
EMNLP 2023

BlackboxNLP
Analyzing and Interpreting Neural Networks for NLP

Proceedings of the Sixth Workshop

December 7, 2023

©2023 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 SIDNEY BAKER ST S STE 400-134
KERRVILLE TX 78028
United States of America

TEL: +1-570-476-8006
FAX: +1-570-476-0860
acl@aclweb.org

ISBN 979-8-89176-052-3

BlackboxNLP gratefully acknowledges financial support from the following sponsors.

ii

Message from the Organizing Committee

As researchers achieve unprecedented technological breakthroughs in natural language processing, the
need to understand the systems underlying these advances is more pertinent than ever. BlackboxNLP,
now in its sixth iteration, has played an important role in bringing together scholars from a diverse
range of backgrounds in order to rigorously study the behavior, representations, and computations of
“black-box” neural network models. Our workshop showcases original, cutting-edge research on topics
including but not limited to:

• analysis of representations via probing and related techniques;
• explanation methods such as feature attribution, free-text explanations, or structured explanations;
• interdisciplinary methods (e.g., from neuroscience, cognitive science, computer vision, etc.);
• interpretable architectures and neural network modules;
• mechanistic interpretability and reverse engineering of neural computations;
• open-source tools for analysis, visualization, and/or explanation;
• opinions about the state of interpretability and explainable NLP; and
• targeted evaluations using simplified or formal languages.

The sixth BlackboxNLP workshop will be held in Singapore on December 7, 2023, hosted by the
Conference on Empirical Methods in Natural Language Processing (EMNLP). 29 full papers and 17
non-archival extended abstracts were accepted for in-person and online presentations, from a total of 66
submissions. This year’s workshop will also feature 19 papers on interpretability from the Findings of
the ACL: EMNLP 2023, as well as two invited talks and a panel discussion with experts in the field.

BlackboxNLP 2023 would not have been possible without the high-quality peer reviews submitted
by our program committee, as well as the logistical assistance provided by the EMNLP organizing
committee. We gratefully acknowledge financial support from our sponsors, Google and Apple. Our
invited speakers, panelists, authors, and presenters have allowed us to put together an outstanding
program for all participants to enjoy.

Welcome to BlackboxNLP! We look forward to seeing you in Singapore and online.

Yonatan Belinkov
Sophie Hao

Jaap Jumelet
Najoung Kim

Arya McCarthy
Hosein Mohebbi

iii

Workshop Organizers

Organizing Committee

Yonatan Belinkov Technion–Israel Institute of Technology
Sophie Hao New York University
Jaap Jumelet University of Amsterdam
Najoung Kim Boston University

Google
Arya McCarthy Johns Hopkins University
Hosein Mohebbi Tilburg University

Program Committee

Badr Abdullah
Carolyn Anderson
Leila Arras
Pepa Atanasova
Arianna Bisazza
Jonathan Brophy
Lisa Bylinina
Hanjie Chen
Benoit Crabbé
Verna Dankers
Subham De
Yanai Elazar
Jean-Philippe Fauconnier
Nils Feldhus
Ghazi Felhi
Javier Ferrando
Bob Frank
Richard Futrell
Michael Goodale
Sarang Gupta
Michael Hanna
David Harwath
Christian Herold
John Hewitt

Dieuwke Hupkes
Yangfeng Ji
Robin Jia
Jaap Jumelet
Lis Kanashiro Pereira
Eugene Kharitonov
Saurabh Kulshreshtha
Jenny Kunz
Anna Langedijk
Alessandro Lenci
Sheng Liang
Tomasz Limisiewicz
Nelson F. Liu
Kanishka Misra
Hosein Mohebbi
Anmol Nayak
Joakim Nivre
Siddharth Patwardhan
Mohammad Taher Pilehvar
Tiago Pimentel
Yuval Pinter
Adithya Pratapa
Sara Rajaee
Shauli Ravfogel

Rudolf Rosa
Naomi Saphra
Gabriele Sarti
Sebastian Schuster
Mattia Setzu
Tatiana Shavrina
Gaofei Shen
Pia Sommerauer
Shane Steinert-Threlkeld
Vinitra Swamy
Aarne Talman
Jörg Tiedemann
Dennis Ulmer
Saujas Vaduguru
Oskar van der Wal
Eva Vanmassenhove
Jithendra Vepa
Johannes Welbl
Peter West
Sarah Wiegreffe
Zhouhang Xie
Fabio Massimo Zanzotto
Yian Zhang
Yichu Zhou

Invited Speakers

Zhijing Jin Max Planck Institute for Intelligent Systems
ETH Zurich (Swiss Federal Institute of Technology Zurich)

Antoine Bosselut EPFL (Swiss Federal Institute of Technology Lausanne)

v

Table of Contents

Knowledge-Grounded Natural Language Recommendation Explanation
Anthony Colas, Jun Araki, Zhengyu Zhou, Bingqing Wang and Zhe Feng . 1

Emergent Linear Representations in World Models of Self-Supervised Sequence Models
Neel Nanda, Andrew Lee and Martin Wattenberg . 16

Explaining Data Patterns in Natural Language with Language Models
Chandan Singh, John X. Morris, Jyoti Aneja, Alexander Rush and Jianfeng Gao 31

Probing Quantifier Comprehension in Large Language Models: Another Example of Inverse Scaling
Akshat Gupta . 56

Disentangling the Linguistic Competence of Privacy-Preserving BERT
Stefan Arnold, Nils Kemmerzell and Annika Schreiner . 65

“Honey, Tell Me What’s Wrong”, Global Explanation of Textual Discriminative Models through Coop-
erative Generation

Antoine Chaffin and Julien Delaunay . 76

Self-Consistency of Large Language Models under Ambiguity
Henning Bartsch, Ole Jorgensen, Domenic Rosati, Jason Hoelscher-Obermaier

and Jacob Pfau . 89

Character-Level Chinese Backpack Language Models
Hao Sun and John Hewitt .106

Unveiling Multilinguality in Transformer Models: Exploring Language Specificity in Feed-Forward Net-
works

Sunit Bhattacharya and Ondřej Bojar . 120

Why Bother with Geometry? On the Relevance of Linear Decompositions of Transformer Embeddings
Timothee Mickus and Raúl Vázquez . 127

Investigating Semantic Subspaces of Transformer Sentence Embeddings through Linear Structural Prob-
ing

Dmitry Nikolaev and Sebastian Padó . 142

Causal Abstraction for Chain-of-Thought Reasoning in Arithmetic Word Problems
Juanhe (TJ) Tan . 155

Enhancing Interpretability Using Human Similarity Judgements to Prune Word Embeddings
Natalia Flechas Manrique, Wanqian Bao, Aurelie Herbelot and Uri Hasson 169

When Your Language Model Cannot Even Do Determiners Right: Probing for Anti-Presuppositions and
the Maximize Presupposition! Principle

Judith Sieker and Sina Zarrieß . 180

Introducing VULCAN: A Visualization Tool for Understanding Our Models and Data by Example
Jonas Groschwitz . 199

The Self-Contained Negation Test Set
David Kletz, Pascal Amsili and Marie Candito . 212

vii

Investigating the Effect of Discourse Connectives on Transformer Surprisal: Language Models Under-
stand Connectives, Even So They Are Surprised

Yan Cong, Emmanuele Chersoni, Yu-Yin Hsu and Philippe Blache . 222

METAPROBE: A Representation- and Task-Agnostic Probe
Yichu Zhou and Vivek Srikumar . 233

How Much Consistency Is Your Accuracy Worth?
Jacob K. Johnson and Ana Marasović .250

Investigating the Encoding of Words in BERT’s Neurons Using Feature Textualization
Tanja Baeumel, Soniya Vijayakumar, Josef van Genabith, Guenter Neumann

and Simon Ostermann . 261

Evaluating Transformer’s Ability to Learn Mildly Context-Sensitive Languages
Shunjie Wang and Shane Steinert-Threlkeld . 271

Layered Bias: Interpreting Bias in Pretrained Large Language Models
Nirmalendu Prakash and Roy Ka-Wei Lee. .284

Not Wacky vs. Definitely Wacky: A Study of Scalar Adverbs in Pretrained Language Models
Isabelle Lorge and Janet B. Pierrehumbert .296

Rigorously Assessing Natural Language Explanations of Neurons
Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu and Christopher Potts 317

NPIs Aren’t Exactly Easy: Variation in Licensing across Large Language Models
Deanna DeCarlo, William Palmer, Michael Wilson and Bob Frank . 332

Memory Injections: Correcting Multi-Hop Reasoning Failures During Inference in Transformer-Based
Language Models

Mansi Sakarvadia, Aswathy Ajith, Arham Khan, Daniel Grzenda, Nathaniel Hudson, André Bauer,
Kyle Chard and Ian Foster .342

Systematic Generalization by Finetuning? Analyzing Pretrained Language Models Using Constituency
Tests

Aishik Chakraborty, Jackie CK Cheung and Timothy J. O’Donnell . 357

On Quick Kisses and How to Make Them Count: A Study on Event Construal in Light Verb Constructions
with BERT

Chenxin Liu and Emmanuele Chersoni . 367

Identifying and Adapting Transformer-Components Responsible for Gender Bias in an English Language
Model

Abhijith Chintam, Rahel Beloch, Willem Zuidema, Michael Hanna and Oskar van der Wal379

viii

Workshop Program

Thursday, December 7, 2023

9:00–9:10 Opening Remarks

9:10–10:00 Invited Talk 1

9:10–10:00 Causal NLP: A Path towards Opening the Black Box of NLP
Zhijing Jin

10:00–10:30 Session 1 (Orals)

10:00–10:15 Knowledge-Grounded Natural Language Recommendation Explanation
Anthony Colas, Jun Araki, Zhengyu Zhou, Bingqing Wang and Zhe Feng

10:15–10:30 Emergent Linear Representations in World Models of Self-Supervised Sequence
Models
Neel Nanda, Andrew Lee and Martin Wattenberg

10:30–11:00 Break

11:00–12:30 Session 2 (Posters)

11:00–12:30 Explaining Data Patterns in Natural Language with Language Models
Chandan Singh, John X. Morris, Jyoti Aneja, Alexander Rush and Jianfeng Gao

11:00–12:30 Probing Quantifier Comprehension in Large Language Models: Another Example
of Inverse Scaling
Akshat Gupta

11:00–12:30 Disentangling the Linguistic Competence of Privacy-Preserving BERT
Stefan Arnold, Nils Kemmerzell and Annika Schreiner

11:00–12:30 “Honey, Tell Me What’s Wrong”, Global Explanation of Textual Discriminative
Models through Cooperative Generation
Antoine Chaffin and Julien Delaunay

11:00–12:30 Self-Consistency of Large Language Models under Ambiguity
Henning Bartsch, Ole Jorgensen, Domenic Rosati, Jason Hoelscher-Obermaier and
Jacob Pfau

11:00–12:30 Character-Level Chinese Backpack Language Models
Hao Sun and John Hewitt

ix

Thursday, December 7, 2023 (continued)

11:00–12:30 Unveiling Multilinguality in Transformer Models: Exploring Language Specificity
in Feed-Forward Networks
Sunit Bhattacharya and Ondřej Bojar

11:00–12:30 Why Bother with Geometry? On the Relevance of Linear Decompositions of Trans-
former Embeddings
Timothee Mickus and Raúl Vázquez

11:00–12:30 Investigating Semantic Subspaces of Transformer Sentence Embeddings through
Linear Structural Probing
Dmitry Nikolaev and Sebastian Padó

11:00–12:30 Causal Abstraction for Chain-of-Thought Reasoning in Arithmetic Word Problems
Juanhe (TJ) Tan

11:00–12:30 Enhancing Interpretability Using Human Similarity Judgements to Prune Word Em-
beddings
Natalia Flechas Manrique, Wanqian Bao, Aurelie Herbelot and Uri Hasson

11:00–12:30 When Your Language Model Cannot Even Do Determiners Right: Probing for Anti-
Presuppositions and the Maximize Presupposition! Principle
Judith Sieker and Sina Zarrieß

11:00–12:30 Introducing VULCAN: A Visualization Tool for Understanding Our Models and
Data by Example
Jonas Groschwitz

11:00–12:30 The Self-Contained Negation Test Set
David Kletz, Pascal Amsili and Marie Candito

11:00–12:30 Investigating the Effect of Discourse Connectives on Transformer Surprisal: Lan-
guage Models Understand Connectives, Even So They Are Surprised
Yan Cong, Emmanuele Chersoni, Yu-Yin Hsu and Philippe Blache

11:00–12:30 METAPROBE: A Representation- and Task-Agnostic Probe
Yichu Zhou and Vivek Srikumar

11:00–12:30 How Much Consistency Is Your Accuracy Worth?
Jacob K. Johnson and Ana Marasović

11:00–12:30 Investigating the Encoding of Words in BERT’s Neurons Using Feature Textualiza-
tion
Tanja Baeumel, Soniya Vijayakumar, Josef van Genabith, Guenter Neumann and
Simon Ostermann

11:00–12:30 Evaluating Transformer’s Ability to Learn Mildly Context-Sensitive Languages
Shunjie Wang and Shane Steinert-Threlkeld

x

Thursday, December 7, 2023 (continued)

11:00–12:30 Layered Bias: Interpreting Bias in Pretrained Large Language Models
Nirmalendu Prakash and Roy Ka-Wei Lee

11:00–12:30 Not Wacky vs. Definitely Wacky: A Study of Scalar Adverbs in Pretrained Language
Models
Isabelle Lorge and Janet B. Pierrehumbert

11:00–12:30 The Hidden Space of Transformer Adapters
Jesujoba Alabi, Marius Mosbach, Matan Eyal, Dietrich Klakow and Mor Geva

11:00–12:30 Understanding and Mitigating Classification Errors through Interpretable Token
Patterns
Michael Hedderich, Jonas Fischer, Dietrich Klakow and Jilles Vreeken

11:00–12:30 Let the Models Respond: Interpreting Language Model Detoxification through the
Lens of Prompt Dependence
Daniel Scalena, Gabriele Sarti, Malvina Nissim and Elisabetta Fersini

11:00–12:30 Where Exactly Does Contextualization in a PLM Happen?
Soniya Vijayakumar, Simon Ostermann, Tanja Baeumel and Josef van Genabith

11:00–12:30 Probabilistic Transformer: A Probabilistic Dependency Model for Contextual Word
Representation
Haoyi Wu and Kewei Tu

11:00–12:30 Attention Lens: A Tool for Mechanistically Interpreting the Attention Head Infor-
mation Retrieval Mechanism
Mansi Sakarvadia, Arham Khan, Aswathy Ajith, Daniel Grzenda, Nathaniel Hud-
son, André Bauer, Kyle Chard and Ian Foster

11:00–12:30 NeuroSurgeon: A Toolkit for Subnetwork Analysis
Michael Lepori, Ellie Pavlick and Thomas Serre

11:00–12:30 Human-Understandable Knowledge Graph Completion
Zhao Xu, Wiem Ben Rim, Kiril Gashteovski, Timo Sztyler and Carolin Lawrence

11:00–12:30 Opening the Black-Box from a Regulatory Point of View—A Discussion on the EU
AI Act
Chia-Chien Hung, Wiem Ben Rim, Lindsay Frost, Lars Bruckner and Carolin
Lawrence

11:00–12:30 Quantifying the Plausibility of Context Reliance in Neural Machine Translation
Gabriele Sarti, Grzegorz Chrupała, Malvina Nissim and Arianna Bisazza

11:00–12:30 Natural Language Explanation for Tabular Data
Zhao Xu, Sascha Saralajew, Kiril Gashteovski and Carolin Lawrence

xi

Thursday, December 7, 2023 (continued)

11:00–12:30 Learning to Add as a Way to Understand Transformers
Harish Tayyar Madabushi and Nello Cristianini

11:00–12:30 Flexible Model Interpretability through Natural Language Model Editing
Karel D’Oosterlinck, Thomas Demeester, Chris Develder and Christopher Potts

11:00–12:30 Investigating Information Provenance in Retrieval-Augmented Generation
Alessandro Stolfo and Ari Kobren

11:00–12:30 Using Collostructional Analysis to Evaluate BERT’s Representation of Linguistic
Constructions
Tim Veenboer and Jelke Bloem

11:00–12:30 Planning in Transformers: Evidence for Backtracking Circuits in Models Trained
on Tree Traversal
Abhay Sheshadri, Jannik Brinkmann and Victor Levoso

11:00–12:30 Measuring Moral Inconsistencies of Large Language Models
Vamshi Krishna Bonagiri, Sreeram Vennam, Manas Gaur and Ponnurangam Ku-
maraguru

11:00–12:30 The Architecture Gave the Language Model the Constituent Length Preferences
Neil Rathi

11:00–12:30 [Findings] A Causal View of Entity Bias in (Large) Language Models
Fei Wang, Wenjie Mo, Yiwei Wang, Wenxuan Zhou and Muhao Chen

11:00–12:30 [Findings] IRFL: Image Recognition of Figurative Language
Ron Yosef, Yonatan Bitton and Dafna Shahaf

11:00–12:30 [Findings] Knowledge is a Region in Weight Space for Fine-tuned Language Models
Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz and Leshem
Choshen

11:00–12:30 [Findings] Contrastive Learning for Sentence Encoder Induces Word Weighting by
Information-Theoretic Quantities
Hiroto Kurita, Goro Kobayashi, Sho Yokoi and Kentaro Inui

11:00–12:30 [Findings] VISIT: Visualizing and Interpreting the Semantic Information Flow of
Transformers
Shahar Katz and Yonatan Belinkov

11:00–12:30 [Findings] Exploring Explainable Automated Student Answer Assessment with
ChatGPT
Jiazheng Li, Lin Gui, Yuxiang Zhou, David West, Cesare Aloisi and Yulan He

xii

Thursday, December 7, 2023 (continued)

11:00–12:30 [Findings] Verb Conjugation in Transformers Is Determined by Linear Encodings
of Subject Number
Sophie Hao and Tal Linzen

11:00–12:30 [Findings] Guiding LLM to Fool Itself: Automatically Manipulating Machine Read-
ing Comprehension Shortcut Triggers
Mosh Levy, Shauli Ravfogel and Yoav Goldberg

11:00–12:30 [Findings] Unnatural language processing: How do language models handle
machine-generated prompts?
Corentin Kervadec, Francesca Franzon and Marco Baroni

11:00–12:30 [Findings] Towards Concept-Aware Large Language Models
Chen Shani, Jilles Vreeken and Dafna Shahaf

11:00–12:30 [Findings] Is Probing All You Need? Indicator Tasks as an Alternative to Probing
Embedding Spaces
Tal Levy, Omer Goldman and Reut Tsarfaty

11:00–12:30 [Findings] Give Me the Facts! A Survey on Factual Knowledge Probing in Pre-
trained Language Models
Paul Youssef, Osman Alperen Koraş, Meijie Li, Jörg Schlötterer and Christin Seifert

11:00–12:30 [Findings] Causal Inference from Text: Unveiling Interactions between Variables
Yuxiang Zhou and Yulan He

11:00–12:30 [Findings] Learning to Abstract with Nonparametric Variational Information Bot-
tleneck
Melika Behjati, Fabio James Fehr and James Henderson

11:00–12:30 [Findings] Probing LLMs for Joint Encoding of Linguistic Categories
Giulio Starace, Konstantinos Papakostas, Rochelle Choenni, Apostolos Pana-
giotopoulos, Matteo Rosati, Alina Leidinger and Ekaterina Shutova

11:00–12:30 [Findings] InterroLang: Exploring NLP Models and Datasets through Dialogue-
based Explanations
Nils Feldhus, Qianli Wang, Tatiana Anikina, Sahil Chopra, Cennet Oguz and Se-
bastian Möller

11:00–12:30 [Findings] Evaluating Dependencies in Fact Editing for Language Models: Speci-
ficity and Implication Awareness
Zichao Li, Ines Arous, Siva Reddy and Jackie CK Cheung

11:00–12:30 [Findings] NERetrieve: Dataset for Next Generation Named Entity Recognition and
Retrieval
Uri Katz, Matan Vetzler, Amir David Nissan Cohen and Yoav Goldberg

xiii

Thursday, December 7, 2023 (continued)

11:00–12:30 [Findings] Robustness of Named-Entity Replacements for In-Context Learning
Saeed Goodarzi, Nikhil Kagita, Dennis Minn, Shufan Wang, Roberto Dessi, Shub-
ham Toshniwal, Adina Williams, Jack Lanchantin and Koustuv Sinha

11:00–12:30 [Findings] Can Retriever-Augmented Language Models Reason? The Blame Game
Between the Retriever and the Language Model
Parishad BehnamGhader, Santiago Miret and Siva Reddy

11:00–12:30 [Findings] Demystifying Prompts in Language Models via Perplexity Estimation
Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith and Luke Zettlemoyer

11:00–12:30 [Findings] You Are An Expert Linguistic Annotator: Limits of LLMs as Analyzers of
Abstract Meaning Representation
Allyson Ettinger, Jena D. Hwang, Valentina Pyatkin, Chandra Bhagavatula and
Yejin Choi

11:00–12:30 [Findings] Transparency at the Source: Evaluating and Interpreting Language
Models With Access to the True Distribution
Jaap Jumelet and Willem Zuidema

11:00–12:30 [Findings] Non-Compositionality in Sentiment: New Data and Analyses
Verna Dankers and Christopher G. Lucas

12:30–14:00 Lunch

14:00–15:30 Session 3 (Orals)

14:00–14:15 Rigorously Assessing Natural Language Explanations of Neurons
Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu and Christopher
Potts

14:15–14:30 NPIs Aren’t Exactly Easy: Variation in Licensing across Large Language Models
Deanna DeCarlo, William Palmer, Michael Wilson and Bob Frank

14:30–14:45 Memory Injections: Correcting Multi-Hop Reasoning Failures During Inference in
Transformer-Based Language Models
Mansi Sakarvadia, Aswathy Ajith, Arham Khan, Daniel Grzenda, Nathaniel Hud-
son, André Bauer, Kyle Chard and Ian Foster

14:45–15:00 Systematic Generalization by Finetuning? Analyzing Pretrained Language Models
Using Constituency Tests
Aishik Chakraborty, Jackie CK Cheung and Timothy J. O’Donnell

xiv

Thursday, December 7, 2023 (continued)

15:00–15:15 On Quick Kisses and How to Make Them Count: A Study on Event Construal in
Light Verb Constructions with BERT
Chenxin Liu and Emmanuele Chersoni

15:15–15:30 Identifying and Adapting Transformer-Components Responsible for Gender Bias in
an English Language Model
Abhijith Chintam, Rahel Beloch, Willem Zuidema, Michael Hanna and Oskar van
der Wal

15:30–16:00 Break

16:00–16:50 Invited Talk 2

16:00–16:50 From Mechanistic Interpretability to Mechanistic Reasoning
Antoine Bosselut

16:50–17:00 Closing Remarks and Awards

17:00–18:00 Panel Discussion

xv

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 1–15
December 7, 2023. ©2023 Association for Computational Linguistics

Knowledge-grounded Natural Language Recommendation Explanation

Anthony Colas*1, Jun Araki2, Zhengyu Zhou2,
Bingqing Wang2, Zhe Feng2

1University of Florida
2Bosch Research North America

acolas1@ufl.edu
{jun.araki, zhengyu.zhou2, bingqing.wang, zhe.feng2}@us.bosch.com

Abstract

Explanations accompanying a recommendation
can assist users in understanding the decision
made by recommendation systems, which in
turn increases a user’s confidence and trust in
the system. Recently, research has focused on
generating natural language explanations in a
human-readable format. Thus far, the proposed
approaches leverage item reviews written by
users, which are often subjective, sparse in lan-
guage, and unable to account for new items
that have not been purchased or reviewed be-
fore. Instead, we aim to generate fact-grounded
recommendation explanations that are objec-
tively described with item features while im-
plicitly considering a user’s preferences, based
on the user’s purchase history. To achieve this,
we propose a knowledge graph (KG) approach
to natural language explainable recommenda-
tion. Our approach draws on user-item features
through a novel collaborative filtering-based
KG representation to produce fact-grounded,
personalized explanations, while jointly learn-
ing user-item representations for recommenda-
tion scoring. Experimental results show that
our approach consistently outperforms previ-
ous state-of-the-art models on natural language
explainable recommendation metrics.1

1 Introduction

Current approaches to natural language (NL) ex-
plainable recommendation focus on generating user
reviews (Chen et al., 2018; Wang et al., 2018a; Li
et al., 2020, 2021; Yang et al., 2021). Instead of pro-
viding a justification for the item recommendation,
the models learn to output language that is com-
monly found in personal reviews. This reliance on
reviews poses three problems: 1) The explanations
are not objective, because users typically review
items based on their sentiment (Wu et al., 2018),

*Work performed at Bosch Research.
1Our code and datasets are available at: https://github.

com/boschresearch/KnowRec.

2) Reviews are often sparse, because they describe
a user’s own experience (Asghar, 2016), 3) Sys-
tems that rely on reviews cannot account for new
items which have never been purchased before, nor
can they provide justifications for item catalogs
which may not have reviews available. Given this,
it may be difficult for a user to reason as to why
an item was recommended, hindering the user’s ex-
perience (Tintarev and Masthoff, 2015). The user
may then lose trust in such systems which do not
provide objective and accurate explanations.

We propose KnowRec, a KG-grounded ap-
proach to natural language explainable recommen-
dation which not only personalizes recommen-
dations/explanations with user information, but
also draws on facts about a particular item via
its corresponding KG to generate objective, spe-
cific, and data-driven explanations for the recom-
mended item. For example, given the movie “Paths
of Glory”, previous work aims to generate expla-
nations such as “it’s not the best military movie”
and “good performances all around”, which are
subjective, not specific to a given movie, and re-
lies on data from pre-existing reviews. Instead,
by leveraging an item KG such as <director, Stan-
ley Kubrick>, <conflict, World War 1>, <country,
France>, a more objective and precise explanation
can be produced such as: “A World War I French
colonel defends three soldiers. Directed by Stan-
ley Kubrick.” The item features of ‘World War I’,
‘colonel’, and ’defends three soldiers’ in the expla-
nation objectively describe the movie, while they
can implicitly reflect the user’s preferences for war
movies, based on his/her purchase history.

KnowRec is also more advantageous than prior
work in terms of scalability to unpurchased items.
Previously, KG-based recommendation systems
have effectively addressed the cold-start problem
by linking users and items through shared at-
tributes (Wang et al., 2019, 2020, 2021). Similarly,
there exists a kind of cold-start problem for new

1

items in recommendation explanation that rely on
reviews. KnowRec demonstrates KGs can help
solve this problem through existing item-level fea-
tures by adapting KG-to-text (Koncel-Kedziorski
et al., 2019; Ke et al., 2021; Colas et al., 2022) el-
ements into explainable recommendation, produc-
ing item-level explanations to justify a purchase.
The KG-based approach is particularly important
for recommendation scenarios in special domains
where personal reviews are not available and the
review-based approaches are impractical.

Our approach presents several algorithmic nov-
elties. First, inspired by work on KG Recommen-
dation (Wang et al., 2020) and KG-to-Text (Co-
las et al., 2022), we devise a novel user-item KG
lexical representation, viewing the input through
collaborative filtering lens, where users are graphi-
cally represented via their previous purchases and
connected to a given item KG. Our representation
differs from previous work on explainable NL gen-
eration which relies on ID and sparse keyword fea-
tures. Previous work extracts keywords from re-
views to represent the user and item, linearizing
all such features to encode and produce an NL ex-
planation (Li et al., 2020, 2022). Next, KnowRec
adapts a graph attention encoder for the user-item
representation via a new masking scheme. Finally,
the encoded KG representation is simultaneously
decoded into a textual explanation, while we in-
novatively dissociate the joint learned user-item
representation to compute a user-item similarity
for recommendation scoring.

To evaluate our approach, we first devise a
method of constructing (KG,Text) pairs from
product descriptions as described in Section 5,
where we extract entities and relations for the item
KGs. We construct two such datasets from the
publically available recommendation datasets to
evaluate our proposed model for both the explana-
tion and recommendation task and focus on natural
language generation (NLG) metrics for the expla-
nation task as in previous work. We adapt and
compare previous baseline models for the recom-
mendation explanation task as described in Sec-
tion 6, where we substantially outperform previous
models on explanation while achieving similar rec-
ommendation performance as models that rely on
user and item ID-based features.

2 Related Work

2.1 Explainable Recommendation

Previous works on NL explainable recommenda-
tion focus on generating user-provided reviews,
where the output is typically short, subjective, and
repetitive (Chen et al., 2018; Hou et al., 2019; Wang
et al., 2018b; Yang et al., 2021; Li et al., 2017,
2020, 2021; Hui et al., 2022). Extractive-based
approaches have been proposed to score and select
reviews as explanations (Chen et al., 2018; Li et al.,
2019). Conversely, generative approaches (Yang
et al., 2021; Li et al., 2017, 2020, 2021; Sun et al.,
2020; Hui et al., 2022) leverage user/item features
to generate new reviews as explanations. Currently,
the task is still limited by review data, thus these
models cannot adequately handle new items. Un-
like previous work, we introduce KGs to the ex-
plainable recommendation task to provide objec-
tive, information-dense, specific explanations. Our
approach can then handle new items which have
not been reviewed yet.

Inspired by recent advancements in explainable
recommendation models like (Li et al., 2021), we
enhance BART (Lewis et al., 2020), renowned for
graph-to-text tasks, to incorporate user-item knowl-
edge graphs. This adaptation enables us to gen-
erate recommendation scores along with natural
language explanations.

2.2 Knowledge Graph Recommendation

Leveraging KGs for recommendation systems has
gained increasing attention (Wang et al., 2019,
2020, 2021; Xie et al., 2021; Du et al., 2022).
In neighborhood-based methods (Hamilton et al.,
2017; Welling and Kipf, 2016; Veličković et al.,
2018), propagation is performed iteratively over
the neighborhood information in a KG to update
the user-item representation. While recent work
has produced explanations via KGs, these works
focus on structural explanations such as knowledge
graph paths (Ma et al., 2019; Fu et al., 2020; Xian
et al., 2019) and rules (Zhu et al., 2021; Chen et al.,
2021; Shi et al., 2020), which are not as intuitive
for users to understand. We focus on generating
NL explanations, which has been shown to be a pre-
ferred type of explanation (Zhang et al., 2020). For
a fair comparison, we compare to prior work that
produces NL explanations. Unlike these works, we
aim to generate NL explanations instead of using
paths along the KG as explanations.

2

2) User-Item Encoder

G
lobal A

ttention

3a) Rating Prediction

3b) Explanation Generation:

mean pool

mean pool

Linear
Linear

A
uto-R

egressive

D
ecoder

User

Mask

Item

Mask

XL
~

rating
explanation

user
item

G
lobal A

ttention
U

ser-Item
A

ttention

U
ser-Item

A
ttention

G
lobal A

ttention

X0 User related info

Item related info

XL

gather

1) User's Item Graph Representation

Mg
Collaborative KG Representation

ni2
ri2

vc

vu1

vu2

ni3

ri3

ni1

ri1

Xg
L

~

U
ser-Item

A
ttention

+
gather

+

Figure 1: Illustration of KnowRec. 1) The User’s Item KG Representation Module. 2) The Global and User-Item
Graph Attention Encoder. 3) The Output Module for rating prediction and explanation.

2.3 Knowledge Graph-to-Text Generation

In KG-to-Text, pre-trained language models such
as GPT-2 (Radford et al., 2019) and BART (Lewis
et al., 2020) have seen success in generating fluent
and accurate verbalizations of KGs (Chen et al.,
2020; Ke et al., 2021; Ribeiro et al., 2021; Colas
et al., 2023). We devise an encoder for user-item
KGs and a decoder for both the generation and rec-
ommendation tasks. Specifically, we formulate a
novel masking scheme for user-item KGs to struc-
turally encode user and item features, while gen-
erating a recommendation score from their latent
representations. Thus, our task is two-fold, fusing
elements from the Graph-to-Text generation and
KG recommendation domains.

3 Problem Formulation

Following prior work, we denote U as a set of users,
I as a set of items, and the user-item interaction
matrix as Y ∈ R|U|×|I|, where yuv = 1 if user
u ∈ U and item v ∈ I have interacted. Here, we
represent user u as the user’s purchase history u =
{vui}, where vui denotes the i-th item purchased by
user u in the past. Next, we define a KG as a multi-
relational graph G = (V, E), where V is the set of
entity vertices and E ⊂ V×R×V is the set of edges
connecting entities with a relation from R. Each
item v has its own KG, gv, comprising an entity
set Vv and a relation setRv which contain features
of v. We devise a set of item-entity alignments
A = {(v, e)|v ∈ I, e ∈ V}, where (v, e) indicates
that item v is aligned with an entity e.

Given a user u and an item v represented by its
KG gv, the task is to generate an explanation of
natural language sentences Eu,v as to why item
v was recommended for the user u. As in previ-
ous multi-task explainable recommendation mod-
els, KnowRec calculates a rating score ru,v that

measures u’s expected preference for v. By jointly
training on the recommendation and explanation
generation, our model can contextualize the embed-
dings more adequately with training signals from
both tasks.

4 Model

Figure 1 illustrates our model with the user-item
graph constructed through collaborative filtering
signals, an encoder, and inference functions for
explanation generation and rating prediction.

4.1 Input

The input of KnowRec comprises a user u repre-
sented by the user’s purchase history {vui} and an
item v represented by its KG gv, as introduced in
Section 3. Let vc denote the item currently consid-
ered by the system. The item vc is aligned with one
of the entities through A and becomes the center
node of gv, as shown in Figure 1.

Because our system leverages a Transformer-
based encoder, we first linearize the input into a
string. For the user u = {vui}, we initialize it by
mapping each purchased item vui into tokens of
the item’s name. For the item v represented by
gv, we decompose gv into a set of tuples {tvj},
where tvj = (vc, rvj , nvj), nvj ∈ Vv, and rvj ∈
Rv. We linearize each tuple tvj into a sequence of
tokens using lexicalized names of the nodes and the
relation. We then concatenate all the user tokens
and the item tokens to form the full input sequence
x. For example, suppose the current item vc is
the book Harry Potter, the KG has a single tuple
(Harry Potter, author, J.K. Rowling), and the user
previously purchased two books The Lord of the
Rings and The Little Prince. In this case, input
sequence x = The Lord of the Rings The Little
Prince Harry Potter author J.K. Rowling.

3

We map the tokens to randomly initialized vec-
tors or pre-trained word embeddings such as those
in BART (Lewis et al., 2020), obtaining X0 =
[. . . ;Vui; . . . ;Tvj ; . . .] where Vui and Tvj are
word vector representations of vui and tvj , respec-
tively. Unlike previous work on KG recommen-
dation (Wang et al., 2020) where users/items are
represented via purchase history and propagated
KG information, our system infuses KG compo-
nents to provide a recommendation and its natu-
ral language explanation. Our system also differs
from prior studies on explainable recommendation
in that while they focus on reviews and thus en-
code users/items as random vectors with additional
review-based sparse token features as auxiliary in-
formation (Li et al., 2021), we directly encapsulate
KG information into the input representation.

4.2 Encoder
Collaborative KG Representation. Because
KnowRec outputs a natural language explanation
grounded on KG facts, as well as a recommenda-
tion score for the user-item pair, we need to con-
struct a user-item-linked KG to represent an in-
put through its corresponding lexical graph feature.
To do so, we leverage collaborative signals from
Y, combining u with v by linking previously pur-
chased products vui to the current item vc from gv,
forming a novel lexical user-item KG. Additionally,
we connect all previously purchased items together
in order to graphically model collaborative filtering
effects for rating prediction, as illustrated in Fig-
ure 1. Note that the relations between previously
purchased items and the current items do require a
lexical representation for our model. The resulting
graph goes through the Transformer architecture,
as described below.
Global Attention. Transformer architectures have
recently been adopted for the personalized ex-
plainable recommendation task (Li et al., 2021).
We similarly leverage Transformer encoder lay-
ers (Vaswani et al., 2017), referred to as Global
Attention, to encode the input representation with
self-attention as:

Xl = Attn(Q,K,V) = softmax

(
QK⊤√
dk

)
V,

Q = Xl−1W
Q
l ,K = Xl−1W

K
l ,

V = Xl−1W
V
l

(1)
where Xl is the output of the l-th layer in the en-
coder, and dk is a tunable parameter. Q, K, and

V represent the Query, Key, and Value vectors,
respectively, each of which is calculated with the
corresponding parameter matrix W in the l-th layer.
Note that the transformer encoder may be initial-
ized via a pre-trained language model.
User-Item Graph Attention. We further propose
User-Item Graph Attention encoder layers, which
compute graph-aware attention via a mask to cap-
ture the user-item graph’s topological information,
which runs in parallel with the Global Attention
encoder layers.

We first extract the mask Mg ∈ Rm×m from the
user-item linked KG, where m is the number of
relevant KG components, i.e., nodes and edges that
are lexically expressed in the KG (edges between
vui and vc not included). In Mg, each row/column
refers to a KG component. Mij = 0 if there is a
connection between component i and j (e.g., “J.K.
Rowling” and “author”) and −∞ otherwise. In
addition, we assume all item components, i.e., the
previous purchases and the current item, are mutu-
ally connected when devising Mg.

For each layer (referred to as the l-th layer), we
then transfer its input Xl−1 into a component-wise
representation Xg

l−1 ∈ Rm×d, where d is the word
embedding size. Motivated by Ke et al. (2021),
we perform this transfer by employing a pooling
layer that averages the vector representations of
all the word tokens contained in the correspond-
ing node/edge names per relevant KG component.
With the transferred input Xg

l−1, we proceed to en-
code it using User-Item Graph Attention with the
graph-topology-sensitive mask as follows:

X̃g
l = AttnM (Q′,K′,V′)

= softmax

(
Q′K′⊤√

dk
+Mg

)
V′.

(2)

where query Q′, key K′, and value V′ are com-
puted with the transferred input and learnable pa-
rameters in the same manner as Equation (1).

Lastly, we combine the outputs of the Global
Attention encoder and the User-Item Graph Atten-
tion encoder in each layer. As the two outputs have
different dimensions, we first expand X̃g

l to the
same dimension of Xl through a gather operation,
i.e., broadcasting each KG component-wise rep-
resentation in X̃g

l to every encompassing word of
the corresponding component and connecting those
representations. We then add the expanded X̃g

l to
Xl through element-wise addition, generating the

4

l-th encoding layer’s output:

X̃l = gather(X̃g
l) +Xl (3)

Note, in this section, we illustrate the Global At-
tention encoder, User-Item Attention encoder, and
their combination with single-head attention. In
practice, we implement both encoders with multi-
head attention as in Vaswani et al. (2017).

4.3 Rating Prediction

For the rating prediction task, we first separate
and isolate user u and item v features via masking.
Once isolated, we perform a mean pool on all their
respective tokens and linearly project u and v to
perform a dot-product between the two new vector
representations as follows:

x̃u = poolmean(X̃L +mu)W
u

x̃v = poolmean(X̃L +mv)W
v

r̂u,v = dot(x̃u, x̃v),

(4)

where mu and mv are the user and item masks that
denote which tokens belong to the user and item,
Ws are learnable parameters, and L refers to the
last layer of the encoder.

4.4 Explanation Generation

Before generating a final output text for our expla-
nation, we pass the representation through a fully
connected linear layer as the encoder hidden state
and decode the representation into its respective
output tokens through an auto-regressive decoder,
following previous work (Lewis et al., 2020).

4.5 Joint-learning Objective

As previously noted, our system consists of two
outputs: a rating prediction score r̂u,v and natural
language explanation Eu,v which justifies the rat-
ing by verbalizing the item’s corresponding KG.
We thus perform multi-task learning to learn both
tasks and manually define regularization weights
λ, as in similar multi-task paradigms, to weight
the two tasks. Taking Lr and Le to represent the
recommendation and explanation cost functions,
respectively, the multi-task cost L then becomes:

L = λrLr + λeLe, (5)

where λr and λe denote the rating prediction and
explanation regularization weights, respectively.

We define Lr using Mean Square Error (MSE)
in line with conventional item recommendation and
review-based explainable systems:

Lr =
1

|U||I|
∑

u∈U∧v∈I
(ru,v − r̂u,v)2, (6)

where ru,v denotes the ground-true score.
Next, as in other NLG tasks (Lewis et al., 2020;

Zhang et al., 2020), we incorporate Negative Log-
Likelihood (NLL) as the explanation’s cost func-
tion Le. Thus, we define Le as:

Le =
1

|U||I|
∑

u∈U∧v∈I

1

|Eu,v|

|Eu,v |∑

t=1

− log pett (7)

where pett is the probability of a decoded token et

at time step t.

5 Dataset

Although KG-recommendation datasets exist, they
do not contain any supervision signals to NL de-
scriptions. Thus, to evaluate our explainable recom-
mendation approach in a KG-aware setting and our
KnowRec model, we introduce two new datasets
based on the Amazon-Book and Amazon-Movie
datasets (He and McAuley, 2016): (1) Book KG-
Exp and (2) Movie KG-Exp.

Recall that our task requires an input KG along
with an NL explanation and recommendation score.
Because it is more efficient to extract KGs from
text, rather than manually annotate each KG with
text, we take a description-first approach, automati-
cally extracting KG elements from the correspond-
ing text. Given the currently available data, we
leverage item descriptions as a proxy for the NL
explanations, while constructing a user-item KG
from an item’s features and user’s purchase history.

We first extract entities from a given item de-
scription via DBpedia Spotlight (Mendes et al.,
2011), a tool that detects mentions of DBpe-
dia (Auer et al., 2007) entities from NL text.
We then query for each entity’s most specific
type and use those types as relations that con-
nect the item to its corresponding entities. We
construct a user KG via their purchase history,
e.g. [Purchase1, Purchase2, ...Purchasen], as
a complete graph where each purchase is connected.
Finally, we connect all the nodes of the user KG
to the item KG, treating each user purchase as a
one-hop neighbor of the current item. To ensure the
KG-explanation correspondence, we filter out any

5

sentences in the explanation in which no entities
were found. To measure objectivity, we calculate
the proportion of a given KG’s entities that appear
in the explanation, called entity coverage (EC) (de-
fined in Appendix B.2). We summarize our dataset
statistics in Table 1 and present a more comprehen-
sive comparison in Appendix A.2.

6 Experiments

6.1 Evaluation Metrics

We assess explainable recommendation following
prior work: 1) on the recommendation performance
and 2) on the explanation performance. For the ex-
planation generation task, we employ standard natu-
ral language generation (NLG) metrics: BLEU (Pa-
pineni et al., 2002) and ROUGE (Lin, 2004). We
measure diversity and the detail-oriented features
of the generated sentences using Unique Sentence
Ratio (USR) (Li et al., 2020, 2021), and use EC,
instead of feature coverage ratio, for coverage due
to our non-review-based explanations.

6.2 Baseline Models

Previous models were primarily designed for user
review data. To assess the effectiveness of our
approach, we compare it to existing explanation
generation baselines. These baselines include mod-
els that utilize user and item IDs, as well as those
that employ word-level features. Additionally, we
adapt several existing baselines to the context of
explainable recommendation in a knowledge graph
(KG) setting, addressing the need for adaptation,
as the existing models were originally designed for
user review data.

Att2Seq (Dong et al., 2017) was designed for
review generation, where we adapt it to the item
explanation setting. As in (Li et al., 2021), we
remove the attention module, as it makes the gen-
erated content unreadable.

NRT (Li et al., 2017) is a multi-task model for
rating prediction and tip generation, based on user
and item IDs. As in previous work, we use our
explanations as tips and remove the model’s L2
regularizer (Li et al., 2020, 2021), which causes the
model to generate identical sentences.

Transformer (Vaswani et al., 2017; Li et al.,
2021) treats user and item IDs as words. We adapt
the model first introduced for review generation
by Li et al. (2021) while integrating the KG entities
and relations instead of the review item features.

PETER (Li et al., 2021) utilizes both user/item
IDs and corresponding item features extracted from
user reviews to generate a recommendation score,
explanation, and context related to the item fea-
tures. The model also develops a novel PETER
mask between item/user IDs and corresponding
features/generated text. As our task does not take a
feature-based approach, for a fair comparison we
remove the context prediction module and input
the whole KG into the model as the corresponding
item features.

PEPLER (Li et al., 2022) is an extension of
PETER, where the transformer is replaced with a
pre-train language model, namely GPT-2 to gener-
ate both recommendation scores and explanations.
We take the best-performing setting for a fair com-
parison, namely using the MLP setting for recom-
mendation scores.

In addition to NRT, PETER, and PEPLER, as
in previous work, we compare with two traditional
baselines for recommendation: PMF (Mnih and
Salakhutdinov, 2007) and SVD++ (Koren, 2008).

6.3 Implementation

We train our newly proposed KnowRec model
on two settings of the Book and Movie KG-Exp
datasets, a full training set and a few-shot setting,
where 1% of the data is used. Because our method
provides item-level explanations based on KGs, we
split the datasets based on their labeled descrip-
tion/explanation, and as such, we experiment in a
setting where items in the test set can be unseen dur-
ing training. By doing so, we handle a unique case
that has not been considered in previous research
relying on item reviews. The train/validation/test
sets are split into 60/20/20. For KnowRec, we use
BART as our pre-trained model, with a Byte-Pair
Encoding (BPE) vocabulary (Radford et al., 2019).
For more details regarding our experimental set-
tings please see Appendix B.1.

7 Results and Analysis

7.1 Explanation Results

In Table 2, we evaluate the models’ text reproduc-
tion performance using BLEU and ROUGE (R)
metrics, while also examining their explainability
through USR and EC analysis.

For BLEU and ROUGE, KnowRec consistently
outperforms all baselines, achieving a BLEU-4
score of 10.71 and ROUGE-L F1 score of 27.71
on Movie KG-Exp and a BLEU-4 score of 12.60

6

Name #Users #Items #Interactions KG #Es #Rs #Triples EC Desc. Words/Sample

Book KG-Exp 396,114 95,733 2,318,107 Yes 195,110 392 745,699 71.45 Yes 99.96
Movie KG-Exp 131,375 18,107 788,957 Yes 59,036 363 146,772 71.32 Yes 96.35

Table 1: Statistics of our Book KG-Exp and Movie KG-Exp benchmark datasets. #Es, #Rs, and Desc. denote
number of entities, number of relations, and if the dataset contains parallel descriptions.

Dataset Model BLEU-1 BLEU-4 USR R2-F R2-R R2-P RL-F RL-R RL-P EC

Att2Seq 8.86 0.39 0.30 2.08 1.41 8.47 8.07 11.65 9.49 0.44
NRT 11.76 0.57 0.03 1.50 1.40 3.25 7.20 11.70 8.05 0.98

Movie Transformer 8.67 0.18 0.33 1.21 0.91 6.55 6.58 9.54 9.69 0.82
KG-Exp PETER 14.66 3.99 0.55 5.07 4.26 11.66 15.06 16.67 23.03 10.58

PEPLER 11.68 0.13 0.46 0.56 0.63 0.54 8.90 10.92 9.53 0.78
KnowRec 37.02 10.71 0.83 15.49 15.12 18.15 27.71 28.71 37.10 67.97

Att2Seq 19.51 1.85 0.43 5.08 3.76 12.15 12.98 16.55 20.89 0.86
NRT 21.06 2.59 0.10 6.18 4.88 11.44 15.57 18.67 24.36 1.57

Book Transformer 16.90 2.01 0.12 5.68 4.23 11.94 13.66 15.57 26.87 2.08
KG-Exp PETER 27.93 8.39 0.71 11.94 10.36 18.68 21.24 23.30 28.02 17.39

PEPLER 16.07 1.20 0.90 2.39 2.63 2.26 13.03 16.34 12.24 0.74
KnowRec 38.53 12.60 0.92 19.78 19.44 23.22 28.29 29.43 35.28 69.50

Table 2: Comparison of explanation generation models on the Movie KG-Exp and Book KG-Exp datasets.

and ROUGE-L F score of 28.29 on Movie KG-
Exp. This suggests that previous baselines, de-
signed for review-level explanation, are inadequate
to produce longer and more objective explanations.
Specifically, of the baselines, PETER which uti-
lizes the whole lexical input, adapts best. However,
KnowRec makes use of user-item graph encodings,
which may lead to better generation of the item KG
features mentioned in the ground truth texts. While
PEPLER (Li et al., 2022)’s pretrained approach
aids in fluent sentence generation, KnowRec excels
in generating contextually relevant words around
feature-level terms. Unlike PEPLER, which creates
concise reviews based on user-item IDs, KnowRec
utilizes graph attention to interconnect related com-
ponents for comprehensive NL text explanations.

In terms of explainability, KnowRec also gen-
erates much more diverse sentences (USR), espe-
cially compared to models that do not leverage
pre-trained models. Note that while PEPLER has a
comparable USR score to KnowRec on the Book
KG-Exp dataset, it does not similarly produce high-
quality and related sentences according to the NLG
metrics. Our results show that while the ground
truth is based on item-level features, the generated
output is still personalized as further discussed in
Section 7.5. Also note the high discrepancy in EC,
where the entity-level features are generated in the
output text. As our goal is to generate objective and
specific explanations, the EC can help real-world
users understand what a certain recommended prod-

uct is about and how it compares to other products.
Therefore, it is crucial that explainable models cap-
ture these features when producing justifications
for recommendations.

