

fig (wake up) ¥ (blanket / carpet)
Hf (night) fib (lie / crouch)

# (approach / rise high) i (eddy / whirlpool)

Table 2: The sense vectors in the same index learned a particular facet of character usage in pretraining. Each
column contains the characters with the highest scores under the projection of the sense vectors on the vocabulary.
Sense vector 10 excels in composing two-character words, while sense vector 12 demonstrates strong character-level

semantic correlations.

vectors of the constituent characters to represent
the word’s sense vector.

Secondly, we hypothesize that words with a com-
plicated, non-systematic function from characters
to the word meaning will have their constituent
character senses weighted similarly no matter what
context they appear in—thus constructing the non-
systematic meaning. Suppose we have a context
c that contains a target word with p constituent
characters w = x1, ..., X,, with the index of these
characters in the context c as jx, , - - - , jx,,» We cal-
culate the average contextual composition ratio
A(c)¢ on sense vector £ as

A(€)eji, (€)1, ®
Y1 AMC) g, Y AC) ity
where
1 |e|+1 i
A(€)ejy., B 9)

el =x, i=jxp+1 2kt Wi

We expect the ratios A(cq1), = -+ = A(cq)¢ for
any q contexts without any significant semantic am-
plifications on the meaning any of the constituent
characters. Assuming this hypothesis holds, a word

w could be represented as

1 L2
Cw)e==> > Mem)e,, Clxs)e  (10)
q m=1 s=1
for samples of context cy, ..., cqy.

To prove the feasibility of the second method,
we designed several prompts (Appendix 9) that fit
different types of words and calculate the average
contribution ratio of each character’s sense vectors
among all constituent characters in the word and
how much each contribution is away from the av-
erage value. We created a dataset containing 120
compound words, 102 loanwords, and 104 idioms,
and validated the above hypothesis on this dataset.
Our experimental results showed that each char-
acter’s contribution ratio in a word on each sense
vector for prediction remained stable across vari-
ous contexts. Furthermore, the stability of word
compositions was observed to follow the order of
idiom > compound word > loanword as shown in
Table 3. However, we also observed that while the
senses of most vocabulary items are highly stable
across different contexts, there exists a subset of
vocabulary items that exhibit poor stabilities. The
underlying reasons for this phenomenon warrant
further investigation. More word examples are in
the Appendix 8.
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Type <+10% < +20% > +20%
compound words  69.53% 26.61% 4.06%
loanwords 60.60% 29.64% 9.76%
idioms 84.94% 13.94% 1.20%

Table 3: How the contribution ratio of sense vectors on
characters of a word varies among the different contexts.
A more minor variation in the contribution ratio indi-
cates a more stable word composition.

5.1.3 Lexical Relationship Test

We evaluated the lexical relationship of the sense
vectors using two datasets: Wordsim-240 and
Wordsim-297 (Niu et al., 2017), and represent a
word by averaging all the sense vectors of the con-
stituent characters. To assess the quality of the re-
sulting lexical representations, we computed Spear-
man rank-order correlation coefficient between the
relationship scores in the datasets and the cosine
similarities of each word pair across all the sense
vectors of our models. For the GPT2 model, we rep-
resented each word by averaging the embeddings
of the constituent characters.

Our results in table 4 show that our Backpack
Model outperformed the same-scaled GPT2 model,
but the results were significantly inferior to word
embeddings trained directly on words using meth-
ods such as word2vec (Mikolov et al., 2013) or
GLoVe (Pennington et al., 2014).

Representation WS240 WS297
Backpack-micro #14 0.335 0.226
GPT2-micro 0.164 0.271
Backpack-small #9 0.384 0.426
GPT2-small 0.225 0.334
Word-tokenized models

(not comparable)

CBOW 0.561 0.626
GloVe 0.558 0.584

Table 4: Pearson product-moment correlation coeffi-
cients between the provided scores and the cosine sim-
ilarities of the word pairs are calculated. Character-
tokenized Backpack LMs outperform GPT?2 but are in-
ferior to word-tokenized models.