7.2 Few-shot Explanation Results

Real-world recommendation systems may face low-
resource problems, where only a small amount of
training data with few item descriptions is available
but an item database exists. To reflect this practical
situation, we also evaluate a few-shot setting where
the training data is 1% of its total size.

As in previous experiments, we set the user-item
size for KnowRec to 5. We show the results of
this few-shot experiment in Table 3. KnowRec
consistently and significantly outperforms other ex-
plainable baselines on both the Book and Movie
datasets in terms of text quality, sentence diversity
(USR), and entity representation (ER), showing
our approach is effective even in data-scarce sce-
narios. Like KnowRec, PEPLER also leverages a
pre-trained model, namely GPT-2. However, unlike
KnowRec, the model does not adapt well to gener-
ating item-specific explanations. The second best
model, PETER, fully leverages the KG features
in their approach. However, such a model does
produce diverse sentences. Note that those models
that completely rely on user and item IDs, fail to
produce quality explanations, as noted by their re-
spective BLEU and ROUGE scores, showing the
task to be more complex than previous explana-

7

Dataset Model BLEU-1 BLEU-4 USR R2-F R2-R R2-P RL-F RL-R RL-P EC

Att2Seq 2.63 0.00 0.00 0.00 0.00 0.00 2.73 4.25 2.63 0.01
Movie NRT 8.78 0.32 0.01 1.84 1.08 11.73 7.12 10.17 17.97 0.07
KG-Exp Transformer 12.23 0.27 0.16 1.24 1.07 3.54 6.97 9.54 12.00 1.18
(Few-shot) PETER 12.28 0.68 0.36 2.33 1.45 12.49 12.00 13.18 18.03 5.44

PEPLER 12.58 0.41 0.01 1.26 1.44 1.18 10.73 12.63 10.38 0.11
KnowRec 33.89 7.53 0.87 13.41 12.60 17.67 24.48 25.63 35.66 63.92

Att2Seq 16.58 1.53 0.22 4.68 3.10 15.58 13.30 15.28 21.32 0.26
Book NRT 19.12 2.19 0.01 6.11 4.36 13.99 15.18 20.47 16.78 1.19
KG-Exp Transformer 12.69 1.22 0.08 3.60 3.16 8.65 9.77 15.64 10.58 1.57
(Few-shot) PETER 18.38 2.87 0.45 7.12 5.07 17.50 14.74 17.66 17.52 4.23

PEPLER 7.96 0.26 0.02 0.67 0.63 0.83 7.59 10.07 7.04 0.54
KnowRec 28.93 7.94 0.93 17.28 16.05 22.45 24.84 25.19 36.60 60.46

Table 3: Comparison of explanation generation models on the Movie KG-Exp and Book KG-Exp datasets in the
few-shot learning setting (1% of training data).

Book KG-Exp Movie KG-Exp
Model All Few All Few

R M R M R M R M

PMF 3.50 3.35 3.50 3.35 3.31 3.08 3.32 3.08
SVD++ 1.03 0.80 1.01 0.64 1.20 0.79 1.25 0.98
NRT 0.98 0.74 1.07 0.73 1.17 0.93 1.23 0.97
PETER 1.01 0.79 1.03 0.82 1.24 1.03 1.24 1.00
PEPLER 0.96 0.72 1.07 0.72 1.14 0.91 1.27 0.96
KnowRec 1.04 0.75 1.04 0.72 1.22 0.92 1.21 0.93

Table 4: Performance comparison on the recommenda-
tion task with respect to RMSE and MAE, denoted as R
and M on the table respectively.

BLEU-4↑ USR↑ RL-F↑ RMSE↓ MAE↓
KnowRec 7.94 0.93 24.84 1.04 0.78
- Recomm. 8.32 0.93 24.90 - -
- UIG Att. 7.75 0.91 24.80 1.03 0.78

Table 5: Ablation study on the Book KG-Exp (Few-
Shot) dataset. ‘Recomm.’ means the joint learning with
recommendation scoring, and ‘UIG Att.’ denotes the
user-item graph attention.

tion tasks relying on repetitive, short, and already
existing user reviews.

7.3 Recommendation Performance

Table 4 shows the recommendation performance
on all KG Explanation datasets. We report the Root
Mean Square Error (RMSE) and Mean Absolute
Error (MAE) metrics to evaluate the recommenda-
tion task. As shown, all results except PMF are
relatively close. PMF significantly underperforms
due to the cold start problem presented on new
items. KnowRec achieves performance compara-
ble to other strong baselines, despite KnowRec be-
ing the only model that uses lexical features for the
recommendation task, while the other models learn
the task through user/item IDs. Thus, KnowRec

may need more data to learn these parameters. Ad-
ditionally, because we learn the recommendation
task through lexical features, our model provides
an interpretable solution that could be directly com-
pared to the produced NL explanations.

7.4 Ablation Study

We perform ablation studies to analyze the effects
of the recommendation and user-item graph com-
ponents on Book KG-exp as shown in Table 5.
Due to computational resources, we performed the
study on the few-shot setting. We first examine
the results of KnowRec without the recommenda-
tion module in the second row (- Recomm.). By
removing the ‘Recomm’ component, the perfor-
mance on the NLG metrics improves, as the task
is now a single-objective generative task instead
of a multi-objective. We next study the effects of
the User-Item Attention encoders on KnowRec’s
explainability and recommendation performance
(- UIG Att). As shown by - UIG Att., even with
a smaller training dataset of 1% of the full data,
by removing this component, we observe a slight
decrease in the NLG metrics, BLEU and ROUGE,
and less diverse sentences (USR). The representa-
tion and attention masking on the user-item graph,
which connects and encodes the local item infor-
mation, may therefore give a better representation
of the input which is in turn decoded to produce an
explanation. This may be further expressed within
larger datasets. Furthermore, from the NLG metric
results, we can infer from Table 5 that our rating
module does not significantly hinder the perfor-
mance of the generation component of KnowRec.

8

7.5 Qualitative Analysis

To grasp KnowRec’s effectiveness, we analyze
explanations from Movie/Book KG-Exp test sets.
These explanations are both grammatically smooth
and adept at (1) integrating robust item features
for factual insights and (2) tailoring personalized
content based on diverse user purchase histories
(examples in Appendix C, Table 7).

Consider the first two rows of the table, pertain-
ing to the movie Journey to the Center of the Earth.
We can see two different (but syntactically simi-
lar) generated explanations for two different users.
In one case, the user has bought mystery and fan-
tasy movies such as Stitch in Crime, Columbo, and
The Lord of the Rings, and the output integrates
related words such as investigates and mysterious
to personalize the explanation. The second case
mentions classic and novel, possibly because the
second user’s purchase history involves Disney clas-
sics and movies based on novels such as The Hardy
Boys and Old Yeller. While the input KG does not
explicitly state that Journey to the Center of the
Earth is a novel, such information may be inferred
from the KG’s relation and supported through the
user’s related purchases. In both cases the output
closely matches the ground truth, verbalizing item
features from the KB such as Jules Verne and mag-
netic storm, suggesting that our model is robust
in describing the explanation content, while still
implicitly reflecting the user’s purchase history.

8 Conclusion

We propose KnowRec, a Knowledge-aware model
for generating NL explanations and recommen-
dation scores on user-item pairs. To evaluate
KnowRec, we devise and release a semi-supervised
large-scale KG-NL recommendation dataset in the
book and movie domain. Extensive experiments
on both datasets demonstrate the suitability of our
model compared to recently proposed explainable
recommendation models. We hope that by propos-
ing this KG-guided task, we will open up avenues
to research focused on detailed, objective, and spe-
cific explanations which can also scale to new items
and users, rather than the current review-focused
work. In future work, we plan to incorporate user-
specific KGs and other pre-trained language mod-
els into our model in order to verbalize both user
and item-level feature explanations.

9 Limitations

While our approach generates objective, descriptive
explanations while implicitly capturing personal-
ized aspects of a user’s purchase history, currently
our dataset labels are limited to item-specific ex-
planations, with the book-related KGs typically
containing author-related information, and thus
more information-dense than the movie-related
KGs. These limitations are due to the currently
available datasets, and future work can explore con-
structing a more personalized user-item KG for
explainable recommendation. Furthermore, we rep-
resent users through their item purchase history
in our approach. Therefore, while we handle the
zero-purchase case for items (items that have not
been purchased before), the zero-purchase case for
users (users without a purchase history) is outside
the scope of our work. In the future, we will extend
our approach to user-attributed datasets to handle
such cases.

10 Ethics Statement

All our experiments are performed over publicly
available datasets. We do not use any identifiable
information about crowd workers who provide an-
notations for these datasets. Neither do we perform
any additional annotations or human evaluations
in this work. We do not foresee any risks using
KnowRec if the inputs to our model are designed
as per our procedure. However, our models may
exhibit unwanted biases that are inherent in pre-
trained language models. This aspect is beyond the
scope of the current work.

References
Nabiha Asghar. 2016. Yelp dataset challenge: Review

rating prediction. arXiv preprint arXiv:1605.05362.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
DBpedia: A nucleus for a web of open data. In
Proceedings of the 6th International The Semantic
Web and 2nd Asian Conference on Asian Semantic
Web Conference, pages 722–735, Berlin, Heidelberg.
Springer-Verlag.

Chong Chen, Min Zhang, Yiqun Liu, and Shaoping
Ma. 2018. Neural attentional rating regression with
review-level explanations. In Proceedings of the
2018 World Wide Web Conference, pages 1583–1592.

Hanxiong Chen, Shaoyun Shi, Yunqi Li, and Yongfeng
Zhang. 2021. Neural collaborative reasoning. In Pro-

9

ceedings of the Web Conference 2021, pages 1516–
1527.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020. KGPT: Knowledge-grounded pre-
training for data-to-text generation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8635–
8648, Online. Association for Computational Lin-
guistics.

Anthony Colas, Mehrdad Alvandipour, and Daisy Zhe
Wang. 2022. GAP: A graph-aware language model
framework for knowledge graph-to-text generation.
In Proceedings of the 29th International Conference
on Computational Linguistics, pages 5755–5769,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Anthony Colas, Haodi Ma, Xuanli He, Yang Bai, and
Daisy Zhe Wang. 2023. Can knowledge graphs sim-
plify text? arXiv preprint arXiv:2308.06975.

Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata,
Ming Zhou, and Ke Xu. 2017. Learning to gener-
ate product reviews from attributes. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 623–632, Valencia, Spain.
Association for Computational Linguistics.

Yuntao Du, Xinjun Zhu, Lu Chen, Baihua Zheng, and
Yunjun Gao. 2022. HAKG: Hierarchy-aware knowl-
edge gated network for recommendation. arXiv
preprint arXiv:2204.04959.

Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao,
Qiaoying Huang, Yingqiang Ge, Shuyuan Xu, Shijie
Geng, Chirag Shah, Yongfeng Zhang, et al. 2020.
Fairness-aware explainable recommendation over
knowledge graphs. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 69–78.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems,
volume 30.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In Proceedings of
the 25th international conference on World Wide Web,
pages 507–517.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

Min Hou, Le Wu, Enhong Chen, Zhi Li, Vincent W
Zheng, and Qi Liu. 2019. Explainable fashion rec-
ommendation: A semantic attribute region guided
approach. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pages
4681–4688.

Bei Hui, Lizong Zhang, Xue Zhou, Xiao Wen, and
Yuhui Nian. 2022. Personalized recommendation
system based on knowledge embedding and historical
behavior. Applied Intelligence, 52(1):954–966.

Pei Ke, Haozhe Ji, Yu Ran, Xin Cui, Liwei Wang, Lin-
feng Song, Xiaoyan Zhu, and Minlie Huang. 2021.
JointGT: Graph-text joint representation learning for
text generation from knowledge graphs. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2526–2538, Online.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
Generation from Knowledge Graphs with Graph
Transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2284–2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yehuda Koren. 2008. Factorization meets the neighbor-
hood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chenliang Li, Cong Quan, Li Peng, Yunwei Qi, Yuming
Deng, and Libing Wu. 2019. A capsule network for
recommendation and explaining what you like and
dislike. In Proceedings of the 42nd International
ACM SIGIR conference on Research and Develop-
ment in Information Retrieval, pages 275–284.

Lei Li, Yongfeng Zhang, and Li Chen. 2020. Gener-
ate neural template explanations for recommendation.

10

In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management,
pages 755–764.

Lei Li, Yongfeng Zhang, and Li Chen. 2021. Person-
alized transformer for explainable recommendation.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4947–4957, Online. Association for Computational
Linguistics.

Lei Li, Yongfeng Zhang, and Li Chen. 2022. Person-
alized prompt learning for explainable recommenda-
tion. arXiv preprint arXiv:2202.07371.

Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and
Wai Lam. 2017. Neural rating regression with ab-
stractive tips generation for recommendation. In Pro-
ceedings of the 40th International ACM SIGIR con-
ference on Research and Development in Information
Retrieval, pages 345–354.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin,
Chenyang Wang, Yiqun Liu, Shaoping Ma, and Xi-
ang Ren. 2019. Jointly learning explainable rules
for recommendation with knowledge graph. In The
world wide web conference, pages 1210–1221.

Pablo N Mendes, Max Jakob, Andrés García-Silva, and
Christian Bizer. 2011. DBpedia spotlight: Shedding
light on the web of documents. In Proceedings of
the 7th international conference on semantic systems,
pages 1–8.

Andriy Mnih and Russ R Salakhutdinov. 2007. Proba-
bilistic matrix factorization. In Advances in Neural
Information Processing Systems, volume 20.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8).

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao,
Min Zhang, and Yongfeng Zhang. 2020. Neural logic
reasoning. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge
Management, pages 1365–1374.

Peijie Sun, Le Wu, Kun Zhang, Yanjie Fu, Richang
Hong, and Meng Wang. 2020. Dual learning for ex-
plainable recommendation: Towards unifying user
preference prediction and review generation. In Pro-
ceedings of The Web Conference 2020, WWW ’20,
page 837–847, New York, NY, USA. Association for
Computing Machinery.

Nava Tintarev and Judith Masthoff. 2015. Explaining
recommendations: Design and evaluation. In Recom-
mender systems handbook, pages 353–382. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In Proceedings of
the International Conference on Learning Represen-
tations.

Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin.
2018a. Explainable recommendation via multi-task
learning in opinionated text data. In The 41st In-
ternational ACM SIGIR Conference on Research &
Development in Information Retrieval, pages 165–
174.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and
Tat-Seng Chua. 2019. KGAT: Knowledge graph at-
tention network for recommendation. In Proceedings
of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 950–
958.

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng
Yuan, Zhenguang Liu, Xiangnan He, and Tat-Seng
Chua. 2021. Learning intents behind interactions
with knowledge graph for recommendation. In Pro-
ceedings of the Web Conference 2021, pages 878–
887.

Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao
Wu, and Xing Xie. 2018b. A reinforcement learn-
ing framework for explainable recommendation. In
2018 IEEE International Conference on Data Mining,
pages 587–596. IEEE.

Ze Wang, Guangyan Lin, Huobin Tan, Qinghong
Chen, and Xiyang Liu. 2020. CKAN: Collaborative
knowledge-aware attentive network for recommender
systems. In Proceedings of the 43rd International
ACM SIGIR conference on Research and Develop-
ment in Information Retrieval, pages 219–228.

11

Max Welling and Thomas N Kipf. 2016. Semi-
supervised classification with graph convolutional
networks. In Proceedings of the International Con-
ference on Learning Representations.

Zhen Wu, Xin-Yu Dai, Cunyan Yin, Shujian Huang,
and Jiajun Chen. 2018. Improving review represen-
tations with user attention and product attention for
sentiment classification. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1).

Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard
De Melo, and Yongfeng Zhang. 2019. Reinforcement
knowledge graph reasoning for explainable recom-
mendation. In Proceedings of the 42nd international
ACM SIGIR conference on research and development
in information retrieval, pages 285–294.

Lijie Xie, Zhaoming Hu, Xingjuan Cai, Wensheng
Zhang, and Jinjun Chen. 2021. Explainable rec-
ommendation based on knowledge graph and multi-
objective optimization. Complex & Intelligent Sys-
tems, 7(3):1241–1252.

Aobo Yang, Nan Wang, Hongbo Deng, and Hongning
Wang. 2021. Explanation as a defense of recommen-
dation. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages
1029–1037.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2022. A
survey of knowledge-enhanced text generation. ACM
Computing Surveys, 54(11s):1–38.

Yongfeng Zhang, Xu Chen, et al. 2020. Explainable
recommendation: A survey and new perspectives.
Foundations and Trends® in Information Retrieval,
14(1):1–101.

Yaxin Zhu, Yikun Xian, Zuohui Fu, Gerard de Melo,
and Yongfeng Zhang. 2021. Faithfully explainable
recommendation via neural logic reasoning. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3083–3090, Online. Association for Computational
Linguistics.

A Dataset Details

A.1 Source Data
Amazon product data: The Amazon product
dataset is a large-scale widely used dataset for prod-
uct recommendation containing product reviews
and metadata from Amazon. Data fields include
ratings, texts, descriptions, and category informa-
tion (He and McAuley, 2016). Because the dataset
contains item descriptions, we can leverage such
data to extract entities and relations to construct
a KG that matches the textual description. Thus,
these descriptions provide objective, item-distinct

explanations as to why a user may have purchased a
product. Although a user may not have reviewed an
item, the dataset provides an existing description of
the item, allowing models to produce explanations
for such items. To keep our datasets large-scale, we
focus on Amazon Book and Amazon Movie 5-core,
the two largest Amazon product datasets.

A.2 Dataset Comparison

Table 6 summarizes existing popular rec-
ommendation system datasets utilized for
both the explainable recommendation and
KG recommendation task. We report both
traditional recommendation features, KG-
recommendation features, and explainable
recommendation features. Last.FM (Wang et al.,
2019), Book-Crossing (Wang et al., 2020), Movie-
Lens20M (Wang et al., 2020), and Amazon-book
(KG) (Wang et al., 2019) are popular benchmarks
for the KG-recommendation task but contain
no NL explanation features. Yelp-Restaurant,
Amazon Movies & TV, and TripAdvisor-Hotel
have been recently experimented with for the
explainable recommendation task (Li et al., 2020),
but lack KG data and rely on user reviews as
proxies for the explanation. In contrast, our
datasets, referred to as Book KG-Exp and Movie
KG-Exp contain both KG and the corresponding
parallel item descriptions associated with those
KGs as explanations. Compared to Book KG-Exp,
the Movie KG-Exp dataset contains fewer amount
of unique KG elements, with 59,036 to 195,110
and 745,699 to 146,772 unique entities and KG,
while having similarly sized explanations.

A.3 Dataset Statistics

We provide detailed statistics on both the Book KG-
Exp and Movie KG-Exp datasets in Figure 2. As
seen in Figures 2(a) and 2(b), the distributions of
KGs with respect to the number of tuples shows
similar long-tail distributions in both datasets. We
observe from Figures 2(c) and 2(d) that a similar
trend of long-tail distributions exists for both with
respect to explanation lengths, where the lengths in
the book dataset tend to skew more right than the
lengths in the movie dataset.

B Experiment Details

B.1 Hyper-parameters and Settings

As in (Li et al., 2021), we adapt the baseline codes
to our setting and set the vocabulary size for NRT,

12

Name #Users #Items #Interactions KG #Es #Rs #Triples Desc. Words/
Sample

Last.FM 23,566 48,123 3,034,796 Yes 58,266 9 464,567 No -
Book-Crossing 276,271 271,379 1,048,575 Yes 25,787 18 60,787 No -
Movie-Lens20M 138,159 16,954 13,501,622 Yes 102,569 32 499,474 No -
Amazon-book (KG) 70,679 24,915 847,733 Yes 88,572 39 2,557,746 No -
Yelp-Restaurant 27,147 20,266 1,293,247 No - - - No 12.32
Amazon Movies 7,506 7,360 441,783 No - - - No 14.14
TripAdvisor-Hotel 9,765 6,280 320,023 No - - - No 13.01
Book KG-Exp 396,114 95,733 2,318,107 Yes 195,110 392 745,699 Yes 99.96
Movie KG-Exp 131,375 18,107 788,957 Yes 59,036 363 146,772 Yes 96.35

Table 6: Comparison of widely used datasets divided by task: KG-Recommendation (top), Explainable Recommen-
dation (middle), and KG Explainable Recommendation (bottom).

0 20 40 60 80
Number of Tuples

0

5K

10K

15K

20K

Nu
m

be
r o

f U
ni

qu
e

KG
s

(a) Book KGs

0 20 40 60 80
Number of Tuples

0

1K

2K

3K

4K

5K

Nu
m

be
r o

f U
ni

qu
e

KG
s

(b) Movie KGs

0 200 400
Number of Tokens

0

2K

4K

6K

8K

10K

12K

14K

Nu
m

be
r o

f U
ni

qu
e

Ex
pl

an
at

io
ns

(c) Book Explanations

0 200 400
Number of Tokens

0

0.5K

1.0K

1.5K

2.0K

2.5K

3.0K

3.5K

4.0K

Nu
m

be
r o

f U
ni

qu
e

Ex
pl

an
at

io
ns

(d) Movie Explanations

Figure 2: Distributions for number of tuples (Figures 2(a) and 2(b)) and tokens (Figures 2(c) and 2(d)) per sample.

ATT2Seq, and PETER to 20,000 by keeping the
most frequent words. For PETER and PEPLER,
we set the number of context words to 128. For
all approaches, including KnowRec, we set the
length of explanation to 128, as the mean length
is about 94 for both datasets. For KnowRec, we
use an embedding size of 512, using a Byte-Pair
Encoding (BPE) vocabulary (Radford et al., 2019)
of size 50,256, with 2 encoding layers. Follow-
ing KG generation work (Ribeiro et al., 2021), we
split the tokens in the linearized graph with their
corresponding label: [user], [graph], [head], [re-
lation], and [tail]. For both datasets, we set the
batch size to 128 and max user and KG size to 64
and 192, respectively. We set the max node and
edge length to 60. We experiment with λr and λe
and find that 0.01 and 1 give us the best BLEU per-
formance without affecting the recommendation
prediction scores as in (Li et al., 2022). See Fig-
ure 3 for an analysis of Movie KG-Exp (Few-shot).
The model’s parameters were trained for 20 epochs
and optimized via Adam (Kingma and Ba, 2015)
with a learning rate of 1e-3 and Adam ϵ of 1e-08,
and the gradients were clipped at 1.0. All other
attention-related hyper-parameters were the same

as used in previous work (Lewis et al., 2020). We
decoded the text via beam search (Hokamp and Liu,
2017) with a beam size of 5. Experiments were per-
formed on NVIDIA RTX 3090 GPUs. We evaluate
the model based on the validation set’s total loss
instead of BLEU score due to computational limita-
tions, saving the top 10 models for testing, because
the model with the least loss does not necessarily
result in the best NLG metrics.

0.0 0.2 0.4 0.6 0.8 1.0
r Value

4.5

5.0

5.5

6.0

6.5

7.0

7.5

BL
EU

-4
 S

co
re

 (A
vg

)

Effect of r on KG-Exp (Few-Shot)
Movie
Book

Figure 3: Effect of λr on the BLEU-4 score for the
Book and Movie KG-Exp datasets. We average all top
10 runs for a more comprehensive comparison.

13

Because of computation limitations, for evalua-
tion purposes, we randomly sample and evaluate on
1% of the test set, containing 4,491 and 1,456 sam-
ples for the Book and Movie datasets respectively.
Note, that the size of the test set is comparative to
other text generative tasks such as KG-to-text (Gar-
dent et al., 2017) and summarization (Yu et al.,
2022).

B.2 Entity Coverage
We define entity coverage (EC) as the percentage of
unique entities, originating in an item KG, which
appears in the recommendation explanation. More
formally, for each head and tail entity e in an item
KG’s set of entities E, we calculate the token over-
lap in the explanation output for those entities. The
EC score ranges in [0, 1], where we report the per-
centage value in our results. The Book KG-Exp
and Movie KG-Exp had an EC score of 71.45%
and 71.32%, indicating that a descriptive, objec-
tive explanation should have a high EC score. The
formula for EC is defined as:

#KGentities found in output

#KGentities

or is the recall of the entities in a KG.

C Generated Examples

Table 7 presents some examples generated by
KnowRec from the Book and Movie KG-EXP
datasets. As discussed in Section 7, we find the
examples to be fluent and grammatical, while in-
corporating both item features and implicit user
information based on a user’s purchase history.
The generated examples closely match the ground
truth, while integrating some language derived
from the user. Note, that our aim here is to il-
lustrate examples that showcase the implicit user
preferences, instead of showing those generated
outputs which most closely match the ground truth
descriptions. As with other state-of-the-art NLG
models, KnowRec does have a tendency to hallu-
cinate by adding extra information that may not
be necessarily accurate. As can be by the NLG
metrics in Table 2, KnowRec relieves the halluci-
nation problem by incorporating the user-item KG
information. Such limitations may be additionally
improved by leveraging more dense background
KGs to generate from, while also incorporating
user purchase history item features.

14

Item Graph Representation Generated Explanation Ground Truth Explanation

writer

disease

Journey to the
Center of the Earth

Jules Verne

magnetic storm

The Lord of the
Rings, Trilogy

Columbo

Stitch in Crime

a scientist (jules verne) investigates
a magnetic storm that sends a
mysterious beam of light from earth
to the center of earth.

jules verne’s professor lindenbrook
leads a trip through monsters, mush-
rooms and a magnetic storm.

writer

disease

Journey to the
Center of the Earth

Jules Verne

magnetic storm

Walt Disney
Treasures

Old Yeller

The Hardy Boys

a group of scientists, inspired by
jules verne’s classic novel, take a
trip to the magnetic storm at the
center of the earth.

jules verne’s professor lindenbrook
leads a trip through monsters, mush-
rooms and a magnetic storm.

newspaper
person

newspaper
person

Murder in St .
Giles

USA Today

Ashley Gardner

The Traitor in the
Tunnel

Silent Circle

Nice Dragons
Finish Last

NY Times

pseudonym

ashley gardner is a ny times and
usa today bestselling author. under
the pseudonym jennifer ashley, she
has collectively written more than
70 mystery and historical novels.

usa today bestselling author ashley
gardner is pseudonym for ny times
bestselling author jennifer ashley.

comicscreator
comicscharacter

publisher
comicscharacter

comicscharacter

Batgirl Vol. 1,
Silent Knight

Kelley Puckett Batman

Silver Surfer
Volume 1, New

Dawn

Black Canary and
Zatanna,

Bloodspell

Star Wars vol. 1 ,
Skywalker Strikes

DC Comics

Batgirl

Supergirl

kelley puckett is an american comic
book writer best known for his work
on batman for dc comics. he is
the author of numerous books for
young readers, including supergirl,
the ultimate guide to character de-
velopment and batgirl, a guide to
writing for comics, both published
by image.

kelley puckett has been writing
comics for far too long, by general
consensus. he has worked on such
series as batman adventures, bat-
girl and kinetic and supergirl for dc
comics.

animal
The Incredible Dr.

Pol - Season 2
 pet
Best of the

Incredible Dr. Pol

Jurrasic World

your favorite dr. pol vet and his
pet dog return for a second season
of this hilarious and heartwarming
animated adventure.

from sick goats to sick pet pigs, dr.
pol and his colleagues have their
hands full with a variety of cases
and several animal emergencies.

person

automobile

How to Draw and
Paint Fairyland , a
Step-by-step Guide

Linda Ravenscroft

Mermaids in
Paradise , an Artist
' s Coloring Book

How to Draw and
Paint Fairies

wide range

linda ravenscroft is an award-
winning children’s book author and
illustrator who has illustrated a
wide range of books and mag-
azines, including the best-selling
how to draw and paint series.

linda ravenscroft has produced a
wide range of images in fairyland
motifs, including fine art prints, ex-
clusive giftware, and fantasy art
books.

Table 7: Examples generated by KnowRec on the Book/Movie KG-Exp datasets. In the first column, we follow the
format of user-item KG representation in Figure 1, where red nodes represent a user’s purchase history and blue
nodes represent an item KG. For clarity and brevity, we only show the relevant parts of the item graphs. In the
second column, the bold words are the item features directly coming from the item KG representation, whereas the
underlined words are the features implicitly captured by KnowRec, based on the user’s purchase history.

15

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 16–30
December 7, 2023. ©2023 Association for Computational Linguistics

Emergent Linear Representations in World Models of Self-Supervised
Sequence Models

Neel Nanda∗
Independent

Andrew Lee∗
University of Michigan

Martin Wattenberg
Harvard University

Abstract
How do sequence models represent their
decision-making process? Prior work suggests
that Othello-playing neural network learned
nonlinear models of the board state (Li et al.,
2023a). In this work, we provide evidence
of a closely related linear representation of
the board. In particular, we show that prob-
ing for “my colour” vs. “opponent’s colour”
may be a simple yet powerful way to inter-
pret the model’s internal state. This precise
understanding of the internal representations
allows us to control the model’s behaviour
with simple vector arithmetic. Linear rep-
resentations enable significant interpretability
progress, which we demonstrate with further
exploration of how the world model is com-
puted.1

1 Introduction

How do sequence models represent their decision-
making process? Large language models are ca-
pable of unprecedented feats, yet largely remain
inscrutable black boxes. Yet evidence has accu-
mulated that models extract features – articulable
properties of the input2 – and represent them in its
internal activations (Geva et al., 2021; Bau et al.,
2020; Gurnee et al., 2023; Belinkov, 2022; Burns
et al., 2022; Goh et al., 2021; Elhage et al., 2022a).
A key first step for interpreting them is understand-
ing how these features are represented. Mikolov
et al. (2013c) introduce the linear representation
hypothesis: that features are represented linearly
as directions in activation space. This would be
highly consequential if true, yet this remains con-
troversial and without conclusive empirical justifi-
cation. In this work, we present novel evidence of

*Equal contribution. neelnanda27@gmail.com,
ajyl@umich.edu

1Code available at https://github.com/ajyl/mech_
int_othelloGPT

2Note that our use of the term refers to a higher-level notion
than its more common use in deep learning terminology, i.e.,
an individual neuron.

2 3 4 5 6 7 82 3 4 5 6 7 8

Transformer
Block

Groundtruth

Board-States

Projected Board-States

EmbedTokens
Residual

Stream

Unembed Logits

E6 F4 D3 D6 E3 C4

E6 F4 D3 D6 E3 C4 B3

Figure 1: The emergent world models of OthelloGPT
are linearly represented. We find that the board states
are encoded relative to the current player’s colour
(MINE vs. YOURS) as opposed to absolute colours
(BLACK vs. WHITE).

linear representations, and show that this hypothe-
sis has real predictive power.

We build on the work of Li et al. (2023a), who
demonstrate the emergence of a world model in
sequence models. Namely, the authors train Oth-
elloGPT, an autoregressive transformer model, to
predict legal moves in a game of Othello given
a sequence of prior moves (Section 2.2). They
show that the model spontaneously learns to track
the correct board state, recovered using non-linear
probes, despite never being told that the board ex-
ists. They further show a causal relationship be-
tween the model’s inner board state and its move
predictions using model edits. Namely, they show
that the edited network plays moves that are legal
in the edited board state even if illegal in the orig-
inal board, and even if the edited board state is
unreachable by legal play (i.e., out of distribution).

Critically, the original authors claim that Othel-
loGPT uses non-linear representations to encode
the board state, by achieving high accuracy with
non-linear probes, but failing to do so using linear

16

probes. In our work, we demonstrate that a closely
related world model is actually linearly encoded.
Our key insight is that rather than encoding the
colours of the board (BLACK, WHITE, EMPTY),
the sequence model encodes the board relative to
the current player of each timestep (MINE, YOURS,
EMPTY). In other words, for odd timesteps, the
model considers BLACK tiles as MINE and WHITE

tiles as YOURS, and vice versa for even timesteps
(Section 3). Using this insight, we demonstrate that
a linear projection can be learned with near perfect
accuracy to derive the board state.

We further demonstrate that we can steer the se-
quence model’s predictions by simply conducting
vectoral arithmetics using our linear vectors (Sec-
tion 4). Put differently, by pushing the model’s
activations in the directions of MINE, YOURS, or
EMPTY, we can alter the model’s belief state of
the board, and change its predictions accordingly.
Our intervention method is much simpler and in-
terpretable than that of Li et al. (2023a), which
rely on gradients to update the model’s activations
(Section 4.1). Our results confirm that our inter-
pretation of each probe direction is correct, but
also demonstrates that a mechanistic understanding
of model representations can lead to better con-
trol. Our results do not contradict that of Li et al.
(2023a), but add to our understanding of emergent
world models.

We provide additional interpretations of the se-
quence model using linear operations. For example,
we provide empirical evidence of how the model
derives empty tiles of the board, and find additional
linear representations, such as tiles being FLIPPED

at each timestep.
Finally, we provide a short discussion of our

thoughts. How should we think of linear versus
non-linear representations? Perhaps most interest-
ingly, why do linear representations emerge?

2 Preliminaries

In this section we briefly describe Othello, Othel-
loGPT, and our notations.

2.1 Othello

Othello is a two player game played on a 8x8 grid.
Players take turns playing black or white discs on
the board, and the objective is to have the majority
of one’s coloured discs by the end of the game.

The board always starts with the middle 4 tiles
filled with black and white tiles. At each turn, when

a tile is played, all of the opponent’s discs that are
enclosed in a horizontal, vertical, or diagonal row
between two discs of the current player are flipped.
The game ends when there are no more valid moves
for both players.

2.2 OthelloGPT

OthelloGPT is a 8-layer GPT model (Radford et al.,
2019), each layer consisting of 8 attention heads
and a 512-dimensional hidden space. We use the
model weights provided by Li et al. (2023a), de-
noted there as the synthetic model. The vocabulary
space consists of 60 tokens,3 each one correspond-
ing to a playable move on the board (e.g., A4).

The model is trained in an autoregressive manner,
meaning for a given sequence of moves m<t, the
model must predict the next valid move mt.

Note that no a priori knowledge of the game
nor its rules are provided to the model. Rather,
the model is only given move sequences with a
training objective to predict next valid moves, by
randomly sampling sequences of games from a
game tree. This training objective differs from
that of models like AlphaZero (Silver et al., 2018),
which are trained to play strategic moves to win
games.

2.3 Notations

Transformers. Our transformer architecture
(Vaswani et al., 2017) consists of embedding and
unembedding layers Emb and Unemb with a se-
ries of L transformer layers in-between. Each trans-
former layer l consists of H multi-head attentions
and a multilayer perception (MLP) layer.

A forward pass in the model first embeds the
input token at timestep t using embedding layer
Emb into a high dimensional space x0t ∈ RD. We
refer to x0t∈T as the start of the residual stream.
Then each attention head Atthl , ∀h ∈ H and MLP
block at layer l add to the residual stream:

xl_midt = xlt +
∑

h∈H
Atthl (x

l
t)

xl+1
t = xl_midt +MLPl(x

l_mid
t)

Each attention head Atthl computes value vec-
tors by projecting the residual stream to a lower
dimension using Atthl .V , linearly combines value

3The game always starts with 4 tiles in the center of the
board already filled.

17

x0 x1 x2 x3 x4 x5 x6 x7

Randomized 37 35.1 33.9 35.5 34.8 34.7 34.4 34.5
Probabilistic 61.8

Linear {BLACK, WHITE, EMPTY} 62.2 74.8 74.9 75.0 75.0 74.9 74.8 74.4
Non-Linear {BLACK, WHITE, EMPTY} 63.4 88.6 93.3 96.3 97.5 98.3 98.7 98.3

Linear {MINE, YOURS, EMPTY} 90.9 94.8 97.2 98.3 99 99.4 99.6 99.5

Table 1: Probing accuracy for board states. OthelloGPT linearly encodes the board state relative to the current
player at each timestep (MINE vs. YOURS, as opposed to colours BLACK or WHITE.

vectors using Atthl .A, and projects back to the
residual stream using Atthl .O:

h(x) = (Attnhl .A⊗Attnhl .O ·Attnhl .V) · x

where ⊗ notates a tensor product. A final pre-
diction is made by applying Unemb on xL−1, fol-
lowed by a softmax.

Probe Models. We notate linear and non-linear
probes as pλ and pν . Our linear probes are sim-
ple linear projections from the residual stream:
pλ(xlt) = softmax(Wxlt),W ∈ RD×3. The di-
mension D × 3 comes from doing a 3-way classifi-
cation.4 Non-linear probes are 2-layer MLP mod-
els: pν(xlt) = softmax(W1ReLU(W2x

l
t)), W1 ∈

RH×3,W2 ∈ RD×H . Li et al. (2023a) classify
the colour at each tile (BLACK, WHITE, EMPTY).
Our insight is to classify the colours relative to the
current turn’s player (MINE, YOURS, EMPTY).

3 Linearly Encoded Board States

In this section we describe our experiments to find
linear board state representations.

3.1 Experiment Setup
Rather than encoding the colour of each tile
(BLACK, WHITE, EMPTY), OthelloGPT encodes
each tile relative to the player of each timestep
(MINE, YOURS, EMPTY) — for odd timesteps, we
consider BLACK to be MINE and WHITE to be
YOURS, and vice versa for even timesteps.

In order to learn the weights of our linear probe,
we train on random game sequences until a valida-
tion loss on a set of 512 games converges according
to a patience value of 10. In practice, our linear
probes converge after around 100,000 training sam-
ples. We test our probes on a held out set of 1,000
games.

4In practice, because we are predicting the state of all 64
tiles, the shape of our probe is D × 64× 3.

Residual
Stream

Residual
Stream

Residual

Stream

Unembed

PEMPTY(D3)

PMINE(D4)

PYOURS(D3)

PEMPTY(D3)

PMINE(D4)

PYOURS(D3)

Original Board-State

x-1

xi+2

xi

xi+1

Figure 2: Intervening methodology: we intervene by
adding either EMPTY, MINE, or YOURS directions into
each layer of the residual stream. Red squares in each
board indicate the tiles that have been intervened, teal
tiles indicate new legal moves post-intervention that the
model predicts.

We train a different probe for each layer l. Hy-
perparameters are provided in the Appendix.

3.2 Results

Table 1 shows the accuracy for various probes.
We include four baselines. The first is a linear

probe trained on a randomly initialized GPT model.
We also include a probabilistic baseline, in which
we always choose the most likely colour per tile at
each timestep, according to a set of 60,000 games
from training data. The next two baselines are
probe models used in Li et al. (2023a): a linear
and non-linear probe trained to classify amongst
{BLACK, WHITE, EMPTY}.

Our linear probes achieve high accuracy by layer
4. Unbeknownst previously, we show that the
emerged board state is linearly encoded.

18

4 Intervening with Linear Directions

In this section we demonstrate how we intervene
on OthelloGPT’s board state using linear probes.

4.1 Method

An inherent issue with probing is that it is corre-
lational, not causal (Belinkov, 2022). To validate
that our probes have found a true world model, we
confirm that the model uses the encoded board state
for its predictions.

To verify this, we conduct the same intervention
experiment as Li et al. (2023a). Namely, given an
input game sequence (and its corresponding board
stateB), we intervene to make the model believe in
an altered board state B′. We then observe whether
the model’s prediction reflects the made-believe
board state B′ or the original board state B.

Our intervention approach is simple (Figure 2):
we add our linear vectors to the residual stream of
each layer:

x′ ← x+ αpλd(x)

where d indicates a direction amongst {MINE,
YOURS, EMPTY} and α is a scaling factor. In
other words, to flip a tile from YOURS to MINE,
we simply push the residual stream at every layer
in the MINE direction, or to “erase” a previously
played tile, we push in the EMPTY direction. 5 6

Note that this intervention is much simpler than
that of Li et al. (2023a). Namely, Li et al. (2023a)
edits the activation space (x) of OthelloGPT using
their non-linear probes. More specifically, they use
non-linear probes to predict board state B, then
compute gradients had the correct board state been
the target board state B′, and finally use the gradi-
ents to update the activation space of OthelloGPT
rather than the weights of the probe model. Instead,
we perform a single vector addition.

4.2 Experiment Setup

For our intervention experiment, we adopt the same
setup and metrics as Li et al. (2023a). We use
an evaluation benchmark consisting of 1,000 test
cases. Each test case consists of a partial game
sequence (B) and a targeted board state B′.

5We experiment with intervening on different layers. See
Appendix for more details.

6We use the TransformerLens library: https://github.
com/neelnanda-io/TransformerLens.

Flipping colours Avg. # Errors
Null Intervention Baseline 2.723
Non-Linear Intervention 0.12
Linear Probe Addition 0.10

Erasing Avg. # Errors
Null Intervention Baseline 2.73
Non-Linear Intervention 0.11
Linear Probe Addition 0.02

Table 2: Error rates from interventions. We measure
the number of false positives and false negatives in
the top-N predictions post-intervention, where N is the
number of legal moves in the target board state B′.

We measure the efficacy of our intervention by
treating the task as a multi-label classification prob-
lem. Namely, we compare the top-N predictions
post-intervention against the groundtruth set of le-
gal moves at state B′, where N is the number of
legal moves at B′. We then compute error rate, or
the number of false positives and false negatives.

Li et al. (2023a) only considers the scenario of
flipping the colour of a tile. To also validate our
EMPTY direction, we also experiment with “eras-
ing” a previously played tile by making it empty.

4.3 Results
Table 2 shows the average error rates after our inter-
ventions. A null intervention measures the number
of errors by comparing pre-intervention predictions
on post-intervention groundtruths. Our interven-
tions are equally effective as that of gradient-based
editing (Li et al., 2023a), and confirms that our in-
terpretation of each linear direction matches how
the model uses such directions.

5 Additional Linear Interpretations

The linear representation hypothesis is of interest
to the mechanistic interpretability community be-
cause it provides a foothold into understanding a
system. The internal state of the transformer, the
residual stream, is the sum of the outputs of all pre-
vious components (heads, layers, embeddings and
neurons) (Elhage et al., 2021). Albeit the residual
stream consisting of linear and non-linear trans-
formations, linear functions of the residual stream
allow us to identify where a computation of inter-
est takes place, or trace how a representation of
interest evolves over a forward pass.

In this section we leverage our newfound linear
representation of board state to provide additional

19

interpretations of OthelloGPT, as proof of concept
of how discovering linear representations unlocks
downstream interpretability applications.

5.1 Interpreting Empty Tiles

Here we interpret how OthelloGPT derives the sta-
tus of empty tiles.

The EMPTY Circuit. A key insight for EMPTY

is that input tokens each correspond to a tile on the
board (i.e., A4), and once played, the tile can only
change colour but remains non-empty.

We view OthelloGPT as using attention heads to
“broadcast” which moves have been played: given
a move at timestep t, attention heads write this
information into other residual streams. This infor-
mation (PLAYED) can be represented as following.
First, each move m (A4) is embedded: Emb[m].
Then the model writes this information to other
residual streams using linear projectionsAtt.V and
Att.O (Section 2.3):

PLAYEDh(m) = Emb[m]@Atth.V@Atth.O

For each attention head in the first layer,7 we
compute the cosine similarity between PLAYED

and the pλEMPTY direction:

max
h∈H

CosSim(PLAYEDh(m), pλEMPTY(m))

Since the two terms encode opposite information,
we expect a high negative cosine similarity.

We observe an average similarity score of -0.862
across all 60 squares,8, confirming that pEMPTY is
encoding NOT PLAYED. This tells us that pEMPTY

is a linear function of the token embeddings.
This also implies that OthelloGPT knows which

tiles are empty by x0_mid: after the first attention
heads but before the MLP layer. On a binary clas-
sification task of EMPTY vs. NOT-EMPTY from
1,000 games in our test split, our probe achieves
an accuracy of 76.8% and 98.9%, when project-
ing from the residual stream before and after the
attention heads from the first layer.

7Knowing which moves were PLAYED (i.e. show up in
the input sequence), should not depend on any other computa-
tion, and thus we expect this information to be written by the
attention heads in the first layer.

8The center 4 squares can never be empty.

Figure 3: Difference in probability of A4 being empty,
between our clean and corrupt sequences, measured in
each attention head.

Figure 4: Examples of attention heads from the first
layer attending to moves that are YOURS (left) or MINE
(right).

Logit Attribute for EMPTY. The previous anal-
ysis is based on the weights of the model. Here
we provide an alternative analysis by studying the
activations during inference.

First, we select a move m (A4) that we wish
to explain. We then construct a “clean” and “cor-
rupt” set of partial game sequences (N=4,569). Our
clean set always includes m, while our corrupt set
replaces all timesteps with m in the clean set with
an alternative move. We ensure that all games in
our corrupt set remain legal sequences. Finally, we
study the difference in probability that m is empty,
according to our probes, in our two sets. Namely,
we project the outputs from each attention head
onto the EMPTY direction and apply a softmax:

PEMPTY[m](σ) = Softmax(σ ∗ pλEMPTY[m])

where σ is the output from each attention head.
Figure 3 shows the difference in probability that

A4 is empty, between our clean and corrupt inputs,
measured in each attention head of the first layer.

20

x0 x1 x2 x3 x4 x5 x6 x7

Linear {FLIPPED, NOT-FLIPPED} 74.76 85.75 91.62 94.82 96.44 97.13 96.82 96.3

Table 3: F1 score for probing on FLIPPED tiles. In addition to the board state, the model also linearly encodes
concepts such as flipped tiles per timestep.

The figure decomposes two scenarios: when A4
was originally played as MINE or YOURS. This is
because some attention heads only attend to moves
that are MINE (4, 7), while some only attend to
YOURS (1, 3, 8), which we show below.

5.2 Attending to MY & YOUR Timesteps
We find that some attention heads only attend to
either MY or YOUR moves. Figure 4 shows two
examples: at each timestep, each head alternates
between attending to even or odd timesteps. Such
behavior further indicates how the model computes
its world model based on MINE and YOURS as
opposed to BLACK and WHITE.

5.3 Additional Linear Concepts: FLIPPED

In addition to linearly representing the board state,
we find that OthelloGPT also encodes which tiles
are being flipped, or captured, at each timestep. To
test this, we modify our probing task to classify be-
tween FLIPPED vs. NOT-FLIPPED, with the same
training setup described above. Given the class im-
balance, for this experiment we report F1 scores.
Table 3 demonstrates high F1 scores by layer 3.

We also conduct a modified version of our inter-
vention experiment, in which we always randomly
select a flipped tile at the current timestep to in-
tervene on. Then, instead of adding either pλMINE,
pλYOURS, or pλEMPTY, we subtract pλFLIPPED. This tests
whether the FLIPPED feature is causally relevant
for computing the next move, by exploring whether
this is sufficient to cause the model to play valid
moves in the new board state. We get an average
error rate of 0.486, compared to a null intervention
baseline rate of 1.686.

One can consider FLIPPED tiles as the differ-
ence between the previous and current board state.
One might naturally think that a recurrent com-
putation could derive the current board state by
iteratively applying such differences. However,
transformer models do not make recursive com-
putations!9 Also, the derivative property of cap-
tured tiles being encoded in later layers might be

9Doing so would require our transformer model to have
the same number of layers as the maximum game sequence
length of 60.

analogous to observations from previous studies of
language models that show low-level lexical prop-
erties being encoded in lower layers and syntax and
semantics being mostly captured in higher layers
(Tenney et al., 2019).

5.4 Multiple Circuits Hypothesis

Although we find board state representations and
their causality on move predictions, we find that
they do not explain the entire model. Namely, if
our understanding is correct, we expect the model
to compute the board state before computing valid
moves. However, we find that in end games, this is
not the case.

To check for the correct board state, we apply our
linear probes on each layer, and check the earliest
layer in which all 64 tiles are correctly predicted.10

To check for correct move predictions, we project
from each layer using the unembedding layer, and
check the earliest layer in which the top-N move
predictions are all correct, where N is the number
of groundtruth legal moves.

Figure 5 plots the proportion of times the board
state is computed before (or after) valid moves
(first y-axis). We also overlay the average earliest
layer in which board or moves are correctly com-
puted (second y-axis, aqua and lime curves). To
our surprise, we find that in end games, the model
often computes legal moves before the board state
(black bars). We henceforth refer to this behavior
as MOVEFIRST, and share some thoughts.

End Game Circuits. First, MOVEFIRST starts
to occur around move 30, which is the mid-point of
the game. Second, MOVEFIRST occurs more fre-
quently as we near the end of the game (increasing
black bars). Interestingly, in Othello, starting from
the mid-point, there are progressively fewer empty
tiles than there are filled tiles as the board fills up.
Also note that as the game progresses, it becomes
more likely for every empty tile to be a legal move.

One possible explanation for this phenomenon
is that in the end game, it may be possible to pre-

10It might be the case that legal moves could be predicted
without 100% accuracy of the board state. We try variants (see
Appendix), but observe similar trends.

21

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

Earliest Layer (Board)

Earliest Layer (Moves)

Incorrect (Board)

After

Same

Before

Moves (Timestep)

%
 o

f
G

a
m

e
s

Figure 5: Proportion of times the board state is computed before/after move predictions are made (First y-axis).
Light Grey: Boards are computed in an earlier layer than moves. Dark Grey, Black: Boards are computed in
the same or later layer than moves. Red: Model never computes the correct board state. Aqua, Lime (Curves):
Average earliest layer in which the board or moves are correctly computed (Second y-axis). Starting from the mid-
game, we start observing the model compute moves before boards (black bar), and this occurs more frequently as
the game progresses.

dict legal moves with simpler circuits that do not
require the entire board state. For instance, perhaps
it combines EMPTY with other features such as IS-
SURROUNDED-BY-MINE or IS-BORDER and so
on.

Multiple Circuits. Interestingly, the model still
uses the board state at end games. To demon-
strate this, we run our intervention experiment on
1,000 end games,11 and still achieve a low error
rate of 0.112.12 We thus hypothesize that Othel-
loGPT (and more broadly, sequence models) con-
sist of multiple circuits. Another hypothesis is that
residual networks make “iterative inferences” (Sec-
tion 5.5), and for end games, OthelloGPT uses
simpler circuits in the early layers and refines its
predictions at late layers using board state.

End Game Board Accuracy. We observe that
board state accuracy drops near end games. This
can be seen by the growing red bars, but also by
measuring per-timestep accuracy of our probes (see
Appendix). It is unclear whether 1) the model does
not bother to compute the perfect board state, as
alternative circuits allow the model to still correctly
predict legal moves, or 2) the model learns an alter-
native circuit because it struggles to compute the
correct board state at end games.

Memorization. Note that in the first few
timesteps, the board and legal moves are some-
times both computed in the same layer (dark grey
bars). This may be due to memorization: 1) these

11We intervene on a timestep > 30
12Non-intervention baseline: 1.988.

predictions both occur at the first layer, and 2) there
are only so many openings in an Othello game.

5.5 Iterative Feature Refinements
Figure 6 visualizes OthelloGPT’s “iterative infer-
ence” (Jastrzebski et al., 2018; Belrose et al., 2023;
Veit et al., 2016; nostalgebraist, 2020), or itera-
tive refinement of features. For each layer, we
plot the projected board states using our probes,
and projected next-move predictions using the un-
embedding layer. Multiple evidence of iterative
refinements are provided in the Appendix.

6 Discussions

6.1 On Linear vs. Non-Linear
Interpretations

One challenge with probing is knowing which
features to look for.13 For instance, classifying
{BLACK, WHITE} versus {MINE, YOURS} leads to
different takeaways, which illustrates the danger of
projecting our preconceptions. What might seem
“sensible” to a human interpreter (BLACK, WHITE)
may not be for a model. In hindsight, given the
symmetric game-play of Othello, encoding MINE,
YOURS is perfectly sensible for the model (For
more examples of non-obvious, sensible features,
see (McCoy et al., 2019; Nanda et al., 2023)).

More broadly, what is sensible, or alternatively,
how we choose to interpret linear or non-linear en-
codings, can be relative to how we see the world.
Suppose we had a perfect world model of our phys-
ical world. Further suppose that if and when it

13For a longer discussion on probing, see Appendix.

22

1 2 3 4 5 6 7 8

H

G

F

E

D

C

B

A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

1 2 3 4 5 6 7 8
H
G
F
E
D
C
B
A

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7Board State

Figure 6: Iterative refinements: the top row shows each layer projected using our linear probes. The bottom row
shows the model’s predictions for legal moves at each layer, by applying the unembedding layer on each layer.

computes a gravitational force between two ob-
jects (Newton’s law), we discover a neuron whose
square root was the distance between two objects.
Is this a non-linear representation of distance? Or,
given the form of Netwon’s law, is the square of
the distance a more natural way for the model to
represent the feature, and thus considered a linear
representation? As this example shows, what con-
stitutes a natural feature may be in the eye of the
beholder.

6.2 On the Emergence of Linear
Representations

Linear representations in sequence models have
been observed before: iGPT (Chen et al., 2020),
which was autoregressively trained to predict next
pixels of images, lead to robust linear image rep-
resentations. The question remains, why do linear
feature representations emerge? What linear repre-
sentations are currently encoded in large language
models? One reason might be simply that matrix
multiplication can easily extract a different subset
of linear features for each neuron. However, we
leave a complete explanation to future work.

7 Related Work

We discuss three broad related areas: understanding
internal representations, interventions, and mecha-
nistic interpretability.

7.1 Understanding Internal Representations
Multiple researchers have studied concept represen-
tations in sequence models. Li et al. (2021) train
sequence models on a synthetic task, and uncover
world models in their activations. Patel and Pavlick
(2022) demonstrate that language models can learn
to ground concepts (e.g., direction, colour) to real
world representations. Burns et al. (2022); Marks
and Tegmark (2023) find linear vectors that en-
code “truthfulness”. Probing techniques have also

been used to extract linguistic characteristics in sen-
tence embeddings (Conneau et al., 2018; Tenney
et al., 2019). Researchers have also used struc-
tural probes to uncover syntactic structures in word
embeddings (Hewitt and Manning, 2019) and lan-
guage models (Eisape et al., 2022). Prior to current
day language models, word embeddings (Mikolov
et al., 2013b,a) built vectoral word representations.

Linear representations are found outside of lan-
guage models as well. Merullo et al. (2022) demon-
strate that image representations from vision mod-
els can be linearly projected into the input space of
language models. McGrath et al. (2022) and Lover-
ing et al. (2022) find interpretable representations
of chess or Hex concepts in AlphaZero.

7.2 Intervening On Language Models
A growing body of work has intervened on lan-
guage models, by which we mean controlling their
behavior by altering their activations.

We consider two broad categories. Paramet-
ric approaches often use optimizations (i.e. gra-
dient descent) to locate and alter activations (Li
et al., 2023a; Meng et al., 2022a,b; Hernandez
et al., 2023; Hase et al., 2023). Meanwhile,
inference-time interventions typically apply linear
arithmetics, for instance by using “truthful” vec-
tors (Li et al., 2023b), “task vectors” (Ilharco et al.,
2022), or other “steering vectors” (Subramani et al.,
2022; Turner et al., 2023).

7.3 Mechanistic Interpretability
Mechanistic interpretability (MI) studies neural net-
works by reverse-engineering their behavior (Olah
et al., 2020; Elhage et al., 2021). The goal of MI
is to understand the underlying computations and
representations of a model, with a broader goal
of validating that their behavior aligns with what
researchers have intended. Such framework has
allowed researchers to better understand grokking

23

(Nanda et al., 2023), superposition (Elhage et al.,
2022b; Scherlis et al., 2022; Arora et al., 2018), or
even individual neurons (Mu and Andreas, 2020;
Antverg and Belinkov, 2021; Gurnee et al., 2023).

8 Conclusion

In this work we demonstrated that the emergent
world model in Othello-playing sequence models
is full of linear representations. Previously unbe-
knownst, we demonstrated that the board state in
OthelloGPT is linearly represented by encoding
the colour of each tile relative to the player at each
timestep (MINE, YOURS, EMPTY) as opposed to
absolute colour (BLACK, WHITE, EMPTY). We
showed that we can accurately control the model’s
behaviour with simple vector arithmetic on the in-
ternal world model. Lastly, we mechanistically
interpreted multiple facets of the sequence model,
analysing how empty tiles are detected, and linear
representations of which pieces are flipped. We
find hints that multiple circuits might exist for pre-
dicting legal moves in the end game, as well as
further evidence that residual networks iteratively
refine their features across layers.

9 Acknowledgements

We thank the original authors of Li et al. (2023a)
for opensourcing their work, making it possible to
conduct our research.

We thank Chris Olah for invaluable discussion
and encouragement, and drawing our attention to
the implication of these results for the linear repre-
sentation hypothesis.

10 Author Contributions

Neel Nanda discovered the linear representation in
terms of relative board state, and showed that sim-
ple vector arithmetic sufficed for causal interven-
tions. He led an initial version of the experiments
and write-ups, and advised throughout.

Andrew Lee led this write-up and performed
all experiments in this paper. He discovered the
flipped linear representation, the empty circuit, and
the multiple circuit hypothesis results.

Martin Wattenberg helped with editing and dis-
tilling the paper, and contributed the analogy about
a linear vs quadratic representation of distance.

References
Omer Antverg and Yonatan Belinkov. 2021. On the

pitfalls of analyzing individual neurons in language
models. arXiv preprint arXiv:2110.07483.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2018. Linear algebraic struc-
ture of word senses, with applications to polysemy.
Transactions of the Association for Computational
Linguistics, 6:483–495.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata
Lapedriza, Bolei Zhou, and Antonio Torralba. 2020.
Understanding the role of individual units in a
deep neural network. Proceedings of the National
Academy of Sciences.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Lin-
guistics, 48(1):207–219.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-
hardt. 2022. Discovering latent knowledge in lan-
guage models without supervision. ArXiV.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,
Heewoo Jun, David Luan, and Ilya Sutskever. 2020.
Generative pretraining from pixels. In Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1691–1703. PMLR.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Tiwalayo Eisape, Vineet Gangireddy, Roger Levy, and
Yoon Kim. 2022. Probing for incremental parse
states in autoregressive language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2022, pages 2801–2813, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Neel Nanda, Tom Henighan, Scott Johnston,
Sheer ElShowk, Nicholas Joseph, Nova Das-
Sarma, Ben Mann, Danny Hernandez, Amanda
Askell, Kamal Ndousse, Andy Jones, Dawn
Drain, Anna Chen, Yuntao Bai, Deep Gan-
guli, Liane Lovitt, Zac Hatfield-Dodds, Jackson
Kernion, Tom Conerly, Shauna Kravec, Stanislav
Fort, Saurav Kadavath, Josh Jacobson, Eli Tran-
Johnson, Jared Kaplan, Jack Clark, Tom Brown,

24

Sam McCandlish, Dario Amodei, and Christo-
pher Olah. 2022a. Softmax linear units. Trans-
former Circuits Thread. Https://transformer-
circuits.pub/2022/solu/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and
Christopher Olah. 2022b. Toy models of superpo-
sition. Transformer Circuits Thread.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484–5495, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Un-
der the hood: Using diagnostic classifiers to in-
vestigate and improve how language models track
agreement information. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 240–248,
Brussels, Belgium. Association for Computational
Linguistics.

Gabriel Goh, Nick Cammarata †, Chelsea Voss †,
Shan Carter, Michael Petrov, Ludwig Schubert,
Alec Radford, and Chris Olah. 2021. Multi-
modal neurons in artificial neural networks. Distill.
Https://distill.pub/2021/multimodal-neurons.

Wes Gurnee, Neel Nanda, Matthew Pauly, Kather-
ine Harvey, Dmitrii Troitskii, and Dimitris Bert-
simas. 2023. Finding neurons in a haystack:
Case studies with sparse probing. arXiv preprint
arXiv:2305.01610.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. arXiv
preprint arXiv:2301.04213.

Evan Hernandez, Belinda Z Li, and Jacob Andreas.
2023. Measuring and manipulating knowledge rep-
resentations in language models. arXiv preprint
arXiv:2304.00740.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas,
Vikas Verma, Tong Che, and Yoshua Bengio. 2018.
Residual connections encourage iterative inference.
In International Conference on Learning Represen-
tations.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2021.
Implicit representations of meaning in neural lan-
guage models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1813–1827, Online. Association for
Computational Linguistics.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg.
2023a. Emergent world representations: Exploring
a sequence model trained on a synthetic task. In The
Eleventh International Conference on Learning Rep-
resentations.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023b. Inference-
time intervention: Eliciting truthful answers from a
language model. arXiv preprint arXiv:2306.03341.

Charles Lovering, Jessica Forde, George Konidaris, El-
lie Pavlick, and Michael Littman. 2022. Evaluation
beyond task performance: Analyzing concepts in al-
phazero in hex. In Advances in Neural Informa-
tion Processing Systems, volume 35, pages 25992–
26006. Curran Associates, Inc.

Samuel Marks and Max Tegmark. 2023. The geometry
of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv
preprint arXiv:2310.06824.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Thomas McGrath, Andrei Kapishnikov, Nenad
Tomašev, Adam Pearce, Martin Wattenberg, Demis
Hassabis, Been Kim, Ulrich Paquet, and Vladimir
Kramnik. 2022. Acquisition of chess knowledge in
alphazero. Proceedings of the National Academy of
Sciences, 119(47):e2206625119.

25

Thomas McGrath, Matthew Rahtz, Janos Kramar,
Vladimir Mikulik, and Shane Legg. 2023. The hy-
dra effect: Emergent self-repair in language model
computations. arXiv preprint arXiv:2307.15771.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Jack Merullo, Louis Castricato, Carsten Eickhoff, and
Ellie Pavlick. 2022. Linearly mapping from image
to text space. arXiv preprint arXiv:2209.15162.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
conference of the north american chapter of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 746–751.

Jesse Mu and Jacob Andreas. 2020. Compositional ex-
planations of neurons. Advances in Neural Informa-
tion Processing Systems, 33:17153–17163.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability.
arXiv preprint arXiv:2301.05217.

nostalgebraist. 2020. interpreting gpt: the logit lens.

Chris Olah, Nick Cammarata, Ludwig Schubert,
Gabriel Goh, Michael Petrov, and Shan Carter. 2020.
Zoom in: An introduction to circuits. Distill.
Https://distill.pub/2020/circuits/zoom-in.

Roma Patel and Ellie Pavlick. 2022. Mapping language
models to grounded conceptual spaces. In Interna-
tional Conference on Learning Representations.

Tiago Pimentel, Naomi Saphra, Adina Williams, and
Ryan Cotterell. 2020a. Pareto probing: Trading off
accuracy for complexity. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3138–3153, On-
line. Association for Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020b. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609–4622, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.

Naomi Saphra and Adam Lopez. 2019. Understand-
ing learning dynamics of language models with
SVCCA. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 3257–3267, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe
Benton, and Buck Shlegeris. 2022. Polysemantic-
ity and capacity in neural networks. arXiv preprint
arXiv:2210.01892.

David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan,
and Demis Hassabis. 2018. A general reinforcement
learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.

Nishant Subramani, Nivedita Suresh, and Matthew Pe-
ters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 566–581, Dublin, Ireland. Association for
Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Mycal Tucker, Peng Qian, and Roger Levy. 2021.
What if this modified that? syntactic interventions
with counterfactual embeddings. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 862–875, Online. Association
for Computational Linguistics.

Alex Turner, Monte MacDiarmid, David Udell,
lisathiergart, and Ulisse Mini. 2023. Steering gpt-
2-xl by adding an activation vector - ai alignment
forum.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

26

Andreas Veit, Michael J Wilber, and Serge Belongie.
2016. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural in-
formation processing systems, 29.

27

Hyperparameter Value

Optimizer AdamW
Learning Rate 1e-2
Weight Decay 1e-2
Betas 0.9, 0.99
Validation Step 200
Validation Size 512
Validation Patience 10

Table 4: Hyperparameters used for our linear probes.

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
0

0.5

1

1.5

2

2.5

Layers Intervened

E
r
r
o
r
 R

a
t
e

First N Layers Last N Layers

0.11

Figure 7: Intervention results depending on layers in-
tervened.

A Hyperparameters for Linear Probes

Table 4 provides hyperparameters used for our lin-
ear probes.

B Intervening on Different Layers

In practice there are a lot of ways to intervene using
linear vectors. Figure 7 demonstrates different er-
ror rates depending on which layers are intervened.
From our experiments, we observe that either a
sufficient number of layers need to be intervened
for OthelloGPT to alter its predictions. We offer a
couple of hypotheses for this. First, we hypothesize
that this is because of the residual structure of trans-
former models, and while each layer may write
additional information into the residual streams,
there may still be information from earlier layers
that the model uses. A somewhat related hypothe-
sis is that OthelloGPT might be demonstrating the
Hydra effect (McGrath et al., 2023), in which lan-
guage models demonstrate the ability to self-repair
its computations after an intervention.

C Multiple Circuits

In Section 5.4, we find hints that OthelloGPT some-
times computes moves before boards at end games.

Namely, we check the earliest layers in which the
board is correctly predicted with 100% accuracy.
Could it be that at end games, legal moves can be
predicted without needing the entire board? To this
point, we experiment with variations of this exper-
iment. In Figure 8, we check the earliest layer in
which at least 90% of the board is first correctly
computed. In Figure 9, we check the earliest layer
in which the “minimum set” of tiles are correctly
computed, where the minimum set is set of tiles
that make each legal move playable (see Figure 10
for example). Despite a looser criteria for board
state, we still see OthelloGPT computing moves
before boards at end games.

Interestingly, our probes lose accuracy starts to
drop in the end game as well (Figure 11). It is
unclear whether 1) the model does not bother to
compute the perfect board state, as alternative cir-
cuits might exist at end games, or 2) the model
learns an alternative circuit because it struggles to
compute the correct board state at end games.

D Evidence of Iterative Feature
Refinements

As mentioned in Section 5.5, OthelloGPT demon-
strates multiple evidence of iterative feature re-
finements: 1) Board state accuracy (as well as
FLIPPED) improves from layer to layer (Table 1,
3). 2) Next-move predictions also improve from
layer to layer. Table 5 reports the top-1 error rate
when applying the unembedding layer on every
layer using our test set from Section 3. As a base-
line, we apply the same unembedding layer from
OthelloGPT to the residual streams of a randomly
initialized GPT model. 3) Linear probes across
layers share similar directions. Figure 12 plots
the cosine similarity between all linear probes, av-
eraged across all 64 tiles and directions (MINE,
YOURS, EMPTY).

E On Principled Ways of Probing

Probing has produced both excitement and skepti-
cism amongst researchers (Belinkov, 2022). Here
we provide our learnings regarding probing.

One criticism of probes is whether the discov-
ered features are actually used by the model, i.e.,
correlation vs. causation. Intervention is com-
monly used to study causality (Giulianelli et al.,
2018; Tucker et al., 2021), but have often reached
mixed conclusions (Belinkov, 2022). While both
linear and non-linear probes have demonstrated

28

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

Earliest Layer (Board)

Earliest Layer (Moves)

Incorrect (Board)

After

Same

Before

Moves (Timestep)

%
 o

f
G

a
m

e
s

Figure 8: Percentage of times 90% of the board state is computed before/after move predictions are made.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

Earliest Layer (Board)

Earliest Layer (Moves)

Incorrect (Board)

After

Same

Before

Moves (Timestep)

%
 o

f
G

a
m

e
s

Figure 9: Percentage of times the “minimum set” of necessary board state is computed before/after move predic-
tions are made.

1 2 3 4 5 6 7 8

H

G

F

E

D

C

B

A

Figure 10: Example of “minimum set” of tiles that
make move G2 legal.

successful interventions (Li et al., 2023b; Turner
et al., 2023), linear probes are much easier to inter-
pret, as they imply that features simply correspond
to vectoral directions.

Another challenge is knowing which features
to probe for, which can lead to pitfalls. Taking
OthelloGPT as an example, classifying {BLACK,
WHITE} versus {MINE, YOURS} leads to different

0 10 20 30 40 50

0.75

0.8

0.85

0.9

0.95

1 Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Timestep (Moves)

A
c
c
u
r
a
c
y

Figure 11: Accuracy per timestep for our linear probes.

takeaways, which illustrates the danger of project-
ing our preconceptions.

Speaking of incorrect takeaways, our last point
concerns the expressivity of probe models. With an
expressive-enough probe, there is a danger of the
probe computing or memorizing the desired fea-
ture that one is looking for, rather than extracting
(Pimentel et al., 2020a; Saphra and Lopez, 2019).
Still, some researchers view linear classification

29

Baseline: Random x0 x1 x2 x3 x4 x5 x6 x7

0.856 0.215 0.152 0.112 0.079 0.049 0.015 0.004 0.001

Table 5: Top-1 error rates when applying the unembedding layer to earlier layers. As a baseline we apply Othel-
loGPT’s unembedding layer on a randomly initialized GPT model.

Figure 12: Cosine similarity scores between linear
probes across layers.

as inadequate (Pimentel et al., 2020b; Saphra and
Lopez, 2019). We view our work as evidence that
linear probes do have interpretable and controllable
power, and anticipate these findings to generalize
to larger language models.

30

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 31–55
December 7, 2023. ©2023 Association for Computational Linguistics

Explaining data patterns in natural language with language models

Chandan Singh∗♢ John X. Morris∗♣ Jyoti Aneja ♢ Alexander M. Rush♣ Jianfeng Gao♢
♢ Microsoft Research ♣ Cornell University

chansingh@microsoft.com jxm3@cornell.edu

Abstract

Large language models (LLMs) have displayed
an impressive ability to harness natural lan-
guage to perform complex tasks. We explore
whether we can leverage this ability to find and
explain patterns in data. Specifically, given a
pre-trained LLM and data examples, we apply
interpretable autoprompting (iPrompt) to gener-
ate a natural language string explaining the data.
iPrompt iteratively generates explanations with
an LLM and reranks them based on their per-
formance when used as a prompt. Experiments
on a wide range of datasets, from synthetic
mathematics to natural language understand-
ing, show that iPrompt can yield meaningful
insights by accurately finding dataset explana-
tions that are human-interpretable. Moreover,
iPrompt is reasonably efficient, as it does not
require access to model gradients and works
with relatively small models (e.g. 6 billion
parameters rather than ≥100 billion). Finally,
experiments with scientific datasets show the
potential for iPrompt to aid in scientific discov-
ery. 1

1 Introduction

Large language models (LLMs) have attained an
extraordinary ability to harness natural language
for solving diverse problems (Devlin et al., 2018),
often without the need for finetuning (Brown
et al., 2020; Sanh et al., 2021). Moreover, LLMs
have demonstrated the capacity to excel at real-
world problems, such as mathematics (Lewkowycz
et al., 2022), scientific question answering (Sa-
dat and Caragea, 2022), predicting brain re-
sponses (Schrimpf et al., 2021), and classifying
proteins and chemical compounds (Taylor et al.,
2022).

In this work, we probe whether we can lever-
age the learned skills of an LLM to discover and
explain patterns in a dataset. To do so, we invert

1*Equal contribution. All code for using the methods and
data here is made available on Github.

Dataset

Input: 3 1 Output: 4
Input: 4 7 Output: 11

…
Input: 5 9 Output: 14 LLM

Natural-language
explanation

Add the inputs

Figure 1: We use interpretable autoprompting to explain
datasets, inverting the standard prediction problem to
instead find a natural language explanation of the data
using a fixed, pre-trained large language model.

the typical problem of fitting an LLM to data and
instead ask whether we can use a fixed LLM to pro-
duce a natural language string explaining dataset
patterns.

Our approach to this problem centers around
prompting. Prompting has emerged as an effective
method for adapting LLMs to new datasets (Liu
et al., 2021a); a prompt string is combined with
each example in a dataset before querying an LLM
for an answer. While prompts were initially con-
structed manually, recent work has shown success
in autoprompting, automatically finding a prompt
via optimization (Shin et al., 2020; Li and Liang,
2021; Deng et al., 2022; Zhou et al., 2022). Here,
we study interpretable autoprompting (iPrompt),
which aims to find a semantically meaningful nat-
ural language prompt that explains a key charac-
teristic of the data. For example, given a dataset
of examples of addition, e.g. 2 5⇒ 7 ... 3 1⇒
4, iPrompt yields the natural language explanation
Add the inputs (see Fig. 1). iPrompt works by us-
ing a pre-trained LLM to iteratively propose and
evaluate different candidate explanations.

For evaluation, we curate a diverse collection
of datasets written in natural language (Table 1)
and measure iPrompt’s ability to accurately explain
a ground-truth pattern. We find that iPrompt out-
performs baseline methods in accurately finding
a correct description; moreover, the generated de-
scriptions are interpretable, allowing human audit-
ing and enabling strong generalization when used

31

as a prompt in a new setting (i.e. when used for a
different LLM). On real-world sentiment classifica-
tion datasets, Finally, we find that iPrompt is able
to extract information from real-world scientific
datasets.

2 Related work

Problems related to dataset explanation The
problem statement presented in this work closely
resembles the widely studied problems of sym-
bolic regression (Augusto and Barbosa, 2000;
Schmidt and Lipson, 2009), program synthe-
sis (Gulwani et al., 2017; Manna and Waldinger,
1980), text/table summarization (Kryściński et al.,
2019; Liu et al., 2018), and pattern discovery in
data-mining (Hand, 2007). iPrompt can be viewed
as an algorithm for symbolic regression, in which
the set of allowable symbols consists of seman-
tically meaningful natural language strings. One
recent work proposes the task of inferring prompts
that improve supervised prediction (Honovich et al.,
2022), which we generalize here to diverse use
cases for dataset explanation.

Prompting and autoprompting. With the ad-
vent of large-scale models, prompting (i.e. find-
ing the right prompt to use to query an LLM for
a given task) has exploded as an area of inquiry,
often yielding impressive improvements in perfor-
mance (Brown et al., 2020; Petroni et al., 2019;
Liu et al., 2021a) and spurring a line of work aim-
ing to make prompting easier (Strobelt et al., 2022;
Lu et al., 2022; Bach et al., 2022; Logan IV et al.,
2022). Recently, autoprompting (i.e. automatically
searching for a prompt or prompt-embedding via
optimization) has emerged (Li and Liang, 2021;
Liu et al., 2021b) to improve the process of prompt-
ing, with methods such as prefix-tuning (Li and
Liang, 2021), P-tuning (Liu et al., 2021b), prompt-
tuning with rules (Han et al., 2021), knowledge-
able prompt tuning (Hu et al., 2021) and many
more (Liu et al., 2021a). These strategies use gra-
dient descent to find a set of “adapter” parameters
that maximize model performance, but do not re-
quire that the new parameters map back to tokens
in discrete space, rendering them uninterpretable.

A few methods tackle the more difficult problem
of searching for prompts that can be expressed in
natural language tokens. RLPrompt (Deng et al.,
2022) searches for such a prompt using reinforce-
ment learning and one recent work (Honovich et al.,
2022) queries an LLM to produce a prompt. Auto-

Prompt (Shin et al., 2020) performs autoprompting
via input gradients (see Sec. 3). These methods
effectively alter a model’s predictions, but do not
constrain the discovered prompts to be semantically
meaningful, resulting in prompts that are difficult
to interpret (Webson and Pavlick, 2021). Another
related work directly finetunes an LLM to describe
the difference between two datasets (Zhong et al.,
2022). One recent work proposes a method for
interpretable autoprompting similar to the one here,
with a focus on improving prediction performance
rather than on explaining data patterns (Zhou et al.,
2022).

Alternative methods for neural-network inter-
pretation A popular method for interpreting neu-
ral networks is to inspect an LLM’s individual pre-
dictions via feature importances (Lundberg et al.,
2019; Ribeiro et al., 2016), feature-interaction im-
portances (Singh et al., 2019; Tsang et al., 2017),
extractive rationales (Zaidan and Eisner, 2008; Sha
et al., 2021), or natural language explanations for
individual predictions (Hendricks et al., 2016; Cam-
buru et al., 2018). These works can provide mean-
ingful insights for individual predictions, but it is
difficult to parse them into an understanding of an
entire dataset. Alternatively, one can investigate
whether an LLM’s learned representations via prob-
ing (Conneau et al., 2018; Liu and Avci, 2019) or by
directly analyzing a model’s internal weights and
activations (Wang et al., 2021; Olah et al., 2018;
Meng et al., 2022). However, these approaches
are limited in their ability to generate previously
unknown descriptions of data.

3 Methods: Defining the task and
approach

3.1 Task: Dataset Explanation

Given a dataset comprised of input-output string
pairs {(x1, y1), . . . , (xN , yN)}, the goal is to pro-
duce a “semantically meaningful” natural language
string that explains the relationship between x and
y. We require that a string consists of human-
understandable text rather than a sequence of incon-
gruous tokens. For example, in the dataset shown in
Fig. 1, given samples of data performing addition,
our task is to recover text synonymous to Add the
inputs. This dataset explanation can then be used
for various downstream tasks, such as prompting a
different LLM.

32

Table 1: Dataset Explanation Tasks. Each collections
contains # different task. Roman numerals correspond
to the use cases in Fig. 1. For full details on each dataset,
see Appendix A.2.

Collection # Description

1) Synthetic math 10 Mathematical functions (i), (ii)
2) Allen NLI 10 Language tasks (i), (ii)
3) Instr. induction 20 Language tasks (i), (ii)
4) Sentiment 4 Sentiment classification (i), (ii)

5) Proteins/chemicals 3 Protein/chemical properties (iii)
6) Language fMRI 20 Excitation of fMRI voxel (iii),(iii)

Datasets Table 1 shows the collections of
datasets we study: (1) Synthetic math – datasets
that require inferring an underlying mathemati-
cal function based on numeric input and outputs;
(2) Allen NLI (ANLI) and (3) Instruction induc-
tion (Honovich et al., 2022) – diverse language
tasks (Wang et al., 2022) with easily verifiable
descriptions (e.g. Find a country’s capital). (4)
Sentiment – a collection of sentiment classification
datasets in different domains. For collections (1-3),
there is a ground-truth prompt available for eval-
uation. For example, when adding two numbers
(Fig. 1), the rule checks whether a description con-
tains any of the keywords add, sum, or +. We also
study scientific datasets on (5) proteins/chemicals,
and (6) fMRI with full details given in Sec. 6.

3.2 Approach: iPrompt
We now detail approaches for the general prob-
lem of autoprompting before covering interpretable
autoprompting. We specify autoprompting as a
discrete search problem. Given a dataset of n
input-output pairs {(x1, y1), ..., (xn, yn)} and a
pre-trained LLM f that returns the log-probability
of a given string, autoprompting finds a natural
language explanation ŝ maximizing:

ŝ = argmax
s∈S

n∑

i=1

f
(
render(s, xi, yi)

)
(1)

The render function is a problem-specific function
that renders a natural language string from the
prompt s and each example in the dataset (xi, yi).
We use S to indicate the set of fluent strings, under
some notion of syntactic fluency. This constraint
is used to ensure prompts are readable, and poten-
tially generalize to downstream LLMs. Solving
this search problem exactly is intractable.

A core assumption of this objective is that se-
mantically accurate prompts lead a model to assign

GPT-2 (1.5B) GPT-Neo (2.7B)

Su
m

Di
ffe

re
nc

e
Ma

xim
um Fir
st

Prompt keyword

Add

Subtract

Max

First

Ta
sk

GPT-J (6B) GPT-3 (175B)

Figure 2: Prompt-based reranking depends on model
size. Large models (GPT-J 6B and GPT-3) align
prompts correctly to tasks. The model is given the
prompt Return the of the inputs., where is filled
in with the shown prompt keyword before querying the
output given two inputs numbers in a string. Darker
indicates a higher accuracy, and high accuracy along the
diagonal indicates that the correct prompt induces the
highest accuracy.

higher probability to the correct output. To check
this assumption, we analyze four datasets from the
inverse synthetic math collection that share com-
mon structure for the inputs and prompts. Each
dataset admits a prompt of the form Return the
of the inputs., then is given two input numbers and
queried for the output.

Fig. 2 shows the accuracy of different models
at performing these tasks across different input
prompts.2 For small models, the prompts are un-
successful, but for large models (GPT-J 6B and
GPT-3), the model is accurate if and only if given
the correct prompt.3 This result suggests that, at
least for large models, the search for a prompt that
maximizes performance correlates well with the
underlying task. We will see in Fig. 4 that dataset
explanation depends on this ability.

Baseline: AutoPrompt AutoPrompt (Shin et al.,
2020) targets the objective posed in Eq. (1) us-
ing a gradient-based local search. AutoPrompt
searches for ŝ following the gradients of the ob-
jective Eq. (1) with respect to individual tokens in

2The accuracy is normalized for each task using softmax
in order to visualize the effect of differing prompts.

3For details on each model, see Table A4.

33

Combine the numbers

Compute the output

Combine the numbers

Sum in order

Combine the numbers

Combine the arguments

Sum all inputs

Sum the numbers

(ii) Reranking

Sum the numbers

(i) Proposal

In: 3 1 Out: 4

In: 4 7 Out: 11

In: 5 9 Out: 14

Prompt: Sum in order

Return the output

Compute the output

In: 5 5 Out: 10

In: 9 3 Out: 12

In: 1 8 Out: 9

Prompt:

Combine the numbers

Sum all inputs

Sum the numbers

Combine the arguments

Combine the numbers

(iii) Iterate with exploration

Figure 3: Overview of iPrompt. iPrompt first proposes
candidate prompts, then ranks them based on their per-
formance as a prompt, then truncates and regenerates
them. This entire process is repeated until performance
stops improving.

ŝ. It discretely changes individual words in ŝ and
then checks whether or not the newly updated ŝ
improves the objective score. The use of gradients
allows AutoPrompt to find an effective prompt ŝ,
but makes it difficult to find answers that satisfy
the fluency constraint S.

Baseline: Zero-shot suffix decoding LLMs
themselves can be directly used to predict
prompt strings. Following Honovich et al.,
we give the model a prompt string which
contains data examples (e.g. In: 2 5︸ ︷︷ ︸

xi

Out: 7.︸ ︷︷ ︸
yi

To compute the output from the input,︸ ︷︷ ︸
template

,) and

sample the output to recover a prompt ŝ using
nucleus sampling.4

Proposed method: interpretable autoprompt-
ing iPrompt (Fig. 3) is an iterative local search
algorithm that alternates between three steps: (i)
proposing candidate prompts, (ii) reranking candi-
date prompts, (iii) exploration.
(i) Proposal: Candidate prompts are generated by
extending the zero-shot LLM generation. Given
a data instance as a prefix, we sample a number
of candidate prompts. The maximum length of

4We also consider averaging the model’s output logits
across all examples in the dataset before decoding the out-
put, but find that it does not improve performance (see Ap-
pendix A.4).

each candidate is pre-specified and fixed. For ex-
ample, in the add-two-numbers task (Fig. 3), we
may generate four candidates: {Combine the num-
bers, Return the output, Sum in order, Compute the
output}.

(ii) Reranking: Given candidates, the objective
Eq. (1) is evaluated for each candidate prompt s.
The top few candidates which maximize the objec-
tive are kept, e.g. narrowing down the candidates
to {Combine the numbers, Sum in order}.

(iii) Iterate with exploration: Each of the top
candidates from reranking is truncated at a random
position. These truncated candidates are used as a
prefix when generating new candidate prompts via
suffix decoding. For example, we may randomly
select the start of the previous candidates and fill
in the endings: {Combine the , Sum } →
{Combine the numbers, Combine both arguments,
Sum the numbers, Sum all inputs}.

The algorithm is repeated until identifying a suit-
ably strong ŝ, e.g. Sum the numbers. Steps (i) and
(iii) ensure that prompts remain fluent, while step
(ii) improves the score of the prompts on the ob-
jective. Computationally, iPrompt only requires
running inference on the pre-trained LLM, yield-
ing a significantly lower memory requirement than
methods such as AutoPrompt which require access
to the LLM’s gradients.

4 Experimental Setup

We consider two sets of experiments. First in Sec. 5,
we explore iPrompt’s ability to rediscover a correct
and fluent prompt on the variety of simple instruc-
tion datasets (Table 1, top) with known answers.
Experiments test the ability of the model to recover
a known prompt while also remaining fluent in a
way that generalize to human readers and to other
language models. In Sec. 6 we apply iPrompt to
scientific datasets (Table 1, bottom).

Language Models For the main set of experi-
ments, we always generate prompts using GPT-J, a
6 billion parameter model (Wang and Komatsuzaki,
2021). We restrict prompts to {6,12} tokens for
sentiment classification and 6 tokens for the re-
maining data collections in Table 1. For generaliza-
tion experiments, alternative models are tested with
the generated prompts including OPT and GPT-
3 (Zhang et al., 2022; Brown et al., 2020). See
Appendix A.4 for a full discussion of experimental
details and Appendix A.3 for experiments on more

34

Table 2: Performance for dataset explanation. Dataset
from Table 1 (1-3). Accuracy measured via (1) Human-
evaluation (H, normalized %), (2) Mean Reciprocal
Rank across the collection (M) and (3) 1-best correct-
ness (C, %). For all metrics, higher is better.

iPrompt AutoPrompt Suffix
H / M / C H / M / C H / M / C

Math 60 / 0.69 / 60 25 / 0.14 / 13 20 / 0.08 / 03
ANLI 56 / 0.41 / 37 21 / 0.07 / 07 25 / 0.06 / 01
Induction 42 / 0.35 / 28 21 / 0.09 / 08 23 / 0.04 / 01

models (e.g. Galactica (Taylor et al., 2022)) and
more datasets.

Evaluation metrics Our main evaluation mea-
sures each prompt’s closeness to groundtruth via
three metrics: (1) Correct – whether the gener-
ated explanation contains one of a set of problem-
specific keywords. (2) MRR – Mean reciprocal
rank measuring the rank of the first task-correct
prompt. Given a set of datasetsD = {D1, ...,DN},
we compute: MRR = 1

|D|
∑|D|

i=1
1

ranki
, where ranki

is the one-indexed rank of the first correct expla-
nation. (3) Human – The human evaluation scores
between the top-generated explanation and a pre-
specified groundtruth explanation, when instructed
“You are given a groundtruth description along with
a generated one. On a scale of 1 (worst) to 5 (best),
how interpretable and accurate is the generated de-
scription?”5. The mean human evaluation score
(ranging from 1 to 5) is normalized.

As a secondary evaluation, we measure general-
ization ability when we evaluate explanations based
on accuracy as a prompt for other models. Accu-
racy is computed following (Brown et al., 2020;
Raffel et al., 2020): using exact matching with
beam search, a beam width of 4, and a length
penalty of α = 0.6.

5 Results and Analysis

5.1 Dataset explanation recovery

Table 2 compares prompting methods across three
diverse data collections. The Human evaluation
scores are much higher for iPrompt than the base-
lines, suggesting that it finds prompts which are
both accurate and human-interpretable. Similarly,
the MRR and Correct scores show that iPrompt con-
siderably improves in finding accurate explanations.
See all generated explanations in Appendix A.3.

5Human evaluation scores are averaged over 4 PhD stu-
dents in machine learning not affiliated with the study.

0 20 40 60 80 100
Model accuracy with correct prompt

0.0

0.2

0.4

0.6

0.8

1.0

Pr
om

pt
 R

ec
ov

er
y

(M
RR

)

Math
ANLI

Figure 4: Comparison of model accuracy with correct
prompt and iPrompt ability to find the correct prompt
across each individual task (single-task MRR). Prompt
recovery ability is dependent on the model’s ability to
perform the task.

Table 3: Generalization accuracy (zero-shot) with the
prompts generated with GPT-J as the LLM across dif-
ferent models.

Correct
Prompt iPrompt Auto

Prompt
No

prompt

GPT-J 6.7B* 54.0 51.5 41.6 16.3

M
at

h OPT 6.7B 12.7 19.3 18.9 8.4
GPT 20B 76.1 54.4 23.2 8.5
GPT-3 175B 76.0 62.1 40.8 28.4

GPT-J 6.7B* 9.0 4.7 1.9 2.0

A
N

L
I

OPT 6.7B 10.7 6.7 4.7 7.9
GPT 20B 31.0 14.2 5.6 4.0
GPT-3 175B 37.6 11.7 2.7 7.7

To assess the best-case absolute accuracy of the
approach, we note it is impossible for the approach
to recover the prompt if the underlying LLM can-
not solve the task. Fig. 4 plots the prompt recovery
performance (MRR) against the underlying LLM’s
accuracy (when using the groundtruth prompt) for
each dataset. When the model can solve the task,
iPrompt does well on recovery. However for many
tasks the model has low accuracy even with the cor-
rect prompt, putting a ceiling on the performance
of iPrompt.

5.2 Generalization accuracy of prompts

The generalization accuracy of generated prompts
across different LLMs can inform how well a
prompt captures an underlying pattern in the data.
Table 3 shows the generalization accuracy when
testing the prompts generated using GPT-J (Table 4)
on different LLMs. The prompts maintain effec-
tiveness across most models. For the Math datasets,
the iPrompt prompts elicit improvement over the
baselines and approach the accuracy of the cor-
rect prompt. For the ANLI datasets, all prompts

35

induce poor performance. Notably, the gap be-
tween iPrompt and AutoPrompt is larger for larger
models (i.e. GPT 20B and GPT-3); this suggests
that, by generating fluent prompts, iPrompt gen-
erates more generalizable descriptions. Similarly,
iPrompt shows strong results on sentiment analy-
sis datasets across a variety of models including
GPT-3 (see Appendix A.1).

Table 4 shows the top-ranked explanation gener-
ated by each method for selected datasets. iPrompt
often finds an explanation that is indicative of the
underlying relationship, even if the phrasing is not
perfect. For example, for the add two numbers
dataset, it finds Create a function named ‘sum. The
prompts found by iPrompt also read as fairly fluent
strings compared to AutoPrompt, which produces
an incoherent set of tokens.

5.3 Model ablations

We run ablation experiments to analyze the three
steps of iPrompt: (1) Proposal, (2) Reranking, and
(3) Iteration. We use the Math and ANLI datasets
and run on a maximum of 5000 data points using 5
shots in context for prompt generation.

(1) Proposals are partially guided by examples.
During the proposal stage, iPrompt prefixes poten-
tial prompts with dataset examples. Table 5 con-
siders variants of this stage that remove input and
output examples during the proposal stage. Note
that the system still has access to the full examples
during the reranking stage. We find that the system
can achieve decent performance on Math simply by
iterating. However for ANLI, the model needs to
at least see the inputs/outputs during the proposal
in order to find accurate prompts.

(2) Reranking zero-shot recovers better
prompts. iPrompt uses zero-shot accuracy to rank
prompts. As we have examples of the task, we
could instead use in-context few-shot prompting
for ranking. Prior work suggests that prompt word-
ing is less influential as the number of in-context
examples increases (Webson and Pavlick, 2021).
Table 5 shows that using these examples in-context
for reranking does, in fact, considerably hamper
prompt recovery. We further find that the LLM
used for reranking is more important than the LLM
used for proposals (see Appendix Fig. A3).

(3) Iteration improves performance Finally, Ta-
ble 5 shows that without multiple iterations, perfor-
mance drops nearly to zero (Fig. A2 shows more
details on loss as a function of iterations).

6 Scientific investigations with iPrompt

We now investigate whether iPrompt can explain
patterns in scientific datasets. Specifically, we ana-
lyze the Galactica model (Taylor et al., 2022) with
6.7 billion parameters. We query whether it can de-
scribe differences in protein sequence before inves-
tigating a neuroscience problem; see Appendix A.5
for similar experiments in a chemical toxicity set-
ting.

Differentiating protein sequences We investi-
gate whether iPrompt can explain the differences
between two groups of proteins. We use protein
sequences and keywords from Swiss-Prot (Bairoch
and Boeckmann, 1991) (a high-quality subset of
Uniprot (Consortium, 2015)) to construct two
datasets: each dataset contains two groups of pro-
teins, which are differentiated based on their key-
words.6 The first dataset, which we call Cyto,
has proteins with either the keyword Cytoplasm
or Membrane. The second dataset, which we call
Binding, has proteins with either the keyword RNA-
binding or ATP-binding. Each group is randomly
downsampled to 100 proteins and iPrompt is run
with the same hyperparameters as when finding
chemical compounds.

We make this problem more challenging by feed-
ing the model the raw protein sequence (not the
protein name) which ranges from hundreds to thou-
sands of amino acids. Each input is presented with
the following text: Here is a protein sequence:\n
[Protein Sequence]\n Answer: followed by Yes for
a one group and No for the other. Table 6 shows re-
sults for identifying whether the elicited prompt
contains one of the relevant keywords for each
dataset (e.g. Cytoplasm). Despite the difficult in-
put format, the correct keywords are successfully
identified for both the Cyto and Binding datasets
better than for the Baseline (which again contains
empty inputs).

Scientific investigation into an fMRI natural lan-
guage dataset We now explore using iPrompt
in a simple neuroscience experiment. A central
challenge in neuroscience is understanding how
and where semantic concepts are represented in the
brain. A recent seminal study (Huth et al., 2016)
explores this question by investigating where dif-
ferent natural language categories are represented
in the human neocortex. Specifically, the authors

6We search for reasonably popular but non-cooccuring
keywords in the proteins; see details in Fig. A5

36

Table 4: Examples of generated explanations by iPrompt and AutoPrompt. See all prompts in Appendix A.3.

Human-written prompt iPrompt AutoPrompt

M
at

h Return the sum of the inputs Create a function named ‘sum >:Returns Adding togetherFont accomplish
Return the square of the input Input number and return its square Cal impl qApplySquare fiat
Differentiate between prime/non-prime integers Are these pairs of integers prime ropheospels&& Norestricted

A
N

L
I

Differentiate vegetarian/non-vegetarian foods Are you a vegetarian? compliedthe whether methamphetamine provided comp
Differentiate the subject in a sentence based on
gender

Predict the gender (F = < endoftext > -> M Fundamental FG Fav

Return a synonym what is a synonym for Word termOn English meanings
Translate english to spanish please write English meaning in Spanish the ththebb volunt
Return a country’s capital city Which city is the capital and Ang Suppose AUTHthe beh Assassins

Table 5: Algorithmic ablations for each stage of iPrompt.
Gives prompt recovery (MRR) achieved by ablating
each stage. Averaged over 3 random seeds.

MRR
Math ANLI

iPrompt 0.557 0.278

(1) Proposal w/o inputs+outputs 0.400 0.015
w/o inputs 0.463 0.244
w/o outputs 0.539 0.255

(2) Reranking w/ in-context examples 0.071 0.152

(3) Iteration No iteration 0.075 0.050

Table 6: iPrompt performance at differentiating protein
sequences. For both the Cyto and Binding datasets, the
correct keywords are succesfully identified better than
for the Baseline. Results are averaged over 12 random
seeds; error bars are standard error of the mean.

iPrompt
(Cyto)

iPrompt
(Binding) Baseline

MRR 0.2 ± 0.08 0.08 ± 0.04 0.03 ± 0.01
Recall @ 5 0.25 ± 0.13 0.17 ± 0.11 0.05 ± 0.05
Recall @ 20 0.83 ± 0.11 0.33 ± 0.14 0.23 ± 0.09

collect functional MRI (fMRI) responses as human
subjects listen to hours of narrative stories. They
then build a predictive model of these responses
for each voxel (i.e. a small region in space) in the
brain, which takes as input the words contained in
the stories (and other features). To interpret these
individual voxel models, they cluster the words in
the narrative stories into 12 groups and manually
annotate them, resulting in 12 categories, such as
tactile, visual, and professional. Finally, they view
the spatial mapping of these 12 concepts (projected
onto low dimensions) across the brain using their
individual voxel models.

We revisit a small piece of this study’s analy-
sis through the lens of iPrompt. Specifically, we
ask whether iPrompt could generate plausible cat-

egories that are well-represented across the brain
but differ from the manually identified 12. We
fit a predictive model for each voxel, following
the pipeline of the original study (details in Ap-
pendix A.8). We then use the resulting models to
identify a list of the top-15 words which most ex-
cite each voxel. For example, the top-15 words that
excite the best-predicted voxel are: sheet, edges,
diameter, strips, cardboard, copper, steel, colored,
coloured, leaf, wire, cap, paper, shaped, tin. To
identify a plausible semantic category, we construct
a template string as follows: The following list of
words all belong to the same semantic category:

\n\n sheet, edges, ..., shaped, tin. We then use
iPrompt (again with a GPT-6B parameter model)
to generate a category by filling in the blank (re-
stricted to a single token). To make iPrompt more
effective, for each voxel we use iPrompt on a set
of examples consisting of 15 permutations of the
top-15 words, allowing finding patterns that are not
overly sensitive to the word-ordering.

Given the top categories for each voxel, we ana-
lyze the mapping of recurring categories across the
neocortex. We aggregate the top-15 inferred cate-
gories7 over the top-15 best-predicted voxels and
find that the most frequently inferred categories are:
material, color, surface, text, & fabric.
Interestingly, these are sensible quantities that dif-
ferent voxels could reasonably be selective for. We
spatially map each of these identified categories
(e.g. material) across the 10,000 best-predicted
voxels by using the LLM in a second way. For
each voxel, we condition the LLM (again GPT-6B)
on the top-15 words list, and evaluate the predicted
probability for each category, i.e. The following
list of words all belong to the same semantic cat-
egory: sheet, edges, ..., shaped, tin The semantic
category they all belong to, in one word, is . The

7We apply stemming and remove stopwords before choos-
ing the best categories.

37

0 10

1

Material

Color

Figure 5: Representations of the iPrompt-elicited con-
cepts material (blue) and color (red) across the sur-
face of the neocortex are spatially clustered and smooth.
Only the top 10,000 best-predicted voxels are shown, re-
maining voxels are shown in black. Only the right hemi-
sphere is shown (see both hemispheres, which show
consistent smoothness in Fig. A6).

higher this predicted probability, the more selective
we infer that a voxel is for the category. Fig. 5
shows these predicted probabilities for the top-two
inferred categories (material and color) across the
cortex of a human subject.

While there is no groundtruth for this seman-
tic map, one noteworthy feature of the resulting
map is that it is spatially smooth (quantitatively,
Fig. A8 shows that the variance of the map among
neighboring pixels is significantly lower than we
would expect by shuffling the map’s values). This
is non-trivial, as nowhere in the modeling process
was spatial information incorporated: each voxel
was modeled independently and the displayed pre-
diction was queried independently. We expect the
underlying map to be smooth, both due to local
connectivity in brain regions and also because the
BOLD signal measured by fMRI does not have
perfect spatial resolution. Thus, the fact that our
inferred map is smooth suggests that (i) something
about these categories is genuinely captured by
the representation in the human brain, and (ii) that
the iPrompt approach was able to reflect at least
some of it. Beyond the two categories shown, the
five categories generated by iPrompt exhibit spatial
smoothness across the neocortex (Fig. A8).