5.2 Sense Vectors for Control

In this section, we showcase two character-level
interventions on the sense vectors as proof-of-
concept.

5.2.1

In Modern Chinese, most professions are com-
posed of two or more Chinese characters, mak-
ing direct debiasing of stereotypically gendered
profession nouns difficult. To address this issue,
we attempted two approaches: 1) identifying the
characters within the composed words that con-
tain gender-biased meanings and debiasing them
from their sense vectors, and 2) directly debiasing
the sense vectors of the composed words using the
method discussed in Word Representations.

We hypothesized that the first approach could
be practical because many Modern Chinese words
are combined from ancient single-character words
that represent a relevant meaning to the composed
words. For example, the word "1- %" (soldier) is
composed of """ (man/warrior) and "F%" (arms),
both of which carry stereotypical male bias. In our
experiments, we attempted to identify the sense vec-
tors of characters that contain gender stereotypes
and compared |(EC (Xne)r — EC(Xshe)¢)| to de-
termine which sense vectors contribute to gender
bias. We found that sense 3 contributed the most
bias. Using the method described in the Backpack
paper, we reduced the weight of sense 3 on these
characters. We evaluated how the composed words
were gender debiased by creating several prompts
(Appendix 10) that fit all the profession words, fill-
ing in the target word, and computing the average
bias probability score of "ftf, (he/him)" versus "1

(she/her)" as IE x eprompts [max( ((:;;"’:2) 2 ((S}l::llxx)) )]

Mitigating gender bias

Baseline. We employed a similar approach as de-
scribed in the Backpack paper, which was inspired
by the work of (Bolukbasi et al., 2016). Specifi-
cally, we computed the gender bias direction us-
ing the difference between the embeddings of the
words "ftfl (he/him)" and "fif, (she/her)," denoted
as FXpe — FXghe, and then projected the embed-
dings of the biased characters onto the nullspace of
this direction.

Results. We experimented with investigating the
effect of removing sense 15 from several charac-
ters on bias scores of profession words containing
those characters. The bias ratios resulting from this
experiment are reported in the table 5. Our exper-
imentation demonstrated that removing sense 15
substantially decreased the bias in words that were
originally more biased while producing a consid-
erably lesser impact on words with lower levels of
bias. Nonetheless, this approach yielded significant

112



Transformers Backpacks (ours)
Character Target Word GPT2 GPT2proj Backpack half#15 remove #15
£T (arms) L2 (soldier) 70.32 55.55 58.13 34.95 21.34
% (alert) 22 (police) 20.93 20.47 23.62 14.90 9.47
5 (act) {# 5 (actor / actress)  6.58 6.19 4.92 4.50 4.13
2 (teach) #UM (teacher) 2.45 2.40 4.69 4.13 3.65

Table 5: Character-level bias ratio; by partially or totally removing sense 15, the character and the words composed
by the character get debiased. A perfect unbiased model would achieve a ratio of 1.

Multipliers 1 7 & i A A Bk i
?P(sand),#(beach)  (sanding) (particle) (castle) (dune) (stone) (people) (ball) (sea) (bask)
1,1 1 1 1 1 1 1 1 1 1
4,1 2.13 1.74 1.42 1.27 1.14 0.78 0.71 0.62 0.61
1,4 0.54 0.55 0.70 0.71 0.71 1.23 1.25 1.24 1.48

Table 6: The ratio of probabilities on predicting certain characters by amplifying the sense vectors with multipliers
for the characters "V)" (sand) and "#" (beach) compared to the original probabilities.

improvements compared to the GPT?2 baseline.

Besides, we explored the second approach by
removing sense 15 for both constituent characters.
Surprisingly, this approach was less effective than
the first approach. To investigate whether there
exists a specific sense vector to remove for all char-
acters in all compositional words for gender debi-
asing, we experimented and observed that reduc-
ing sense 3 significantly reduced the bias in the
word %% (police); however, the reducing sense
3 method did not generalize to other words. We
hypothesize that the model might not effectively
learn the gender-representing information due to
the limited model size and pretraining steps. Some
critical gender-related information might still dis-
tribute among several sense vectors.