7 Conclusion and Discussion

iPrompt makes a meaningful step towards finding
natural language prompts that are both accurate and
human-interpretable. We show this method can
be used to recover dataset descriptions, produce
transferable prompts, and provide explanations for
experimental data. One future direction could elicit
targeted information from data via the use of a
template. For example, one may use iPrompt to ex-
tract feature importance by prepending the learned
prompt with the string “To get the answer from
the inputs, the most important inputs are ”. As
another example, in a scientific study such as the
fMRI study in Sec. 6, a scientist interested in a
particular topic (e.g. fear) may investigate that par-
ticular topic by making a more specific template
(e.g. How are these words related to the concept of

“fear”?).
While we focus on text, iPrompt could be ap-

plied generally settings where an LLM performs
well. For example, in computer vision, an inter-
pretable autoprompt may look like a mask of an
image, and in vision-language models, an inter-
pretable prompt may be a description of a vision
task, e.g. find the largest shape in this image.

References
Douglas Adriano Augusto and Helio JC Barbosa. 2000. Sym-

bolic regression via genetic programming. In Proceedings.
Vol. 1. Sixth Brazilian Symposium on Neural Networks,
pages 173–178. IEEE.

Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Albert Web-
son, Colin Raffel, Nihal V Nayak, Abheesht Sharma, Tae-
woon Kim, M Saiful Bari, Thibault Fevry, et al. 2022.
Promptsource: An integrated development environment
and repository for natural language prompts. arXiv preprint
arXiv:2202.01279.

Amos Bairoch and Brigitte Boeckmann. 1991. The swiss-
prot protein sequence data bank. Nucleic acids research,
19(Suppl):2247.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony,
Leo Gao, Laurence Golding, Horace He, Connor Leahy,
Kyle McDonell, Jason Phang, et al. 2022. Gpt-neox-20b:
An open-source autoregressive language model. arXiv
preprint arXiv:2204.06745.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella
Biderman. 2021. GPT-Neo: Large Scale Autoregressive
Language Modeling with Mesh-Tensorflow. If you use this
software, please cite it using these metadata.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020.
Language models are few-shot learners. Advances in neu-
ral information processing systems, 33:1877–1901.

38

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language explanations.
Advances in Neural Information Processing Systems, 31.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa
Dehghani, Siddhartha Brahma, Albert Webson, Shixi-
ang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra,
Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob De-
vlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. 2022. Scaling instruction-finetuned language models.

Alexis Conneau, German Kruszewski, Guillaume Lample,
Loïc Barrault, and Marco Baroni. 2018. What you can
cram into a single vector: Probing sentence embeddings
for linguistic properties. arXiv preprint arXiv:1805.01070.

UniProt Consortium. 2015. Uniprot: a hub for protein infor-
mation. Nucleic acids research, 43(D1):D204–D212.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang,
Han Guo, Tianmin Shu, Meng Song, Eric P Xing, and
Zhiting Hu. 2022. Rlprompt: Optimizing discrete text
prompts with reinforcement learning. arXiv preprint
arXiv:2205.12548.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805.

James S Gao, Alexander G Huth, Mark D Lescroart, and
Jack L Gallant. 2015. Pycortex: an interactive surface
visualizer for fmri. Frontiers in neuroinformatics, page 23.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017.
Program synthesis. Foundations and Trends® in Program-
ming Languages, 4(1-2):1–119.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and Maosong
Sun. 2021. Ptr: Prompt tuning with rules for text classifica-
tion. arXiv preprint arXiv:2105.11259.

David J Hand. 2007. Principles of data mining. Drug safety,
30(7):621–622.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff
Donahue, Bernt Schiele, and Trevor Darrell. 2016. Gen-
erating visual explanations. In European conference on
computer vision, pages 3–19. Springer.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degeneration.
arXiv preprint arXiv:1904.09751.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer
Levy. 2022. Instruction induction: From few examples
to natural language task descriptions. arXiv preprint
arXiv:2205.10782.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Juanzi Li, and Maosong Sun. 2021. Knowl-
edgeable prompt-tuning: Incorporating knowledge into
prompt verbalizer for text classification. arXiv preprint
arXiv:2108.02035.

Alexander G Huth, Wendy A De Heer, Thomas L Griffiths,
Frédéric E Theunissen, and Jack L Gallant. 2016. Natural
speech reveals the semantic maps that tile human cerebral
cortex. Nature, 532(7600):453–458.

Wojciech Kryściński, Nitish Shirish Keskar, Bryan McCann,
Caiming Xiong, and Richard Socher. 2019. Neural text
summarization: A critical evaluation. arXiv preprint
arXiv:1908.08960.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan
Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al.
2022. Solving quantitative reasoning problems with lan-
guage models. arXiv preprint arXiv:2206.14858.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Opti-
mizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190.

Frederick Liu and Besim Avci. 2019. Incorporating pri-
ors with feature attribution on text classification. arXiv
preprint arXiv:1906.08286.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. 2021a. Pre-train,
prompt, and predict: A systematic survey of prompting
methods in natural language processing. arXiv preprint
arXiv:2107.13586.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhi-
fang Sui. 2018. Table-to-text generation by structure-aware
seq2seq learning. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie
Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt understands,
too. arXiv preprint arXiv:2103.10385.

Robert Logan IV, Ivana Balazevic, Eric Wallace, Fabio Petroni,
Sameer Singh, and Sebastian Riedel. 2022. Cutting down
on prompts and parameters: Simple few-shot learning
with language models. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2824–2835,
Dublin, Ireland. Association for Computational Linguis-
tics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and
Pontus Stenetorp. 2022. Fantastically ordered prompts and
where to find them: Overcoming few-shot prompt order
sensitivity. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 8086–8098, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave,
Jordan M Prutkin, Bala Nair, Ronit Katz, Jonathan Himmel-
farb, Nisha Bansal, and Su-In Lee. 2019. Explainable ai
for trees: From local explanations to global understanding.
arXiv preprint arXiv:1905.04610.

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala.
2014. Good debt or bad debt: Detecting semantic orien-
tations in economic texts. Journal of the Association for
Information Science and Technology, 65.

Zohar Manna and Richard Waldinger. 1980. A deductive
approach to program synthesis. ACM Transactions on
Programming Languages and Systems (TOPLAS), 2(1):90–
121.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Be-
linkov. 2022. Locating and editing factual knowledge in
gpt. arXiv preprint arXiv:2202.05262.

39

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter,
Ludwig Schubert, Katherine Ye, and Alexander Mordvint-
sev. 2018. The building blocks of interpretability. Distill,
3(3):e10.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class
relationships for sentiment categorization with respect to
rating scales. In Proceedings of the ACL.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebas-
tian Riedel. 2019. Language models as knowledge bases?
arXiv preprint arXiv:1909.01066.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning
transferable visual models from natural language supervi-
sion. In International Conference on Machine Learning,
pages 8748–8763. PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. 2019. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Pe-
ter J Liu, et al. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach.
Learn. Res., 21(140):1–67.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. Why should i trust you?: Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1135–1144. ACM.

Ann M Richard, Ruili Huang, Suramya Waidyanatha, Paul
Shinn, Bradley J Collins, Inthirany Thillainadarajah,
Christopher M Grulke, Antony J Williams, Ryan R Lougee,
Richard S Judson, et al. 2020. The tox21 10k com-
pound library: collaborative chemistry advancing toxicol-
ogy. Chemical Research in Toxicology, 34(2):189–216.

Mobashir Sadat and Cornelia Caragea. 2022. Scinli: A corpus
for natural language inference on scientific text. arXiv
preprint arXiv:2203.06728.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach,
Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud
Stiegler, Teven Le Scao, Arun Raja, et al. 2021. Multitask
prompted training enables zero-shot task generalization.
arXiv preprint arXiv:2110.08207.

Michael Schmidt and Hod Lipson. 2009. Distilling free-
form natural laws from experimental data. science,
324(5923):81–85.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina
Kauf, Eghbal A Hosseini, Nancy Kanwisher, Joshua B
Tenenbaum, and Evelina Fedorenko. 2021. The neural
architecture of language: Integrative modeling converges
on predictive processing. Proceedings of the National
Academy of Sciences, 118(45):e2105646118.

Lei Sha, Oana-Maria Camburu, and Thomas Lukasiewicz.
2021. Learning from the best: Rationalizing predictions
by adversarial information calibration. In AAAI, pages
13771–13779.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wal-
lace, and Sameer Singh. 2020. Autoprompt: Eliciting
knowledge from language models with automatically gen-
erated prompts. arXiv preprint arXiv:2010.15980.

Chandan Singh, W James Murdoch, and Bin Yu. 2019. Hierar-
chical interpretations for neural network predictions. Inter-
national Conference on Learning Representations, page 26.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Ng, and Christopher Potts.
2013. Recursive deep models for semantic composition-
ality over a sentiment treebank. In Proceedings of the
2013 conference on empirical methods in natural language
processing, pages 1631–1642.

Hendrik Strobelt, Albert Webson, Victor Sanh, Benjamin
Hoover, Johanna Beyer, Hanspeter Pfister, and Alexan-
der M Rush. 2022. Interactive and visual prompt engineer-
ing for ad-hoc task adaptation with large language models.
arXiv preprint arXiv:2208.07852.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew Poul-
ton, Viktor Kerkez, and Robert Stojnic. 2022. Galac-
tica: A large language model for science. arXiv preprint
arXiv:2211.09085.

Michael Tsang, Dehua Cheng, and Yan Liu. 2017. Detecting
statistical interactions from neural network weights. arXiv
preprint arXiv:1705.04977.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6
Billion Parameter Autoregressive Language Model. https:
//github.com/kingoflolz/mesh-transformer-jax.

Xingqiao Wang, Xiaowei Xu, Weida Tong, Ruth Roberts,
and Zhichao Liu. 2021. Inferbert: a transformer-based
causal inference framework for enhancing pharmacovigi-
lance. Frontiers in Artificial Intelligence, 4:659622.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi,
Yeganeh Kordi, et al. 2022. Benchmarking generalization
via in-context instructions on 1,600+ language tasks. arXiv.

Albert Webson and Ellie Pavlick. 2021. Do prompt-based
models really understand the meaning of their prompts?
arXiv preprint arXiv:2109.01247.

Omar Zaidan and Jason Eisner. 2008. Modeling annotators:
A generative approach to learning from annotator ratio-
nales. In Proceedings of the 2008 conference on Empirical
methods in natural language processing, pages 31–40.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona
Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt: Open
pre-trained transformer language models. arXiv preprint
arXiv:2205.01068.

Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. 2021.
Adapting language models for zero-shot learning by meta-
tuning on dataset and prompt collections. arXiv preprint
arXiv:2104.04670.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jacob Steinhardt.
2022. Describing differences between text distributions
with natural language. In International Conference on
Machine Learning, pages 27099–27116. PMLR.

40

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran
Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. 2022.
Large language models are human-level prompt engineers.
arXiv preprint arXiv:2211.01910.

41

A Appendix

A.1 Sentiment classification results

For sentiment evaluation, we learn a prompt within the template Input: “${input}”{prompt}.8 We use
positive and negative as positive and negative labels and require the LLM to rank the two options. Human-
written prompts are adapted to this template from open-source prompts available through PromptSource
(Bach et al., 2022).

Table A1 shows results on the sentiment analysis datasets. As prompts for GPT-J, iPrompt outperforms
not only AutoPrompt, but also the manually-written prompt on all four datasets. Interestingly, the average
performance of human-written prompts on GPT-J is very low, unlike the prompts generated by iPrompt.
This indicates that models at 6B parameter scale may be brittle to the choice of prompt, even among a
set of reasonable options, and iPrompt (and to an extent, AutoPrompt) is able to discover how to phrase
prompts so that models of this scale can complete the task.

When sentiment prompt generalization is tested on GPT-3, we find that iPrompt prompts outper-
form human-written prompts on two of the four datasets. When tested on GPT-3, iPrompt prompt To
summarize this review! : outperforms all PromptSource IMDB prompts that use the same verbalizer
(positive/negative). When its prompts are tested on GPT-3, baseline AutoPrompt only slightly outperforms
testing with no prompt at all.

Table A2 shows the best prompt produced by each method for each sentiment dataset. iPrompt often
learns to recreate significant examples from the dataset, as a prompt. Fig. A1 shows loss across training
step for each method and dataset, across three random seeds. We see that AutoPrompt often finds a
prompt with slightly lower loss on the training data, although its prompts lead to worse generalization, as
reported in Table A1. Each training step represents a single word swap (in the case of AutoPrompt) or the
truncation and generation of a new prefix (in the case of iPrompt).

Different from the other experiments in this paper, for sentiment classification, we initialize AutoPrompt
with random tokens instead of all the, as we find AutoPrompt fails to find an effective solution for longer
prefix lengths when all tokens are initialized to the. To accommodate for a complex input-output
relationship, we test prompts of length 12 as well as length 6.

Accuracy is measured on the test set when available; otherwise, it is measured on a held-out 25% of the
train set.

Table A2: Best-of-three prompts generated by each method on sentiment classification datasets. (Human-written
prompts are best-of-eight and taken from PromptSource (Bach et al., 2022)).

Task Method Prompt

Financial phrasebank

AutoPrompt Fur resultolandgroundur augmented
Human-written prompt How does the author of the news headline feel?
iPrompt <input> neutral> The result was due to: "

IMDB

AutoPrompt uclear cend Koretravel NAACP curses SicAstings production received
Human-written prompt The movie review in negative/positive sentiment is:
iPrompt This movie needs to be put up on my profile as my

Rotten Tomatoes

AutoPrompt Whether{{ anotherath<|endoftext|> how
Human-written prompt What sentiment does the writer express for the movie?
iPrompt what words would you try to add to help you express that

SST-2

AutoPrompt BryceSpecificallyWASHINGTONRatedam
Human-written prompt What is the sentiment expressed in this text?
iPrompt It is clear from the sentence that all three actors have something

8In initial experiments, we find that performance drops significantly when learning a prompt that comes before the input.

42

Table A1: Zero-shot accuracy on sentiment classification datasets: SST-2, Rotten Tomatoes, IMDB, and the
Financial Phrasebank (Socher et al., 2013; Malo et al., 2014; Pang and Lee, 2005). Generation with GPT-J 6B and
evaluation on both on the original GPT-J model and GPT-3 (text-davinci-002). Errors are standard errors of the
mean.

Human-
written iPrompt AutoPrompt No

prompt

G
PT

-J

FFB 27.0 ± 1.9 79.3 ± 2.1 74.0 ± 9.1 47.5
RT 58.9 ± 3.1 84.8 ± 0.9 73.0 ± 4.8 59.2
SST-2 58.4 ± 2.8 86.7 ± 1.0 76.7 ± 3.9 60.9
IMDB 66.0 ± 3.2 87.9 ± 1.4 86.7 ± 1.2 58.6

G
PT

-3

FFB 39.6 ± 1.6 57.2 ± 6.9 28.2 ± 3.1 39.1
RT 82.7 ± 3.3 77.4 ± 2.8 57.8 ± 3.5 54.8
SST-2 90.5 ± 3.9 82.4 ± 2.3 61.8 ± 7.0 58.4
IMDB 75.6 ± 3.3 86.6 ± 1.1 70.0 ± 6.5 66.2

0 50 100 150 200 250 300

0.35

0.40

0.45

0.50

0.55

0.60

ffb_train

0 50 100 150 200 250 300
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

imdb_train

0 50 100 150 200 250 300

0.35

0.40

0.45

0.50

0.55

0.60

rt_train

0 50 100 150 200 250 300
Number of iterations

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

NL
L

iPrompt Loss
iprompt
autoprompt

Figure A1: Loss plots for methods across sentiment analysis datasets, showing AutoPrompt and iPrompt across
three random seeds.

43

A.2 Data/model details

Table A3: Details for each dataset. For details on Instruction induction, see (Honovich et al., 2022) and for details
on Distribution differences, see (Zhong et al., 2021).

Task name Samples Description Example

fibonacci_one 10 Given an input x, return the xth fibonacci number. Given the input x is 8, the output f(x) is 21.\n\n
double_one 10 Given an input x, return 2*x. Given the input x is 6, the output f(x) is 12.\n\n
exp_one 10 Exponentiate the input to get the output. Given the input x is 8, the output f(x) is 2980.96.\n\n
square_one 10 Square the input to get the output. Given the input x is 2, the output f(x) is 4.\n\n
first_two 100 Return the first of the inputs. Given the input numbers 7 and 8, the answer is 7.\n\n
add_two 100 Return the sum of the inputs. Given the input numbers 9 and 7, the answer is 16.\n\n
subtract_two 100 Return the difference of the inputs. Given the input numbers 5 and 4, the answer is 1.\n\n
divide_two 100 Return the quotient of the inputs. Given the input numbers 2 and 7, the answer is 2/7.\n\n
multiply_two 100 Return the product of the inputs. Given the input numbers 3 and 3, the answer is 9.\n\n
max_two 100 Return the maximum of the inputs. Given the input numbers 1 and 1, the answer is 1.\n\n
task1191_food_veg_nonveg 101 Return whether the input food dish is vegetarian (yes or

no).
Input: Haq Maas Answer: no\n

task1149_item_check_edible 119 Return whether the input item is edible (yes or no). Input: vase Answer: no\n
task1146_country_capital 231 In this task, you are given a country name and you need

to return the capital city of the given country
Input: Saint Pierre and Miquelon Answer: Saint-Pierre\n

task1147_country_currency 232 You are given a country name and you need to return the
currency of the given country.

Input: Senegal Answer: CFA Franc BCEAO\n

task1509_evalution_antonyms 551 In this task, you are given an adjective, and your job is to
generate its antonym. An antonym of a word is a word
opposite in meaning to it.

Input: paper Answer: scissor\n

task183_rhyme_generation 999 Given an input word generate a word that rhymes exactly
with the input word. If not rhyme is found return "No"

Input: think Answer: sync\n

task107_splash_question_to_sql 2031 In this task you are expected to write an SQL query that
will return the data asked for in the question. An SQL
query works by selecting data from a table where certain
conditions apply. A table contains columns where every
row in that table must have a value for each column. Every
table has a primary key that uniquely identifies each row,
usually an id. To choose which columns are returned you
specify that after the "SELECT" statement. Next, you use
a "FROM" statement to specify what tables you want to
select the data from. When you specify a table you can
rename it with the "AS" statement. You can reference
that table by whatever name follows the "AS" statement.
If you want to select data from multiple tables you need
to use the "JOIN" statement. This will join the tables
together by pairing a row in one table with every row in
the other table (Cartesian Product). To limit the number
of rows returned you should use the "ON" statement. This
will only return rows where the condition...

Input: What are the order ids and customer ids for or-
ders that have been Cancelled, sorted by their order dates?
Answer: SELECT order_id , customer_id FROM cus-
tomer_orders WHERE order_status_code = "Cancelled"
ORDER BY order_date\n

task088_identify_typo_verification 6499 The given sentence contains a typo which could be one
of the following four types: (1) swapped letters of a word
e.g. ’niec’ is a typo of the word ’nice’. (2) missing letter
in a word e.g. ’nic’ is a typo of the word ’nice’. (3) extra
letter in a word e.g. ’nicce’ is a typo of the word ’nice’.
(4) replaced letter in a word e.g ’nicr’ is a typo of the word
’nice’. You need to identify the typo in the given sentence.
To do this, answer with the word containing the typo.

Input: A laege display of apples, pears, and oranges An-
swer: laege\n

task1336_gender_classifier 6500 Return the gender of the person in the input sentence. Input: Justin made me feel discouraged. Answer: M\n
task092_check_prime_classification 6500 In this task, you need to output ’Yes’ if the given number is

a prime number otherwise output ’No’. A ’prime number’
is a a whole number above 1 that can not be made by
multiplying other whole numbers.

Input: 9319 Answer: Yes\n

Table A4: Models analyzed here.

Model name Huggingface identifier Citation

GPT-2 (1.5B) gpt2-xl (Radford et al., 2019)
OPT (2.7B) facebook/opt-2.7b (Zhang et al., 2022)
GPT-Neo (2.7B) EleutherAI/gpt-neo-2.7B (Black et al., 2021)
Flan-T5 (3B) google/flan-t5-xl (Chung et al., 2022)
GPT-J (6B) EleutherAI/gpt-j-6B (Wang and Komatsuzaki, 2021)
OPT (6.7B) facebook/opt-6.7b (Zhang et al., 2022)
Galactica (6.7B) facebook/galactica-6.7b (Taylor et al., 2022)
GPT-Neo (20B) EleutherAI/gpt-neox-20b (Black et al., 2022)
GPT-3 (175B) text-davinci-002 (OpenAI API) (Radford et al., 2021)

44

A.3 iPrompt results extended

We consider discriminators of varying sizes, with GPT-J (6B) as a prompt generator. We also compare
generators of varying sizes with GPT-J (6B) as a prompt discriminator. Models considered are of
{125M, 1.3B, 2.7B, 6B} parameters from the GPT-Neo/GPT-J language model family. Results are
shown in Fig. A3. Performance varies smoothly across model sizes, with the highest performance when
using the largest model for both reranking and generation. Reranking appears slightly more important
than generation. When using a 1.3B parameter model for generation, MRR drops only slightly, from
0.418 to 0.399, while when using a 1.3B parameter model for reranking, MRR drops to 0.211. In general,
prompt recovery performance improves smoothly with reranking model size.

Fig. A2 plots the progress of iPrompt across iterations, comparing runs on Math datasets (blue) to runs
on ANLI datasets (gray). iPrompt appears to make most of its progress during the first 20% of training and
then continue to slowly decrease the average loss. Running for more iterations on additional datapoints
would likely increase performance.

0 50 100 150 200 250 300
Number of iterations

4.0

4.5

5.0

5.5

6.0

NL
L

iPrompt Loss
Math
ANLI

Figure A2: iPrompt performance across training, averaged across three random seeds and all tasks from Math
datasets (Blue) and ANLI (Gray).

12
5M 1.
3B

2.
7B 6B

Generation Model Params

125M

1.3B

2.7B

6BRe
ra

nk
in

g
M

od
el

 P
ar

am
s

MRR

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure A3: iPrompt performance across different size language models for the prompt proposal and reranking steps.
Values are mean reciprocal rank of first accepted prompt averaged across 20 tasks and 3 random seeds.

45

Table A5: Performance of Galactica at prompt recovery, including DD datasets (Zhong et al., 2022, 2021).

iPrompt AutoPrompt Suffix

MRR

Math 0.2 0.09 0.025
ANLI 0.39 0.0025 0.085
Induction 0.14 0.098 0.056
DD 0.064 0.0082 0.066

Correct

Math 0.12 0.075 0
ANLI 0.34 0 0.025
Induction 0.071 0.087 0.02
DD 0.043 0 0.052

BLEU-Top Prompt

Math 0.0073 0 0
ANLI 0.01 0 0.00032
Induction 0.022 0 0.0027
DD 0 0 0.0015

46

Table A6: Examples of top-generated prompts for each method: GPT-J main datasets.

autoprompt iprompt suff

active to passive (= 18 the the subst Choose a pronoun for each sentence Create a sentence or group of

add two >:Returns Adding togetherFont accomplish Create a function named `sum n>2 m1

antonyms the bectheBut But The noun to its opposite (The code to ascend. You

cause and effect REG Kinect virginity developed mosquit The What would each sentence be if write programs that read through an

common concept ???????? parted configuredthe ???????? Find a noun that includes all which is a common word used

diff ""Fair 62 disgust 92 81 Find the difference between largest Write a program or function to

divide two soughtWomen surgicalthe Percentage treated "Divide each digit by write a program or function who

double one says transit Farethe doubles dollars Write a function called double_ Given two function pointer A and

exp one &&wl +# 123 270 Earthquake Input this into your calculator (Type in number between 15 &

fibonacci one baptpi produce347).'' Implement a function to find Fib Given an integer n (1

first two Binding decode wr detect shortest numeric Find first digit of given number When was Python added to Ubuntu

first word letter Exception Ps< endoftext >the the Make a program that reads in nimshul, a

informal to formal CLASSIFIEDthe themselves strongly Plays Chamber These are questions on simple sentences Make the following sentences positive statements

larger animal ????????thethethethethe What is the most common animal dogAnswer to "What's

letters list fluidsthethethethethe Given the following list of tokens The computer will make this document

max two spendingthethethethethe Implement a version of max() Write code to find out given

multiply two ruits="# multipl integer multiplied False 'How do you multiply a write a program or function who

negation performs antiv Sizethe NULL NULL I found these four mistakes below Your friends think that you

num to verbal irritatedthedd respectfully Protectivethe Output each number below in the The program outputs the first input

orthography starts with nextbusiness wordevery morphpp Name of two homophones You will be given five words

rhymes Steal batter dating: unfold testosterone Find the missing word for all Input [create] What

second word letter i mascot okay kk Who gave the answer "o the United states government outlawed

sentence similarity value %%%% Math 3 (5 marks). The Read five sentences about your topic

sentiment positively optimistic&&&& negative I'm voting "negative" Melvins at CBGB

singular to plural Enhanced shorthand Lets pluralbetweenthe Given a noun and its plural 1. It may be

square one Cal impl qApplySquare fiat Input number and return its square Write a program or function to

subtract two ignorethethethethethe Write a function to find difference Given a non-negative integer

sum Photosthethethethethe Add two numbers together and then The program outputs, without any

synonyms Word termOn English meanings what is a synonym for Is there a cure for an

task088 identify typo verifi-
cation

thethethethethe This word scramble is to test You wake up in the morning

task092 check prime classifi-
cation

ropheospels&& Norestricted Are these pairs of integers prime Print the input numbers in order

task107 splash question to
sql

How Do You Connect SQL To To get into MySQL you first

task1146 country capital Ang Suppose AUTHthe beh Assassins Which city is the capital and France, England or the UK

task1147 country currency aaaathecurrency Nib Sc Ireland. Which currency is spoken "I am working on a

task1149 item check edible no the870830 yes coffee and beans are fruits. Which one of the following is

task1191 food veg nonveg compliedthe whether methamphetamine provided comp Are you a vegetarian? It could be any food,

task1336 peixian equity eval-
uation corpus gender classi-
fier

< endoftext > -> M Fundamental FG Fav Predict the gender (F = ??????,???,

task1509 evalution antonyms contrad orously inverted ironically trans find words with the opposite meaning Record your input and answer,

task183 rhyme generation quarterdream dug}. Thro rhy Mind vs Glee! There what do you love to eat

taxonomy animal programmingQ errorsBefore admitting mont What are the most common animals Each of these questions is a

translation en-de H prob Hyper Forthe You are a lawyer practicing in This is an example of input

translation en-es the ththebb volunt please write English meaning in Spanish Porque?

translation en-fr IRthe< endoftext >thethe the What is the French word for Your code needs to deal with

word in context ("nSame distinguishedthethe Same and Not-Same - What you will do is have

47

Table A7: Examples of top-generated prompts for each method: GPT-J DD datasets (Zhong et al., 2022, 2021).

autoprompt iprompt suff

d3 0 line contains this string? No contains all 6 items, No

d3 1 Ghostbustersthe interrogation condition criminall sentence contains "yes" or string doesn't match any template

d3 10 preceded Roosevelt nonexistentuphem_-_ Tw message contains "no". No contains all of these words or

d3 11 caused senator prompt Recall interacted string contains "No" or was matched; output otherwise No

d3 12 begin:" r "},{" contradict tweet mentions yes is true or output false if

d3 13 },{" vote [*"]=> answer "no" (or contains all correct answers, No

d3 14 nonexistent undead questions Enhance mandated no string begins 'no' and string contains any non blank white

d3 15 rarely ----Question not},{" geometric string contains "no" or includes exactly two English words with

d3 16 \n pearthemar Display RUN text contains any "yes". text is true, otherwise write

d3 17 EMP Similarly\t=== charsthe is an answer ("no", contains all correct answers for this

d3 18 \n\n Verb horm suffix Eucl phrase starts with 'no', contains all correct answers else No

d3 19 \n."," Emacs strips colors strips word starts with 'yes', text contains any of these strings

d3 2 indirectly [[pervasive?"Spoiler exhaustive ends with "yes". If sentence has an "O"

d3 20 \n\n dips Vote flower Ainthe ted sentence contains both "yes contains one of these words or

d3 21 \nthePubLeft Abstract ends with 'no'. No contains all correct answers, or

d3 22 Nov wholesno Eucl NO can output no/yes, data set contains results for output

d3 23 vantage immediately recogn example nails 309 no else output none? Input contains data describing or referring to

d3 24 noBER nonosRew [datum defines finite number fields is in fact equal 2;

d3 25 withdrawalsnob inher nob Among contains both gene list data file has already started in state x

d3 26 Joined robberHigthe contradictionNarr line ends with a space, ted series matches any of these

d3 27 verseoleon:- inferred cannabinoids was positive answer and "No string of words, as shown

d3 28 \n repet999 REM=[nov refers exclusively (only literally or was a real question that could

d3 29 \n Pat uncertaintiesMerit oppos line begins with yes text meets any one or more

d3 3 \n\n887odynamHor mun\t ends with "yes" and statement reflects truth. Otherwise output

d3 30 detainees gap ${. hardness statement is false? Otherwise is an example from each category

d3 31 \n055 helium **** itching phrase does not contain any words given was false or not a

d3 32 Afghthethethe matches either one of these strings text is true, and write

d3 33 le \r 253 has a duplicate word. Correct contains yes

d3 34 the Carnegie allerg Qu the no,no for (1 was "The End" or

d3 35 Hatch Land pri poker[[Yah would be a no (I text can create a good argument

d3 36], egregbyte?Sensor matches exactly a "no". string meets any, or exactly

d3 37 noun441...? word first neg question has an answer "no string meets any, and write

d3 38 wond <+ HELP"},{"InvalidOtherwise says yes "yes" has an

d3 39 notnobbutthe but reads like no. answers "yes" for all

d3 4 \n\n 760 consensualNarr Fog cabbage sentence ends with "no". string was a valid answer otherwise

d3 40 modeXP/, \n but question contains an actual "no given was wrong or not relevant

d3 41 opinions universitythe began followingawaru sentence is grammatically correct, equals to zero (i.

d3 42 disqualified hemor Ratings [contradiction Moham phrase represents something that is actually has 1 out of 2 responses

d3 43 \n\n saturated Phot misc would be rightAnswer :no was about a government regulation (

d3 44 \n <[npm spaces1 was "no": Input was "yes" else false

d3 45 \n\n pit VerbFalse Tok string contains one "no". text starts with "OK",

d3 46 },{" Neil kingthe no when a string containing one contains this string! Yes,

d3 47 network intuitive 19 Lamp sentence implies that no can mean contains all digits, else No

d3 48 nond307 Literally negativeJun corpor conforms with known facts no ted number from user base 5

d3 49 Falsethe Rect 802 string contains "no" or contains all of these words,

d3 5 contradicts absurdity Luffythe neg answ string 'no' appears as is correct ; No otherwise

d3 50 ________________________ WithNo","hedon mentions "no" (or contains all correct items, No

d3 51 \n\n 276WithNo noodles Cosponsors reads "no" no else given was no; not output

d3 52 \n\n 225Should laure string was 'no' and string contains just one space.

d3 53 never_{ Johns neo no is all lower case answer 1 was what I described above!

d3 6 forbids Literally reminisNone negate text contains any "no" text contains Syrian

d3 7 },{"\r stringologically $\ git contains 'no' or output text contains yes

d3 8 unlikelyEitherselessletter Ches contradictory sentence contains 'no' or contains any newlines after matching

d3 9 reactive happensMiddle lot Inc matches any word (no is text meets any, or none

48

Table A8: Examples of top-generated prompts for each method: Galactica main datasets.

autoprompt iprompt suff

active to passive Transmission Electthe chromosome initialized empl 4-way Multiple Choice Is the context a good response

add two addthe Hyper addi In order to add two or Given three real-valued inputs

antonyms meet equilibration stiptertead asymmetry What is the opposite of each [T1] Question

cause and effect shaking Dthethethethe Find clues as to why each What do you think will happen

common concept Bary techntbltbltbl Te Where are all the animals? What' s the most common

diff quartic digits shorter recreational genomics Given two positive integers a and What's the most efficient

divide two manipulations comput iterationects quotients The ratio of two real or Given two different positive integers what

double one roll Add Pingthe brakingthe Determine how much money did Al What's it like to

exp one visc poplLSPLC Viscositythe Given a number y and an Find a formula for this linear

fibonacci one start Attstrass Prim Polynomial emotions \bigcirc m o Write a function that gives an

first two AICthethethe Adethe Solve using negative exponents? Explain We have found it helpful to

first word letter d rthe l c syllable What is the last word? the program {x.

informal to formal Why unpredictable comprobablyould Detecting Yes! However, since we Text-to-Text Data

larger animal sharkoganopeanionaller descri A question is given about three Is the pair of animals on

letters list microm phon te photothermal te te How many 8 letter words Given the following paragraph, indicate

max two $$amater Penet credible b How large was each of your Is that as simple or complex

multiply two aris visualthe Gibson multiplicative lexical When we multiply two even or What number divided by what other

negation brood he Apparent denselythe FIG What did these people have as This time we do two prompt

num to verbal Pixel lum sedimentary precedenceathion thousand P(data answer) Number pairs that are in the

orthography starts with criptions geochemistry Harvey preprocessed Kus Cap The correct verb after each input Why did they choose this strategy

rhymes hallucinations song cooperationcorner ask smear Which phrase did "sea My favorite food is a

second word letter oderraj dialectath u o What is the fourth letter Is the object in this image

sentence similarity false provleastleast Apparently I understand your definition correctly that Chinese No Vote and Euro

sentiment nominationnegative<unk>indolinivalentpolar What is the sentiment of a What do you think will happen

singular to plural mes sequthethethethe Find the pluralization of Do you have any good ways

square one AnalyticmassesAtomnamespace binning pow Determine how much money did Al What's it like to

subtract two ComplexRemthe scienti Event Given a variable called A whose Is that close to your actual

sum Horujanthethethethe I'm trying to solve Is the following number even?

synonyms straightforward conceptual Striking Etymology tra Can you think of a word [T1],

task088 identify typo verifi-
cation

Etymology nom scalesrolateral QMples What is the plural form? Other types Task Definition ::

task092 check prime classifi-
cation

Accept No source Inter question Q3_NoAnswerYes Are there any types of chemical

task107 splash question to
sql

Question answering Input #Name Is the following SQL clause equivalent

task1146 country capital Outer Hassan wal Tu Spontaneous Qu List the capital cities in each The country that _____

task1147 country currency Llthethestr the Find the most common currency in What currency was the first to

task1149 item check edible nonthethe Characterizing Nothe Why is no answer True or False, "

task1191 food veg nonveg gue axiomsepid Output yes Birk Are you a native speaker of In a world where the Supreme

task1336 peixian equity eval-
uation corpus gender classi-
fier

lineage Mthe knockdown Fthe What is the gender of Who is a good conversational partner

task1509 evalution antonyms Modern Carlson Weyl Linguistic counterfactual met Find the opposite of each given We can predict text from an

task183 rhyme generation stellarthethethe pl battle The 6-letter word We are given a dataset consisting

taxonomy animal duoull Pap codebook varic lysozyme When two objects collide and expl What's the most common

translation en-de shor Thanthe condens Intinte Test for spelling error in word Is the object of your activity

translation en-es trophic Description params oscthethe In Spanish, there are two cuatro con la frec

translation en-fr TT tic tgtthethe Disk Les champs du monde What can the words in bold

word in context " Tang samethe offOff Identify similar phrases based on given Does this sentence come from an

49

Table A9: Examples of top-generated prompts for each method: Galactica DD datasets (Zhong et al., 2022, 2021).

autoprompt iprompt suff

d3 0 Alloy ReeABL vetotitledthe satisfies sarcastic predicate; otherwise is sarcastic, otherwise ignore

d3 1 Cosm compositionallyind locom astro bfnm and output share 82 sentence describes or is related to

d3 10 onso Seman NichentiVALID paragraph does not contain any word says the answer is yes on

d3 11 enzo conspicuous Widespreadfeature cis orth mention e does not match any says that the United States president

d3 12 assert unco Nog antich DesignsFOR contained a negation phrase otherwise an says that someone arrives or de

d3 13 functionnoAns medi monos BAA text contains no keywords and none is valid, no otherwise.

d3 14 E PotassiumztheANASS the United Nations integrated multi contains the context word or response

d3 15 no Nons TRANS Trajectories Exclusionifying phrase is not a noun; example satisfies all rules, otherwise

d3 16 TiHas Gomes immigPropthe sentence contains the word no mentions the answer and @US

d3 17 spatiotemporal extragalactic conflicts forbidden data includes at least one Sem was true, and output false

d3 18 formulAns revisit transcri neither ends in no no contain any formals in it

d3 19 fatSPR Inhibitsickel nestedyes is valid.Answer: no text contains the word "

d3 2 propositional ScalarAsp Attacks train Rabin contain any of given words otherwise

d3 20 Sem adjunct DCT Eriks admissibleArg is prochoice no otherwise says something about abortion or human

d3 21 scatterflows vetoriz pen sentences contain both "no sentence includes sexual, gender identity

d3 22 yesoscopyGal martingale Yes epistemic no. For ``yes data satisfy certain conditions Otherwise No

d3 23 NoELO predictors SBATCHvect holds no otherwise [START_REF] Primordial Predictive Models are Interpretable on

d3 24 norist Investigating Nos tumorigenesis Bit term "noisy inputs follows the given probability density function

d3 25 nopins bil field ensembles Locus no output no yea Prom says that neutrinos have been observed

d3 26 NeuthePreftheDEthe sentence is a negation; an sentence includes "cutter

d3 27 no Conditional abstract definiteLD statement contains this word, and says that certain events have happened

d3 28 CIS raftriendrolimussubseteq data contains feminism, and says that are feminists

d3 29 noAns Semantic neitherHamiltonian dissoci text contains no, says something against women or gender

d3 3 nondec yes Census Tam Policies acyclic IS semst; else, says something against your religion on

d3 30 itasenta Assim allergic Fraser text contains answer=yes and data includes y and n,

d3 31 Strategy monitors Confl HaleFIELD Rhode data contains a negative sentiment, matches at least one of a

d3 32 Regulates term Cliff steer VER Saskatchewan mentions no and no sentence includes a pronoun that refers

d3 33 mut Congress SyntN weakhis text contains the phrase yes sentence includes a token for each

d3 34 yes<fragments> Kohn povertyyes Circular are based in movies. no says that Erik has his

d3 35 noon nonlocalakh no no s question contains YesNo words like movie was very good otherwise mark

d3 36 describes nomoduleno RevealsAs sentence does not contain a factor text includes any unanswerable

d3 37 penADOapineg autoclHAL phrase no appears only sentence has an answer. Otherwise

d3 38 noNoEnabl complementation BIT Polar question contains the phrase no, says that certain language has more

d3 39 Neuastro neur runaway suffixthe utterance contains this phrase no says something about your personality,

d3 4 MULT semilinear unarybuffer Gior fate sentence does not contain a modal meets any condition given in Sem

d3 40 outputs vigilance mK Unsupervised Status initial data contains no and no else correctly answers your question, otherwise

d3 41 answ neph Membership Bess decomp neurop equilibrium does not hold; no does not contain either of x

d3 42 Surveillance Semantics Obl Inhibits Hels MEL string isn't in English says that climate issues have worsened

d3 43 Ans yesArg Zika spar supports my belief no otherwise Input follows the context; Otherwise output

d3 44 wer: inducible affirm Abl reflex contain any formals words or

d3 45 ana1 ERGsentence loopsyless string does not occur in training question were "Is there

d3 46 GitHub Clevelandck negation RCC Microbial contains no fake or misn movie was released before year

d3 47 ful eth massoc bis NA debris affects doesnt have any says that we need your assistance

d3 48 \n Nons FernclassGridUHFFFAOYSA holds for all possible inputs no sentence includes a pronoun as well

d3 49 noNo Imper Creating noPan sentence contains no in matches answer which will give correct

d3 5 volat Salv Artificial economies fut Hale prompt is followed by no says that the output is a

d3 50 failedkin ResDesMM string does not contain any stop says that wight is decreasing

d3 51 bl Frederthe Novo phylogeneticthe for "is my child contains the context of your response

d3 52 onasnono domainsex Quanti phrase has the value no, sentence includes something that will lead

d3 53 onisenony anonh includes the words no output will contains at least two noun phrases

d3 6 Alle substrthe Edmund Hos forks answer no contains this word or is a valid response and vice

d3 7 Antithethethe Blakethe word is a negation of micro sentence includes all possible answers Prom

d3 8 Brand abolished affili attri Recon corresponds with prompt question no sentence is suitable Question for yes

d3 9 Bou counterex abstnougin literal question has answer no, output is correct but maybe not relevant

A.4 Experiment details / hyperparameters extended

Average-output suffix decoding LLMs themselves can be directly used to predict prompt strings.
We can give the model a prompt that includes examples such as the following context string:
In: 2 5︸ ︷︷ ︸

xi

Out: 7.︸ ︷︷ ︸
yi

To compute the output from the input,︸ ︷︷ ︸
template

, and sample the output for the blank to recover

a prompt ŝ. Sampling directly from f helps ensure that the generated explanation is fluent and seman-
tically meaningful. We decode the output using beam search to find the highest-probability outputs for

50

multi-token prompts.9 To improve on this approach, we place several examples into the model’s context,
and then average the model’s output logits across all the examples in the dataset before decoding the
output, an approach we refer to as average-suffix decoding. However, we find that average-suffix decoding
does not yield a performance improvement over straightforward decoding from a single sample with
examples in the context. For example, Fig. A4 shows that for the ANLI datasets, the mean reciprocal
rank for average-output sampling does not tend to be higher than for single-output sampling across two
different models.

M
R

R

GPT-Neo (2.7B) GPT-J (6.7B)

Figure A4: Average suffix sampling versus individual-example suffix sampling does not improve performance (for
ANLI datasets).

Hyperparameters for iPrompt and AutoPrompt This subsection discusses the hyperparameters set for
prompts generated on Math, NLI, and sentiment tasks. For Math and NLI tasks we considered prompts of
length 6 tokens; for sentiment we considered prompts of length 16. For all experiments with iPrompt we
consider 8 candidate explanations for each step and generate 4 new generations per candidate, for a total
of 32 candidates. For fair comparison, we consider 32 candidates per step for AutoPrompt. We generate
Math and NLI from 5, 000 training steps and Sentiment candidates from 10, 000 steps. We truncate
examples to a maximum of 128 tokens. We measure loss for re-ranking (used by both AutoPrompt and
iPrompt) using the LLM’s loss over the full space of output tokens, i.e. we do not restrict the vocabulary
to the space of label tokens for classification problems.

Details of iPrompt Here we explicate the details of iPrompt. At each step, we consider a fixed number
of mutations for each example in the population, as well as an additional number of random generations
to prevent the population from getting stuck in a local minimum. When we sample a new population, we
sample the best-performing prompts seen so far, as measured by a running average zero-shot loss. In
order to encourage diverse candidate prompts, sample a population such that each sample starts with a
different token. During preliminary experiments, we found that enforcing different starting tokens for
each candidate prompt helped promote more diverse and interpretable prefixes.

For generation, we sample directly from the LLM given the data concatenated with the string
nPrompt:. We sample with a temperature of 1 and do not use a sampling strategy like nucleus sampling.
For Math and NLI, we set the “repetition penalty” for generations to 2.0 to discourage copying from the
training set. For the sentiment experiment, we reduce the repetition penalty to 1.0.

Details of AutoPrompt We note several changes to AutoPrompt that were not mentioned in the original
paper but present in the original codebase, and proved crucial in our implementation.

First, if we compute the top-candidates over every position, the magnitude of the gradient will always
be highest at position 0, and thus AutoPrompt will prefer to make a swap at that position every time. To
fix this issue, at each training step, we randomly select a position of the token to edit and consider word
swaps only at that position.

Second, as described, AutoPrompt will always take one of the candidate substitutions, even when said
candidate does not improve the loss compared to the current prefix. Instead, we only make a substitution
if the candidate prefix loss is lower than the loss on the same batch computed with the current prefix.

9Here we prefer beam search here over alternatives such as nucleus sampling (Holtzman et al., 2019) as we are interested in
finding an accurate prompt description with as few samples as possible.

51

Table A10: iPrompt performance at recovering prompts for toxic chemical compounds. Tox21 results are averaged
over 12 datasets with 3 random seeds each. Null data is averaged over 36 random seeds. Error bars are standard
error of the mean.

iPrompt Baseline

MRR 0.83 ± 0.04 0.0
Top-prompt correctness 0.67 ± 0.08 0.0

Finally, unlike the AutoPrompt implementation found online, we allow AutoPrompt to select from any
token to substitute, including special tokens and non-English characters.

To make AutoPrompt compatible with ranking-based metrics, we store the losses for each candidate
ranked during training. At the end, we consider the “top prefix” to be the prefix with the lowest average
loss during training, that has been considered at least three times. This final consideration criteria prevents
candidates from the very end of training that only have a few loss estimates from being counted as the top
prefix.

A.5 Galactica experiment details

A.6 Chemical compound toxicity experiments

Toxic chemical compounds We first ask whether iPrompt can explain the difference between two
groups of chemical compounds with a known difference. We use the Tox21 dataset (Richard et al., 2020)
which contains toxicity measurements on 12 biological targets. For each of the 12 biological targets, we
search for a prompt that differentiates compounds that are toxic to the target (positive) from those which
are not toxic to any of the targets (negative). We use 100 positive/negative examples for each biological
target and format each input with the text Here is a compound:\n [Compound Name]\n Answer: followed
by Yes for a positive compound and No for a negative one. iPrompt is run for a single epoch with 5 shots
in each example.

Ideally, the elicited prompt would mention toxicity. Table A10 shows results for whether the elicited
prompts contain the substring tox, both in terms of MRR and top-prompt correctness. iPrompt often finds
an accurate prompt: one representative example is: Answer yes if the compound is toxic, and Otherwise
answer NO. To ensure that this substring is not simply a popular completion for the language model, we
compare against a baseline which runs iPrompt using Galactica proposals from empty inputs/outputs and
reranking with Galactica; over 36 random seeds, tox does not appear in any generated prompt.

52

A.7 Protein sequence experiments

Cy
to

pl
as

m

M
em

br
an

e

Tr
an

sm
em

br
an

e

Tr
an

sm
em

br
an

e
he

lix

Ce
ll

m
em

br
an

e

Tr
an

sp
or

t

RN
A-

bi
nd

in
g

Ri
bo

nu
cle

op
ro

te
in

Ri
bo

so
m

al
 p

ro
te

in

Hy
dr

ol
as

e

Ph
os

ph
op

ro
te

in

M
et

al
-b

in
di

ng

Tr
an

sf
er

as
e

Nu
cle

ot
id

e-
bi

nd
in

g

AT
P-

bi
nd

in
g

Cytoplasm

Membrane

Transmembrane

Transmembrane helix

Cell membrane

Transport

RNA-binding

Ribonucleoprotein

Ribosomal protein

Hydrolase

Phosphoprotein

Metal-binding

Transferase

Nucleotide-binding

ATP-binding

50000

100000

150000

Figure A5: Swiss-Prot (Bairoch and Boeckmann, 1991) protein keyword cooccurences. To construct the Cyto and
Binding datasets, we search for popular but non-cooccuring keywords.

A.8 fMRI experiment details

This section gives more details on the fMRI experiment analyzed in Sec. 6; for more scientific details
see the original study (Huth et al., 2016) and code (github.com/HuthLab/speechmodeltutorial). Sec. 6
analyzes data from one human subject in the original study, as the subject listened to approximately two
hours of narrative speech from the Moth Radio Hour, which consists of short autobiographical stories.
The subject underwent fMRI scanning as they listened, yielding an fMRI volume brain scan consisting of
tens of thousands of voxels roughly every two seconds.

The individual voxel models described in Sec. 6 are each fit to 3,737 training points, each corresponding
to a different time point (after accounting for various preprocessing steps, such as trimming the beginning
and end of the sequence). They are evaluated on 291 training volumes which come from a 10-minute
story that was not seen during draining.

Fig. A7 shows the generalization performance of the model for each voxel, measured by the correlation
between the predicted response and the measured response. Some regions are very poorly predicted
(black), but many voxels can be predicted quite well (bright).

53

0 10

1

Material

Color

Figure A6: Representations of the iPrompt-elicited concepts material (blue) and color (red) across the surface
of the neocortex are spatially clustered and smooth. Left hemisphere corresponds to Fig. 5. Only the top 10,000
best-predicted voxels are shown, remaining voxels are shown in black. Plotted with pycortex (Gao et al., 2015).

0.0 0.1 0.2 0.3 0.4 0.5

Figure A7: Generalization performance for individual-voxel models, measured by correlation between the prediction
and the measured response.

54

 material color fabric text surface
Concept

0.8

1.0

1.2

1.4

Va
ria

nc
e

be
tw

ee
n

ne
ig

hb
or

in
g

vo
xe

l s
co

re
s

Actual scores
Shuffled scores

Figure A8: Concepts are spatially localized in the brain maps: the variance between neighboring voxels is
considerably lower than would be expected from shuffling the voxel values. Note that we take care ot shuffle the
map values only within the 10,000 top-predicted voxels, ignoring the poorly predicted voxels. Error bars (within the
points) are standard errors of the mean.

55

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 56–64
December 7, 2023. ©2023 Association for Computational Linguistics

Probing Quantifier Comprehension in Large Language Models:
Another Example of Inverse Scaling

Akshat Gupta
AI Research, JPMorgan Chase∗

University of California at Berkeley
akshat.gupta@berkeley.edu

Abstract

With their increasing size, large language mod-
els (LLMs) are becoming increasingly good at
language understanding tasks. But even with
high performance on specific downstream task,
LLMs fail at simple linguistic tests for nega-
tion or quantifier understanding. Previous work
on quantifier understanding in LLMs show in-
verse scaling in understanding few-type quan-
tifiers. In this paper, we question the claims
of of previous work and show that it is a re-
sult of inappropriate testing methodology. We
also present alternate methods to measure quan-
tifier comprehension in LLMs and show that
LLMs are able to better understand the dif-
ference between the meaning of few-type and
most-type quantifiers as their size increases,
although they are not particularly good at it.
We also observe inverse scaling for most-type
quantifier understanding, which is contrary to
human psycho-linguistic experiments and pre-
vious work, where the model’s understanding
of most-type quantifier gets worse as the model
size increases. We do this evaluation on models
ranging from 125M-175B parameters, which
suggests that LLMs do not do as well as ex-
pected with quantifiers. We also discuss the
possible reasons for this and the relevance of
quantifier understanding in evaluating language
understanding in LLMs.

1 Introduction

Large Language Models (LLMs) are getting in-
creasingly better at understanding language (De-
vlin et al., 2018; Radford et al., 2019; Raffel et al.,
2020; Zhang et al., 2022; Ouyang et al., 2022; Tou-
vron et al., 2023) which can be seen by their im-
proving performance on various language under-
standing benchmarks (Wang et al., 2018, 2019).
Auto-regressive LLMs including encoder-decoder
models like BART (Lewis et al., 2019) and T5
(Raffel et al., 2020) and decoder-only models like

∗This work was done while at AI Research, JPMorgan.

GPT (Radford et al., 2018, 2019; Brown et al.,
2020; Zhang et al., 2022; Touvron et al., 2023) have
been scaled to billions of parameters to improve
their language understanding capabilities. With
increasing model sizes, the models also gets in-
creasingly better at learning from context and can
just be prompted with few examples rather than
fine-tuning to do downstream task (Brown et al.,
2020; Liu et al., 2023).

Even with this unprecedented yet implicit ev-
idence of increasing language understanding ca-
pability of LLMs, these models still fail simple
linguistic tests on understanding negation and quan-
tifiers (Jang et al., 2023; Kalouli et al., 2022;
Michaelov and Bergen, 2022). Understanding nega-
tion and quantifiers is challenging for language
models because the presence of a single negating or
quantifying word can drastically change the mean-
ing of the sentence. Also, such sentences are infre-
quently used in pre-training text corpora (Jiménez-
Zafra et al., 2020; Michaelov and Bergen, 2022),
which makes it hard for the models to account for
such situations. Due to this, actual comprehension
of negation or quantifier words is overpowered by
the larger context of the sentence, which makes it
challenging for language models to deal with these
situations.

We focus on one specific linguistic phenomenon,
which is the use of quantifiers. Quantifiers are
words that usually occur before a noun to express
the quantity of an object (Kalouli et al., 2022). The
presence of different quantifiers can make state-
ments semantically very different from each other.
It can be seen from the following example:

(Ex:1) All Ps are Qs =⇒ P ⊆ Q
No Ps are Qs =⇒ P ∩Q = ∅

In the above example, two different quantifiers
all and no when applied to the sets P and Q end up

56

Backbone Phrase Quantifier Typicality

postmen carry

M : Most postmen carry
(M, T) : Most postmen carry mail
(M, A) : Most postmen carry oil

F : Few postmen carry
(F, T) : Few postmen carry mail
(F, A) : Few postmen carry oil

M : Almost all postmen carry
(M, T) : Almost all postmen carry mail
(M, A) : Almost all postmen carry oil

F : Almost no postmen carry
(F, T) : Almost no postmen carry mail
(F, A) : Almost no postmen carry oil

Table 1: An example from the dataset used in this paper where a backbone phrase is modified by quantifiers and
followed by typical or atypical critical words.

in polar opposite meanings as can be seen on the
right side of respective equations. All Ps are Qs
means that all objects in the set P belong to the set
Q, whereas No Ps are Qs means that P and Q are
mutually exclusive sets. This minor distinction in
the sentence has a drastic effect on the relationship
between P and Q.

In this work, we aim to test and quantify the abil-
ity of LLMs to understand quantifiers and how this
understanding changes as the models scale. We
build upon the work of (Michaelov and Bergen,
2022), who test understanding and sensitivity of
LLMs for most-type and few-type quantifiers. They
do these tests on a dataset of 960 sentences cre-
ated using a previously published study on human
response (measured using N400 amplitude) to dif-
ferent quantifiers (Urbach and Kutas, 2010). They
find that while LLMs do increasingly well on un-
derstanding most-type quantifiers, while their un-
derstanding of few-type quantifiers diminishes as
the size of these language models increase. This is
an example of an inverse-scaling law (McKenzie
et al., 2022; Wei et al., 2022), where the model gets
worse at doing a task as the model size increases.
Inverse scaling laws are rare in natural language
processing and important to identify, yet they must
be cautiously evaluated (Wei et al., 2022).

In this paper, we first show that conclusions
about the inverse-scaling of few-type quantifier
comprehension in LLMs (Michaelov and Bergen,
2022) need to be revisited because of a possibly
faulty methodology, thus leading to a wrong conclu-
sion about inverse-scaling. We discuss the reasons
for this in detail later in the paper. We then propose
our own method of measuring quantifier compre-
hension in LLMs. We find that LLMs are able to
differentiate between sentences that contain most-
type versus few-type quantifiers quite well and this

understanding improves as the model size increases.
We measure this by quantitatively evaluating if the
models react differently for different types of quan-
tifiers. Although, when we evaluate if the model
takes into account the meaning of a quantifier, we
find that LLMs comprehend few-type quantifiers
much better than most-type quantifiers. We also
find that contrary to the results of (Michaelov and
Bergen, 2022), most-type quantifier comprehen-
sion gets worse with increasing model size, thus
showing an inverse-scaling law in most-type quan-
tifier comprehension. In this study, we evaluate a
number of different language model families, with
models ranging from a size of 125 million param-
eters to 175 billion parameters, and find that the
results are consistent for all LLMs.

2 Dataset and Models

The models and dataset used in this paper are iden-
tical to the ones used in (Michaelov and Bergen,
2022). This work uses the log probabilities pro-
duced by different language models to calculate a
quantity called surprisal, which is introduced later
in the paper. We do not make additional API calls
or query models. We simply use the log probabil-
ities released by (Michaelov and Bergen, 2022),
thus mitigating differences due to experimental
conditions. This paper aims to provide an alterna-
tive way of interpreting the output logits produced
by different LLMs compared to (Michaelov and
Bergen, 2022).

2.1 Dataset

We use the same dataset as used by (Michaelov
and Bergen, 2022) which originates from a set of
psycholinguistic experiments done on humans (Ur-
bach and Kutas, 2010). The dataset consists of 120
different backbone phrases, which are modified by

57

two sets of quantifier and completed by a typical
and an atypical continuing word. An example can
be seen in Table 1.

The backbone phrase shown in the example is
‘postmen carry’, which is modified by a most-type
and a few-type quantifier. Following (Michaelov
and Bergen, 2022), in this paper we study the ef-
fects of these two quantifiers and how LLMs in-
terpret them. Each backbone phrase is modified
by two most-type and two few-type modifiers. Af-
ter the quantifiers are used to modify the back-
bone phrases, if the language model takes into ac-
count the meaning of the word, it should be more
likely to produce a word with appropriate typicality.
Words that are more typically associated with the
backbone phrase are labelled typical (T). For exam-
ples, the phrase "postmen carry" is typically fol-
lowed by the word mail and not by the atypical (A)
word oil. We expect the language model to take
into account the quantifier when assigning prob-
abilities to the word following the quantifier-
modified phrase. Each backbone phrase modified
by a quantifier is tested to be followed by a typical
and an atypical word. The typical/atypical words
are also together referred to as critical words in
this paper.

The dataset contains a total of 960 sentences,
with 120 unique backbone phrases, with 8 modifi-
cations to each sentence as shown in Table 1. We
have 2 different quantifier types and two quantifiers
per quantifier type, thus making four versions of
each backbone phrase. Each quantifier-modified
backbone phrase is followed by a typical and atyp-
ical word, thus making 8 sentences per backbone
phrase.

These sentences were used to measure human
brain response to critical words in association with
the quantifier used (Urbach and Kutas, 2010). It
was found that humans brain signals produce a
spike when an atypical critical word is used with
the most-type quantifier. This spike in brain acti-
vation (called N400 signals) are associated with
unexpected events. Hence, these N400 spikes show
that the atypical critical words when following a
most-type quantifier were unexpected/incorrect. A
lower activation is seen when the most-type quan-
tifier is followed by a typical critical word. This
spike in the N400 signal can be explained by a
quantity called surprisal, which is the negative
log-probability of the occurence of a word in that
context. This means the less likely the word, the

higher the surprisal. It was shown in (Michaelov
and Bergen, 2020) that surprisal as measured in
language models explain these N400 spikes very
well, and that GPT-3 is the best single predictor
of these N400 spikes in humans (Michaelov et al.,
2023).

2.2 Models

To evaluate quantifier comprehension in LLMs,
we use five family of models. We use the GPT2
model family (125M-1.5B parameters) (Radford
et al., 2019), ElutherAI’s GPT models (GPT-Neo
125M, GPT-Neo 1.3B, GPT-Neo 2.7B and GPT-J
6B) (Black et al., 2022), the OPT model family
(125M - 13B parameters), the GPT-3 model family
(2B-175B parameters) and the InstructGPT model
family (Ouyang et al., 2022) called GPT3.5 in the
rest of the paper (2B-175B parameters).

3 Quantifier Comprehension in LLMs

In this section, we first present how (Michaelov
and Bergen, 2022) measure quantifier comprehen-
sion in LLMs. Specifically, we present two ideas
of surprisal and quantifier accuracy and ways to
measure both properties as proposed by (Michaelov
and Bergen, 2022). Alongside, we also highlight
shortcomings of these quantifier comprehension
evaluation methods.

3.1 Surprisal

As defined in section 2, surprisal is the negative
log-probability of occurrence of a word given a
context, as show below:

Sp(wi) = −log p(wi|w1, . . . , wi−1) (1)

where wi is the critical word under observation
and w1, . . . , wi−1 are the words preceding the crit-
ical word in a sentence. The underscore p in the
surprisal represents that this is the definition of sur-
prisal in prior work. (Michaelov and Bergen, 2022)
acknowledge that words in language models are
usually split into subwords. For scenarios when
this happens for a critical word, (Michaelov and
Bergen, 2022) suggest to sum up the suprisals of
each individual subwords. This essentially means
multiplying the probabilities of each subword that
makes up the critical word. The use of this defini-
tion of surprisal is suboptimal as it does not take
into account the effects of subword tokenization.

58

Previous work has shown that just summing up
subword probability results in skewing of probabil-
ity values towards words with shorter length, which
is why these quantities are normalized by length
(Brown et al., 2020). In our setting, this means the
critical words split into larger number of subwords
is likely to be assigned lower probability and thus
higher suprisal than critical words that are split into
fewer or no subwords. To normalize the effect of
subword length, we propose normalizing the sur-
prisal values by the subword length of the critical
word, depicted by N , following previous works
(Brown et al., 2020). Thus, we define surprisal as
shown below:

S(wi) = −
1

N

∑

∀vi ∈ {wi}
log p(vi|w1, . . . , wi−1)

(2)
where wi is the critical word split into a set of

N -subwords represented by the set {wi} and vi is
a subword that belongs to that set. Surprisal can
be understood as a term representing the inverse-
probability of occuring of a word in a context. If a
word has high probablity of occuring in a context,
it will have low surprisal, whereas if a word has
a low probablity of occuring in a context, it will
have high surprisal. In this work, we will use our
definition of surprisal.

3.2 Quantifier Accuracy

(Michaelov and Bergen, 2022) define quantifier
accuracy based on the surprisal values for the crit-
ical word following a quantifier type. The quan-
tifier accuracy test was motivated by the human
brain response experiments done in (Urbach and
Kutas, 2010). The aim of defining quantifier ac-
curacy was to measure if language models take
into account the meaning of quantifier words when
creating the probability distribution over for the
critical word. (Michaelov and Bergen, 2022) pro-
poses that if LLMs take into account the meaning
of quantifiers in a sentence, then the typical critical
words will be predicted with larger probability and
thus lower surprisal values following a most-type
quantifier, and the atypical critical word will be
predicted with larger probability and thus lower
surprisal value with a few-type quantifier .

To illustrate this, we refer to the examples shown
in Table 1. For the backbone prompt modified
by a most-type quantifier - "Most postmen carry",
an LLM is consider accurate if surprisal for the

word oil is more than surprisal of the word mail,
or in other words, p(mail |Most postmen carry) >
p(oil |Most postmen carry). To succinctly express
this, a sentence in the dataset is considered to be
most-type accurate if for a most-type quantifier
modified backbone phrase (MBP),

S(typ|MBP) < S(atyp|MBP) (3)

Similarly, for a backbone prompt mod-
ified by a few-type quantifier - "Few post-
men carry", an LLM is considered ac-
curate if p(oil | Few postmen carry) >
p(mail | Few postmen carry). This means
that the atypical word is more likely to occur
with the few-type quantifier. Thus, a sentence is
considered to be few-type accurate for a few-type
quantifier modified backbone phrase (FBP) if for
that phrase,

S(atyp|FBP) > S(typ|FBP) (4)

As proposed by (Michaelov and Bergen, 2022),
the most-type and few-type quantifier accuracy is
then calculated as the ratio of sentences following
the above equations for the respective quantifiers.
Figure 1 shows most-type and few-type accuracy
for different LLMs as a function of the number of
parameters in the model. We also see the inverse-
scaling of few-type quantifier understanding very
clearly. As shown by the plot, as the number of
parameters increase, the few-type quantifier com-
prehension gets worse. Figure 1 is created using
our normalized definition of surprisal taking into ac-
count the subword tokenization, and is thus slightly
different from the original paper.

3.2.1 What’s wrong with this way of defining
quantifier accuracy?

Quantifier accuracy as defined in equations 3 and 4
have a few drawbacks. The first is the assumption
that typicality of a word for humans is the same as
that for language models. A word deemed "typical"
for a backbone phrase would indeed be in the top
few words used by a human, but the same might
not be true for language models. To experimentally
confirm this, we analyse the output distribution
of generated words following a backbone phrase.
We find that the "typical" word in the dataset does
not even fall into the top-100 most likely words
following a backbone phrase for gpt-2 large. This

59

(a) Most-type accuracy as measured by (Michaelov
and Bergen, 2022) using equation 3.

(b) Few-type accuracy as measured by (Michaelov
and Bergen, 2022) using equation 3.

Figure 1: Quantifier accuracy as a function of model
parameters for different models as defined in (Michaelov
and Bergen, 2022).

is true for ALL of the sentences in the dataset. This
shows that the typical token for humans is not
necessarily typical for language models.

The second assumption is that the chosen atypi-
cal word in the dataset is the only complementary
word corresponding to the typical word. While the
"typical" word is the most common follow up word
for a given backbone phrase, we can have many
alternative "atypical" words to follow the backbone
phrase. For example, if we consider the phrase -
"Most postmen carry ", the atypical word oil is just
as atypical as the word fish. In fact, for GPT2-large,
fish has a larger surprisal value compared to oil,
which means according to GPT2-large, fish is more
atypical than oil and is thus a more ideal candidate
as an "atypical" word for comparison in equations
3 and 4. Just like the critical word fish, we can find
many atypical words that are just as atypical if not
more, than the chosen words in the dataset. This
means that if the given atypical word does not

(a) We calculate the Most-type accuracy without
the quantifier in the context. This just means
that we calculate the number of examples where
S(typ|BP) < S(atyp|BP). In other words, how
often is the typical word followed by the backbone
phrase. Note that the modifier is not present in the
context here.

(b) We calculate the Few-type accuracy without the
quantifier in the context. This just means that we
calculate the number of examples where the atypical
word is not followed by the backbone phrase, or
S(atyp|BP) > S(typ|BP).

Figure 2: Here we calculate the percentage of times the
typical words occurs with larger probability than the
atypical word in Figure 2a and vice versa in Figure 2b.
These are similar to the quantities calculated in Figure 1
without the quantifier present in the context.

satisfy the equations 3 and 4, there might still ex-
ist an unknown number of other atypical words
that might be able to satisfy this criteria. These
reasons renders the accuracy metric as defined by
(Michaelov and Bergen, 2022) incorrect.

3.2.2 What do these scaling graphs actually
measure?

Finally, we want to explain what the scaling in
Figure 1 and (Michaelov and Bergen, 2022) ac-
tually depicts. To see this, we want to refer the
reader to Figure 2, which shows the accuracy met-
ric as defined in equations 3 and 4 for a critical
word following a backbone phrase without the

60

Figure 3: This figure shows that large language models
get increasingly better at differentiating between most-
type quantifiers and few-type quantifiers as they scale.

quantifier. This means that Figure 2a measures
the count when S(typ|BP) < S(atyp|BP), or
how often is the typical word followed by the
backbone phrase. Similarly, figure 2b measures
S(atyp|BP) > S(typ|BP), or how often the atyp-
ical word is not followed by the backbone phrase.

The scaling in Figure 2 looks almost identical to
Figure 1. This indicates that the method defined by
(Michaelov and Bergen, 2022) to measure the effect
of quantifier is not even accounting for the presence
of the quantifier, and we end up just measuring
how often the typical word is more probable
than the atypical word. Thus, the method pro-
posed to evaluate quantifier comprehension using
equation 3 and 4 in (Michaelov and Bergen, 2022)
is not actually measuring quantifier comprehension,
it is measuring typicality.

In fact, what these scaling plots show is that as
the size of the model increase, the typical words in
LLMs get more probable and the atypical words
get less probable. This essentially means that the
model is getting better at understanding language
as typically used by humans, and is able to asso-
ciate the typical word in a given context with larger
probability than the atypical words.

4 Proposed Evaluation of Quantifier
Comprehension in LLMs

In this section, we present a more robust way
of measuring quantifier comprehension in LLMs.
Measuring quantifier comprehension in LLMs in
the setting defined by (Michaelov and Bergen,
2022) has to be grounded in the principle that the
typical and atypical words chosen in the dataset
are not unique, and hence to measure the effect
of presence of quantifier in a context, we should

do measurements on the same critical word. We
propose two tests do this.

4.1 EXPERIMENT-1 : Differentiating
Between Different Types of Quantifiers

In this section, we check if the models are able to
differentiate between the meanings of two types of
quantifiers and react appropriately. To check this,
we fix a critical word (either typical or atypical),
and change the quantifier and see how the surprisal
value of the critical word is affected. We expect that
when we have a typical critical word, the few-type
quantifier should lead to a higher surprisal value or
make the typical word less probable. For example,
for the phrase "Most/Few postmen carry mail", the
surprisal for the word mail should be more when
accompanied by a few-type quantifier than when
compared to a most-type quantifier. Similarly, for
an atypical word, surprisal values for most-type
quantifiers should be larger than when observed
with few-type quantifiers. In summary, an LLM is
able to differentiate between two types of quanti-
fiers if for a critical word, one of the following is
true depending on the type of critical word under
observation:

S(typ|MBP) < S(typ|FBP) (5)

S(atyp|MBP) > S(atyp|FBP) (6)

The results of Experiment-1 are shown in Fig-
ure 3. We see that LLMs get increasingly better
at differentiating between the two types of quanti-
fiers and are able to adapt their output probability
distribution at the critical word to reflect this under-
standing. This improvement of quantifier compre-
hension scales with increasing model size just like
other capabilities of LLMs. Although the absolute
value of quantifier accuracy peaks only at about
61% for the 175 billion parameter GPT-3 model,
which shows that for a majority of sentences, the
meaning of the quantifier is not reflected in the
output probability distribution at the critical word.
This shows that although LLMs are getting better
at understanding quantifiers as they scale, they are
far from perfect.

4.2 EXPERIMENT-2: Measuring
Quantifier-Specific Accuracy

Here we want to measure how good LLMs are at
understanding a specific quantifier. To measure
this, we compare how the surprisal of a critical

61

word is affected as we add a quantifier in the con-
text. When we add most-type quantifiers, the sur-
prisal should decrease for a typical word whereas
it should increase for an atypical word. In other
words, a sentence is accurate for most-type quanti-
fier comprehension if:

S(typ|MBP) < S(typ|BP) (7)

S(atyp|MBP) > S(atyp|BP) (8)

Here, MBP is a most-type quantifier modified
backbone phrase, such as "Most postmen carry"
and BP is just a backbone phrase without modifier,
such as "Postmen carry". Similarly, for few-type
quantifiers, the surprisal should decrease for atyp-
ical critical words and increase for typical words.
Specifically, sentence is considered accurate for a
few-type quantifier comprehension if:

S(typ|FBP) > S(typ|BP) (9)

S(atyp|FBP) < S(atyp|BP) (10)

Figure 4 shows the quantifier-specific compre-
hension ability of models as defined in equations
7-10. Although section 4.1 showed that models are
able to differentiate between most-type and few-
type quantifiers, we see in Figure 4 that they don’t
necessarily incorporate the meaning of quantifiers
when quantifiers are added to a sentence. We see
that LLMs become increasingly better at incorpo-
rating the meaning few-type quantifiers as model
size increases by changing the relative probabil-
ity values of the critical words given the change in
context. But this is not observed in the case of most-
type quantifiers, where we find that the models get
increasingly worse at taking into account quantifier
meaning, thus showing an inverse-scaling in most-
type quantifier comprehension. This shows that
the model gets increasingly worse at understand-
ing most-type quantifier as the size of the model
increases.

Note that in this work, to calculate suprisal,
we never compare two different critical words as
can be seen in equations 5-10. This circumvents
any affects due to subword tokenization and the
non-uniqueness of the chosen critical words in the
dataset. All the comparisons are made with respect
to a single critical word.

(a) Most-type accuracy as defined in equations 7-8

(b) Few-type accuracy as defined in equations 9-10

Figure 4: Quantifier specific accuracy as defined in
equations 7-10.

5 Discussion

The above two tests for evaluating quantifier com-
prehension in LLMs show that these models are
far from perfect. The underlying premise of the
method used in this paper and (Michaelov and
Bergen, 2022) is that the presence of a quantifier
should increase or decrease the probability of a crit-
ical word depending on its typicality (Michaelov
and Bergen, 2022). But both tests described in
section 4 show that this is not ubiquitously ob-
served. The accuracy numbers for both tests are
around 50-60%, which means that the probability
distributions do not incorporate quantifier meaning
for a large majority of sentences. A test like this
makes a fundamental assumption that understand-
ing of meaning can be measured by studying the
relative ranking of tokens in the generated word
logit. While this is a fair assumption, we think it is
necessary to explicitly point this out

Incorporating quantifier meaning in this way
is not a necessary condition for models to per-
form well, as can be seen by their consistent im-
provement across different benchmark (Wang et al.,

62

2018, 2019; Brown et al., 2020; Touvron et al.,
2023). Also, it has been shown in previous studies
that humans are not that great at quantifier com-
prehension as well (Urbach and Kutas, 2010), and
continue to have a preference towards the more typ-
ical word in a context irrespective of the quantifier.
These observations suggest two things. Firstly, that
LLMs are not good at quantifier comprehension.
Secondly, we also observe this lack of sensitivity
to quantifier meaning in humans. This combined
with the fact that despite lack of quantifier compre-
hension, LLMs get increasingly better at language
understanding, we can argue that quantifier com-
prehension is not as necessary of a task in language
processing and understanding as we thought it was.

6 Related Work

Inverse scaling laws were introduced as a competi-
tion (McKenzie et al., 2022) to incentivize research
towards finding scenarios where language models
get worse as their size increases. As the field of
NLP moves towards scaling models to larger and
larger sizes, it is important to know the scenarios
where this scaling becomes detrimental (Wei et al.,
2022; McKenzie et al., 2023).

As language models get increasingly better,
some common linguistic tests that they are put
through revolve around understanding negation and
quantifiers. Studying the affects of negation has
been the subject of focus for many studies (Kass-
ner and Schütze, 2019; Kalouli et al., 2022; Et-
tinger, 2020) for different encoder-based masked
language models. These studies find that these lan-
guage models are not sensitive to negations. Stud-
ies on quantifiers (Kalouli et al., 2022) also seem to
show similar results for masked language models.
(Michaelov and Bergen, 2022) was the first work to
study the quantifier understanding in decoder-based
LLMs.

7 Conclusion

In this paper, we conduct a study to evaluate how
well large language models understand quantifiers.
Specifically, we study two types of quantifiers -
most-type and few-type quantifiers. We present a
set of experiments to evaluate quantifier compre-
hension of large language models and show that
these models are able to differentiate between most-
type and few-type quantifiers as they scale. We also
show that LLMs struggle incorporate the meaning
of most-type quantifier comprehension when com-

pared to few-type quantifiers. We also show that
most-type quantifier comprehension demonstrates
an inverse-scaling law and their understanding of
most-type quantifiers get worse as the model size
increases. This study indicates that LLMs do not
take into account the meaning of quantifiers that
strongly, as shown by low accuracy scores in Fig-
ures 3 and 4. Even so, these models get increas-
ingly better at language understanding tasks, thus
indicating that quantifier understanding might not
be the best test to evaluate language understanding
in LLMs.

Acknowledgements

This paper was prepared for informational pur-
poses in part by the Artificial Intelligence Research
Group of JPMorgan Chase & Co and its affiliates
(“J.P. Morgan”) and is not a product of the Research
Department of J.P. Morgan. J.P. Morgan makes no
representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy,
or reliability of the information contained herein.
This document is not intended as investment re-
search or investment advice, or a recommendation,
offer, or solicitation for the purchase or sale of any
security, financial instrument, financial product, or
service, or to be used in any way for evaluating
the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdic-
tion or to any person if such solicitation under such
jurisdiction or to such person would be unlawful.

© 2023 JPMorgan Chase & Co. All rights re-
served.

References
Sid Black, Stella Biderman, Eric Hallahan, Quentin

Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-

63

guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Joel Jang, Seonghyeon Ye, and Minjoon Seo. 2023. Can
large language models truly understand prompts?
a case study with negated prompts. In Transfer
Learning for Natural Language Processing Work-
shop, pages 52–62. PMLR.

Salud María Jiménez-Zafra, Roser Morante, M Teresa
Martín-Valdivia, and L Alfonso Urena Lopez. 2020.
Corpora annotated with negation: An overview. Com-
putational Linguistics, 46(1):1–52.

Aikaterini-Lida Kalouli, Rita Sevastjanova, Christin
Beck, and Maribel Romero. 2022. Negation, coor-
dination, and quantifiers in contextualized language
models. arXiv preprint arXiv:2209.07836.

Nora Kassner and Hinrich Schütze. 2019. Negated
and misprimed probes for pretrained language mod-
els: Birds can talk, but cannot fly. arXiv preprint
arXiv:1911.03343.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Ian McKenzie, Alexander Lyzhov, Alicia Parrish,
Ameya Prabhu, Aaron Mueller, Najoung Kim, Sam
Bowman, and Ethan Perez. 2022. The inverse scaling
prize.

Ian R McKenzie, Alexander Lyzhov, Michael Pieler,
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu,
et al. 2023. Inverse scaling: When bigger isn’t better.
arXiv preprint arXiv:2306.09479.

James A Michaelov, Megan D Bardolph, Cyma K
Van Petten, Benjamin K Bergen, and Seana Coul-
son. 2023. Strong prediction: Language model sur-
prisal explains multiple n400 effects. Neurobiology
of Language, pages 1–71.

James A Michaelov and Benjamin K Bergen. 2020.
How well does surprisal explain n400 amplitude un-
der different experimental conditions? arXiv preprint
arXiv:2010.04844.

James A Michaelov and Benjamin K Bergen. 2022.
’rarely’a problem? language models exhibit inverse
scaling in their predictions following’few’-type quan-
tifiers. arXiv preprint arXiv:2212.08700.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Thomas P Urbach and Marta Kutas. 2010. Quantifiers
more or less quantify on-line: Erp evidence for partial
incremental interpretation. Journal of Memory and
Language, 63(2):158–179.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Jason Wei, Yi Tay, and Quoc V Le. 2022. In-
verse scaling can become u-shaped. arXiv preprint
arXiv:2211.02011.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

64

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 65–75
December 7, 2023. ©2023 Association for Computational Linguistics

Disentangling the Linguistic Competence of Privacy-Preserving BERT

Stefan Arnold, Nils Kemmerzell and Annika Schreiner
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lange Gasse 20, 90403 Nürnberg, Germany
(stefan.st.arnold, nils.kemmerzell, annika.schreiner)@fau.de

Abstract
Differential Privacy (DP) has been tailored to
address the unique challenges of text-to-text pri-
vatization. However, text-to-text privatization
is known for degrading the performance of lan-
guage models when trained on perturbed text.
Employing a series of interpretation techniques
on the internal representations extracted from
BERT trained on perturbed pre-text, we intend to
disentangle at the linguistic level the distortion
induced by differential privacy. Experimental
results from a representational similarity analy-
sis indicate that the overall similarity of internal
representations is substantially reduced. Using
probing tasks to unpack this dissimilarity, we
find evidence that text-to-text privatization af-
fects the linguistic competence across several
formalisms, encoding localized properties of
words while falling short at encoding the con-
textual relationships between spans of words.

1 Introduction

Language Models (LM) (Devlin et al., 2018; Rad-
ford et al., 2018) are among the most successful
applications of machine learning and applied in a
diverse range of tasks such as classification, trans-
lation, summarization, and question answering.

However, concerns were raised that LMs (Carlini
et al., 2019; Pan et al., 2020) in general and their
embedding layers (Song and Raghunathan, 2020;
Thomas et al., 2020) in particular memorize and
disclose personally identifiable information.

To mitigate the risk of information leakage due
to unintended memorization, Differential Privacy
(DP) (Dwork et al., 2006) has been integrated into
machine learning (Abadi et al., 2016) and LMs
(McCann et al., 2017; Shi et al., 2022). DP formal-
izes privacy through a notion of indistinguishability
which is accomplished by injecting additive noise.

While early adaptations of DP into LMs were
applied to gradient updates (McMahan et al., 2017),
there is a shift towards applying DP on raw text
(Fernandes et al., 2019; Feyisetan et al., 2020; Qu

et al., 2021) in the form of text-to-text privatization.
This technique aims to provide plausible deniability
(Bindschaedler et al., 2017) by perturbing words in
a way that conceals authors and content.

Qu et al. (2021) applied text-to-text privatization
to BERT (Devlin et al., 2018) and explored tech-
niques for privacy-adaptive pre-training (e.g., pre-
dicting a set of perturbed tokens for each masked
position) and privacy-constrained fine-tuning. We
complement this research direction by borrowing
from range of techniques for model introspection
to identify and localize the layer-wise alterations
caused by perturbed text on internal representations
and associate these with the retention and destruc-
tion of linguistic competence.

Drawing on a representational similarity analysis
(Kriegeskorte et al., 2008), we measure a substan-
tial dissimilarity between internal representations
obtained from different privacy modalities. To con-
nect this dissimilarity with linguistic formalisms,
we conduct a series of probing tasks (Adi et al.,
2016; Tenney et al., 2019b; Hewitt and Manning,
2019). By contrasting the probing accuracies for
recovering a range of twelve linguistic formalisms,
we uncover that linguistic formalisms relying on
localized properties endure the perturbations intro-
duced by text-to-text privatization while properties
that require context information are less resilient.

Since internal representations of LMs are formed
by an attention mechanism (Vaswani et al., 2017),
we further investigate the distribution of attention
patterns. By clustering the attention maps (Clark
et al., 2019), we uncover that text-to-text privatiza-
tion amplifies redundancy (Kovaleva et al., 2019).

2 Preliminaries

2.1 Language Models

Language Models (LMs) convert sentences com-
posed of variable-length sequences of discrete to-
kens, such as characters, subwords, or words, into

65

fixed-length continuous embeddings.
The introduction of the Transformer architecture

(Vaswani et al., 2017) and variants based solely on
a encoder (Devlin et al., 2018) or decoder (Radford
et al., 2019) rapidly replaced recurrent architec-
tures (Peters et al., 2018a). By relying entirely on
a self-attention mechanism, transformers excel at
modeling long-range interactions within text.

We focus on BERT (Devlin et al., 2018) with an
uncased vocabulary, which exemplifies a family of
transformers that produce bidirectional represen-
tations solely from the encoder block (Lan et al.,
2019; Sanh et al., 2019; Liu et al., 2019b).

The conventional workflow for BERT consists of
two stages: pre-training and fine-tuning. During
pre-training, BERT is trained on a pre-text corpus
using masked language modeling (prediction of
randomly masked words) and next sentence pre-
diction (binarized prediction whether text pairs
are adjacent). Fine-tuning involves adding a fully-
connected layer trained end-to-end on labeled data,
allowing BERT to adapt to various task related to
language understanding (Wang et al., 2018).

The internals of BERT comprise an embedding
layer and multiple transformer layers. Once a text
is tokenized into wordpieces (Wu et al., 2016), the
embedding layer serves as a lookup table that con-
tains a lexical representation for each token. Since
BERT processes all token representations in parallel,
the lexical representations need to be integrated
with position and segment information. The trans-
former layers build on an attention mechanism that
computes a scalar attention weight between each or-
dered pair of tokens and uses this weight to control
the contextualization from every token regardless
of its position or segment. Contextual representa-
tions together with attention maps provide the start-
ing point for interpreting linguistic properties cap-
tured during pre-training (Tenney et al., 2019a) and
retained after fine-tuning (Merchant et al., 2020).

2.2 Differential Privacy

Differential Privacy (DP) (Dwork et al., 2006) tran-
sitioned from the field of statistical databases into
machine learning (Song et al., 2013; Bassily et al.,
2014; Abadi et al., 2016; Shi et al., 2022). DP oper-
ates on the principle of injecting additive noise so
that model outputs are indistinguishable within the
bounds of a privacy budget ε > 0, where ε → ∞
represents no bound on the information leakage.

Equipped with a discrete vocabulary setW , an

Table 1: Example chunk (truncated) from Wikipedia
privatized with different privacy budgets. Highlighted
words represent a mismatch between the original word
and the surrogate word after privatization.

ε Example

∞ ’anarchism’, ’is’, ’a’, ’political’, ’phi-
losophy’, ’and’, ’movement’, ’that’,
’is’, ’skeptical’, ’of’, ’authority’, ’and’,
’rejects’, ’all’, ’involuntary’, ’,’, ’coer-
cive’, ’forms’, ’of’, ’hierarchy’, ’.’

10 ’syndicalism’, ’situated’, ’a’, ’politi-
cal’, ’pedagogy’, ’but’, ’movement’,
’that’, ’help’, ’signalled’, ’the’, ’rec-
ommendation’, ’18’, ’rejects’, ’four’,
’mobility’, ’,’, ’punitive’, ’forms’, ’on’,
’associations’, ’outset’

embedding function ϕ : W → R, and a distance
metric d : R×R→ [0,∞), Feyisetan et al. (2020)
formulated a randomized mechanism for text-to-
text privatization grounded in metric differential
privacy (Chatzikokolakis et al., 2013). Specifically,
the randomized mechanism perturbs each word in
a text by adding noise to the representation of the
word derived from an embedding space (Mikolov
et al., 2013) and projecting the noisy representation
back to a discrete vocabulary using a nearest neigh-
bor search. Since metric differential privacy scales
the notion of indistinguishability by a distance d(·),
this technique offers several benefits: (1) It ensures
that the log-likelihood ratio of observing any sub-
stitution ŵ given two words w and w′ is bounded
by εd{ϕ(w), ϕ(w′)}, providing plausible deniabil-
ity (Bindschaedler et al., 2017) with respect to all
w ∈ W . (2) It produces similar substitutions ŵ for
any wordsw andw′ that are close in the embedding
space, alleviating the curse of dimensionality asso-
ciated with randomized response (Warner, 1965).

Table 1 illustrates an example output obtained
by querying the randomized mechanism for text-
to-text privatization. Notice that the fidelity to the
original text is proportional to the privacy budget.
However, the example also shows that text-to-text
privatization suffers from many constraints such as
grammatical errors (Mattern et al., 2022), which
spawned further developments aimed at improving
both utility (Yue et al., 2021; Arnold et al., 2023;
Chen et al., 2023) and privacy (Xu et al., 2020).

66

2.3 Model Introspection

Aimed at understanding the internals of language
models, numerous interpretation techniques were
developed to uncover which properties of a text are
embedded in contextual representations. Prominent
techniques include stimuli and diagnostic models.

Stimuli-based Probes. Linzen et al. (2016) as-
sembled texts containing curated stimuli and eval-
uated the perplexity scores on masked stimuli as
evidence for the presence or absence of linguistic
knowledge. Using a fill-mask objective on stimuli
was adopted to examine a range of linguistic prop-
erties, in particular subject-verb agreement (Gulor-
dava et al., 2018; Marvin and Linzen, 2018; Lakretz
et al., 2019; Goldberg, 2019; Ettinger, 2020).

Classifier-based Probes. Adi et al. (2016) elim-
inated the need for curating stimuli by setting up
probing models. A probing model inputs internal
representations as features annotated by linguis-
tic properties of interest as labels and its accuracy
score is directly interpreted as the extent to which
linguistic properties are contained in the internal
representation. Since probing models require few
assumptions beyond the existence of model activa-
tions, they are widely used to assess the linguistic
competence of language models (Belinkov et al.,
2017; Conneau et al., 2018; Hupkes et al., 2018).

Considerable research is centered on the inspec-
tion of fixed-length sentence representations. Adi
et al. (2016) introduced a probing suite to extract
surface properties of sentences such as length, con-
tent, and order. Conneau et al. (2018) later recasted
and extend these probing tasks by a broader set of
linguistic properties, such as tense and depth.

Contrary to probing fixed-length sentence rep-
resentations, probing suits exist that are tailored
towards linguistic properties in word-level repre-
sentations (Blevins et al., 2018; Peters et al., 2018b;
Tenney et al., 2019b; Liu et al., 2019a). Tenney
et al. (2019b) present edge probing in which a di-
agnostic model is given access only to span repre-
sentations. From these span representations, the
probing model aims to extract high-level linguistic
properties which are expected to require complete
sentence context. The analysis of intermediate lay-
ers of language models indicates that linguistic
properties are captured in a hierarchical order (Pe-
ters et al., 2018b; Tenney et al., 2019a; Jawahar
et al., 2019). This hierarchy is composed of signals
ranging from surface abstractions in the lower lay-

ers, syntactic abstractions in the middle layers and
semantic abstractions in the higher layers.

While prior probes on detecting syntactic struc-
ture lacked an explanation of whether structure is
embedded as an entire parse tree (Conneau et al.,
2018) or how such parse trees are embedded (Pe-
ters et al., 2018b), Hewitt and Manning (2019) pro-
posed a structural probe to recover the topology
of an entire parse tree and derive its parse depth.
Using a linear transformation of the representation
space, the structural probe shows evidence of a ge-
ometric representation that implicitly embeds sen-
tence structure. The structural hypothesis formed
by the linear transformation has recently been re-
fined by a scaled isomorphic rotation (Limisiewicz
and Mareček, 2020), kernelization using a radial-
basis function (White et al., 2021), and projection
onto hyperbolic space (Chen et al., 2021).

To examine how contextual representations are
formed through the attention mechanism (Vaswani
et al., 2017), recent research extended their analy-
sis to role of attention in handling properties of text
(Lin et al., 2019; Jo and Myaeng, 2020). The visual-
ization of attention heatmaps and the calculation of
the distribution of attention revealed interpretable
positional patterns (Vig and Belinkov, 2019; Clark
et al., 2019; Kovaleva et al., 2019) and strong cor-
relations to linguistic properties (Clark et al., 2019;
Htut et al., 2019; Ravishankar et al., 2021).

Limitations. Despite its popularity for model in-
trospection, recent studies observed that linguistic
properties are incidentally captured even without
task relevance (Ravichander et al., 2020), casting
doubt on the interpretations derived from attention
maps (Jain and Wallace, 2019; Serrano and Smith,
2019; Brunner et al., 2019) and probing models
(Tamkin et al., 2020). This prompted the design of
control tasks (Hewitt and Liang, 2019; Ravichander
et al., 2020), amnesic probing (Elazar et al., 2021;
Jacovi et al., 2021), conditional probing (Hewitt
et al., 2021), and orthogonal techniques for correlat-
ing contextual representations (Saphra and Lopez,
2018; Voita et al., 2019; Abdou et al., 2019).

3 Methodology

We follow the convention of denoting words and
sentences using italic (wi , s), and refer to their
representations using bold (wi, s), where the index
i distinguishes words in a sentence. Let d be the
dimension of a l-layer LM. Given a sentence s as
a tokenized list of words w ∈ W , the LM inputs

67

a lexical vector representation for each word and
computes a contextual vector representation wl

i ∈
Rd for the i-th word at the l-th layer.

We pre-train BERT models from-scratch follow-
ing Devlin et al. (2018) on a dump of Wikipedia
preprocessed with a privacy budget of ϵ ∈ {10,∞},
where 10 yields a privacy-preserving BERT and∞
serves as our baseline for comparison. Apart from
the difference in the privacy modality, training is
identical to erase any confounding factors.

Equipped with BERT pre-trained on a corpus of
Wikipedia with different privacy modalities, we
intend to uncover how and where contextual rep-
resentations produced by the model trained with
differential privacy depart from those produced by
the model trained without differential privacy. Fol-
lowing the experimental setup of Merchant et al.
(2020), we address this question mainly through the
lens of (unsupervised) representational similarity
analysis and (supervised) probing models.

3.1 Similarity Analysis

We aim to compare the internals of language mod-
els that originate from pre-training under public and
private training environments. Due to the lack of
correspondence between activation patterns of mod-
els trained with different modalities, we need to ab-
stract away from direct comparison of model acti-
vations. We instead leverage Representational Sim-
ilarity Analysis (RSA) (Kriegeskorte et al., 2008)
to correlate the dissimilarity structure between con-
textual representations. Building on dissimilarity
structures rather than activation patterns, RSA is
indifferent to the representation space.

We base our similarity analysis on higher-order
comparisons introduced by Abdou et al. (2019).
Given a set of language models trained under dif-
ferent (privacy) modalities M and a common set
of sentences N , we extract representations as layer-
wise activations from each M . Using any kernel
that satisfies the axioms of a (dis)similarity metric,
we can convert the extracted representations into
pairwise dissimilarity matrices Rn×n. EachN×N
dissimilarity matrix corresponds to the dissimilar-
ity between the activation patterns associated with
sentences pairs ni, nj ∈ N . Since the dissimilarity
is intuitively zero when ni = nj , the dissimilar-
ity matrix is symmetric along a diagonal. Using
another kernel, we can now correlate the similar-
ity between the flattened upper triangulars of the
constructed dissimilarity matrices.

We adopt the Cosine distance as metric for the
intra-space dissimilarity and Spearman correlation
as metric for the cross-space similarity. The RSA is
performed on a random subset of 5, 000 sentences
drawn from WikiText (Merity et al., 2016).

3.2 Linguistic Probing
We aim to connect the dissimilarity between con-
textual representations with linguistic properties.
To discern and locate the extent to which linguistic
properties of texts are captured, we employ probing
tasks at word-level and sentence-level representa-
tions for a range of surface, syntactic, and semantic
formalisms. Note that BERT uses tokenization into
subwords. Since word-level probes require access
to word representations, we map subword repre-
sentations to word representations by element-wise
mean pooling over all subword components.

Surface Probe. We evaluate surface properties
using the setup for sentence-level probing assem-
bled by Adi et al. (2016). To form sentence rep-
resentations s ∈ Rd, we use element-wise mean
pooling. Without access to a sentence s and any of
its words w , the surface proprieties to extract are
length, content, and order. The length task mea-
sures to what extent a sentence representation s
encodes the length |s| of a sentence s . The length
task is formulated as a multi-class classification for
a balanced set of binned lengths in intervals [0, 35),
[35, 41), [41, 46), [46, 52), [52,∞). The content
task measures the extent to which a sentence repre-
sentation s encodes the identities of words w in a
sentence. The content task is formulated as a binary
classification in the form (s,w) ∈ {0, 1}, where 0
denotes w ̸∈ s and 1 denotes w ∈ s , respectively.
The order task measures the extent to which a sen-
tence representation s encodes the order of words
wi , wj . Given a sentence representation s and two
word representation wi, wj of words appearing in
a sentence, the content task is formulated as a bi-
nary classification in the form (s,wi,wj) ∈ {0, 1},
where 0 denotes wi ≺ wj and 1 denotes wi ≻ wj,
respectively. All surface probes are performed on
sentences from the training set reflecting their pre-
sumably most accurate representations.

Linguistic Probe. To evaluate linguistic proper-
ties , we employ edge probes (Tenney et al., 2019b)
and structural probes (Hewitt and Manning, 2019)
as two complementary probes at word-level.

The purpose of edge probing is to measure the
extent to which contextual representations cap-

68

ture syntactic dependencies and semantic abstrac-
tions. Instead of supplying a probing model with
a pooled sentence representation s, edge probing
decomposes the probing task into a common for-
mat so that the probing model only receives labeled
spans [wl

i,w
l
j) and (optionally) [wl

u,w
l
v). With ac-

cess only to contextual representations within the
end-exclusive spans, the probing model must label
the relation between these spans and their role in
the sentence. Derived from evaluation on tagged
benchmark datasets, we report the micro-averaged
harmonic mean of the precision and recall for la-
beling part-of-speech tags, constituency phrases,
dependency relations as syntactic tasks, and entity
types, entity relations, semantic roles, and corefer-
ence mentions as semantic tasks.

The structural probe is designed to measure the
representation of syntactic structure. The probe
identifies whether the geometric space under linear
transformation B ∈ Rk×d, where k is the rank of
the transformation and d is the dimensionality of
the representation, captures the depth of words or
distances between words in a parse tree. We adjust
the rank to the dimensionality k = d. The depth
probe measures the distance from root ∀i in a parse
tree. It is defined by ∥wl

i∥B = (Bwl
i)
T (Bwl

i). The
depth probe is evaluated based on the accuracy
of the root word and the correlation between the
predicted order of words and ordering specified
by the depth in the parse tree. The distance probe
measures the pairwise distances ∀i, j within a parse
tree. It is defined by ∥wl

i − wl
j∥B = (B(wl

i −
wl
j)

T (B(wl
i−wl

j)). The distance probe is evaluated
by correlating the predicted distances between pairs
of words with distances metrics specified by the
parse tree and by converting the predicted distances
between pairs of words into a minimum spanning
tree and scoring it against the parse tree using the
Undirected Unlabeled Attachment Score (UUAS).

4 Experiments

We initiate our model introspection by examining
the performance in terms of perplexity scores. Fig-
ure 1 reveals that BERT trained on a corpus of text
subjected to text-to-text privatization converges to
a notably (but reasonably) worse perplexity score
at 61.45 (compared to 6.82). Since perplexity is a
measure for assessing the proficiency of language
models in predicting the next word in a sentence,
the elevated value in this context connotes a dimin-
ished ability for language modeling. To elucidate

0 250 500 750
Intervals (in Thousands)

101

102

103

104

Pe
rp

le
xi

ty

 =
 = 10

Figure 1: Interval-wise learning progress of BERT from
26, 903, 298 chunks generated from Wikipedia.

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y
 =
 = 10

Figure 2: Layer-wise representational similarity of BERT
for 5, 000 samples randomly drawn from WikiText.

the linguistic alterations that lead to the degradation
of the perplexity score, we pursue a layer-wise abla-
tion of linguistic properties captured in the internal
representations of privacy-preserving BERT.

4.1 Similarity Results
In line with correlation coefficients, RSA scores
have value range of [−1,+1], where +1 indicates
that the models produce a similar internal repre-
sentation and −1 indicates that the models diamet-
rically opposed in latent space. Since these theo-
retical bounds are unlikely in practice, we estab-
lish an empirical bound on RSA by correlating the
dissimilarity structures of BERT models with identi-
cal architecture but different initialization. We ob-
serve that the average similarity bounds at 0.9051.
By correlating the dissimilarity structures between
BERT and BERT trained on perturbed text, we find a
remarkable drop to 0.7601, signifying a substantial
departure between their internal representations.