5.2.2 Character Amplification Control

Focusing on sub-meanings or properties in a word
constructed by multiple characters makes more
sense in character-based languages. For instance,
the Chinese word "1 #4" which means "dictio-
nary," is composed of the characters "7]" (word)
and "#L" (book, in ancient Chinese), and when gen-
erating text from input containing this word, the
model could focus on either the "word" or "book"
property. By adjusting the weights of the sense vec-
tors of the constituent characters, we were able to
amplify implicit meaning of a constituent character
and bias the model toward generating text related
to a specific property. Specifically, we conducted
experiments to amplify the contribution of the first

or second character four times each while keep-
ing the total contribution of the word unchanged
in the output. We found that the model tended
to generate sentences that relate to the amplified
character with greater probability, as shown in Ap-
pendix 11. We assessed the efficacy of the proposed
method by computing the ratio of expectations for
the controlled model relative to an uncontrolled
model in the context of predicting semantically
related characters from an open-topic prompt as
Crar get[%m]. Table 6 illustrates an in-
stance of the outcome of amplifying characters in
the word "VPi#" (beach). Notably, the findings
indicate that character-specific semantics were the
most amplified. We hypothesize that this work can
assist in scenarios where it is necessary to precisely
generate expressions that convey the author’s in-
tended meaning in a short sequence, such as poetry,
songwriting, or beginning a discourse around one
of the meanings in a polysemous word.

6 Conclusion

In this paper, we presented implementing, pre-
training, and evaluating a character-based Chinese
Backpack language model. We conducted exten-
sive experiments on sense vector visualizations,
word representations, lexical relationships, and id-
iom compositions and explored two approaches to
character-level interventions. Our results demon-
strate the potential of Backpack LM in language
modeling tasks for character-based languages, the
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interpretability of the sense vectors on the character
and word level, and the potential of character-level
interventions across various contexts.

7 Limitations

Despite these promising results, there are several
limitations to our study. First, we had limited GPU
resources, which prevented us from attempting a
larger batch size during pretraining. Second, our
word interventions depend on the sub-meanings of
the characters, and we currently have no solution
to effectively intervene in transliterated words by
modifying the sense vectors of the characters that
only represent phonetic information. Therefore,
intervening in character-based languages where
many words are transliterated, such as Korean, re-
mains challenging. Third, we observed that al-
though our approach enables greater flexibility in
character-level sense vectors to represent richer
morphological structures, word representations by
characters are less interpretable than word sense
vectors learned by models using word tokeniza-
tions, particularly for complex words such as id-
iomatic phrases. We believe that this issue could
be mitigated by increasing the number of sense
vectors with a larger contextualization model and
pretraining with more data. Further research is re-
quired to address these limitations and explore the
potential of word representations and interventions
in character-based languages.
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A Language Modeling Details

A.1 Residual Connection

We started our experiment with no second residual
connection. However, we found that adding sec-
ond residual connection by unsqueezing the output
from the first feed-forward layer by dimension &
to match k x d dimensions improved training sta-
bility compared to the specification of Hewitt et al.
(2023).

A.2 Comparison of Parameter Numbers

The contextualization weight function was defined
with mask filling and an extra dropout layer in-
cluded after the Softmax function.

To make a fair comparison with the correspond-
ing GPT2 model, we analysed the number of pa-
rameters and removed one block from the Trans-
former structure of the Backpack model. As
discussed, the contextualization weight of each
sense vector is calculated with additional matri-
ces K,Q € R¥? The first feed forward layer
in the sense vector layer involves an up projec-
tion matrix € R%*4? and a down projection matrix
€ R**d_Summing up these parameters, we have
a 10d? additional parameter size, which is close
to the 12d? parameter size in a single Transformer
block so that by removing one block, we will only
add (k — 2) * d*> ~ k % d? parameters which are
necessary for representing the sense vectors.

B Interpreting Idiom Composition

We investigated which sense vectors played a dom-
inant role when the model used the first three char-
acters of idiomatic phrases as input to predict the
last character. However, we encountered difficulty
in interpreting the character composition of id-
iomatic phrases. For example, when analyzing
the phrase "E#ER(E)" i.e., "drawing legs on a
snake," which means "an unnecessary and redun-
dant act that spoils the original effect or even makes

it worse," by stacking weights of the first three
characters on 16 or 64 sense vectors, we found that
using any single sense vector for prediction did
not significantly lead the model to output the tar-
get character, even though the model correctly out-
putted " 2" i.e., "leg" after performing a weighted
sum of these sense vectors. We projected 16 sense
vectors onto the vocabulary and examined their pro-
jections onto the character; however, we observed
that none exhibited a disproportionately large or
small projection onto the resulting character. This
experiment provides evidence that the top compo-
nents of sense vectors may not effectively capture
how they will compose to make predictions.
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Sense Vector 10 (Word Composition)

K (sky / day) ) (sand) 73 (enter / advance / come in) H (from / self)
(F)VE (distant land) (I (desert) (F)5E (settle in) (B)H (freedom)
(K)E (Tianjin City) (I)F (gull) (HH)A (enter) (E)E (console)

(R)Z (Ancient India) (ML (hoarse) GH)ZE (march) (B)UA (the App Ziroom)
(R (exceptional talent)  (¥P)i (actor Yi Sha) ()L (attack) (B)FA (selfie)
(F)#i (beautiful voice) 5 (Beach) ()& (make progress) (B)#H! (self-dumping)

Sense Vector 12 (Character Meaning Relatedness or Composition)

K (sky / day) b (sand) j# (enter / advance / come in) H (from / self)
B (early) 04 (FC Schalke 04) 3% (walk / step / pace) M (from)
% (night) (¥)#8 (sandbox) W (must / will / certainly) Z (he/she/it/go/’s)
2 (wake up) ()& (sandbox) £ (blanket / carpet) ¥T (since)
H% (night) FF (poison) fib (lie / crouch) J& (sense / feel)
#% (approach / rise high) 1 (platinum) i (eddy / whirlpool) 1 (ant)

Sense Vector 15 (Character Meaning Relatedness or Composition)

K (sky / day) b (sand) i# (enter / advance / come in) H (from / self)
(black) I (drizzle) ()& (progress) (B)X (arrogant)
7% (light) M (clear) JIii (smooth) (B)i# (complacent)

E (yesterday) 1 (lake) 1 (magical / god) JR (ruthless)
(black) % (mountain) 12 (slow) (B)# (Give up on yourself)
4> (today) 17 (tangerine) %% (delay) (B (to resign voluntarily)

Table 7: The sense vectors in the same index are considered to have a particular facet of character usage. Each
column contains the characters with the highest scores under the projection of the sense vectors on the vocabulary.

Type Word Stablility < +10% < +20% > +20%
compound FHL (telephone) = F (hand) + #/1 (machine) high 16 0 0
words K2 (university) = K (large) + 2% (learn) high 16 0 0
P (lonely) = R (isolated) + 74 (alone) low 1 6 9
28, (Mosaic) high 16 0 0
loanwords RR (mini) high 12 4 0
%57, (quark) low 5 7 4
FiFEMET (in a difficult situation with no easy way out) high 16 0 0
idioms [ ¥E 7S &2 (to do something unnecessary even harmful) high 14 2 0
$EYEF7ME (to wait for the right moment to shine) low 12 2 2

Table 8: How many sense vectors for each range of the contribution ratio on characters of a word varies among the
different contexts. A more minor variation in the contribution ratio indicates a more stable word composition.

prompt English
WORD WORD

"WORD"/ = B & The meaning of "WORD" is
HITYHE, WORD A teacher told that WORD

*FWORD, About WORD,
HMEY, WORD  InTV, itis said that WORD
WORDE WORD is
F %15 WORD I think WORD