To locate the variations in the internal represen-
tations on different layers of the BERT architecture,
we present the layer-wise RSA results in Figure 2.
Note that BERT models typically maintain consis-
tently high RSA values across all layers, whereas

69

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(a) Text Length

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(b) Word Content

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(c) Word Order

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(d) Grammatical Tags

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(e) Constituency Chunks

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(f) Dependency Relations

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(g) Entity Types

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(h) Entity Relations

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(i) Semantic Roles

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(j) Coreference Mentions

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(k) Parse Depth

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer L

0.50

0.60

0.70

0.80

0.90

1.00

(l) Parse Distance

Figure 3: Layer-wise probing results for BERT under public (blue circles) and private (orange squares) training
modalities. Surface properties according to Adi et al. (2016) are depicted in Figures 3(a), 3(b), and 3(c). Syntactic
properties according to Tenney et al. (2019b) are depicted in Figures 3(d), 3(e), and 3(f). Semantic properties
according to Tenney et al. (2019b) are depicted in Figures 3(g), 3(h), 3(i), and 3(j). Structural properties according
to Hewitt and Manning (2019) are depicted in Figures 3(k) and 3(l).

our BERT model trained on perturbed text starts
with relatively high RSA values at the lexical repre-
sentation layer at 0.9007 and declines with contex-
tual representations layers to 0.6784, indicating a
sharper deviation in the representation space. This
pattern carries significant implications for our un-
derstanding of the impact of text-to-text privatiza-
tion. Since the lexical representation corresponds
to occurrence characteristics, this indicates that pri-
vate BERT fails to capture context information.

4.2 Probing Results

Assuming that the substantial divergence arises
from the fact that privacy-preserving BERT forms its
contextual representation based on different linguis-
tic properties than BERT, we are interested in dis-

covering which linguistic properties are captured
despite being trained on perturbed text.

Figure 3 depicts the probing results. The layer-
wise probing results are shaped similarly but the
consistently lower scores across all properties indi-
cate that the linguistic competence is compromised
when text-to-text privatization is are applied.

Surface. Starting from the sentence-level probes,
we notice distinct patterns in the details captured
about surface properties. With a deficit of−0.2770,
there is a marked difference related to the encoded
text length. Contrasting this deficiency, details con-
cerning content and order show a higher degree of
consistency, reflecting deviations of +0.0230 and
−0.0410, respectively. To grasp the implications
of surface properties, we recall the argumentation

70

of Adi et al. (2016) that representations containing
information about length and order are more suited
for syntactic tasks while representations that excel
at content are more suited for semantic tasks.

Linguistic. We continue with linguistic proper-
ties at word-level. From syntactic probes, we ob-
serve that a significant portion of information about
grammatical tags and constituency chunks are re-
tained at −0.0246 and −0.0187, while less empha-
sis is placed on capturing dependency relations,
resulting in a reduction of −0.0751. From seman-
tic probes, we notice that information about en-
tity types is missing by only −0.0229, while en-
tity relations and semantic roles experience a more
substantial drop of −0.1209 and −0.0798. From
structural probes, which test whether a represen-
tation encodes topology, we consolidate the find-
ings from the syntactic probe on dependency re-
lations. Scored against a discrete solution in the
form of the root word or minimum spanning tree,
the representations contain information about the
root word with a score of 0.5866 and the parse tree
with a score of 0.6843, representing decrements of
−0.1244 and −0.0703, respectively.

Considering the nature of the linguistic proper-
ties and the degree to which they decline under
privacy constraints, it is noticeable that formalisms
closely related to basic characteristics of words dis-
play a considerable degree of preservation, whereas
formalisms tied to complex relationships within
spans of words undergo a substantial degree of de-
terioration. This intriguing pattern suggests that
while localized properties endure the perturbations
of text-to-text privatization, the ability of language
models to maintain contextual constructs can be
severely hindered by text-to-text privatization.

Since text-to-text privatization builds on word-
level differential privacy (Mattern et al., 2022), a
plausible explanation for this phenomenon could be
rooted in the nature of its randomized mechanism,
which has been observed to disproportionately af-
fect linguistic properties (Arnold et al., 2023). This
insight underscores the interplay between pertur-
bation strategies and the necessity of accurately
conveying different types of linguistic formalisms.

Attention. Since contextual representations are
mainly formed by the mechanism of self-attention
(Vaswani et al., 2017), we could attribute the al-
terations in the representations to the fact that the
attention mechanism (somehow) fails to discrim-

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

(a) BERT with DP at ϵ = ∞

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

(b) BERT with DP at ϵ = 10

Figure 4: Divergence-based clustering of attention maps
extracted from 1, 000 random samples of WikiText.

inate certain linguistic properties. We attempt to
answer this hypothesis by analyzing the distribu-
tional patterns of attention maps.

Once for each training modality, we obtain atten-
tion maps for 1, 000 randomly selected sentences
and rearrange the attention maps from their sub-
words in line with Vig and Belinkov (2019). For
attentions drawn to a split-up word, we sum up
the attention weights over its subwords. For atten-
tions stemming from a split-up word, we average
all weights from its subwords. Following Clark
et al. (2019), we calculate the distance between all
pairs of attention maps using the Janson-Shannon
divergence and visualize the distances grouped by
layer using multidimensional scaling in Figure 4.

Assuming that attention heads that are clustered
closely together perform similar linguistic roles in
forming the internal representation, we conclude
from the distributional patterns that text-to-text pri-
vatization amplifies the redundancy that is already
present in attention heads as revealed by Kovaleva
et al. (2019). This is most evident by comparing
the overlap of the attention maps in rear layers.

Considering that Li et al. (2018) showed that en-
couraging the attention mechanism to have diverse
behaviors can improve performance, we find an-
other possible explanation for the lack of linguistic

71

competence in privacy-preserving language models
and their deteriorated level of perplexity.

5 Conclusion

Assuming that the performance loss of language
models caused by text-to-text privatization can be
attributed to the destruction of linguistic compe-
tence (Merendi et al., 2022), we set to disentangle
the layer-wise alterations of perturbations to the
internal representations of a language model.

By employing a series of techniques for model
introspection (Adi et al., 2016; Hewitt and Man-
ning, 2019; Tenney et al., 2019b), we tested the in-
ternal representations formed by language models
for linguistics properties across several formalisms.

From the perspective of linguistic competence,
experimental results from our layer-wise model
introspection indicate that privacy preservation
can considered conservative as language models
subjected to text-to-text privatization retain a hi-
erarchical order of linguistic formalisms (Peters
et al., 2018b; Tenney et al., 2019a; Jawahar et al.,
2019). However, text-to-text privatization shows to
have a cumulative impact on the linguistic compe-
tence of language models, affecting aspects rang-
ing from surface-level properties to linguistic con-
structs across syntactic, semantic, and structural
formalisms. We further notice that basic properties
of words are less disrupted than complex relations
between words that require context information.

Limitations. Most assumptions and findings of
this study are grounded in probing. Although prob-
ing enjoys much support as a technique for inter-
preting the internals of language models (Abadi
et al., 2016; Conneau et al., 2018; Tenney et al.,
2019b; Hewitt and Manning, 2019), recent stud-
ies dispute with conclusion derived from probing
due to the fact that probing may not entail task rel-
evance (Ravichander et al., 2020). We side with
those viewing probing as a tool for model intro-
spection, but nonetheless caution that our probing
results may not be the appropriate technique for
discerning the differences of private training modal-
ities. Given the wide range of probing tasks and
the fact that our probing results show a consistent
pattern of competencies, we are convinced that this
study contributes novel privacy implications.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security,
pages 308–318.

Mostafa Abdou, Artur Kulmizev, Felix Hill, Daniel M
Low, and Anders Søgaard. 2019. Higher-order com-
parisons of sentence encoder representations. arXiv
preprint arXiv:1909.00303.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,
and Yoav Goldberg. 2016. Fine-grained analysis of
sentence embeddings using auxiliary prediction tasks.
arXiv preprint arXiv:1608.04207.

Stefan Arnold, Dilara Yesilbas, and Sven Weinzierl.
2023. Guiding text-to-text privatization by syntax.
In Proceedings of the 3rd Workshop on Trustwor-
thy Natural Language Processing (TrustNLP 2023),
pages 151–162, Toronto, Canada. Association for
Computational Linguistics.

Raef Bassily, Adam Smith, and Abhradeep Thakurta.
2014. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE
55th annual symposium on foundations of computer
science, pages 464–473. IEEE.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do neural
machine translation models learn about morphology?
arXiv preprint arXiv:1704.03471.

Vincent Bindschaedler, Reza Shokri, and Carl A Gunter.
2017. Plausible deniability for privacy-preserving
data synthesis. arXiv preprint arXiv:1708.07975.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018.
Deep rnns encode soft hierarchical syntax. arXiv
preprint arXiv:1805.04218.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Wat-
tenhofer. 2019. On identifiability in transformers.
arXiv preprint arXiv:1908.04211.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-
ral networks. In 28th USENIX Security Symposium
(USENIX Security 19), pages 267–284.

Konstantinos Chatzikokolakis, Miguel E Andrés,
Nicolás Emilio Bordenabe, and Catuscia Palamidessi.
2013. Broadening the scope of differential privacy us-
ing metrics. In International Symposium on Privacy
Enhancing Technologies Symposium, pages 82–102.
Springer.

Boli Chen, Yao Fu, Guangwei Xu, Pengjun Xie,
Chuanqi Tan, Mosha Chen, and Liping Jing. 2021.
Probing bert in hyperbolic spaces. arXiv preprint
arXiv:2104.03869.

72

Sai Chen, Fengran Mo, Yanhao Wang, Cen Chen, Jian-
Yun Nie, Chengyu Wang, and Jamie Cui. 2023. A
customized text sanitization mechanism with differ-
ential privacy. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 5747–
5758, Toronto, Canada. Association for Computa-
tional Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. arXiv preprint
arXiv:1805.01070.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography
conference, pages 265–284. Springer.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160–
175.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Natasha Fernandes, Mark Dras, and Annabelle McIver.
2019. Generalised differential privacy for text docu-
ment processing. In International Conference on
Principles of Security and Trust, pages 123–148.
Springer, Cham.

Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and
Tom Diethe. 2020. Privacy-and utility-preserving tex-
tual analysis via calibrated multivariate perturbations.
In Proceedings of the 13th International Conference
on Web Search and Data Mining, pages 178–186.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. arXiv
preprint arXiv:1803.11138.

John Hewitt, Kawin Ethayarajh, Percy Liang, and
Christopher D Manning. 2021. Conditional prob-
ing: measuring usable information beyond a baseline.
arXiv preprint arXiv:2109.09234.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. arXiv preprint
arXiv:1909.03368.

John Hewitt and Christopher D Manning. 2019. A struc-
tural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4129–4138.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R Bowman. 2019. Do attention heads in
bert track syntactic dependencies? arXiv preprint
arXiv:1911.12246.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelli-
gence Research, 61:907–926.

Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel,
Yanai Elazar, Yejin Choi, and Yoav Goldberg. 2021.
Contrastive explanations for model interpretability.
arXiv preprint arXiv:2103.01378.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. arXiv preprint arXiv:1902.10186.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics.

Jae-young Jo and Sung-Hyon Myaeng. 2020. Roles and
utilization of attention heads in transformer-based
neural language models. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 3404–3417.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. arXiv preprint arXiv:1908.08593.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Ban-
dettini. 2008. Representational similarity analysis-
connecting the branches of systems neuroscience.
Frontiers in systems neuroscience, 2:4.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco
Baroni. 2019. The emergence of number and syn-
tax units in lstm language models. arXiv preprint
arXiv:1903.07435.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R
Lyu, and Tong Zhang. 2018. Multi-head attention
with disagreement regularization. arXiv preprint
arXiv:1810.10183.

73

Tomasz Limisiewicz and David Mareček. 2020. In-
troducing orthogonal constraint in structural probes.
arXiv preprint arXiv:2012.15228.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: getting inside bert’s linguistic knowl-
edge. arXiv preprint arXiv:1906.01698.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521–535.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. arXiv preprint arXiv:1903.08855.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. arXiv preprint
arXiv:1808.09031.

Justus Mattern, Benjamin Weggenmann, and Florian
Kerschbaum. 2022. The limits of word level differ-
ential privacy. arXiv preprint arXiv:2205.02130.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. Advances in neural infor-
mation processing systems, 30.

H Brendan McMahan, Daniel Ramage, Kunal Tal-
war, and Li Zhang. 2017. Learning differentially
private recurrent language models. arXiv preprint
arXiv:1710.06963.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick,
and Ian Tenney. 2020. What happens to bert
embeddings during fine-tuning? arXiv preprint
arXiv:2004.14448.

Federica Merendi, Felice Dell’Orletta, and Giulia Ven-
turi. 2022. On the nature of bert: Correlating fine-
tuning and linguistic competence. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 3109–3119.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang.
2020. Privacy risks of general-purpose language
models. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1314–1331. IEEE.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations.

Matthew E Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018b. Dissecting contextual word
embeddings: Architecture and representation. arXiv
preprint arXiv:1808.08949.

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang,
Michael Bendersky, and Marc Najork. 2021. Natural
language understanding with privacy-preserving bert.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 1488–1497.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Abhilasha Ravichander, Yonatan Belinkov, and Ed-
uard Hovy. 2020. Probing the probing paradigm:
Does probing accuracy entail task relevance? arXiv
preprint arXiv:2005.00719.

Vinit Ravishankar, Artur Kulmizev, Mostafa Abdou,
Anders Søgaard, and Joakim Nivre. 2021. Attention
can reflect syntactic structure (if you let it). arXiv
preprint arXiv:2101.10927.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Naomi Saphra and Adam Lopez. 2018. Understanding
learning dynamics of language models with svcca.
arXiv preprint arXiv:1811.00225.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? arXiv preprint arXiv:1906.03731.

Weiyan Shi, Aiqi Cui, Evan Li, Ruoxi Jia, and Zhou
Yu. 2022. Selective differential privacy for language
modeling. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2848–2859, Seattle, United States.
Association for Computational Linguistics.

Congzheng Song and Ananth Raghunathan. 2020. In-
formation leakage in embedding models. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 377–
390.

Shuang Song, Kamalika Chaudhuri, and Anand D Sar-
wate. 2013. Stochastic gradient descent with dif-
ferentially private updates. In 2013 IEEE Global
Conference on Signal and Information Processing,
pages 245–248. IEEE.

74

Alex Tamkin, Trisha Singh, Davide Giovanardi, and
Noah Goodman. 2020. Investigating transferabil-
ity in pretrained language models. arXiv preprint
arXiv:2004.14975.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, et al.
2019b. What do you learn from context? probing for
sentence structure in contextualized word representa-
tions. arXiv preprint arXiv:1905.06316.

Aleena Thomas, David Ifeoluwa Adelani, Ali Davody,
Aditya Mogadala, and Dietrich Klakow. 2020. Inves-
tigating the impact of pre-trained word embeddings
on memorization in neural networks. In Interna-
tional Conference on Text, Speech, and Dialogue,
pages 273–281. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. arXiv preprint arXiv:1906.04284.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019.
The bottom-up evolution of representations in the
transformer: A study with machine translation
and language modeling objectives. arXiv preprint
arXiv:1909.01380.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Stanley L Warner. 1965. Randomized response: A
survey technique for eliminating evasive answer
bias. Journal of the American Statistical Associa-
tion, 60(309):63–69.

Jennifer C White, Tiago Pimentel, Naomi Saphra, and
Ryan Cotterell. 2021. A non-linear structural probe.
arXiv preprint arXiv:2105.10185.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Zekun Xu, Abhinav Aggarwal, Oluwaseyi Feyisetan,
and Nathanael Teissier. 2020. A differentially private
text perturbation method using a regularized maha-
lanobis metric. arXiv preprint arXiv:2010.11947.

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li,
Huan Sun, and Sherman S. M. Chow. 2021. Dif-
ferential privacy for text analytics via natural text
sanitization. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3853–3866, Online. Association for Computational
Linguistics.

75

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 76–88
December 7, 2023. ©2023 Association for Computational Linguistics

“Honey, Tell Me What’s Wrong”, Global Explanation of Textual
Discriminative Models through Cooperative Generation

Antoine Chaffin∗
IRISA, Rennes, France

IMATAG, Rennes, France
antoine.chaffin@irisa.fr

Julien Delaunay∗
IRISA, Rennes, France
Inria, Rennes, France

julien.delaunay@inria.fr

Abstract

The ubiquity of complex machine learning has
raised the importance of model-agnostic ex-
planation algorithms. These methods create
artificial instances by slightly perturbing real
instances, capturing shifts in model decisions.
However, such methods rely on initial data and
only provide explanations of the decision for
these. To tackle these problems, we propose
Therapy, the first global and model-agnostic
explanation method adapted to text which re-
quires no input dataset. Therapy generates texts
following the distribution learned by a classi-
fier through cooperative generation. Because
it does not rely on initial samples, it allows to
generate explanations even when data is absent
(e.g., for confidentiality reasons). Moreover,
conversely to existing methods that combine
multiple local explanations into a global one,
Therapy offers a global overview of the model
behavior on the input space. Our experiments
show that although using no input data to gen-
erate samples, Therapy provides insightful in-
formation about features used by the classifier
that is competitive with the ones from meth-
ods relying on input samples and outperforms
them when input samples are not specific to the
studied model.

1 Introduction

The emergence of machine learning models has led
to their adoption in domains spanning from mere
recommendations to critical areas such as health-
care (Buch et al., 2018; Karatza et al., 2021) and
law (Araszkiewicz et al., 2022). These already com-
plex models keep becoming larger, emphasizing
their black-box denomination. This lack of trans-
parency however slows their adoption in various
areas since we witness a notable rise of deployed
models suffering from bias. For example, some
chatbots biased toward religious (Abid et al., 2021)

*Equal contribution.

and gender (Lucy and Bamman, 2021) minorities
have been released and explaining their inner mech-
anisms is still an ongoing problem.

Among the methods proposed to tackle these
problems, model-agnostic approaches are favored
since applicable to any machine learning model.
Among these, local explanations have obtained
strong success by maintaining a good trade-off
between accuracy and transparency. These expla-
nations are generated in the proximity of a target
instance by tampering this input to create neighbors
and study how the model reacts to these changes.
This allows them to highlight which features are
important for the model and to provide explana-
tions on the decision for this input (e.g., the most
important words for each class). According to a
recent study (Jacovi, 2023), LIME (Ribeiro et al.,
2016), while being the first model-agnostic local
explanation method is still the most widely used.
However, local explanations have three main flaws
when trying to explain a model. First, it obviously
requires to have inputs to explain, which might
not be possible due to confidentiality or privacy
reasons (Amin-Nejad et al., 2020). Second, select-
ing inputs that are representative of the model or
the downstream data distribution is difficult. Fi-
nally, it will explain the decision for this input and
for this input only. This only provides very local
information on the model behavior, which repre-
sents only a very small piece of the input domain
of the model. Therefore, LIME and other local
explanation methods have proposed to aggregate
the information from multiple samples to provide
global explanations. However, these explanations
are strongly tied to the input samples and only pro-
vide cues about the samples’ neighborhood. These
methods thus require samples that cover as much
of the space as possible.

To relax this sample dependency and generate
global explanations of the model, we propose Ther-
apy, a method that leverages cooperative genera-

76

tion (Holtzman et al., 2018; Scialom et al., 2020;
Bakhtin et al., 2021; Chaffin et al., 2022) to gen-
erate texts following the distribution of a classifier.
The distribution of the resulting samples can then
be used to study which features are important for
the model, providing global information on its be-
havior.

In this paper, we first introduce the related work
in Section 2 and cooperative text generation in
Section 3. We then present Therapy in Section 4
and the experiments conducted to compare its per-
formance to standard explanation methods in Sec-
tion 5.

2 Related work

Generating explanations for textual data is challeng-
ing since it requires considering both the text se-
mantics and task domains. Moreover, it is frequent
that models are already deployed and further eval-
uations are required (e.g., fairness, bias detection)
but the training data is not accessible. This may be
caused by data privacy, security, or simply because
the dataset is too large to be analyzed. Thus, to
fulfil this objective, researchers have focused on
post-hoc explanations (Jacovi, 2023). Following
the categorization by Bodria et al. (Bodria et al.,
2021), we distinguish between example-based and
feature-attribution explanations.

2.1 Example-Based Explanations

Taking roots from social science (Miller, 2019),
the example-based explanations indicate either the
minimum change required to modify the predic-
tion –counterfactual– or illustrate class by showing
representative instances –prototypes–. Counterfac-
tual methods answer "what if" questions and have
gained interest since being close to human reason-
ing, perturbing document until the model predic-
tion differs (Wachter et al., 2017). Conversely, pro-
totype methods select or generate representative
instances for the target class. Among the example-
based methods, some leverage on control codes to
perturb the input text while others generate realistic
sentences based on perturbation in a latent space.
Polyjuice (Wu et al., 2021) and GYC (Madaan
et al., 2021) belong to the former and propose con-
trol codes varying from changing the sentiment and
tense of the sentence to adding or replacing words.
On the other hand, xSPELLS (S. Punla et al., 2022)
and CounterfactualGAN (Robeer et al., 2021) are
methods that train respectively a Variational Au-

toencoder and a Generative Adversarial Network
to convert input text to a latent space and return
realistic sentences from this latent space. These
methods hence convert the input document into a
latent space and slightly perturb it until the closest
counterfactual is found.

2.2 Feature-Attribution Explanations

Feature-attribution methods assign weights to input
words, indicating the positive or negative impact on
the final prediction. Methods such as SHAP (Lund-
berg and Lee, 2017), LIME (Ribeiro et al., 2016),
and their variants (Gaudel et al., 2022; Zafar and
Khan, 2019; Visani et al., 2020; ElShawi et al.,
2019; Bramhall et al., 2020) are the most com-
monly used (Jacovi, 2023). They are local since
they perturb an input instance by slightly modify-
ing it and studying the complex model in a given
locality. For textual data, LIME randomly masks
the words of the input document and trains a linear
model on the collection of perturbed documents to
predict the decisions of the complex model. The
most important coefficients of the linear model as-
sociated with the input words are then returned
as the explanation. While most explainability sur-
veys (Arrieta et al., 2020; Bodria et al., 2021) dif-
ferentiated between local and global explanations,
LIME also introduced LIME-SP (for submodular
pick), a global method that generates n local expla-
nations for a set of individual instances. These n
instances are selected to cover as much of the input
domain as possible and avoid redundancy.

3 Text generation

3.1 Cooperative Generation

Language Models (LM) such as the GPT fam-
ily (Radford et al., 2018, 2019; Brown et al., 2020)
learn the probability distribution of sequences of
symbols x1, x2, · · · , xT (most often tokens) taken
from a vocabulary V , with variable lengths T . The
probability of one sample x (also called likelihood)
is defined as the joint probabilities over each of
its tokens, which can be factorized using the chain
rule: p(x1:T) =

∏T
t=1 p(xt | x1:t−1). The LM is

trained to output a probability distribution over the
dictionary for the next token given the input ones
i.e. p(xt | x1:t−1) at a given time step t. This re-
sults in an auto-regressive LM that can generate
sequences by iteratively using those distributions
to emit a token xt, and append it to the context
x1:t−1 for the next iteration. The generation pro-

77

cess –or decoding– is often started using a small
initial sequence: the prompt. Large LMs learn an
excellent approximation of the true distribution of
their training data, so generating samples that max-
imize the model likelihood p(x) allows to generate
plausible texts. However, this approach offers very
little control over the text being generated besides
the initial prompt.

Cooperative generation approaches (Holtzman
et al., 2018; Scialom et al., 2020; Bakhtin et al.,
2021), where discriminative models are used to
guide the LM during the generation, offer more
control. They use the information from the exter-
nal model to guide the LM to generate texts that
have a property it recognizes. In situations where
the model is a classifier which learns to output the
probability D(c | x) of a sequence x to belong
to a class c, the goal is to generate text that max-
imizes the probability of belonging to the target
class. Evaluating D(c | x) for every sequence pos-
sible is intractable due to the size of the space (|V|n
for a sequence of length n). Thus, these methods
leverage the distribution of the LM to restrict the
exploration to plausible sequences. This results in
a sequence that is both well written and belongs to
the target class since the produced sequence maxi-
mizes p(x) ∗D(c | x) ∝ p(x | c).

3.2 Monte Carlo Tree Seach Guided Decoding

Among cooperative approaches, the ones that lever-
age the Monte Carlo Tree Search (MCTS) to guide
the decoding of the LM exhibited very strong re-
sults (Scialom et al., 2021a; Chaffin et al., 2022;
Leblond et al., 2021; Lamprier et al., 2022). MCTS
is an iterative algorithm that seeks solutions in a
tree space too large to be exhaustively searched. It
is applicable to text generation because the search
space created during decoding corresponds to a
tree: the prompt is the root and the children of a
node are its parents’ sequence with one additional
token. MCTS loop is composed of four steps: selec-
tion, expansion, simulation and back-propagation.

1. Selection An exploration from the root of the
tree to an unexplored leaf. The path to the
leaf is defined by selecting, at each node, the
children that maximize the Polynomial Up-
per Confidence Trees (PUCT) (Rosin, 2011;
Silver et al., 2017), which is, for a node i:

PUCT (i) =
si
ni

+cpuct p(xi | x1:t−1)
√
Ni

1 + ni

with ni the number of simulations played af-
ter the node i, si its aggregated score, Ni the
number of simulations played after its parent,
and cpuct a constant defining the compromise
between exploitation (focusing on nodes with
already good scores) and exploration (explor-
ing promising nodes).

2. Expansion. The creation of the selected node
children if it is not terminal (i.e., correspond-
ing to the end-of-sequence token).

3. Simulation (roll-out). The sampling of addi-
tional tokens (using the LM distribution) until
a terminal node.

4. Back-propagation. The evaluation of the se-
quence x associated with the terminal node
and aggregation of its score to each parent
until root. In order to guide the generation to-
wards texts that belong to a given class accord-
ing to a classifier, the score of the sequence
x associated with a given leaf can be defined
as D(c | x) given by the classifier. Differ-
ent aggregation strategies can be used, such
as computing the average of the actual score
of the node and the terminal node one as in
(Chaffin et al., 2022) or taking the maximum
of the two as in (Scialom et al., 2021b; Lam-
prier et al., 2022).

This loop is repeated a given number of times
(defining the compute budget) and the tree pro-
duced is then used to select the token to add for
the current decoding step. It can be selected as
the most played node among the root’s children
nodes, or the one with the highest aggregated score.
Since we are interested in generating sequences
that are as stereotypical of classes of the discrimi-
native model as possible, we choose the node with
the highest score. The selected node then becomes
the new root and the process is repeated until the
final sequence is produced.

Contrary to traditional left-to-right decoding
strategies that can miss sequences that gets bet-
ter after some steps or be trapped in sub-optimal
sequences, MCTS breaks the myopic decoding by
defining the score of a token based on possible
continuations of the sequence. In addition to being
plug-and-play, i.e, any type of (auto-regressive) lan-
guage model can be guided during decoding by any
type of classifier using MCTS, this approach exhib-
ited state-of-the-art results in the task of constraint

78

Figure 1: Illustration of the Therapy method. Texts from different classes are cooperatively generated using the
guidance of the studied model. A logistic regression is then trained to predict the label of the generated texts. The
weights of the model associated with each word are then returned as importance weights.

generation, that is, generating texts that maximize
D(c | x) while maintaining a high quality of writ-
ing. We thus experiment with MCTS decoding for
Therapy, but the proposed method is compatible
with any cooperative generation approach.

4 Method

In this paper, we introduce Therapy, a global and
model-agnostic explanation method that does not
require input data. In place of these input data,
Therapy employs an LM guided by the model to
explain. This cooperation generates texts that are
representative of the classes learned by the stud-
ied discriminative model. To do so, Therapy ex-
tracts the most important words for the classifier
by employing it to steer an LM through coopera-
tive generation. Texts generated using cooperative
generation follow the distribution p(x) ∗D(c | x).
Their distribution can thus be used to study the
classifierD: words with high frequencies are likely
to be important for the classifier. A logistic re-
gression is then learned on tf-idf representations
of generated samples and the weights associated
with each term are returned as the explanation. An
illustration of the method is proposed in Figure 1.
Because p(x) is the same for every class, by using
tf-idf on the whole corpus (i.e., samples from every
class), words that are frequent because of p(x) or
in multiple classes will be filtered out. Hence, the
logistic regression model learned on the tf-idf score
of each feature allows Therapy to study their rela-
tive importance and to extract the most important
ones for each class. The method thus offers the
level of explainability of n-grams based on logistic
regression models to any classifier. Indeed, since
any type of (auto-regressive) LM can be guided
during decoding by any classifier using MCTS, the

proposed approach is totally model-agnostic.
We call this approach Therapy because its func-

tioning is similar to that of a therapist. This ther-
apist (the LM) queries its patient (the classifier)
to understand its behavior and eventually discover
pathologic behaviors (some biases).

In essence, the method is similar to using LIME
jointly with a masked LM to generate neighbors
when the number of replaced tokens grows a lot
but with two benefits. First, the method does not
rely on input examples but creates samples out
of nothing using the LM. This is useful for cases
where the data cannot be shared because it contains
confidential information (Amin-Nejad et al., 2020).
Moreover, rather than exploring the neighborhood
of these examples (and so conditioning the expla-
nations on these examples’ context), the domain
of the exploration is defined by the domain of the
LM, which is significantly broader. Besides, ei-
ther a general LM can be used to study the model
behavior on generic data or an LM specific to the
downstream domain to make sure it works well on
this specific type of data.

Second, the method does not generate before
classifying the text but employs the classifier dur-
ing the generation. Hence, instead of "randomly"
generating texts and hoping for important features
to appear, we explicitly query the model for stereo-
typic features by maximizingD(c | x). This makes
the method more efficient and reduces the probabil-
ity of generating rare features that are not important
for the model while reducing the odds of generat-
ing "in the middle" texts containing features from
various classes that are misleading. Besides, our
method directly relies on the distribution learned by
the studied model to guide the generation, unlike
methods like Polyjuice and GYC, which, in addi-

79

tion to requiring input data, count on a distribution
learned by the LM to bias the generation towards
the desired property (using control codes).

Finally, Therapy is distinctive from methods an-
alyzing the frequency of input terms in the training
data such as sensitivity analysis since it does not re-
quire access to (training) data and directly exploits
the distribution effectively learned by the model,
whereas nothing guarantees that a model is actu-
ally using the terms extracted from training data
to make a prediction. Furthermore, our method
differs from existing example-based and feature
attribution methods since to the best of our knowl-
edge, there exists no global and model-agnostic
explanation methods that do not require any input
data.

5 Experiments

In this section, we first give technical details on the
experiments conducted to evaluate Therapy (Sec-
tion 5.1). We then evaluate Therapy through three
experiments. The first one (Section 5.2), measures
the Spearman correlation of the explanations and
the weights of a glass box and studies the influence
of the number of generated texts on the quality
of the explanation returned by the linear model.
We then compare the capacity of the method to
correctly identify the most important words of the
glass box to the one of LIME and SHAP using
precision/recall curves in Section 5.3. Finally, we
test whether the terms returned by the different ap-
proaches are sufficient to modify the prediction of
the classifier in Section 5.4. The code of Therapy
and our experiments will be made available upon
acceptance.

5.1 Experimental setup
Glass-box explanation Since there are no
ground truth explanations available to be used as
a goal for evaluated methods, we use a glass-box
model, that is, a model explainable by design but
used as a black box (i.e., without being able to
use its inner workings to generate explanations).
Following prior work (Guidotti, 2021), we train a
logistic regression using sklearn (Pedregosa et al.,
2011) and use its weights as tokens importance
scores.

Therapy implementation To evaluate the pro-
posed method, we use the available implementation
of PPL-MCTS (Chaffin et al., 2022) and simply
plug the glass-box by defining the function that

takes a sequence and returns its score. The choice
of the LM to guide defines the domain on which we
want to explain the behavior of the model. Thus, it
is best to choose a language model that is as close
as the domain on which the discriminator will be
used. However, to show that the proposed approach
works well, even on a general domain, we use OPT-
125m (Zhang et al., 2022). A logistic regression is
then learned on generated texts and its scores are
used as token importance.

Datasets Experiments are conducted on two dif-
ferent classification datasets from (Zhang et al.,
2015). The first one, amazon_polarity is a binary
classification dataset of Amazon reviews labelled
as positive or negative. The reviews are rather
small and have highly caricatural lexical fields. The
second one, ag_news, is a thematic classification
dataset with 4 classes: (world, sport, business
and sci/tech). Texts in this dataset are longer
and more diverse but include distinctive indicators
because they are extracted from online news arti-
cles. Samples generated by Therapy along with
top words returned by the method for each class of
both datasets are given in Appendix A.

Compared methods In our experiments, we
compare the results of Therapy to the two most
widely used post-hoc methods: LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017).
We employed publicly available implementations
of these traditional methods instead of their exten-
sions mentioned in Section 2. This decision was
made because, to the best of our knowledge, these
extensions either do not prioritize the generation of
global explanations or do not enhance the textual
versions of these methods. The main difference be-
tween LIME and SHAP is that the former generates
samples by modifying input data and then learns a
linear regression model whereas the latter benefits
from game theory to compute the weight of each
term. We use the global version of these methods
on 500 texts of the datasets test set. For SHAP,
we keep the 10 000 most important words for each
dataset whereas, for LIME, we computed 500 lo-
cal explanations with the 35 most important words
and merged every term-weights pair into dictionar-
ies of length 4592 for amazon_polarity and 5770
for ag_news. Finally, to highlight the benefits of
cooperative generation in Therapy, we also report
the results obtained by a simple baseline. Rather
than using cooperatively generated texts to train

80

Figure 2: Spearman correlation w.r.t number of generated text per class for amazon_polarity and ag_news.

Dataset AMAZON_POLARITY AG_NEWS

Class Positive Negative World Sports Business Sci/Tech

Baseline 0.49 (6.24e-08) 0.31 (9.25e-05) 0.25 (1.67e-06) 0.32 (6.58e-09) 0.35 (1.88e-11) 0.12 (2.33e-02)

Therapy - most played 0.52 (5.79e-09) 0.32 (7.83e-05) 0.22 (1.57e-05) 0.27 (7.66e-07) 0.32 (2.04e-09) 0.22 (1.93e-05)

Therapy - highest score 0.49 (3.3e-08) 0.31 (1.0e-04) 0.27 (1.6e-07) 0.37 (4.0e-12) 0.38 (5.6e-13) 0.3 (8.9e-09)

Table 1: Spearman correlation (p-value) between the top words of a logistic regression glass-box and explanation
methods learning a logistic regression over generated texts. Baseline uses unconstrained samples while Therapy
generates samples using the MCTS, either selecting the most played or highest scored node. Results are shown per
class and dataset.

the logistic regression, the baseline generates texts
without constraining the LM and uses the glass-box
after the generation is done to get the target labels.

5.2 Spearman correlation

A good explanation of the glass box is a list of
features that contains both its important features
(i.e., has good coverage) and links them to a similar
relative weight. Hence, we compute the Spearman
correlation between the top words of the glass box
(having a weight > 1) and their scores attributed
by the explainer. We selected Spearman correlation
over Pearson because the score returned by LIME
and SHAP can be very different from logistic re-
gression weights and so rank correlation results in
a fairer comparison.

5.2.1 Influence of the number of generated
texts

One critical parameter of the proposed method is
the number of texts to generate since more tokens
allow a larger coverage but require more computa-
tion. We report the Spearman correlation against
the number of generated texts per class in Figure 2.
We observe that the correlation quickly rises until
plateauing, meaning that only a small amount of
text offers a great overview of the model behavior
and that the method does not require a lot of com-
puting to perform. We thus fixed the number of

generated texts for Therapy to 3000 for each class
for the rest of our experiments.

5.2.2 Importance of the classifier guidance
Cooperative generation allows Therapy to guide
the LM during the decoding process and to move
away from its distribution toward that of the model
studied. To study the importance of this guidance,
we report, in addition to the baseline, the results ob-
tained when selecting the most played token during
MCTS generation. As mentioned in Section 3.2,
the token added to the current context can be se-
lected as the most played node or the one obtain-
ing the highest score. Selecting the highest-scored
node generates texts that are the most stereotyp-
ical of the studied model, while the most played
node is closer to the LM a priori. Results reported
in Table 1 show that both the baseline and using
the most played node exhibit competitive results
on amazon_polarity but struggle more on ag_news.
This can be explained by the fact that the LM tends
to not generate positive and negative terms at the
same time, so the classes are clearly defined even
in unconstrained samples. On ag_news, however,
there is more overlap between classes, and so us-
ing cooperative generation helps to generate texts
that are more distinctive of a given class. These
results both highlight the contribution of the coop-
erative generation and motivate the token selection

81

Dataset AMAZON_POLARITY AG_NEWS

Class Positive Negative World Sports Business Sci/Tech

Baseline 0.49 (6.24e-08) 0.31 (9.25e-05) 0.25 (1.67e-06) 0.32 (6.58e-09) 0.35 (1.88e-11) 0.12 (2.33e-02)

LIME 0.64 (5.0e-7) 0.44 (1.5e-3) 0.09 (0.53) 0.16 (0.27) 0.20 (0.16) 0.19 (0.19)

LIME-other 0.21 (0.14) 0.18 (0.21) -0.03 (0.85) 0.23 (0.12) 0.09 (0.52) 0.29 (0.04)

SHAP 0.71 (7.6e-9) 0.76 (1.6e-10) 0.47 (6.2e-4) 0.62 (1.7e-06) 0.53 (8.0e-5) 0.61 (2.4e-6)

SHAP-other 0.02 (0.87) 0.26 (0.06) -0.05 (0.71) 0.04 (0.77) 0.15 (0.31) 0.12 (0.41)

Therapy 0.49 (3.3e-08) 0.31 (1.0e-04) 0.27 (1.6e-07) 0.37 (4.0e-12) 0.38 (5.6e-13) 0.3 (8.9e-09)

Table 2: Spearman correlation (p-value) between the top words of a logistic regression glass-box and the four
explanation methods. ‘other’ indicates that the explanations are generated using the other dataset. Results are shown
per class and dataset.

method.

5.2.3 Comparison with other methods
The Spearman correlations of all the evaluated ap-
proaches can be found in Table 2. Results yielded
by Therapy are better than those of LIME on
ag_news but worse on amazon_polarity whereas
SHAP yields better results than both methods on
both datasets. Counterintuitively, these are positive
results for Therapy because other methods have ac-
cess to the test set of the studied dataset, ensuring
that the target features are found in the input exam-
ples. To test the performance when this assumption
no longer holds, we resort to two variants of LIME
and SHAP, denoted by -other. The key distinction
between these methods lies in the dataset employed
as input data. We use amazon_polarity texts as in-
put to find features in ag_news and vice-versa. The
findings from these experiments reveal that existing
methods fail to find important features, leading to a
significant drop in correlations, substantially lower
than those of Therapy.

5.3 Precision Recall

Besides assigning correct scores to important fea-
tures of the model, we also want to make sure that
Therapy gives an informative output in practice.
That is, making sure that most features returned
by the explainer (i.e., its highest-scored features)
are indeed important features of the original model
and that most of its important features are found.
Thus, we report precision/recall curves averaged
over every class in Figure 3. Precision is obtained
by computing, for different numbers of words re-
turned, the proportion that is in the most important
features of the original model. Conversely, recall
is the proportion of the original model’s top words
retrieved. The number of words returned ranges

from 10 to 1500.
Therapy yields worse results than LIME (al-

though achieving better recall on ag_news) and
SHAP on both datasets. Again, when the input
data does not necessarily contain the important fea-
tures for the model (-other), the results collapse
and Therapy outperforms both approaches. This
limitation is visible by the plateau in recall scores
for these methods: they indeed find the important
features present in the data, but are limited to
these only, setting the upper limit of features that
can be found. In practice, biases contained in the
model can be subtle enough not to be present in
the available data, in which case LIME and SHAP
will not be able to detect it. Therapy, on the other
hand, obtains good results while using the same
generic LM for both datasets, without using any
a priori. The method thus provides a very good
overview of the model’s behavior when no data, or
more broadly, when no data representative of the
important features of the model is available. In the
latter case, Therapy offers a broader search than the
one based on existing texts, offering higher recalls.
Again, the baseline is competitive against Therapy
on amazon_polarity but is significantly worse on
ag_news. This illustrates that the cooperative gen-
eration allows Therapy to better highlight distinct
classes when they are more mixed in the LM.

5.4 Insertion/deletion of keywords

A strategy to validate the correctness of the expla-
nation is to remove the features that the explanation
method found important and see how the prediction
of the model evolves. The intuition behind deletion
is that removing the “cause” will force the model
to change its decision (Petsiuk et al., 2018). Simi-
larly, adding a word returned by the explanation as
important for another class should lower the con-

82

Figure 3: Precision/recall curves of the glass-box top words for the different explanation methods.

Figure 4: Proportion of texts whose glass-box prediction changes w.r.t the number of important words from the
original class replaced by important words from other classes.

fidence of the model. Thus, we compute an inser-
tion/deletion metric that measures the proportion
of texts whose glass-box decision changes when
a word listed as important for the original class is
removed and replaced by an important word from
another class. Figure 4 shows the results on both
datasets for Therapy, the baseline method, LIME,
SHAP, and their version using the other dataset
as input (-other) on 1000 texts. Replacements are
done by iterating over the list of the top 250 words
returned by each method for the original class until
the decision of the model changes. Replacement
can only occur if the word is present within the
text and multiple replacements of the same word in
a given text are counted as multiple replacements.
This explains why each method has a different max-
imum number of words replaced. Methods that
leverage generative models seem to achieve more
replacements. We hypothesize that this is because
they are designed to globally explain the model on
the input domain, unlike local methods that can
return words that are specific to a given input and
not generalize well.

We observe that Therapy achieves very simi-
lar results to those of LIME and SHAP on ama-
zon_polarity but significantly worse than both on
ag_news. However, when compared to the -other

versions, Therapy achieves very convincing results
showing once again that these methods require very
specific data while Therapy is able to find impor-
tant words without accessing any data nor using
any a priori on the model. In this experiment as
well, Therapy outperforms the baseline on both
datasets, although the difference is more noticeable
on ag_news.

6 Conclusion

Usual explainability methods heavily rely on input
data, which is not necessarily available and might
not contain model biases or important features. We
propose Therapy, a method that leverages coop-
erative textual generation to create synthetic data
that follow the studied model distribution. Thus,
the search is driven by a pre-trained LM rather
than input samples. The pre-trained LM allows a
broader exploration than being restricted to input
data neighborhood, relaxing most of the constraints
and a priori induced by examples-driven methods.
In the extreme case where extremely representa-
tive data (such as the test set of a given dataset) of
important features of the model is available, Ther-
apy lacks a bit behind state-of-the-art SHAP while
being competitive. However, when considering
more realistic cases where we do not explicitly

83

give the important features to the explainer or do
not have any available data, its performances are
very good whereas the other methods are collaps-
ing when even applicable. Comparisons with a
generate-then-classify baseline highlight the bene-
fits of the cooperative generation when the LM does
not generate texts that are representative of a single
specific class by itself. Therefore, Therapy is a
useful tool to explore the model behavior on a large
domain when collecting data that exactly match
the downstream distribution is not feasible. Finally,
we opposed the proposed approach to LIME and
SHAP to highlight the interest of generating repre-
sentative texts using cooperative generation when
input data is lacking. However, an interesting av-
enue of research would be to use these established
explainability methods on cooperatively generated
texts, replacing the proposed logistic regression
on the tf-idf representation. This potential combi-
nation might allow to leverage their performance
while alleviating the input data dependency.

References
Abubakar Abid, Maheen Farooqi, and James Zou. 2021.

Persistent anti-muslim bias in large language models.
In AIES ’21: AAAI/ACM Conference on AI, Ethics,
and Society, pages 298–306. ACM.

Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai.
2020. Exploring transformer text generation for med-
ical dataset augmentation. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4699–4708, Marseille, France. European
Language Resources Association.

Michał Araszkiewicz, Trevor Bench-Capon, Enrico
Francesconi, Marc Lauritsen, and Antonino Rotolo.
2022. Thirty years of artificial intelligence and law:
overviews. Artificial Intelligence and Law.

Alejandro Barredo Arrieta, Natalia Díaz Rodríguez,
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador García, Sergio Gil-Lopez,
Daniel Molina, Richard Benjamins, Raja Chatila, and
Francisco Herrera. 2020. Explainable artificial intel-
ligence (XAI): concepts, taxonomies, opportunities
and challenges toward responsible AI. Inf. Fusion,
58:82–115.

Anton Bakhtin, Yuntian Deng, Sam Gross, Myle Ott,
Marc’Aurelio Ranzato, and Arthur Szlam. 2021.
Residual energy-based models for text. Journal of
Machine Learning Research, 22(40):1–41.

Francesco Bodria, Fosca Giannotti, Riccardo Guidotti,
Francesca Naretto, Dino Pedreschi, and Salvatore
Rinzivillo. 2021. Benchmarking and survey of expla-
nation methods for black box models. CoRR.

Steven Bramhall, Hayley Horn, Michael Tieu, and
Nibhrat Lohia. 2020. QLIME-A: Quadratic Local
Interpretable Model-Agnostic Explanation Approach.
SMU Data Science Rev, 3.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: NeurIPS 2020.

Varun H Buch, Irfan Ahmed, and Mahiben Maruthappu.
2018. Artificial intelligence in medicine: current
trends and future possibilities. Br. J. Gen. Pract.,
68(668):143–144.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. 2022.
PPL-MCTS: constrained textual generation through
discriminator-guided MCTS decoding. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL
2022, Seattle, WA, United States, July 10-15, 2022,
pages 2953–2967. Association for Computational
Linguistics.

Radwa ElShawi, Youssef Sherif, Mouaz Al-Mallah, and
Sherif Sakr. 2019. ILIME: Local and Global Inter-
pretable Model-Agnostic Explainer of Black-Box De-
cision. In ADBIS.

Romaric Gaudel, Luis Galárraga, Julien Delaunay, Lau-
rence Rozé, and Vaishnavi Bhargava. 2022. s-lime:
Reconciling locality and fidelity in linear explana-
tions. In Advances in Intelligent Data Analysis IDA,
Rennes, France, volume 13205 of Lecture Notes in
Computer Science, pages 102–114. Springer.

Riccardo Guidotti. 2021. Evaluating local explanation
methods on ground truth. Artif. Intell., 291:103428.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018. Learn-
ing to write with cooperative discriminators. In Pro-
ceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL, pages
1638–1649. Association for Computational Linguis-
tics.

Alon Jacovi. 2023. Trends in explainable AI (XAI)
literature. CoRR, abs/2301.05433.

P. Karatza, K. Dalakleidi, M. Athanasiou, and K.S.
Nikita. 2021. Interpretability methods of machine
learning algorithms with applications in breast can-
cer diagnosis. In 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), pages 2310–2313.

84

Sylvain Lamprier, Thomas Scialom, Antoine Chaffin,
Vincent Claveau, Ewa Kijak, Jacopo Staiano, and
Benjamin Piwowarski. 2022. Generative cooperative
networks for natural language generation. In Interna-
tional Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research,
pages 11891–11905. PMLR.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre,
Miruna Pislar, Jean-Baptiste Lespiau, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals.
2021. Machine translation decoding beyond beam
search. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 8410–
8434. Association for Computational Linguistics.

Li Lucy and David Bamman. 2021. Gender and rep-
resentation bias in GPT-3 generated stories. In Pro-
ceedings of the Third Workshop on Narrative Un-
derstanding, pages 48–55, Virtual. Association for
Computational Linguistics.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 4765–4774.

Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Dip-
tikalyan Saha. 2021. Generate your counterfactu-
als: Towards controlled counterfactual generation for
text. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, pages 13516–13524.
AAAI Press.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artif. Intell., 267:1–
38.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Vitali Petsiuk, Abir Das, and Kate Saenko. 2018. RISE:
randomized input sampling for explanation of black-
box models. In British Machine Vision Conference
2018, BMVC 2018, Newcastle, UK, September 3-6,
2018, page 151. BMVA Press.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskeve. 2018. Improving language understand-
ing by generative pre-training.

Alec Radford, Jeff Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should I trust you?": Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016, pages 1135–
1144. ACM.

Marcel Robeer, Floris Bex, and Ad Feelders. 2021. Gen-
erating realistic natural language counterfactuals. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
3611–3625. Association for Computational Linguis-
tics.

Christopher D. Rosin. 2011. Multi-armed bandits with
episode context. Ann. Math. Artif. Intell., 61(3):203–
230.

Candida S. Punla, https://orcid.org/ 0000-0002-
1094-0018, cspunla@bpsu.edu.ph, Rosemarie
C. Farro, https://orcid.org/0000-0002-3571-2716,
rcfarro@bpsu.edu.ph, and Bataan Peninsula State
University Dinalupihan, Bataan, Philippines. 2022.
Are we there yet?: An analysis of the competencies
of BEED graduates of BPSU-DC. International
Multidisciplinary Research Journal, 4(3):50–59.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020.
Discriminative adversarial search for abstractive sum-
marization. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 8555–8564.
PMLR.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2021a.
To beam or not to beam: That is a question of co-
operation for language gans. Advances in neural
information processing systems.