Table 9: General prompts for different type of nouns

118



prompt English
L SWORDi,, That WORD said,
X/ NWORDHEE This WORD believes
WORDH%|EFH, The WORD enters the house,

WORDAEER, K5

WORDZE T 14 %,

The WORD sat in the car, and then

Then WORD came over,

Table 10: General prompts for gender bias evaluations

Word Multiplier Output
PP (beach) 1,1 i EEREZ A
P (sand) ¥ (beach / puddle) (There are a lot of people on the beach.)
Vb (beach) 4,1 U EEARZ KRR/ VI HE -
b (sand) ¥ (beach / puddle) (On the beach, there are many big and small sand dunes.)
i (beach) 1.4 i EERE NEHRRDEIE -
7> (sand) {# (beach / puddle) (There are many people fishing by the seaside on the beach.)
A8 (ideal) 1,1 PR R A 2 03ARATE, TEIEH D ER 4 -
B (principle / logic) ?'ﬁ(irnagine / want) (What is ideal? I am confused and unsure of what I truly like.)
HEAE (ideal) 4,1 FRER A0 TR fE?
! (principle / logic) %8 (imagine / want) (What is ideal? How to understand it?)
HAE (ideal) 1,4 HAERAT 27 iR

i (principle / logic) 48 (imagine / want)

(What is ideal? How to achieve it?)

Table 11: Generative outputs on the character amplification control task with top probabilities. Note that the word
"HAE" means "ideal" but is combined with the characters meaning "principle / logic" and "imagine / want".
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Abstract

Recent research suggests that the feed-forward
module within Transformers can be viewed as
a collection of key-value memories, where the
keys learn to capture specific patterns from the
input based on the training examples. The val-
ues then combine the output from the ‘memo-
ries’ of the keys to generate predictions about
the next token. This leads to an incremental
process of prediction that gradually converges
towards the final token choice near the output
layers.

This interesting perspective raises questions
about how multilingual models might lever-
age this mechanism. Specifically, for autore-
gressive models trained on two or more lan-
guages, do all neurons (across layers) respond
equally to all languages? No! Our hypothe-
sis centers around the notion that during pre-
training, certain model parameters learn strong
language-specific features, while others learn
more language-agnostic (shared across lan-
guages) features. To validate this, we con-
duct experiments utilizing parallel corpora of
two languages that the model was initially pre-
trained on. Our findings reveal that the layers
closest to the network’s input or output tend to
exhibit more language-specific behaviour com-
pared to the layers in the middle.

1 Introduction

One of the least studied aspects of the Transformer
(Vaswani et al., 2017) models in general and Large Lan-
guage Models (LLMs) in particular is the feed-forward
layers (FFNs). Although they contain almost two-thirds
of the parameters, it is only recently' that their role in
the working of the models is being seriously studied.
Geva et al. (2021, 2022) have earlier demonstrated
that FFNs could be seen as “key-value memories” where

! Although the work by (Wang and Tu, 2020) is relevant in
this regard, their analysis was done for all the components of
the Transformer and not just the FFNs.

T .
I;dd and Norm| }* * |combinators|... Synthesis

FFN

... Selection

dd and Norm| [ . | Conceptualization
.
Feed
MHSA Forward
A Network

" Transformer
Block

Figure 1: Transformer block and the structure of FFN

each neuron (key)? in the lower sub-layer of the FFN
gets triggered by specific patterns in the input data and
the higher sub-layer (values) produces a distribution
over the output vocabulary. This leads us to a perspec-
tive (Figure 1) where the FFN first captures certain
patterns or concepts® in the input (conceptualization),
selects the important aspects (using the activation func-
tion i.e. selection) and then combines them to emit an
output which can be interpreted as a prediction of the
possible next-word token for that layer, i.e. synthesis.
To highlight this view throughout the rest of the paper,
we will use the term ‘detectors’ instead of the rather
generic ‘keys’ to refer to the neurons in the earlier layer
and ‘combinators’ instead of ‘values’ to refer to the later
layer. Repeating this across layers leads to a process
of incremental prediction of the next token, with the
prediction from previous layers being refined in the next
layers (Belrose et al., 2023). This perspective however
raises an important question. For models trained with
a causal-language modeling objective in multilingual
settings, what sort of patterns do the detectors encode
across layers? More precisely, are some detectors trig-
gered by input only from specific languages?