Thomas Scialom, Paul-Alexis Dray, Jacopo Staiano,
Sylvain Lamprier, and Benjamin Piwowarski. 2021b.
To beam or not to beam: That is a question of co-
operation for language gans. In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
26585–26597.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis. 2017. Mastering
the game of go without human knowledge. Nat.,
550(7676):354–359.

85

Giorgio Visani, Enrico Bagli, and Federico Chesani.
2020. Optilime: Optimized LIME explanations for
diagnostic computer algorithms. In Proceedings of
the CIKM 2020 Workshops co-located with 29th ACM
International Conference on Information and Knowl-
edge Management (CIKM 2020), Galway, Ireland,
October 19-23, 2020, volume 2699 of CEUR Work-
shop Proceedings. CEUR-WS.org.

Sandra Wachter, Brent D. Mittelstadt, and Chris Russell.
2017. Counterfactual explanations without opening
the black box: Automated decisions and the GDPR.
CoRR.

Tongshuang Wu, Marco Túlio Ribeiro, Jeffrey Heer, and
Daniel S. Weld. 2021. Polyjuice: Generating coun-
terfactuals for explaining, evaluating, and improving
models. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages
6707–6723. Association for Computational Linguis-
tics.

Muhammad Rehman Zafar and Naimul Mefraz Khan.
2019. DLIME: A Deterministic Local Inter-
pretable Model-Agnostic Explanations Approach
for Computer-Aided Diagnosis Systems. CoRR,
abs/1906.10263.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649–657.

A Qualitative results

In this appendix, we provide samples generated by
Therapy as well as the first 20 top words returned by
the method for the different classes of both datasets.
Please note that some "words" correspond to sub-
words, due to the breakdown into unigrams (ve,
ll, ...). The proposed approach allows Therapy to
study the impact of n-grams, but this is not possible
with LIME and SHAP (using available code), so
we restricted the study to unigrams.

A.1 amazon_polarity, "positive" class

Samples:

• "The amount of support they gave was
amazing. I’m so happy with the game
and it’s a great way for me to play
my favorite role! Also, I love that
they’re giving us a new character
every week, which is awesome :)I think
they’ve been pretty good lately too.
It’s nice when we see someone who
really loves their team and has fun
doing things"

• "The whole point of this post is to
show people what a great job you’ve
put in. You are doing an excellent
job, I love this sub. Keep going.
:)I’m so happy for all those people
that have helped! It’s amazing to be
here and it was fun being the one that
got the most attention on the other
day :). Thank you so much <3You’re
very welcome :) And yes... I am glad
you enjoyed this subreddit - it is a
great place"

Top-words: great, love, good, ve, years, people,
lot, friends, fun, life, world, works, easy, things,
happy, heard, including, awesome, nice, family

A.2 amazon_polarity, "negative" class

Samples:

• "I guess you could say it has to be the
most boring thing ever.It is a very
boring experienceI don’t think they
have any idea how to make money off
this, so they will probably just do
what you say they will if it doesn’t
work. They may try to sell you on the
fact that it isn’t working and then
try and get you to buy back into it
when they are done making money. If I
was them, would they not want to pay
me?"

• "It might be a bug, but it doesn’t
work on my phoneYeah that sucks! I
was hoping the same thing happened.I
don’t think you can get a refund
without having to buy a new one...You
have no idea what they would be like
without the warranty. They wouldn’t
know how much money is left if they
didn’t do it properly or at all and

86

they would probably just give it back
as soon as they found out it was
defective (or something)"

Top-words: don, money, bad, doesn, didn, idea,
work, device, isn, thing, guess, wrong, back, buy,
fact, time, phone, point, problem, thought

A.3 ag_news, "world" class
Samples:

• The world’s most popular and sought
after luxury home in Dubai, the Al
Khaleel International Airport (ALI),
is a city that is renowned as the hub
of the Middle East and North Africa
region. It is also the capital city of
Abu Dhabi, United Arab Emirates with a
population over 2 billion people and
a GDP per person.Al-Khaliel airport
is an important gateway into Europe
to the north east and west of Europe,
Asia, and Australia

• In the last month, the US government
has been accused of using a “secret”
military intelligence agency in Iraq
and Afghanistan for spying on its
allies, including Pakistan, Turkey,
Iran, Russia, Syria, Sudan, Lebanon,
Libya, Egypt, Nigeria. . . and even
Saudi Arabia!According to a new
report published today, the Pentagon
is now investigating the alleged
use by the US military Intelligence
Community (IUC), which was created by
President Bush after the 9/11 terror
attack that killed over

Top-words: people, man, country, city, party,
killed, family, agree, wrong, general, children, sex,
president, police, working, military, dead, missing,
woman, days

A.4 ag_news, "sport" class
Samples:

• I think it’s pretty safe to assume
that the guy has a lot of experience
with the game. He played in the
NHL, and he was a top 10 player on
the team for most games last season
(he had a goal in his final three
playoff series), and he won a Stanley

Cup as a rookie this past season (he
finished third in the league in points
scored, which was good for second in
the league) and is still one of the
best players in hockey at this stage
in the year

• We’ve got to keep playing this game.
This team needs to win games and
we need to play the best basketball
that’s been in our league all season,
every night. And it is time to get
out there and do that.""The Warriors
have won three straight games at home
and are 2-0 against the NBA’s best
team on both sides of the ball this
season with a record of 21-1 (13.7
points per game)

Top-words: time, game, back, season, play, didn,
team, guy, field, night, games, left, 12, title, won,
saturday, playing, great, day, wasn

A.5 ag_news, "business" class

Samples:

• I am still in shock after hearing
of that.It’s a pretty big deal. It
happened last month. They are trying
to get the money out of the company
by selling their stock for profit so
they can sell more shares and buy
more shares at higher prices (which
I think would have helped with the
stock market) and it was reported as
an ""investment fraud"" by the SEC
which has been going on all over this
subreddit for months, but no one ever
seems to care much

• Biden is planning to spend millions
of dollars to buy a new home, but the
real estate market in America is still
struggling with the housing shortage.
The average house sale cost $1 billion
and was up by nearly 50 percent from
the previous year’s price of about
$800 million — according to the Real
Estate Board of New York (RBE).The
RBE estimates that the average house
sales prices are expected to rise
1,000 per month this fiscal year as
the economy continues its rebound

87

Top-words: money, buy, care, doesn, things, deal,
pay, worth, business, car, biggest, interested, month,
trade, don, compagny, happened, store, kind, price

A.6 ag_news, "sci/tech" class
Samples:

• 2K Games’ Dark Souls 3 is coming to PC,
Mac & Linux in the near future.The new
game will launch for free on PC, Mac
& Linux and Xbox One, PlayStation 5
and Microsoft Windows, as well. It’ll
come out sometime during this week,
with an official release expected
soon thereafter, though we don’t yet
know what it will be called or where
exactly you’re getting the title. We
also have some news from Sony that’s
not quite so surprisingetc...

• In this new age of technology, the
world needs more people. We have a lot
in our hands. The internet can help
us connect to others through video
chat and online games.""The company
will launch a mobile game called
’Gangster’, where it plans to offer
""an interactive experience"" with
its users, according to the company.
The game has been developed for the
Apple iPad and Android phones that
use Apple TV, which also uses Google
Chromecast, according to a release.

Top-words: ve, ll, idea, phone, internet, make, sys-
tem, video, online, life, understand, version, pc,
found, 13, thing, computer, lot, hard, issue, people,
work, information, future

88

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 89–105
December 7, 2023. ©2023 Association for Computational Linguistics

Self-Consistency of Large Language Models under Ambiguity
Henning Bartsch*

Independent Researcher
bartsch.henning@gmail.com

Ole Jorgensen*
Imperial College London

okj22@ic.ac.uk

Domenic Rosati*
Dalhousie University

domenic.rosati@dal.ca

Jason Hoelscher-Obermaier
PIBBSS fellow

jason.hoelscherobermaier@gmail.com

Jacob Pfau
New York University
jp6263@nyu.edu

Abstract

Large language models (LLMs) that do not give
consistent answers across contexts are prob-
lematic when used for tasks with expectations
of consistency–e.g. question-answering, ex-
planations, etc. Our work presents an evalua-
tion benchmark for self-consistency in cases
of under-specification where two or more an-
swers can be correct. We conduct a series of
behavioral experiments on the OpenAI model
suite using an ambiguous integer sequence
completion task. We find that average con-
sistency ranges from 67% to 82%, far higher
than would be predicted if a model’s consis-
tency was random, and increases as model
capability improves. Furthermore, we show
that models tend to maintain self-consistency
across a series of robustness checks, includ-
ing prompting speaker changes and sequence
length changes. These results suggest that self-
consistency arises as an emergent capability
without specifically training for it. Despite this,
we find that models are uncalibrated when judg-
ing their own consistency, with models display-
ing both over- and under-confidence. We also
propose a nonparametric test for determining
from token output distribution whether a model
assigns non-trivial probability to alternative an-
swers. Using this test, we find that despite
increases in self-consistency, models usually
place significant weight on alternative, incon-
sistent answers. This distribution of probability
mass provides evidence that even highly self-
consistent models internally compute multiple
possible responses.

1 Introduction

Language model pre-training approximates a dis-
tribution generated by many speakers. As a re-
sult, LLMs learn to express inconsistent beliefs
drawn from distinct groups of people (Santurkar
et al., 2023). Recent work has investigated the
consistency of LLMs variously as: a logical valid-
ity check on model claims (Fluri et al., 2023), an

explanatory validity check on the simulatability of
models’ explanations (Chen et al., 2023), and a tool
to identify LLMs representations of truth (Burns
et al., 2023). All of these works rest to some degree
on the contention that fine-tuned LLMs can be un-
derstood as holding beliefs, an assumption which
has recently come under scrutiny (Levinstein and
Herrmann, 2023).

Consistency is particularly of interest in cases
of ambiguity. Recent work has evaluated LLMs’
ability to identify linguistic and classification-task
ambiguity (Liu et al., 2023; Tamkin et al., 2023).
Our work brings together these threads of research,
examining how model explanations can be exam-
ined via self-consistency checks.

We offer a case study on ambiguity in an arith-
metical setting. We ask language models from
OpenAI for a continuation of an integer sequence
having multiple possible continuations. We then
separately ask the models for the formula that gen-
erated the initial sequence, which we refer to as the
explanation. Finally, we evaluate whether model-
generated continuations are consistent with model-
generated explanations (§3). We present the model
with the full set of sequence generating functions
so that ambiguity is, in principle, recognizable by
the model.

We find the following across evaluations
using davinci (GPT-3), text-davinci-003,
gpt-3.5-turbo, and gpt-4:

1. Models (with greedy decoding) improve in
cross-context consistency rapidly with increas-
ing scale and capabilities (§4). This holds
across prompting strategies and data perturba-
tions (§4.1).

2. Models are not well-calibrated and incapable
of self-assessing the consistency of their own
answers (Figure 1).

3. Even a model (text-davinci-003) that
89

chooses relatively consistently among sev-
eral correct answers across contexts still as-
signs non-trivial probability to other correct
answers (§5).

4. Models can generally verbalize alternative an-
swers in cases of ambiguity, but there is no
clear effect of capability increase on this ver-
balization task (§5.2).

2 Dataset: Ambiguous Integer Sequences

In order to evaluate self-consistency, we created
and open-sourced a dataset of ambiguous integer
sequences.1. Integer sequences were chosen be-
cause we can readily identify sequences that have
multiple valid completions. This allows us to in-
troduce tasks with ambiguity for measuring proper-
ties like model self-consistency. Previous work on
self-consistency considered open-ended question
answering or knowledge probing (Raj et al., 2022;
Elazar et al., 2021) which makes measuring con-
sistency difficult (rendering unclear the space of
possible answers, and what constitutes distinct an-
swers), whereas in our setting the space of possible
answers is rigorously defined via an enumeration
of generation functions.

Our dataset was created as follows: We gen-
erate integer sequences, e.g., 7, 11, 15, drawn
from a fixed set of generating functions, e.g.,
lambda x: (4 * x) + 3. Table 1 illustrates
some examples drawn from our dataset. The un-
derlying function is referred to as the rule or ex-
planation of the sequence, and the next integer
as the completion. Our experimental settings are
mostly based on two fundamental tasks: (1) se-
quence completion and (2) sequence explanation.
For completions, we query models for the next
item in a given integer sequence. For explana-
tions, models are prompted for the underlying func-
tion that generated the given sequence. In our ex-
periments, models should return explanations in
the form of Python lambda functions whose form
is demonstrated through few-shot examples (see
Appendix B). Models are informed of the func-
tion space ahead of time by being presented with
the possible generating functions in the instruction
prompt.

Ambiguous sequences are sequences for which
there are multiple generating rules which differ in

1https://github.com/JacobPfau/introspective-self-
consistency

Sequence Completion Rule

4, 6, 8 10 lambda x: x + 2
7, 11, 15 15 lambda x: (3 * x) | 3
7, 11, 15 19 lambda x: (4 * x) + 3

Table 1: Example of integer sequences that are either
unambiguous or ambiguous given a specific set of gen-
erating rules (enumerated in Table 4).

their continuation of the sequence. Unambiguous
sequences are sequences which have only one valid
completion within our function space. Appendix A
describes our algorithm for mining for ambiguous
sequences as well as the parameters of the func-
tion space we searched over. The function space
consists of eight function templates, each with two
constant arguments. We generate functions from
those templates by setting the constant terms in the
range [0, 4], resulting in 197 possible functions on
which Algorithm 1 is used. Our dataset consists
of 140 unambiguous sequences and 57 ambiguous
sequences.

3 Methodology: Evaluating Consistency

We measure consistency by comparing responses
from the completion task to responses from the
explanation task, which we call cross-context be-
cause the model sees each task in a separate context
window. Each prompt uses eight demonstrations
showing the model how to complete the sequence
or explain the sequence using a Python function.
The demonstrations are drawn randomly2 from the
same function space as the ambiguous and unam-
biguous functions. Examples of these prompts are
presented in Appendix B.

The models chosen for evaluation were
text-davinci-003, gpt-3.5-turbo, and
gpt-4.3 While we are not entirely sure how
these models are trained, these models were
chosen because they are commonly used by both
researchers and the public, and they represent
a sequence of capability increases through data
quality improvement, annotations, and innovation
in training and inference techniques (see OpenAI
(2023)).

In the below experiments, greedy sampling

2To control for the effect of these random sequences on bi-
asing consistency, we report results aggregated from multiple
runs

3https://platform.openai.com/docs/models. For gpt-4, we
use the gpt-4-0314 version. For gpt-3.5-turbo, we use the
model that was available from March to June 2023.

90

(temperature set to 0) is used throughout. This
choice lets us conduct a best-case analysis of self-
consistency: studying whether a model is capable
of self-consistency when the sampling strategy is
advantageous. In §5, we move on from greedy
decoding and examine what the full output distribu-
tion implies about the possible continuation space
of models. 4

3.1 Explanation and completion accuracy

Before considering cross-context consistency, we
first benchmark these models’ accuracy on se-
quence completion or sequence explanation in un-
ambiguous cases. For the completion case, we
present the models with a sequence of four inte-
gers and evaluate its accuracy on generating the
next item in the sequence. For the explanation case,
we present the models with a sequence and eval-
uate the model’s accuracy on generating an exact
match of the Python function used to produce the
sequence.

Accuracy (%) %
Model Explanation Completion Valid

davinci 6.00 20.20 95.5
text-davinci-003 31.18 65.95 99.3
gpt-3.5-turbo 50.25 77.56 97.6
gpt-4 59.05 78.64 94.8

Table 2: Mean explanation and completion accuracy
scores in unambiguous cases, as well as fraction of
valid, parseable answers, for each model across three
runs. Accuracy increases with general model capability
and is higher for completion than for explanation.

Table 2 presents our capability results. We report
the average explanation and completion accuracy
scores across three runs. We also report the fraction
of valid answers (out of a total of 140 test cases, our
unambiguous functions) where the model provided
a valid parseable answer, such as a valid integer or
Python function. The results are largely intuitive:
as general model capacity increases, performance
on the explanation and completion tasks increases.
Note that the explanation task is generally harder
than the completion task. On both tasks, davinci
does poorly despite having a high number of valid
answers, so davinci was not used in subsequent
experiments.

3.2 Explanation and completion consistency

Our second set of experiments evaluates the con-
sistency of a given explanation for a sequence and
a completion for the same sequence when a model
is prompted separately for explanation and comple-
tion. We use a similar setup as the previous exper-
iment, including the explanation and completion
prompts used earlier. We measure the following
(see Appendix B for corresponding prompts):

• Cross-context consistency: whether the ex-
planation provided by the model generates
the given sequence, including the completion
provided separately by the model.

• Model-judged consistency: whether the
model, itself, judges the explanation (rule) it
provided and the completion it provided to be
consistent, i.e., the rule generates the sequence
with claimed completion (see Listing 5 for the
prompt used in these judgements).

Figure 1 illustrates the performance of each
model on the above scores when we vary the num-
ber of integers in the initial sequence from a length
of two to a length of four. Sequences with two ini-
tial integers have 196 ambiguous sequences, three
initial integers has 76 total ambiguous sequences,
and four initial integers have 140 ambiguous se-
quences. This variance allow us to understand the
behavior of models as the space of ambiguity varies.
The two main results are (1) model improve in con-
sistency as they improve in arithmetical capabil-
ity from text-davinci-003 to gpt-4, (2) models
tend to consider their answers consistent when they
are not, except for gpt-4 which underestimates its
own consistency. Result (2) is noteworthy because
calibration, or the ability of a model to express
accurate estimates of its own behavior, is an impor-
tant safety property of LLMs (Fluri et al., 2023; Lin
et al., 2022a). In domains where human evaluation
cannot be done, Fluri et al. (2023) identify model
self-evaluations of consistency as a primary method
useful for invalidating untrustworthy responses. A
well-calibrated model should have cross-context
consistency and model-judged consistency scores
as close as possible.

91

gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003
0

20

40

60

80

100
C

on
si

st
en

cy
sequence length = 2

gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

sequence length = 3

gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

sequence length = 4

Consistency measure
Cross-context consistency
Model-judged consistency

Figure 1: Cross-context consistency (orange). Model-judged consistency (blue); this drops drastically for gpt-4,
which underestimates the consistency across answers itself produced.

30 40 50 60 70 80
Accuracy

68

70

72

74

76

78

80

82

C
on

si
st

en
cy

Cross-context consistency v accuracy

30 40 50 60 70 80
Accuracy

60

65

70

75

80

85

90

95
M

od
el

-ju
dg

ed
 c

on
si

st
en

cy

Model-judged consistency v accuracy

gpt-3.5-turbo-0301
gpt-4-0314
text-davinci-003
explanation
completion

Figure 2: Explanation and sequence completion accuracies plotted against cross-context consistency and model-
judged consistency (mean over sequence lengths). Further illustration of gpt-4’s inability to correctly assess its
own consistency despite being much more consistent.

3.3 Consistency and Capability

Figure 2 presents the results from §3.1 and §3.2
plotted together. This analysis investigates the de-
gree to which model capability relate separately
with cross-context consistency, and model-judged
consistency. We see as capability increases so does
cross-context consistency but, the most capable
model gpt-4 is worse evaluating its own consis-
tency.

Additionally, we compute expected consistency
if correct completion-explanation pairs were cho-
sen uniformly randomly at different capability
thresholds. Table 3 illustrates cross-context con-
sistency performance by our models and expected
random consistency based on the average perfor-
mance of each model on explanation and sequence

4Given the nature of black-box API-based evaluation, it
is possible greedy decoding doesn’t ensure determinism (e.g.
because of sparse mixture of experts routing considerations).

completion accuracy. This tells us how consis-
tent we should expect models to perform at differ-
ent capability levels if they chose their completion
responses independently from their explanations.
Note that a model could score perfectly on the ca-
pability evaluations and consistency evaluations
while having no self-consistency whatsoever. What
we find is that models approach perfect consistency
rapidly with capability increases.

Average consistency (%)
Model Actual Random

text-davinci-003 66.86 8.50
gpt-3.5-turbo 74.68 10.02
gpt-4 82.22 15.22

Table 3: Average cross-context (Actual) consistency
across settings in Figure 1 and consistency we’d expect
to see (Random) if valid answers were selected uniform
randomly given the average accuracy performance for
each model.

92

4 Robustness Checks for Consistency

We conducted further experiments to better under-
stand how robust these results were to changes in
experimental protocol by using a range of differ-
ent prompts. We consider: (1) speaker changes
in which we prompt the model as if the sequences
were generated by different speakers; (2) change of
base in which the sequence integers are presented
in base 2 instead of base 10; and (2) sequence
length changes. Full results are given in §C.

4.1 Consistency Across Speaker Changes

The first robustness experiment was designed to
investigate the robustness of self-consistency of
models when asked to simulate different speak-
ers. This was intended to investigate whether
models could be prompted to simulate more or
less self-consistent speakers, which would deter-
mine whether models should be expected to be
self-consistent by default or whether the previous
results were artifacts of arbitrary features of the
prompt.

To do this, we again conducted the same exper-
iments as §3, now varying the initial instruction
given to the model. These instructions were split
into two separate components which we varied in-
dependently: what task we wanted the model to
complete, and which speaker we wanted the model
to simulate completing that task. We used three
different task prompts, which one might expect to
correspond to three different levels of consistency:
the self-consistent prompts asked explicitly for a
pair of responses which matched each other; the
most likely prompts asked for the most likely con-
tinuation / explanation (most likely); and the ran-
dom prompt asked the model to choose responses
randomly when there was ambiguity about the cor-
rect answer. The prompts in full can be found in
Appendix B. For example, the random explana-
tion prompt was "Assume the sequence is gener-
ated by some deterministic function. If multiple
functions could generate the sequence, choose the
corresponding continuation randomly".

The first plot in Figure 3 shows representative
results when varying the task prompt on correct-
ness and consistency. If the models were capable
of computing multiple continuations, and merely
appeared self-consistent by dropping other possibil-
ities, then we might expect there to be variable self-
consistency, e.g., higher on the self-consistency
prompt, and lowest on the random prompt. Empir-

ically, we found that prompting the models with
these different tasks had little influence on the pro-
portion of answers that were self-consistent. This
was found both for sequences of length 4 and 2.
Even in the case where we were able to elicit a
high proportion of correct answers being incon-
sistent using the most likely prompt, we do not
see large changes in the number of inconsistent re-
sponses when varying the task prompt. This serves
as strong evidence that the relationship between
capability and consistency is unaffected by task
prompt.

4.2 Consistency Across Base Changes

In this robustness experiment, we investigate what
impact the base representation of functions and
sequences had on capabilities and consistency of
the models. This was intended to investigate the
relationship between model capability and self-
consistency while holding model type and training
constant. We hypothesised that bases besides base
10 would be more difficult for the model. We again
prompted the model to produce a continuation of
a sequence and an explanation for the sequence,
although the sequences were now in base 2, and
the functions were expected to output base 2 repre-
sentations of integers.

The second plot in Figure 3 presents a correla-
tion analysis for this experiment, considering both
base 10 and base 2 responses. It demonstrates a
very strong correlation between the model generat-
ing correct explanations and being self-consistent,
suggesting that this trend is robust across bases and,
thus, task difficulty.

5 Distributional Analysis of Model
Consistency

5.1 Models Do Not Converge to Calculating a
Unique Solution

In the analysis so far, greedy sampling was used
throughout. We now pose a follow-up ques-
tion: Given models increasingly converge to self-
consistency, preferring a unique answer, to what
extent do these models calculate representations
of other alternative answers? And, when models
place high probability on alternative answers, can
they verbalize these alternative solutions serially?

Specifically for models that were fine-tuned with
RLHF (Christiano et al., 2017; Ouyang et al., 2022),
the output probabilities may not be well-calibrated
to the relative frequency of tokens if the objective

93

40 50 60 70 80 90
Explanation Correctness

30

40

50

60

70

80

90

Co
ns

ist
en

cy
sequence length = 2, base 10

gpt-4 Random Prompt
gpt-4 Most Likely Prompt
gpt-4 Self-Consistent Prompt
gpt-3.5-turbo Random Prompt
gpt-3.5-turbo Most Likely Prompt
gpt-3.5-turbo Self-Consistent Prompt

10 20 30 40 50 60 70 80 90
Explanation Correctness

10

20

30

40

50

60

70

80

90

Co
ns

ist
en

cy

sequence length = 4

20 30 40 50 60 70
Explanation Correctness

10

20

30

40

50

60

70

Co
ns

ist
en

cy

sequence length = 2

gpt-4 base 10
gpt-4 base 2
gpt-3.5-turbo base 10
gpt-3.5-turbo base 2

Figure 3: Cross-context consistency plotted against explanation correctness, varying either the role prompt (left-hand
side) or the base-representation of the integer sequences being evaluated on (middle and right-hand side).

of RLHF encourages models to allocate probabil-
ity mass narrowly (Kadavath et al., 2022). Hence,
models’ token probability distribution may not be
reflective of their credences. While the models
may be uncalibrated, we make a weaker assump-
tion below that model output probabilities are non-
parametrically calibrated: higher probability mass
implies higher credence.

Applying this assumption to our setting, given
initial ambiguous sequence, Sn, generating rules
{F}, we can determine whether a model has cal-
culated an alternative correct sequence completion,
c′, other than the modal greedy-decoded solution
by verifying that:

P (c′|Sn) > P (z|Sn) for all z ∈ N \ C (1)

where C is the set of correct continuations of Sn
and N is the set of all continuations.

4 6 8 10
Number of Shots

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

R
at

e

Rate for Correct Completions Assigned Consistently Non-trivial Mass

invalid func type
random
exclude_class
same_class

Figure 4: Rate at which correct completion alternatives
are assigned non-trivial probability mass by function
class sampled for few shot exemplars. Across sampling
methods, that rate is relatively high indicating a consis-
tent consideration of correct alternatives across contexts.

For input data, we use the full set of 40 func-
tions that generated ambiguous sequences (see Al-
gorithm 1). We prompt the model using the same

prompts for integer sequence completion as in §3.2
and determine whether alternative correct answers
rank higher than all incorrect answers. In the expla-
nation case, we change the prompt to be a multiple-
choice task so that only a single token is needed to
evaluate the above inequality. Despite this simpli-
fication, the rate at which high probability mass is
spread on alternatives is much lower, with the best
rate of 0.3. This indicates that correct alternatives
are not generally considered. This may be because
the computation of correct alternative explanations
is much more computationally intensive and more
difficult than the computation of correct alternative
sequence completions.

We use text-davinci-003 for our experiments
since it is the only model that has token log proba-
bilities accessible from the public API.5 Since the
API returns up to nlogprobs = 5 probabilities for
top output tokens, we assess if any incorrect answer
was listed and whether the correct all rank higher.
When a possible correct answer is not in the top
output tokens but an incorrect one is, we consider
the test failed. Finally, we control the sampling
methods for few-shot example: exclude_class
indicates that we exclude the sequence generating
functions that are from the same class (See classes
used here Table 4), same_class draws functions
from the same function class and random draws
those randomly across function classes. These con-
trols are designed to give us insight on whether the
class of functions used makes considering correct
answers over incorrect ones more challenging. The
evaluations are averaged over three runs.

Figure 4 illustrates that in the sequence com-
pletion case, text-davinci-003 almost always
assigns high probability to correct alternative an-

5https://platform.openai.com/docs/api-
reference/completions/create

94

swers. We only see small differences with function
class used for few-shot examples where the cases of
same_class and random functions appear to help
with computing correct alternative explanations as
the number of few-shot demonstrations is increased.
Sampling examples with exclude_class seems to
make it more challenging likely because functions
that explain the model completion have not been
seen before.6

35 30 25 20 15 10 5
Log Probability

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 D
en

si
ty

Distribution of Log Probabilities by Class Label for Completion (num_shots = 8)

class label
correct_and_not_pred
incorrect_and_not_pred
correct_and_pred
incorrect_and_pred

Figure 5: Distribution over output probabilities
for correct and incorrect completions for the sam-
pling function type random_class. Each histogram
is normalized by the data points of the corre-
sponding class label. With KL-divergences of
KL(correct_and_pred||correct_not_pred) = 1.71 and
KL(correct_and_pred||incorrect_not_pred) = 3.45
bits, the distributions of correct answers have higher
overlap.7

In Figure 5, the distribution over log probability
mass is shown for the sequence completion task
across four combinations over two variables: cor-
rectness and (greedy) prediction, i.e., whether the
response in question was predicted as the top-1
response. The distribution for predicted answers
look similar: correct and predicted answers (blue)
narrowly concentrate relatively large log probabil-
ities and a single peak for incorrect predictions
(red). For non-predicted answers, the distributions
are generally flatter and their mean shifted towards
comparatively smaller values.

For correct and non-predicted answers (green),
the distributions’ median at around -13.8 is much
larger than at -20.7 for incorrect answers. This

6Since we do not have access to the underlying pre-training
corpora distribution of the model, we cannot definitively rule
out higher probability mass being assigned to sequences due
to their frequency in the pre-training corpora.

7To calculate the KL-divergence, we first obtained the den-
sity histograms for the same points nbins = 40 between the
minimum and maximum value of log probabilities. Addition-
ally, we applied Gaussian smoothing with σ = 1 to include
information where the quotient would otherwise have been
undefined.

difference indicates that the model allocates non-
trivial probability mass to those correct options.
Correct alternatives are calculated and represented
by the model internally. When normalizing the
distribution across all data points the probability
mass place on correct answers is relatively large
and narrow, even for non-predicted answers (see
Figure 7).

5.2 Verbalizing Alternatives
While inspecting the probability distribution over
answers gives insights into the potential consider-
ation of alternatives, we are further interested in
the extent to which models would verbalize those
alternatives if prompted. This is important because
outside of our simple sequence modeling cases, nat-
ural language questions will generally have distinct
answers which require multiple tokens to express,
making it impractical to directly read off answer
probability from logits.

In this experiment, we prompt the model to pro-
vide all possible answers for an ambiguous se-
quence task and compare those with the correct
options (prompt in Listing 12). We provide in-
context examples and consider only up to 5 alter-
natives. Precision and recall scores are calculated,
comparing verbalized answers with the valid con-
tinuations. For input data, we consider the default
ambiguous sequences (see Algorithm 1).

The high precision scores in Figure 6 show that
models do not tend to produce random, incorrect
answers. Recall scores are much lower, for comple-
tion reaching a maximum of 0.41 and for explana-
tion 0.49. Compared to precision this aligns with
our expectations that verbalizing all alternatives is
very difficult. However, the rapid increase in recall
with additional in-context examples implies that the
models adapt to include more correct alternatives.8

In contrast to our previous results, the performance
for the explanation tasks is similar to completion.
text-davinci-003 achieves the highest recall for
explanation despite being the generally less capa-
ble model, but likely preserving a wider options
space and multiple possible continuations due to
less RLHF fine-tuning. The low precision score in-
dicates that it thereby also produces false negatives.
The relatively high recall of gpt-4 for explanation
and completion tasks show its verbalization capa-
bilities. However, in the easier completion task,

8For nshots > 10, our prompt exceeds the token limit. De-
spite increasing recall scores, we were not able to investigate
the impact of few-shot examples further.

95

4 6 8 10
Number of Shots

0.4

0.5

0.6

0.7

0.8

S
co

re
precision

4 6 8 10
Number of Shots

0.30

0.35

0.40

0.45

0.50

S
co

re

recall

model
gpt-3.5-turbo
gpt-4
text-davinci-003

response_type
completion
explanation

Precision & Recall of Verbalized Alternatives by Model

Figure 6: Precision and recall scores of alternative an-
swers verbalized by different models compared to cor-
rect answers, up to 5 alternatives and only distinct values
were counted.

high recall scores would be expected if the model
considered more alternatives.

6 Related Work

Our work is motivated by previous research on
truthfulness. Approaches like Lin et al. (2022b)
directly tackle this problem by developing bench-
marks for truthfulness of LLMs across a range of
questions such as health, law, and politics. Detect-
ing inconsistencies is helpful, but not sufficient, for
evaluating the truthfulness of language models.

Evaluating model behavior under ambiguity
would shed some light on this question, as ex-
plored in Liu et al. (2023). Here, however, the
emphasis is on interpreting ambiguous natural lan-
guage sentences correctly, as opposed to making
the same judgment in a range of different contexts.
This means that failings might not be indications
of inconsistency but rather a poor understanding of
natural language.

Similarly, the approach towards consistency eval-
uations taken by Fluri et al. (2023) focuses on
whether different answers are logically consistent.
When a set of conditions over different inputs holds,
then conditions over corresponding outputs should

logically follow. For instance, forecasting world
records in 100m sprint should monotonically de-
crease over time. In contrast to our own work, the
investigations focus on scenarios without known
ground truth. Our focus on being consistent across
contexts tests for poor world models and extends
consistency checks to arithmetic reasoning tasks.

Tamkin et al. (2023) presents a novel benchmark
for studying how well models are able to detect
salient features of sentences where this salient fea-
ture is undetermined. This relates to our ambiguous
sequences setting, although the focus on interpret-
ing natural language means the evaluations will not
separate poor language understanding from inher-
ent inconsistency.

Self-consistency also relates to chain of thought
prompting (Wei et al., 2022), which may be used to
elicit truthful explanations of how models arrive at
claims. However, Turpin et al. (2023) demonstrates
that the given explanations can be misleading since
models can be biased to change their answers in a
way that is not reflected in their explanations–this
is a form of explanation inconsistency.

There has been recent progress on this from work
in interpretability. Burns et al. (2023) demonstrate
that directions in the latent space of networks can
be found that correspond to truthfulness better than
the outputs of models directly. Our approach could
complement techniques like this, providing new
phenomena to better understand the trustworthiness
of models.

A related investigation is into how language mod-
els respond to open-ended questions for which a
single correct answer does not exist (Yin et al.,
2023). Our work can be seen as considering the
related case where instead of there being no cor-
rect answer, there exist multiple possible correct
answers. Similarly, Raj et al. (2022); Elazar et al.
(2021) have focused on cross-prompt consistency
over knowledge-focused QA.

7 Conclusion

All tested models behaved more self-consistently
across contexts for ambiguous tasks than expected
if the models had randomly consistent behaviour.
This is surprising given models are not explicitly
trained for cross-context self-consistency. We also
found that model consistency grows with model
capability. We varied the task prompt, as well as
the difficulty of the task (using base-2 sequences
instead of base-10 sequences and varying the se-

96

quence length), and found that our findings are
robust with respect to these changes. Across all
evaluated models found that they are not well cali-
brated when it comes to evaluating their own con-
sistency. We also tested that even when a model
that chooses relatively consistent answers among
several correct answers across contexts, models
may still assign non-trivial probability to other cor-
rect answers. Asking the models to verbalize cor-
rect alternatives revealed high precision scores for
all models which discern between correct and in-
correct answers. In comparison, recall was rela-
tively low where text-davinci-003 surprisingly
achieved the highest recall, closely followed by
gpt-4, indicating they can retrieve alternative cor-
rect answers. The significance of our results is that
we shouldn’t assume the apparent consistency of
LLMs points to actual internal consistency due to
high probability mass placed on alternative answers
which may equally be picked using common sam-
pling techniques for natural language generation.
As a community we should also be wary of con-
sistency given our results on calibration that show
models across capability classes strongly over and
under estimate their own consistency.

8 Limitations

Ambiguous integer sequences is an idealized do-
main removing linguistic concerns and knowledge-
related complexities of natural language tasks.
Hence, results on this domain may not general-
ize. This is important because studies understand-
ing LLMs safety typically focus on model behav-
iors that have a direct impact on understanding
real-world risk, such as impact on socio-cultural
prejudice or factual accuracy, of their deployment.
Future work could investigate consistency in more
general linguistic domains using a similar frame-
work of ambiguity.

Our analysis of self-consistency was limited by
only having access to models through a public API.
In particular, we were only able to access the log
probabilities of one model under analysis, and at
the time of writing, this API is deprecated. Addi-
tionally, we did not include evaluation of available
open-source models, which could have provided
insightful comparisons with the OpenAI models
and possibility to test output behaviours more ex-
tensively. Future work may be unable to access
the log probabilities of these models to perform
similar analyses. Although we did use greedy de-

coding with zero temperature, the GPT model tend
to behave non-deterministically, which already in-
troduces an implicit inconsistency and dependence
on the few-shot examples. Reporting results av-
eraged over several runs aimed to mitigate this.
But controls for each experiments could have been
done in addition to that. Our experiments in 5
were limited by the availability of token probabili-
ties, so no scaling results are available in that sec-
tion. We chose popular LLMs used through public
APIs since we wanted to understand the behavior
of those particular models, but future work should
investigate open-source models that we are able to
fully inspect. In particular, we believe the observed
increase in cross-context consistency results from
RLHF and pre-training. However, given the closed
source nature of these models, it is possible that
GPT-series models were trained with cross-context
consistency objectives.

9 Acknowledgements

Thanks to Julian Michael and Miles Turpin for
feedback on a draft of this paper. This project has
benefited from financial support to Sam Bowman
by Eric and Wendy Schmidt (made by recommen-
dation of the Schmidt Futures program) and Open
Philanthropy. This material is based upon work sup-
ported by the National Science Foundation under
Grant Nos. 1922658 and 2046556. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s)
and do not necessarily reflect the views of the Na-
tional Science Foundation.

References
Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-

hardt. 2023. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh
International Conference on Learning Representa-
tions.

Yanda Chen, Ruiqi Zhong, Narutatsu Ri, Chen Zhao,
He He, Jacob Steinhardt, Zhou Yu, and Kathleen
McKeown. 2023. Do models explain themselves?
counterfactual simulatability of natural language ex-
planations.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,

97

and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

Lukas Fluri, Daniel Paleka, and Florian Tramèr. 2023.
Evaluating superhuman models with consistency
checks.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know.

B. A. Levinstein and Daniel A. Herrmann. 2023. Still no
lie detector for language models: Probing empirical
and conceptual roadblocks.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022a.
Teaching models to express their uncertainty in
words. Transactions on Machine Learning Research.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022b.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr,
Peter West, Alexander Koller, Swabha Swayamdipta,
Noah A. Smith, and Yejin Choi. 2023. We’re afraid
language models aren’t modeling ambiguity.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Harsh Raj, Domenic Rosati, and Subhabrata Ma-
jumdar. 2022. Measuring reliability of large lan-
guage models through semantic consistency. CoRR,
abs/2211.05853.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo
Lee, Percy Liang, and Tatsunori Hashimoto. 2023.
Whose opinions do language models reflect?

Alex Tamkin, Kunal Handa, Avash Shrestha, and Noah
Goodman. 2023. Task ambiguity in humans and
language models. In The Eleventh International Con-
ference on Learning Representations.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuanjing Huang. 2023. Do large
language models know what they don’t know?

98

A Mining Ambiguous Sequences

Algorithm 1 describes how we find a set of ambiguous functions A given a set of function templates
Ftemplates and the parameters c : N and s : N which control the sequence of constants to use for filling a
set of templates and the number steps we must check that a pair of functions must match for.

Definition A.1 (Integer Sequence Ambiguity). A pair of integer sequence-generating functions can be said
to be ambiguous iff both functions generate the same sequence up to |S| but generate different integers at
step |S|+ 1. This property holds if functions begin generation at different offsets.

Ftemplates is a set of functions that have slots for constant terms used to construct the function space
we will search for ambiguity within. For the purposes of our experiments, we generated templates using
the function templates in Table 4 which consisted of templates with two constant term slots. We generated
functions using integer constants in the range [0, 4].

For our experiments, we checked ambiguity for sequences of length 4 and an offset maximum of 4.
Unambiguous sequences are the complement of A and can easily be found by modifying the algorithm
below to return sequences which are generated by only one function selected from the function space. It
is important to note that the sequence is only unambiguous with respect to the function space selected.

Type Template

arithmetic progression lambda x: ({} * x) + {}

geometric progression lambda x: ({} * x) * {}

exponential progression lambda x: ({} * x) ** {}

power progression lambda x: {} ** ({} * x)

bit or progression lambda x: ({} * x) | {}

modular progression lambda x: (x * {}) % ({}+1)

indexing criteria lambda x:
progression [i for i in range(100) if i % ({} + 1) or i % ({} + 1)][x]

recursive progression (lambda a: lambda v: a(a,v))
(lambda fn,x: 1 if x==0 else {} * x * fn(fn,x-1) + {})

Table 4: Function templates with two constant term slots that were used for mining ambiguous sequences. Note our
functions are indexed starting at one.

99

Algorithm 1 Mining Ambiguous Sequences

Require: Ftemplates ▷ Construct function space
Set c ∈ C is a set of constants to parameterize the function templates
for f ∈ Ftemplates do

for c1 ∈ C do
for c2 ∈ C do
Ffilled ← Ffilled ∪ f [c1; c2]

end for
end for

end for
Require: P : Ffilled ×Ffilled ▷ Check ambiguity

Set S is a set of steps to check for ambiguity
Set O us a set of offsets to check starting and ending positions
Set A is the set of ambiguous functions
for f1, f2 ∈ P do

for o1 ∈ O do
for o2 ∈ O do

Set seqa is a temporary set for keeping track of the output from f1
Set seqb is a temporary set for keeping track of the output from f2
for s ∈ S do

seqa ← f1(s+ o1)
seqb ← f2(s+ o2)
if seqa ̸= seqb then

break
end if
if s = |S| then

seqa ← f1(s+ o1 + 1)
seqb ← f2(s+ o2 + 1)
if seqa ̸= seqb then
A ← A∪ f1, seqa, f2, seqb

end if
end if

end for
end for

end for
end for

Ensure: Return A is the set of ambiguous functions identified above

100

B Prompt Examples

Listing 1: System-level prompt. We prepend each context with minimal instruction and provide the valid space of
lambda functions to the model. For base 2 sequences the outputs are wrapped with the bin function.
You are helping with integer sequences like arithmetic or geometric sequences.

 Sequences are not always 0 indexed , they may be offset by an arbitrary i-
 index value. Progressions are written as Python lambda functions and you may
 only respond in the same lambda -function format.

Valid lambdas:
- arithmetic -> lambda x: (a * x) + b
- geometric -> lambda x: (a * x) * b
- exponential -> lambda x: (a * x) ** b
- power -> lambda x: a ** (b * x)
- bitwise_or -> lambda x: (a * x) | b
- modular -> lambda x: (x * a) % (b+1)
- indexing_criteria -> lambda x: [i for i in range (100) if i % (a + 1) or i % (b +

 1)][x]
- recursive -> (lambda a:lambda v:a(a,v))(lambda fn,x:1 if x==0 else a * x * fn(fn,x

 -1) + b)

Listing 2: Prompt for sequence explanation. We provide six few-shot examples before we prompt the model with
the test prompt (highlighted in beige).
For the sequence: 3,7
Give the code that generates the above sequence.
lambda x: (2 * x) | 3
For the sequence: 1,1,1
Give the code that generates the above sequence.
lambda x: (1 * x) ** 0
For the sequence: 18,162
Give the code that generates the above sequence.
(lambda a:lambda v:a(a,v))(lambda fn,x:1 if x==0 else 3 * x * fn(fn,x-1) + 0)
For the sequence: 4,7
Give the code that generates the above sequence.
lambda x: (3 * x) | 4
For the sequence: 1,1,1,1
Give the code that generates the above sequence.
lambda x: 5 ** (0 * x)
For the sequence: 3,5
Give the code that generates the above sequence.
lambda x: [i for i in range (100) if i % (3 + 1) or i % (3 + 1)][x]
For the sequence: 4,5
Give the code that generates the above sequence.

101

Listing 3: Prompt for sequence completion. We provide eight few-shot examples before we prompt the model with
the test prompt (highlighted in beige).
For the sequence: 2,3,4
Complete the next number and only the next number.
5
For the sequence: 0,1,2,3
Complete the next number and only the next number.
0
For the sequence: 0,0,0
Complete the next number and only the next number.
0
For the sequence: 9,12,15,18
Complete the next number and only the next number.
21
For the sequence: 4,6,7,8
Complete the next number and only the next number.
9
For the sequence: 3,8,26
Complete the next number and only the next number.
106
For the sequence: 4,5,7
Complete the next number and only the next number.
8
For the sequence: 2,6,24
Complete the next number and only the next number.
120
For the sequence: 12,15
Complete the next number and only the next number.

Listing 4: Prompt for sequence explanation. We provide six few-shot examples before we prompt the model with
the test prompt (highlighted in beige).
For the sequence: 3,7
Give the code that generates the above sequence.
lambda x: (2 * x) | 3
For the sequence: 1,1,1
Give the code that generates the above sequence.
lambda x: (1 * x) ** 0
For the sequence: 18,162
Give the code that generates the above sequence.
(lambda a:lambda v:a(a,v))(lambda fn,x:1 if x==0 else 3 * x * fn(fn,x-1) + 0)
For the sequence: 4,7
Give the code that generates the above sequence.
lambda x: (3 * x) | 4
For the sequence: 1,1,1,1
Give the code that generates the above sequence.
lambda x: 5 ** (0 * x)
For the sequence: 3,5
Give the code that generates the above sequence.
lambda x: [i for i in range (100) if i % (3 + 1) or i % (3 + 1)][x]
For the sequence: 4,5
Give the code that generates the above sequence.

102

Listing 5: Prompt for self-consistency. We provide six few-shot examples before we prompt the model with the test
prompt (highlighted in beige).
Is the following sequence: 1, 2, 3 consistent with the function lambda x: x + 1?
Answer (Y/N): Y
Is the following sequence: 3, 3, 4 consistent with the function lambda x: 3 * x + 2?
Answer (Y/N): N
Is the following sequence: 8, 18, 32 consistent with the function lambda x: 2 * x **

 2?
Answer (Y/N): Y
Is the following sequence: 256, 1024 consistent with the function lambda x: 4 ** x?
Answer (Y/N): Y
Is the following sequence: 7, 5, 12 consistent with the function lambda x: (3 * x) |

 4?
Answer (Y/N): N
Is the following sequence: 2, 3, 0, 1 consistent with the function lambda x: (x * 5)

 % 4?
Answer (Y/N): Y
Is the following sequence: 2,3,4 consistent with the function lambda x: (2 * x) | 0?
Answer (Y/N):

Listing 6: Random prompt for explanations (preceded with few-shot examples). Note that "Sequences are not
always 0 indexed , they may be offset by an arbitrary i-index value" from Listing 1 is omitted for Listings 6-11.
Pick a function which generates the following sequence.
If there are multiple possible functions , choose randomly.
Assume the first number was generated by f(0), the second by f(1), and so on.
The function should output numbers in the same representation as the sequence.
Give the response in the format:
Explanation: <function >

Listing 7: Random prompt for continuations (preceded with few-shot examples).
Choose a continuation of the following sequence.
Assume the sequence is generated by some deterministic function.
If multiple functions could generate the sequence , choose the corresponding

 continuation randomly.

Listing 8: Self-consistency prompt for explanations (preceded with few-shot examples).
Choose a function which generates the following sequence.
Note that you will be separately asked to choose a continuation of the sequence.
Please choose a function which is consistent with the continuation you will choose.
Assume the first number was generated by f(0), the second by f(1), and so on.
The function should output numbers in the same representation as the sequence.
Give the response in the format:
Explanation: <function >

Listing 9: Self-consistency prompt for continuations (preceded with few-shot examples).
Choose a continuation of the following sequence.
Note that you will be separately asked to choose a function which generated the

 sequence.
Please choose a continuation which is consistent with the function you will choose.
Give the response as a number (with a base prefix if appropriate), with no

 additional commentary.

103

Listing 10: Most-likely prompt for explanations (preceded with few-shot examples).
What is the most likely function which generated the following sequence?
Assume the first number was generated by f(0), the second by f(1), the third by f(2)

 , and so on.
The function should output the number in the same representation as the sequence.
Give the response in the format:
Explanation: <function >

Listing 11: Most-likely prompt for continuations (preceded with few-shot examples).
What is the most likely continuation of the following sequence?
Give the response as a number (with a base prefix if appropriate), with no

 additional commentary.

Listing 12: Prompt for verbalizing alternative completions.
For the sequence: 3,7
Complete the next possible number.
Consider up to 5 possible and valid answers separated by escape character '\n', as

 determined by you , {model_name }.
4 \n 15 \n

For the sequence: 1,1,1
Complete the next number and only the next number.
Consider up to 5 possible and valid answers separated by escape character '\n', as

 determined by you , {model_name }.

104

C Robustness Experiment Results

Model Base Length Correct Incorrect
Consistent Inconsistent Consistent Inconsistent

gpt-4 10 4 70 2 2 26
gpt-4 10 2 88 3 0 9
gpt-4 2 4 23 4 2 72
gpt-4 2 2 19 15 0 66
gpt-3.5-turbo 10 4 65 4 2 26
gpt-3.5-turbo 10 2 38 16 2 44
gpt-3.5-turbo 2 4 11 2 0 84
gpt-3.5-turbo 2 2 9 3 2 81

Table 5: The proportion of self-consistent continuation and explanation pairs (Consistent), alongside whether the
explanations are correct (Correct), for a given model (Model) on generated ambiguous sequences of length (Length),
represented in base (Base). Also tracks whether explanations or continuations are invalid (Invalid).

D Histogram of Log Probabilities for Alternative Completions of Ambiguous Sequences.