In this paper, we investigate this phenomenon of
language specificity of the detectors in a multilingual
model, pretrained on 30 languages from 16 language

2While Geva et al. (2021) use the word ‘keys’, some other
authors use the word neuron in this context.

3Shallow processing would require them to be good at cap-
turing certain syntax patterns while semantic processing would
require them to be good at capturing more thematic/conceptual
patterns.
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families. Earlier work has shown that Transformer mod-
els encode more shallow features in the earlier layers*
while encoding more semantic features in the later lay-
ers® (Tenney et al., 2019). We hypothesise that the shal-
low processing would require more language-specific
detectors than the semantic aspects of the input. And
hence, we posit that during pretraining of the multi-
lingual models, two kinds of neurons would emerge:
language-specific and language-agnostic.

Thorough investigations into the role of the FFN lay-
ers in Transformer is an interesting research direction,
and to our best knowledge, this is the first work that
tries to look at the FFN® from the perspective of multi-
linguality. The rest of the paper is structured as follows:
a brief discussion of the related works (Section 2) is
followed by the description of the models and data (Sec-
tion 3) and models (Section 4). This is followed by the
presentation (Section 5) and simultaneous discussion of
the results (Sections 6 and 7).

2 Related Work

Exploring the role and capabilities of the FFN sub-layer
in Transformer models is a still nascent field of research
with only a few papers exploring their working. As men-
tioned earlier, Geva et al. (2021, 2022) have proposed an
interesting perspective of looking at how the FFN layer
of the Transformer contributes during language genera-
tion. Recent work (Meng et al., 2022; Yao et al., 2022)
exploring the capabilities of the FFN has also looked
into how the activations of FFNs could be used for un-
derstanding how autoregressive models deal with facts.
Other works (Li et al., 2022; Zhang et al., 2022) have
analysed activation patterns in FFNs to study sparsity
in Transformers. In other words, they show that only a
few neurons in the FFNs are activated corresponding to
inputs to Transformers.

On the front of studying multilingual models, Li-
bovicky et al. (2019) demonstrated that representations
in encoder-only models can be split into language spe-
cific and language-neutral components. But to our
best knowledge, no equivalent study has been done for
autoregressive language models. Additionally, Desh-
pande et al. (2022); Blevins et al. (2022); Lauscher et al.
(2020); Choudhury and Deshpande (2021); Kudugunta
et al. (2019) have studied the pretraining behaviour and
capabilities of various encoder-only multilingual mod-
els. More recently, Pfeiffer et al. (2022) demonstrated
how separating parameters into language-specific mod-
ules during training can help improve the performance
across languages.

From the perspective of studying multilinguality in

“close to the input
Snear the output
%in a decoder-only Transformer model

the human brain, neuroimaging studies (Crinion et al.,
2006; Videsott et al., 2010; Miozzo et al., 2010) have
shown that although neural circuits for different lan-
guages are highly overlapping, there are distinct brain
areas for language-specific processing and areas that are
language-agnostic.

3 Model and testing data

We use a pretrained XGLM model (Lin et al., 2021)
with 1.7 billion parameters, available on the Hugging
Face (Wolf et al., 2019) repository’ for our experiments.
We use sentences from the training data of the CzEng
2.0 corpus® (Kocmi et al., 2020) for our experiments.
The model description of the XGLM model states that
the model was trained on CommonCrawl] data of vari-
ous languages. CzEng heavily relies on various freely
accessible web sources and a part of the data included in
CzEng is also drawn from CommonCrawl among other
sources. Thus, we expect that the sentences used for the
experiments are of the same domain/style as the model
was originally trained on, and they can even overlap. We
do not consider such a possible overlap a serious prob-
lem for our analysis, because we are not measuring any
processing performance or generalization capability.

4 Experiment

We first extract a sample of sentences from the CzEng
corpus, giving us a set of Czech and English parallel sen-
tences. We only select sentences with lengths between
20 and 50. We then feed the model with all ‘prefixes’
of the sampled sentences from both languages. In other
words, for each sentence, we incrementally feed the
model one subword at a time and record our observa-
tions. For instance, for a Czech sentence like “Tenhle
ukol je obtizny” (This task is difficult), the prefixes fed
to the model would be “Tenhle”, “Tenhle dkol”, “Tenhle
ukol je” and “Tenhle tikol je obtiZny”. The parallel sen-
tences ensure that the semantic contents of the sentences
for the two languages are similar. We go on to collect
the data about the model state corresponding to each
prefix.

(Selector) coeff.

Contextual information

Figure 2: FFN in close detail

"https://huggingface.co/facebook/xglm-1.7B
8https:/fufal.mff.cuni.cz/czeng
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From the collected data’, we extract the “selection co-
efficients” corresponding to each prefix for all detectors
across the layers of the model. Specifically, for detector
d; in layer L;, we define the selection coefficient for a
prefix py, as:

Ok = GeLU{d;(pi)} (1)

Thus, for each prefix we obtain layer-wise selection
coefficients for the detectors (an example can be visu-
alised in Table 1). We then sort the detectors based on
the values of their corresponding selection coefficients.
We posit that for a layer, certain detectors are triggered
by specific prefix templates or languages. The selec-
tion coefficient is the indicator of the extent to which
a particular detector is triggered by a prefix. Thus, ob-
serving the selection coefficients of the detectors across
prefixes of different languages should indicate which
(and how many) detectors are relevant bilingually and
which (and how many) are relevant only for one of the
two examined languages. We do this by analysing the
top-k detectors after sorting the detectors by decreasing
selection coefficients.

Table 1: Selection coefficients of m detectors in layer L
for a total of n prefixes

Langl, sentl, prefix_1 C11C12C15...Cim,
Langl, sentl, prefix_2 C51C99C53 ... Cop,
Lang2, sentN, prefix_xx | Ck1Cx2Cks ... Crm
Lang?2, sentN, prefix_xy | Cp1Cn2Cns ... Chm

5 Observations

As an example, Table 2 shows the top-1 detector (detec-
tor with maximum selection coefficient) for the prefixes
of an English and Czech sentence.

In the following sections, we present the results from
our observations of the selection coefficients of detec-
tors across the layers of the model.

5.1 Distribution of active detectors across layers

We collect the indices of the top-10 and top-100'° detec-
tors for each prefix. For a prefix P; of all the considered
prefixes Py, P, ..., Py, we denote the set of the top de-
tectors D; where |D;| = t (i.e. the set cardinality of
|D;| is t). This way, we collect the list of the top ¢ de-
tectors for all prefixes in a layer. For each layer Ly, we
obtain Ly = Dy U Dy U ... U D,, and we plot the | L]

°from all sentences across Czech and English

'%The top-10 list implies that we extract the list of the 10
detectors that had the maximum selection coefficients for a
prefix. Similarly, for the top-100 list, we extract 100 detectors
with the maximum selection coefficients.

H Prefix Detector H
Europol 2149
Europol zpracovava 2149
Europol zpracovava a 3942
Europol zpracovava a preddva 200
Europol zpracovava a preddva tdaje 200
Europol 2149
Europol shall 2149
Europol shall process 2149
Europol shall process and 3424
Europol shall process and transfer 2149

Table 2: Prefixes from an example Czech-English sen-
tence pair, listing the most active detector ID (according
to selection coefficients) from layer 1.

across the layers (e.g. Figure 3). In other words, we
are checking how many unique detectors across prefixes
belong to the list of 10 or 100 most active detectors
for that layer. The fewer detectors in this set, the more
“compact” the representation of these sentences are. The
more detectors is in this set, the more “network capac-
ity" is used when processing the given sentences. We
make the plots for each of the two languages. Hence,
using the example in Table 2: f