30 25 20 15 10 5
Log Probability

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

N
or

m
al

iz
ed

 D
en

si
ty

Normalized Distribution of Log Probabilities by Correctness for Completion (num_shots = 8)

incorrect
correct

Figure 7: Distribution over log probabilities by correctness with densities normalized across all data points. It shows
a narrow concentration of relatively large probabilities for correct answers and incorrect answers with relatively
small probabilities. The plot shows results for few-shots examples of random samples; distributions with different
few-shot sampling methods and number of shots look very similar.

105

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 106–119
December 7, 2023. ©2023 Association for Computational Linguistics

Character-level Chinese Backpack Language Models

Hao Sun
Stanford University

haosun@stanford.edu

John Hewitt
Stanford University

johnhew@cs.stanford.edu

Abstract

The Backpack is a Transformer alternative
shown to improve interpretability in English
language modeling by decomposing predic-
tions into a weighted sum of token sense com-
ponents. However, Backpacks’ reliance on
token-defined meaning raises questions as to
their potential for languages other than English,
a language for which subword tokenization
provides a reasonable approximation for lex-
ical items. In this work, we train, evaluate,
interpret, and control Backpack language mod-
els in character-tokenized Chinese, in which
words are often composed of many characters.
We find that our (134M parameter) Chinese
Backpack language model performs compara-
bly to a (104M parameter) Transformer, and
learns rich character-level meanings that log-
additively compose to form word meanings.
In SimLex-style lexical semantic evaluations,
simple averages of Backpack character senses
outperform input embeddings from a Trans-
former. We find that complex multi-character
meanings are often formed by using the same
per-character sense weights consistently across
context. Exploring interpretability-through con-
trol, we show that we can localize a source of
gender bias in our Backpacks to specific char-
acter senses and intervene to reduce the bias.

1 Introduction

Language modeling is a crucial task in natural lan-
guage processing, where the goal is to compute the
probability of the next word in a sequence given the
preceding words. Recently, large language models
based on the Transformer architecture (Vaswani
et al., 2017) have achieved remarkable success in
various NLP applications, including text genera-
tion (Radford et al., 2018b; Brown et al., 2020;
Wang and Komatsuzaki, 2021), machine transla-
tion (Bawden et al., 2019; Lewis et al., 2019), and
question-answering (Miller et al., 2017; Karpukhin
et al., 2020; Ram et al., 2021). However, Trans-
formers are notoriously hard to interpret and con-

Computer ‘s

电
electric brain

脑 的 显

卡

Transformer

∑ * =

show

card

‘s

GPU

Computer ‘s

电
electric brain

脑 的 显

卡

Transformer

∑ * =

show

card

‘s

GPU

Figure 1: The general structure of the character-level
Chinese Backpack Language Model. The next char-
acter is predicted by the weight sum of the senses of
characters in the previous context. The sense vector of
"显" (show) provides information for word composition,
while the senses of "电" and "脑" (computer) provide
semantic information through linear combination.

trol. Their non-linear contextualization functions
imply that intervening on their internal activations
can have unpredictable consequences.

The recently proposed Backpack architec-
ture (Hewitt et al., 2023) tackles the interpretability
problem by decomposing its predictions as a sum of
non-contextual vectors, which then provide an in-
terface for interpretability. Intuitively, it combines
the expressivity of Transformers with some of the
interpretability and control benefits of log-linear
models. It was shown to have similar language
modeling capacity to Transformers on English, and
performed comparably on perplexity and LAM-
BADA (Paperno et al., 2016) tests, at a tax of 1.4x
more parameters.

The effectiveness of the Backpack architecture in
languages with different morphological structures
than English remains uncertain due to challenges
in interpreting and controlling individual tokens
without stable explicit semantics. In Chinese, most
vocabulary consists of compound words with mul-

106

tiple characters. However, these characters often
have implicit meanings (Packard, 2011; Cui et al.,
2018), making it challenging to infer the meaning
of these words based solely on the individual mean-
ings of their constituent characters. Additionally,
some characters represent the pronunciation of for-
eign words and lack semantic associations, which
requires characters to learn more complex seman-
tic connections within limited sense vectors. The
English-based Backpack model is trained on often
complete words with more explicit meanings, mak-
ing it uncertain whether Backpacks will perform
well in character-level Chinese.

In this paper, we trained the first non-English
(and first character-based language) Backpack lan-
guage model and evaluate its performance and
learned lexical semantics on character level.1 We
trained several Backpack and Transformer base-
line models and evaluated them on perplexity and
word prediction accuracy tasks. Our experiments
show that our pretrained 134M Backpack Lan-
guage Model with 16 sense vectors, which uses
character-based tokenization, performs comparably
to a 104M Transformer model.

To understand the Backpack’s success, we first
study how it composes word meaning from non-
contextual token senses. We hypothesize word
meaning is formed because tokens of a multi-
character word receive similar weighting in the
Backpack’s sum across all contexts the word ap-
pears in. We find that indeed the proportion of
these composed characters on each sense vector
changes by no more than 20% in over 90% of
cases. Moreover, we achieve better word repre-
sentation under three Chinese corpora by simply
averaging the sense vectors of composed charac-
ters compared to the character embeddings of the
pretrained Transformer model. Additionally, we
propose and evaluate character-level interventions
to mitigate gender bias and control how word mean-
ing is composed from character meaning , which
demonstrate promising results for generating con-
trollable text in character-based Chinese Backpack
models. These experiments show that our Chinese
Backpack Model learns the implicit semantics of
characters, making it possible to control the em-
phasis or weakening of certain characteristics of a
word during generation tasks.

1Our code, weights, and demos are available at
https://github.com/SwordElucidator/nanoBackpackLM

2 Related Work

2.1 Word Representation with Deep Learning
Numerous word embedding techniques have been
proposed in the early stages of natural lan-
guage processing with deep learning, including
Word2Vec (Mikolov et al., 2013) and GLoVe (Pen-
nington et al., 2014), which represent words as
vectors. Word2Vec learns word embeddings by
predicting the probability of a word’s occurrence
given its context words or predicting the context
words given a central word. Hewitt et al. (2023)
showed that the Backpack is a generalization of
Word2Vec. While these methods produce high-
quality word representations that capture the se-
mantic and syntactic relationships between words
and have enabled rich interpetability studies as well
as bias auditing (Senel et al., 2017; Subramanian
et al., 2017; Swinger et al., 2018), they are not
suited to language modeling tasks due to a lack of
expressivity.

Subsequently, modern language models with the
Transformer architecture (Vaswani et al., 2017)
build contextualized word embeddings that are use-
ful for modeling language in a variety of settings.
However, as noted by Hewitt et al. (2023), these
models’ monolithic, non-linear processing of to-
ken sequences eschew any meaningful word-level
semantics, so word-level interpretability has no
direct connection to model behavior. Separately,
interpreting contextual representations is difficult
because each context maps arbitrarily to different
representations, making it difficult for word embed-
dings to directly represent non-contextual semantic
information and challenging to achieve predictable
intervention across all contexts.

2.2 Language Modeling with Deep Learning
Language modeling is a fundamental task in natu-
ral language processing, involving computing the
probability of the next word in a sequence given
the previous words. Early neural approaches to
language modeling used feed-forward networks
(Bengio et al., 2000), various Recurrent Neu-
ral Networks (RNNs) (Elman, 1990; Sutskever
et al., 2011) and attention mechanisms (Bahdanau
et al., 2014). More recently, modern language
models have adopted the Transformer architec-
ture (Vaswani et al., 2017), with the GPT se-
ries (Radford et al., 2018a,b; Brown et al., 2020)
by OpenAI achieving notable success in generating
high-quality and coherent text. This success has led

107

to applications in various areas, such as story gener-
ation (Xu et al., 2020b; Chen et al., 2021) and chat-
bots (Lin et al., 2020; Roller et al., 2020; Shuster
et al., 2022). However, as previously discussed, in-
terpreting word embeddings in Transformer-based
language models poses a challenge.

2.3 The Backpack Architecture
Hewitt et al. (2023) introduced the Backpack, a neu-
ral architecture which achieves high performance
on contextualization and non-contextual word rep-
resentations. This approach represents each word
in a sequence as a linear combination of sense vec-
tors, with weights computed by an expressive net-
work such as the Transformer. (We’ll review the
Backpack in detail in Section 3.) The linearity of
the contributions of sense vectors to predictions en-
courages the sense vectors to specialize and encode
rich notions of word meaning during pretraining.
Furthermore, the authors conducted experiments
on sense vectors, demonstrating their potential for
predictable control across all contexts. We repro-
duced and pretrained it on character-based Chinese
language, demonstrating the Backpack model’s po-
tential for application to languages of this type.

2.4 Chinese Tokenization and Embeddings
One common approach for tokenization in Chinese
involves sub-word tokenization methods, such as
WordPiece (Schuster and Nakajima, 2012), byte
pair encoding (Sennrich et al., 2016), and uni-
gram language model segmentation (Kudo, 2018),
which were adopted by recent Chinese Pretrained
Language Models such as CPM (Zhang et al.,
2020). Furthermore, Si et al. (2023) proposed Sub-
Character Tokenization, which encodes each Chi-
nese character into a sequence of phonetic or stroke
symbols, and then utilizes a sub-word tokenization
method to construct the vocabulary. In our research,
to understand the performance of character-level
sense vectors, we used single Chinese character
tokenization method proven to be effective by Li
et al. (2019) and utilized by Chinese GPT2 (Du,
2019) and MacBERT (Cui et al., 2021, 2019).

Various studies have explored embeddings at
the word (Rumelhart et al., 1986; Bengio et al.,
2000; Mnih and Hinton, 2008), phrase (Socher
et al., 2010; Zhang et al., 2014; Yu and Dredze,
2015), sentence (Le and Mikolov, 2014; Socher
et al., 2013; Kalchbrenner et al., 2014), and doc-
ument (Srivastava et al., 2013; Le and Mikolov,
2014; Hermann and Blunsom, 2014) levels for rep-

resenting knowledge and semantics. In the case of
Chinese, character-level embeddings (Chen et al.,
2015; Li et al., 2015) have also been investigated
in relation to compounded word embeddings (Xu
et al., 2016). We investigated on character embed-
dings and conducted two methods for represent-
ing compounded words using the contextualization
weights learned during pretraining.

3 Approach

3.1 Backpack language model
Drawing directly from Hewitt et al. (2023), a Back-
pack language model is a probabilistic model

p(xi | x<i) = softmax(E⊤oi−1), (1)

where x1:i is a sequence of elements from finite
vocabulary V , E ∈ Rd×|V|, and oi−1 is a Back-
pack representation of x<i. In turn, a Backpack
representation is constructed in two pieces:

Sense vectors. For each word in the vocabulary
V , a backpack learns k sense vectors, each like a
specialized word2vec vector. We write the sense
vectors for x ∈ V as {C(x)ℓ}kℓ=1. When presented
with a sequence x1:i, the Backpack constructs its
sense vectors for the words in the sequence:

C(x1), . . . , C(xi). (2)

Weighted sum. The Backpack representation oi
is just a weighted sum of the sense vectors of the
sequence:

oi =
n∑

j=1

k∑

ℓ=1

αℓijC(xj)ℓ, (3)

where αℓij is defined by a contextualization func-
tion α = A(x1:n), and A : Vn → Rk×n×n, and all
αℓij ≥ 0.

3.2 A note on Backpack token semantics
Intuitively, the contribution of each sense C(x)ℓ
to any prediction is independent of context. We
find it instructive to write out what this means for
token-level semantics. The score (E⊤oi)w of a
word w ∈ V in context x<i is the unnormalized
log-probability of that word. Because of linearity,
we have:

E⊤oi =
n∑

j=1

k∑

ℓ=1

αℓijE
⊤C(xj)ℓ, (4)

108

The contribution of a sense C(xj′)ℓ to that word’s
score is thus

αℓij′E
⊤C(xj′)ℓ ∈ R|V|. (5)

Because all α are non-negative, the meaning or use
of a sense is simply its set of scores over the vo-
cabulary E⊤C(xj′)ℓ, which depends only on the
word (not the context); only the importance of that
meaning is determined by context. As such, vi-
sualizations of the “highest-scoring words” for a
sense—as we provide in future sections—have a
particularly transparent connection to model behav-
ior.

3.3 Parameterizing Backpack Language
Models

The sense function is parameterized C(x) =
FF(Ex) where FF: Rd → Rd×k is a a feed-
forward network, and contextualization weights
A(x1:n) = α where

αℓ = softmax(h⊤1:nK
(ℓ)⊤Q(ℓ)h1:n) (6)

for each predictive sense ℓ with matrices
K(ℓ), Q(ℓ) ∈ Rd×d/k and h1:n calculated by a
Transformer (Vaswani et al., 2017) with autore-
gressive masking, i.e.

h1:n = Transformer(Ex1:n) (7)

We introduced a series of minor adjustments to
the implementation details of the original backpack
language model with the objective of enhancing
training stability and facilitating a more compre-
hensive comparison between our model and the
GPT model as discussed in Appendix A.

3.4 Baselines

We employed a GPT2-like Transformer model
(Radford et al., 2018b) as a baseline, pretrained
using the same datasets, hyperparameters, and ran-
dom seed as our Backpack model. The Trans-
former and Backpack models have equal con-
textual parameters in the Transformer structure,
whereas the Backpack model contains additional
non-contextual parameters for the sense vectors.
The Transformer and Backpack models share the
same tokenizer and have an identical embedding
size, as well as the same number of layers and
heads for contextualization.

4 Experiment Training Backpack LMs

To compare the performance of our models against
the baseline models in general language model-
ing evaluations, We first pretrained our 134M
"Backpack-small" and 27M "Backpack-micro" Chi-
nese Backpack language models and the base-
line 104M "GPT2-small" and 18M "GPT2-micro"
GPT2 models on large Chinese corpus. These sizes
are set so the Transformer used in the Backpack’s
weight computation is the same size as the corre-
sponding GPT2-like Transformer model.

4.1 Data

For pretraining, we employed three corpora:
wiki2019zh (Xu, 2019a), news2016zh (Xu, 2019a),
and webtext2019zh (Xu, 2019a), which are com-
posed of 1.04 million Wikipedia entries, 2.5 mil-
lion news articles, and 4.1 million Q&As, respec-
tively, resulting in a total dataset size of 14.3G.
This dataset was used to pretrain ALBERT Chi-
nese (Xu, 2019b; Lan et al., 2020). To prepare the
data, we set aside 1% of the data for the test set
and 0.5% for the development set. The data was
randomly partitioned into blocks of size 1,024 for
each training step on each GPU.

4.2 Evaluation method

To evaluate the contextual performance of the Back-
pack and Transformer baseline models, we com-
puted perplexities on the test set of our web corpus.
We also used the Chinese WCPC dev set (Ge et al.,
2021), an open-ended Chinese cloze task similar to
LAMBADA (Paperno et al., 2016), which includes
4,827 test cases and is used for assessing top-1
word accuracy in word prediction with long-term
context, to evaluate the models’ ability to contex-
tualize and predict words accurately. Specifically,
each test case comprised a long sentence with at
least 150 Chinese characters, with the last signif-
icant word being masked and having a length of
2 to 4 characters. The objective of the task was
to predict the masked word, and we evaluated the
performance of the models based on their top-1
and top-3 accuracy. As this task was originally
tested on masked language models which can see
the sentence’s ending tokens, we designed a sam-
pling method to evaluate our autoregressive models
more fairly: we generated characters with beam
search until the length of the output tokens equaled
the length of the original sentence. We retained ten
generations from the beam in every step, penalized

109

the outputs by adding the log probability of the
original ending characters, and then selected the
top generations.

4.3 Experimental details
The pretraining process for the Backpack-micro
and the GPT2-micro baseline models involved
training on 3× RTX3090 GPUs, using a batch size
of 184,320 tokens for 500,000 gradient steps with
cross-entropy loss, the AdamW (Loshchilov and
Hutter, 2017) optimizer, 2,000 warmup steps, and
linear decay on the learning rate starting from 6e-4
used by karpathy (2023). The model with the best
performance on the dev set was retained by evalu-
ating at intervals of 1000 steps. The Transformer
structure comprised 6 layers, 6 heads, and an em-
bedding size of 384, with dropout disabled for flash
attention (Dao et al., 2022) in Torch 2.0. Three at-
tempts were made to improve parameterization of
the Backpack language model. Compared to the
original paper, one layer was removed from the con-
textualization layer of the Transformer structure to
match the size of the corresponding Transformer
model. 134M Backpack-small and GPT2-small
were pretrained on one A100 GPU with a batch
size of 245,760 tokens for 500,000 gradient steps,
using 16 sense vectors and a Transformer structure
comprising 12 layers, 12 heads, and an embedding
size of 768.

4.4 Results
During the experiment, it was observed that pre-
training the Backpack model was more challenging
to stabilize compared to the Transformer model,
although the overall loss curve of the 16-sense
vector Backpack LM was similar to the Trans-
former. Specifically, in the Backpack architecture,
the lack of layer normalization in the representation
oi’s weighted sum computation can cause dramatic
changes in the sense vectors and lead to gradient
explosion during pretraining when encountering
low-quality batches.

In general, the Backpack models achieve similar
perplexity scores compared to the GPT2-like Trans-
former model of similar scale and demonstrate sig-
nificantly improved accuracy in WCPC (Ge et al.,
2021) (Table 1).

WCPC is a challenging evaluation task as it re-
quires the model to have long-distance contextu-
alization ability and some world knowledge to de-
termine the masked word. For the WCPC score,
we found that our 134M Backpack-small tied with

223M ALBERT-xxlarge Chinese (Xu et al., 2020a)
on top-1 accuracy and tied with the most performed
MacBERT-large(Cui et al., 2021) in Chinese BERT
family baselines (Devlin et al., 2018; Liu et al.,
2019; Cui et al., 2020, 2021) on top-3 accuracy
using the ending words penalizing strategy. Our
strategy penalizes language models for generating
predictions that do not end the sentence, improv-
ing evaluation alignment with masked language
models.

5 Analysis of Lexical Structure

5.1 Sense Vectors

5.1.1 Visualizing Senses

Following the Backpack paper, we projected the
sense vectors of characters onto the vocabulary,
denoted as E⊤C(x)ℓ ∈ R|V|, to illustrate the con-
tribution of the sense vectors towards predictions.
The outcomes are in Table 2 and you can find a
detailed version in the appendix (see Table 7). As
hypothesized, specific sense vectors automatically
captured word composition rules during pretrain-
ing, whereas others captured semantic relatedness
or associations.

5.1.2 Word Representations

In character-based languages, words are con-
structed through one or several characters in a com-
plex manner. Linguistic studies have examined
the morphological, orthographic, and phonolog-
ical information within compound words (Zhou
et al., 1999; Packard, 2011). However, we distin-
guish them into the following categories based on
whether the characters convey meaning individu-
ally and the implicit information density within the
characters. In detail, some words are composed of
characters with sub-meanings ("compound word"),
while some borrowed words from foreign lan-
guages only use the pronunciations of the char-
acters ("loanword"). There are also four-character
words that represent lengthy allusions, with the
characters representing the critical objects in the
allusion ("idiom").

We explored methods for better representing
these vocabularies based on the sense vectors of the
compositional characters to test lexical relationship
on the words with explicit meanings. Here are the
two methods that we explored.

Firstly, We purposed a method which involved
simply computing the average value of the sense

110

Model PPL ↓ WCPC top-1 ACC ↑ WCPC top-3 ACC ↑
Backpack-micro 16.25 2.98% 7.46%
GPT2-micro 16.66 2.44% 5.51%

Backpack-small 9.18 4.16% 10.6%
GPT2-small 8.87 4.27% 10.42%

BERT-base, Chinese - 7.3% 10.1%
RoBERTa-wwm-ext-base - 6.5% 9.8%
MacBERT-large, Chinese - 6.8% 10.6%
ALBERT-xxlarge, Chinese - 4.5% 6.5%

Table 1: Language modeling performance. The baseline WCPC accuracies are from the original paper. For
perplexity, lower is better; for accuracy, higher is better.

Sense Vector 10 (Word Composition)

天 (sky / day) 进 (enter / advance / come in)

(天)涯 (distant land) (进)驻 (settle in)
(天)津 (Tianjin City) (进)入 (enter)

(天)竺 (Ancient India) (进)军 (march)
(天)骄 (exceptional talent) (进)攻 (attack)

(天)籁 (beautiful voice) (进)展 (make progress)

Sense Vector 12 (Character Meaning Relatedness)

天 (sky / day) 进 (enter / advance / come in)

早 (early) 步 (walk / step / pace)
夜 (night) 必 (must / will / certainly)
醒 (wake up) 毯 (blanket / carpet)
晚 (night) 卧 (lie / crouch)

凌 (approach / rise high) 洄 (eddy / whirlpool)

Table 2: The sense vectors in the same index learned a particular facet of character usage in pretraining. Each
column contains the characters with the highest scores under the projection of the sense vectors on the vocabulary.
Sense vector 10 excels in composing two-character words, while sense vector 12 demonstrates strong character-level
semantic correlations.

vectors of the constituent characters to represent
the word’s sense vector.

Secondly, we hypothesize that words with a com-
plicated, non-systematic function from characters
to the word meaning will have their constituent
character senses weighted similarly no matter what
context they appear in—thus constructing the non-
systematic meaning. Suppose we have a context
c that contains a target word with p constituent
characters w = x1, . . . ,xp, with the index of these
characters in the context c as jx1 , . . . , jxp , we cal-
culate the average contextual composition ratio
λ(c)ℓ on sense vector ℓ as

λ(c)ℓjx1∑p
s=1 λ(c)ℓjxs

, . . . ,
λ(c)ℓjxp∑p
s=1 λ(c)ℓjxs

(8)

where

λ(c)ℓjxs =
1

|c| − jxp

|c|+1∑

i=jxp+1

αℓijxs∑p
k=1 αℓijxk

(9)

We expect the ratios λ(c1)ℓ ≈ · · · ≈ λ(cq)ℓ for
any q contexts without any significant semantic am-
plifications on the meaning any of the constituent
characters. Assuming this hypothesis holds, a word

w could be represented as

C(w)ℓ =
1

q

q∑

m=1

p∑

s=1

λ(cm)ℓjxsC(xs)ℓ (10)

for samples of context c1, . . . , cq.
To prove the feasibility of the second method,

we designed several prompts (Appendix 9) that fit
different types of words and calculate the average
contribution ratio of each character’s sense vectors
among all constituent characters in the word and
how much each contribution is away from the av-
erage value. We created a dataset containing 120
compound words, 102 loanwords, and 104 idioms,
and validated the above hypothesis on this dataset.
Our experimental results showed that each char-
acter’s contribution ratio in a word on each sense
vector for prediction remained stable across vari-
ous contexts. Furthermore, the stability of word
compositions was observed to follow the order of
idiom > compound word > loanword as shown in
Table 3. However, we also observed that while the
senses of most vocabulary items are highly stable
across different contexts, there exists a subset of
vocabulary items that exhibit poor stabilities. The
underlying reasons for this phenomenon warrant
further investigation. More word examples are in
the Appendix 8.

111

Type ≤ ±10% ≤ ±20% ≥ ±20%

compound words 69.53% 26.61% 4.06%

loanwords 60.60% 29.64% 9.76%

idioms 84.94% 13.94% 1.20%

Table 3: How the contribution ratio of sense vectors on
characters of a word varies among the different contexts.
A more minor variation in the contribution ratio indi-
cates a more stable word composition.

5.1.3 Lexical Relationship Test

We evaluated the lexical relationship of the sense
vectors using two datasets: Wordsim-240 and
Wordsim-297 (Niu et al., 2017), and represent a
word by averaging all the sense vectors of the con-
stituent characters. To assess the quality of the re-
sulting lexical representations, we computed Spear-
man rank-order correlation coefficient between the
relationship scores in the datasets and the cosine
similarities of each word pair across all the sense
vectors of our models. For the GPT2 model, we rep-
resented each word by averaging the embeddings
of the constituent characters.

Our results in table 4 show that our Backpack
Model outperformed the same-scaled GPT2 model,
but the results were significantly inferior to word
embeddings trained directly on words using meth-
ods such as word2vec (Mikolov et al., 2013) or
GLoVe (Pennington et al., 2014).

Representation WS240 WS297

Backpack-micro #14 0.335 0.226

GPT2-micro 0.164 0.271

Backpack-small #9 0.384 0.426

GPT2-small 0.225 0.334

Word-tokenized models
(not comparable)
CBOW 0.561 0.626
GloVe 0.558 0.584

Table 4: Pearson product-moment correlation coeffi-
cients between the provided scores and the cosine sim-
ilarities of the word pairs are calculated. Character-
tokenized Backpack LMs outperform GPT2 but are in-
ferior to word-tokenized models.

5.2 Sense Vectors for Control

In this section, we showcase two character-level
interventions on the sense vectors as proof-of-
concept.

5.2.1 Mitigating gender bias
In Modern Chinese, most professions are com-
posed of two or more Chinese characters, mak-
ing direct debiasing of stereotypically gendered
profession nouns difficult. To address this issue,
we attempted two approaches: 1) identifying the
characters within the composed words that con-
tain gender-biased meanings and debiasing them
from their sense vectors, and 2) directly debiasing
the sense vectors of the composed words using the
method discussed in Word Representations.

We hypothesized that the first approach could
be practical because many Modern Chinese words
are combined from ancient single-character words
that represent a relevant meaning to the composed
words. For example, the word "士兵" (soldier) is
composed of "士" (man/warrior) and "兵" (arms),
both of which carry stereotypical male bias. In our
experiments, we attempted to identify the sense vec-
tors of characters that contain gender stereotypes
and compared |(EC(xhe)ℓ − EC(xshe)ℓ)| to de-
termine which sense vectors contribute to gender
bias. We found that sense 3 contributed the most
bias. Using the method described in the Backpack
paper, we reduced the weight of sense 3 on these
characters. We evaluated how the composed words
were gender debiased by creating several prompts
(Appendix 10) that fit all the profession words, fill-
ing in the target word, and computing the average
bias probability score of "他 (he/him)" versus "她
(she/her)" as EX∈prompts[max(p(he|x)

p(she|x) ,
p(she|x)
p(he|x))].

Baseline. We employed a similar approach as de-
scribed in the Backpack paper, which was inspired
by the work of (Bolukbasi et al., 2016). Specifi-
cally, we computed the gender bias direction us-
ing the difference between the embeddings of the
words "他 (he/him)" and "她 (she/her)," denoted
as EXhe −EXshe, and then projected the embed-
dings of the biased characters onto the nullspace of
this direction.

Results. We experimented with investigating the
effect of removing sense 15 from several charac-
ters on bias scores of profession words containing
those characters. The bias ratios resulting from this
experiment are reported in the table 5. Our exper-
imentation demonstrated that removing sense 15
substantially decreased the bias in words that were
originally more biased while producing a consid-
erably lesser impact on words with lower levels of
bias. Nonetheless, this approach yielded significant

112

Transformers Backpacks (ours)

Character Target Word GPT2 GPT2 proj Backpack half #15 remove #15

兵 (arms) 士兵 (soldier) 70.32 55.55 58.13 34.95 21.34

警 (alert) 警察 (police) 20.93 20.47 23.62 14.90 9.47

演 (act) 演员 (actor / actress) 6.58 6.19 4.92 4.50 4.13

会 (teach) 教师 (teacher) 2.45 2.40 4.69 4.13 3.65

Table 5: Character-level bias ratio; by partially or totally removing sense 15, the character and the words composed
by the character get debiased. A perfect unbiased model would achieve a ratio of 1.

Multipliers 撒 粒 堡 丘 石 人 球 海 晒
沙(sand),滩(beach) (sanding) (particle) (castle) (dune) (stone) (people) (ball) (sea) (bask)

1,1 1 1 1 1 1 1 1 1 1

4,1 2.13 1.74 1.42 1.27 1.14 0.78 0.71 0.62 0.61

1,4 0.54 0.55 0.70 0.71 0.71 1.23 1.25 1.24 1.48

Table 6: The ratio of probabilities on predicting certain characters by amplifying the sense vectors with multipliers
for the characters "沙" (sand) and "滩" (beach) compared to the original probabilities.

improvements compared to the GPT2 baseline.
Besides, we explored the second approach by

removing sense 15 for both constituent characters.
Surprisingly, this approach was less effective than
the first approach. To investigate whether there
exists a specific sense vector to remove for all char-
acters in all compositional words for gender debi-
asing, we experimented and observed that reduc-
ing sense 3 significantly reduced the bias in the
word警察 (police); however, the reducing sense
3 method did not generalize to other words. We
hypothesize that the model might not effectively
learn the gender-representing information due to
the limited model size and pretraining steps. Some
critical gender-related information might still dis-
tribute among several sense vectors.

5.2.2 Character Amplification Control
Focusing on sub-meanings or properties in a word
constructed by multiple characters makes more
sense in character-based languages. For instance,
the Chinese word "词典" which means "dictio-
nary," is composed of the characters "词" (word)
and "典" (book, in ancient Chinese), and when gen-
erating text from input containing this word, the
model could focus on either the "word" or "book"
property. By adjusting the weights of the sense vec-
tors of the constituent characters, we were able to
amplify implicit meaning of a constituent character
and bias the model toward generating text related
to a specific property. Specifically, we conducted
experiments to amplify the contribution of the first

or second character four times each while keep-
ing the total contribution of the word unchanged
in the output. We found that the model tended
to generate sentences that relate to the amplified
character with greater probability, as shown in Ap-
pendix 11. We assessed the efficacy of the proposed
method by computing the ratio of expectations for
the controlled model relative to an uncontrolled
model in the context of predicting semantically
related characters from an open-topic prompt as
Ectarget [

p(ctarget|xamp)
p(ctarget|x)]. Table 6 illustrates an in-

stance of the outcome of amplifying characters in
the word "沙滩" (beach). Notably, the findings
indicate that character-specific semantics were the
most amplified. We hypothesize that this work can
assist in scenarios where it is necessary to precisely
generate expressions that convey the author’s in-
tended meaning in a short sequence, such as poetry,
songwriting, or beginning a discourse around one
of the meanings in a polysemous word.

6 Conclusion

In this paper, we presented implementing, pre-
training, and evaluating a character-based Chinese
Backpack language model. We conducted exten-
sive experiments on sense vector visualizations,
word representations, lexical relationships, and id-
iom compositions and explored two approaches to
character-level interventions. Our results demon-
strate the potential of Backpack LM in language
modeling tasks for character-based languages, the

113

interpretability of the sense vectors on the character
and word level, and the potential of character-level
interventions across various contexts.

7 Limitations

Despite these promising results, there are several
limitations to our study. First, we had limited GPU
resources, which prevented us from attempting a
larger batch size during pretraining. Second, our
word interventions depend on the sub-meanings of
the characters, and we currently have no solution
to effectively intervene in transliterated words by
modifying the sense vectors of the characters that
only represent phonetic information. Therefore,
intervening in character-based languages where
many words are transliterated, such as Korean, re-
mains challenging. Third, we observed that al-
though our approach enables greater flexibility in
character-level sense vectors to represent richer
morphological structures, word representations by
characters are less interpretable than word sense
vectors learned by models using word tokeniza-
tions, particularly for complex words such as id-
iomatic phrases. We believe that this issue could
be mitigated by increasing the number of sense
vectors with a larger contextualization model and
pretraining with more data. Further research is re-
quired to address these limitations and explore the
potential of word representations and interventions
in character-based languages.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Rachel Bawden, Nikolay Bogoychev, Ulrich Germann,
Roman Grundkiewicz, Faheem Kirefu, Antonio Va-
lerio Miceli Barone, and Alexandra Birch. 2019.
The University of Edinburgh’s submissions to the
WMT19 news translation task. In Proceedings of
the Fourth Conference on Machine Translation (Vol-
ume 2: Shared Task Papers, Day 1), pages 103–115,
Florence, Italy. Association for Computational Lin-
guistics.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. In
Advances in Neural Information Processing Systems,
volume 13. MIT Press.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou,
Venkatesh Saligrama, and Adam Tauman Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In NIPS.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Hong Chen, Raphael Shu, Hiroya Takamura, and Hideki
Nakayama. 2021. Graphplan: Story generation by
planning with event graph.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huanbo Luan. 2015. Joint learning of character
and word embeddings. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence.

Lei Cui, Fengjiao Cong, Jue Wang, Wenxin Zhang,
Yuwei Zheng, and Jukka Hyönä. 2018. Effects of
grammatical structure of compound words on word
recognition in chinese. Frontiers in Psychology, 9.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 657–668, Online. As-
sociation for Computational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-training with whole word
masking for chinese BERT. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
29:3504–3514.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng
Chen, Wentao Ma, Shijin Wang, and Guoping Hu.
2019. A span-extraction dataset for Chinese ma-
chine reading comprehension. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5883–5889, Hong Kong,
China. Association for Computational Linguistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Cite arxiv:1810.04805Comment: 13 pages.

Zeyao Du. 2019. Gpt2-chinese: Tools for training gpt2
model in chinese language. https://github.com/
Morizeyao/GPT2-Chinese.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Huibin Ge, Chenxi Sun, Deyi Xiong, and Qun Liu.
2021. Chinese WPLC: A Chinese dataset for eval-
uating pretrained language models on word predic-
tion given long-range context. In Proceedings of the

114

2021 Conference on Empirical Methods in Natural
Language Processing, pages 3770–3778, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed seman-
tics. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 58–68, Baltimore, Mary-
land. Association for Computational Linguistics.

John Hewitt, John Thickstun, Christopher D. Manning,
and Percy Liang. 2023. Backpack language models.
In Proceedings of the Association for Computational
Linguistics. Association for Computational Linguis-
tics.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences.

karpathy. 2023. nanogpt. https://github.com/
karpathy/nanoGPT.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
2020. Dense passage retrieval for open-domain ques-
tion answering. CoRR, abs/2004.04906.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Xiaoya Li, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Arianna Yuan, and Jiwei Li. 2019. Is word segmen-
tation necessary for deep learning of Chinese repre-
sentations? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3242–3252, Florence, Italy. Association for
Computational Linguistics.

Yanran Li, Wenjie Li, Fei Sun, and Sujian Li. 2015.
Component-enhanced Chinese character embeddings.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
829–834, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Zhaojiang Lin, Peng Xu, Genta Indra Winata,
Farhad Bin Siddique, Zihan Liu, Jamin Shin, and
Pascale Fung. 2020. Caire: An empathetic neural
chatbot.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Cite arxiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. CoRR, abs/1301.3781.

A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bor-
des, D. Parikh, and J. Weston. 2017. Parlai: A
dialog research software platform. arXiv preprint
arXiv:1705.06476.

Andriy Mnih and Geoffrey E Hinton. 2008. A scal-
able hierarchical distributed language model. In Ad-
vances in Neural Information Processing Systems,
volume 21. Curran Associates, Inc.

Yilin Niu, Ruobing Xie, Zhiyuan Liu, and Maosong
Sun. 2017. Improved word representation learning
with sememes. In Annual Meeting of the Association
for Computational Linguistics.

Jerome L Packard. 2011. New Approaches to Chinese
Word Formation: Morphology, phonology and the
lexicon in modern and ancient Chinese, volume 105.
Walter de Gruyter.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018a. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018b. Language
models are unsupervised multitask learners.

Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Glober-
son, and Omer Levy. 2021. Few-shot question
answering by pretraining span selection. CoRR,
abs/2101.00438.

115

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Kurt Shuster, Eric M. Smith, Y-Lan Boureau, and
Jason Weston. 2020. Recipes for building an open-
domain chatbot.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533–536.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149–5152.

Lutfi Kerem Senel, Ihsan Utlu, Veysel Yücesoy, Aykut
Koç, and Tolga Çukur. 2017. Semantic structure
and interpretability of word embeddings. CoRR,
abs/1711.00331.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, Morteza
Behrooz, William Ngan, Spencer Poff, Naman Goyal,
Arthur Szlam, Y-Lan Boureau, Melanie Kambadur,
and Jason Weston. 2022. Blenderbot 3: a deployed
conversational agent that continually learns to respon-
sibly engage.

Chenglei Si, Zhengyan Zhang, Yingfa Chen, Fanchao
Qi, Xiaozhi Wang, Zhiyuan Liu, Yasheng Wang, Qun
Liu, and Maosong Sun. 2023. Sub-character tok-
enization for chinese pretrained language models.

Richard Socher, Christopher D. Manning, and A. Ng.
2010. Learning continuous phrase representations
and syntactic parsing with recursive neural networks.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Nitish Srivastava, Ruslan R Salakhutdinov, and Geof-
frey E. Hinton. 2013. Modeling documents with deep
boltzmann machines.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard H. Hovy. 2017.
SPINE: sparse interpretable neural embeddings.
CoRR, abs/1711.08792.

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1017–1024.

Nathaniel Swinger, Maria De-Arteaga, Neil
Thomas Heffernan IV, Mark D. M. Leiserson,
and Adam Tauman Kalai. 2018. What are the biases
in my word embedding? CoRR, abs/1812.08769.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Bright Xu. 2019a. Nlp chinese corpus: Large scale
chinese corpus for nlp.

Bright Liang Xu. 2019b.
https://github.com/brightmart/albert_zh. GitHub
repository.

Jian Xu, Jiawei Liu, Liangang Zhang, Zhengyu Li, and
Huanhuan Chen. 2016. Improve Chinese word em-
beddings by exploiting internal structure. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1041–1050, San Diego, California. Association for
Computational Linguistics.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020a.
CLUE: A Chinese language understanding evalua-
tion benchmark. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4762–4772, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020b. Megatron-cntrl: Controllable
story generation with external knowledge using large-
scale language models.

Mo Yu and Mark Dredze. 2015. Learning composition
models for phrase embeddings. Transactions of the
Association for Computational Linguistics, 3:227–
242.

Jiajun Zhang, Shujie Liu, Mu Li, M. Zhou, and
Chengqing Zong. 2014. Bilingually-constrained
phrase embeddings for machine translation. In An-
nual Meeting of the Association for Computational
Linguistics.

116

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji,
Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng,
Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan
Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao
Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, and Maosong
Sun. 2020. Cpm: A large-scale generative chinese
pre-trained language model.

Xiaolin Zhou, William Marslen-Wilson, Marcus Taft,
and Hua Shu. 1999. Morphology, orthography, and
phonology reading chinese compound words. Lan-
guage and cognitive processes, 14(5-6):525–565.

A Language Modeling Details

A.1 Residual Connection
We started our experiment with no second residual
connection. However, we found that adding sec-
ond residual connection by unsqueezing the output
from the first feed-forward layer by dimension k
to match k ∗ d dimensions improved training sta-
bility compared to the specification of Hewitt et al.
(2023).

A.2 Comparison of Parameter Numbers
The contextualization weight function was defined
with mask filling and an extra dropout layer in-
cluded after the Softmax function.

To make a fair comparison with the correspond-
ing GPT2 model, we analysed the number of pa-
rameters and removed one block from the Trans-
former structure of the Backpack model. As
discussed, the contextualization weight of each
sense vector is calculated with additional matri-
ces K,Q ∈ Rd×d. The first feed forward layer
in the sense vector layer involves an up projec-
tion matrix ∈ Rd×4d and a down projection matrix
∈ R4d×d. Summing up these parameters, we have
a 10d2 additional parameter size, which is close
to the 12d2 parameter size in a single Transformer
block so that by removing one block, we will only
add (k − 2) ∗ d2 ≈ k ∗ d2 parameters which are
necessary for representing the sense vectors.

B Interpreting Idiom Composition

We investigated which sense vectors played a dom-
inant role when the model used the first three char-
acters of idiomatic phrases as input to predict the
last character. However, we encountered difficulty
in interpreting the character composition of id-
iomatic phrases. For example, when analyzing
the phrase "画蛇添(足)" i.e., "drawing legs on a
snake," which means "an unnecessary and redun-
dant act that spoils the original effect or even makes

it worse," by stacking weights of the first three
characters on 16 or 64 sense vectors, we found that
using any single sense vector for prediction did
not significantly lead the model to output the tar-
get character, even though the model correctly out-
putted "足" i.e., "leg" after performing a weighted
sum of these sense vectors. We projected 16 sense
vectors onto the vocabulary and examined their pro-
jections onto the character; however, we observed
that none exhibited a disproportionately large or
small projection onto the resulting character. This
experiment provides evidence that the top compo-
nents of sense vectors may not effectively capture
how they will compose to make predictions.

117

Sense Vector 10 (Word Composition)

天 (sky / day) 沙 (sand) 进 (enter / advance / come in) 自 (from / self)

(天)涯 (distant land) (沙)漠 (desert) (进)驻 (settle in) (自)由 (freedom)
(天)津 (Tianjin City) (沙)鸥 (gull) (进)入 (enter) (自)慰 (console)

(天)竺 (Ancient India) (沙)哑 (hoarse) (进)军 (march) (自)如 (the App Ziroom)
(天)骄 (exceptional talent) (沙)溢 (actor Yi Sha) (进)攻 (attack) (自)拍 (selfie)

(天)籁 (beautiful voice) (沙)滩 (Beach) (进)展 (make progress) (自)卸 (self-dumping)

Sense Vector 12 (Character Meaning Relatedness or Composition)

天 (sky / day) 沙 (sand) 进 (enter / advance / come in) 自 (from / self)

早 (early) 04 (FC Schalke 04) 步 (walk / step / pace) 从 (from)
夜 (night) (沙)箱 (sandbox) 必 (must / will / certainly) 之 (he / she / it / go / ’s)
醒 (wake up) (沙)盒 (sandbox) 毯 (blanket / carpet) 打 (since)
晚 (night) 毒 (poison) 卧 (lie / crouch) 感 (sense / feel)

凌 (approach / rise high) 铂 (platinum) 洄 (eddy / whirlpool) 蚂 (ant)

Sense Vector 15 (Character Meaning Relatedness or Composition)

天 (sky / day) 沙 (sand) 进 (enter / advance / come in) 自 (from / self)

黑 (black) 潇 (drizzle) (进)展 (progress) (自)大 (arrogant)
亮 (light) 浏 (clear) 顺 (smooth) (自)满 (complacent)
昨 (yesterday) 湖 (lake) 神 (magical / god) 狠 (ruthless)
黑 (black) 岳 (mountain) 慢 (slow) (自)暴 (Give up on yourself)
今 (today) 橘 (tangerine) 缓 (delay) (自)免 (to resign voluntarily)

Table 7: The sense vectors in the same index are considered to have a particular facet of character usage. Each
column contains the characters with the highest scores under the projection of the sense vectors on the vocabulary.

Type Word Stablility ≤ ±10% ≤ ±20% ≥ ±20%

compound 手机 (telephone) =手 (hand) +机 (machine) high 16 0 0
words 大学 (university) =大 (large) +学 (learn) high 16 0 0

孤独 (lonely) =孤 (isolated) +独 (alone) low 1 6 9

马赛克 (Mosaic) high 16 0 0
loanwords 迷你 (mini) high 12 4 0

夸克 (quark) low 5 7 4

骑虎难下 (in a difficult situation with no easy way out) high 16 0 0
idioms 画蛇添足(to do something unnecessary even harmful) high 14 2 0

韬光养晦 (to wait for the right moment to shine) low 12 2 2

Table 8: How many sense vectors for each range of the contribution ratio on characters of a word varies among the
different contexts. A more minor variation in the contribution ratio indicates a more stable word composition.

prompt English

WORD WORD
"WORD"的意思是 The meaning of "WORD" is
老师曾教育，WORD A teacher told that WORD
关于WORD， About WORD,

电视里说，WORD In TV, it is said that WORD
WORD是 WORD is
我觉得WORD I think WORD

Table 9: General prompts for different type of nouns

118

prompt English

那个WORD说， That WORD said,
这个WORD相信 This WORD believes

WORD进到屋子里， The WORD enters the house,
WORD坐在车里，然后 The WORD sat in the car, and then

WORD走了过来， Then WORD came over,

Table 10: General prompts for gender bias evaluations

Word Multiplier Output

沙滩 (beach) 1,1 沙滩上有很多人。
沙(sand)滩(beach / puddle) (There are a lot of people on the beach.)

沙滩 (beach) 4,1 沙滩上有很多大大小小的沙堆。
沙(sand)滩(beach / puddle) (On the beach, there are many big and small sand dunes.)

沙滩 (beach) 1,4 沙滩上有很多人在海边钓鱼。
沙(sand)滩(beach / puddle) (There are many people fishing by the seaside on the beach.)

理想 (ideal) 1,1 理想是什么?我很迷茫，不知道自己喜欢什么。
理(principle / logic)想(imagine / want) (What is ideal? I am confused and unsure of what I truly like.)

理想 (ideal) 4,1 理想是什么？如何理解？
理(principle / logic)想(imagine / want) (What is ideal? How to understand it?)

理想 (ideal) 1,4 理想是什么？如何做到？
理(principle / logic)想(imagine / want) (What is ideal? How to achieve it?)

Table 11: Generative outputs on the character amplification control task with top probabilities. Note that the word
"理想" means "ideal" but is combined with the characters meaning "principle / logic" and "imagine / want".

119

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 120–126
December 7, 2023. ©2023 Association for Computational Linguistics

Unveiling Multilinguality in Transformer Models: Exploring Language
Specificity in Feed-Forward Networks

Sunit Bhattacharya and Ondřej Bojar
Institute of Formal and Applied Linguistics

Faculty of Mathematics and Physics
Charles University

(bhattacharya,bojar)@ufal.mff.cuni.cz

Abstract

Recent research suggests that the feed-forward
module within Transformers can be viewed as
a collection of key-value memories, where the
keys learn to capture specific patterns from the
input based on the training examples. The val-
ues then combine the output from the ‘memo-
ries’ of the keys to generate predictions about
the next token. This leads to an incremental
process of prediction that gradually converges
towards the final token choice near the output
layers.

This interesting perspective raises questions
about how multilingual models might lever-
age this mechanism. Specifically, for autore-
gressive models trained on two or more lan-
guages, do all neurons (across layers) respond
equally to all languages? No! Our hypothe-
sis centers around the notion that during pre-
training, certain model parameters learn strong
language-specific features, while others learn
more language-agnostic (shared across lan-
guages) features. To validate this, we con-
duct experiments utilizing parallel corpora of
two languages that the model was initially pre-
trained on. Our findings reveal that the layers
closest to the network’s input or output tend to
exhibit more language-specific behaviour com-
pared to the layers in the middle.

1 Introduction

One of the least studied aspects of the Transformer
(Vaswani et al., 2017) models in general and Large Lan-
guage Models (LLMs) in particular is the feed-forward
layers (FFNs). Although they contain almost two-thirds
of the parameters, it is only recently1 that their role in
the working of the models is being seriously studied.

Geva et al. (2021, 2022) have earlier demonstrated
that FFNs could be seen as “key-value memories” where

1Although the work by (Wang and Tu, 2020) is relevant in
this regard, their analysis was done for all the components of
the Transformer and not just the FFNs.

Figure 1: Transformer block and the structure of FFN

each neuron (key)2 in the lower sub-layer of the FFN
gets triggered by specific patterns in the input data and
the higher sub-layer (values) produces a distribution
over the output vocabulary. This leads us to a perspec-
tive (Figure 1) where the FFN first captures certain
patterns or concepts3 in the input (conceptualization),
selects the important aspects (using the activation func-
tion i.e. selection) and then combines them to emit an
output which can be interpreted as a prediction of the
possible next-word token for that layer, i.e. synthesis.
To highlight this view throughout the rest of the paper,
we will use the term ‘detectors’ instead of the rather
generic ‘keys’ to refer to the neurons in the earlier layer
and ‘combinators’ instead of ‘values’ to refer to the later
layer. Repeating this across layers leads to a process
of incremental prediction of the next token, with the
prediction from previous layers being refined in the next
layers (Belrose et al., 2023). This perspective however
raises an important question. For models trained with
a causal-language modeling objective in multilingual
settings, what sort of patterns do the detectors encode
across layers? More precisely, are some detectors trig-
gered by input only from specific languages?

In this paper, we investigate this phenomenon of
language specificity of the detectors in a multilingual
model, pretrained on 30 languages from 16 language

2While Geva et al. (2021) use the word ‘keys’, some other
authors use the word neuron in this context.

3Shallow processing would require them to be good at cap-
turing certain syntax patterns while semantic processing would
require them to be good at capturing more thematic/conceptual
patterns.

120

families. Earlier work has shown that Transformer mod-
els encode more shallow features in the earlier layers4

while encoding more semantic features in the later lay-
ers5 (Tenney et al., 2019). We hypothesise that the shal-
low processing would require more language-specific
detectors than the semantic aspects of the input. And
hence, we posit that during pretraining of the multi-
lingual models, two kinds of neurons would emerge:
language-specific and language-agnostic.

Thorough investigations into the role of the FFN lay-
ers in Transformer is an interesting research direction,
and to our best knowledge, this is the first work that
tries to look at the FFN6 from the perspective of multi-
linguality. The rest of the paper is structured as follows:
a brief discussion of the related works (Section 2) is
followed by the description of the models and data (Sec-
tion 3) and models (Section 4). This is followed by the
presentation (Section 5) and simultaneous discussion of
the results (Sections 6 and 7).

2 Related Work

Exploring the role and capabilities of the FFN sub-layer
in Transformer models is a still nascent field of research
with only a few papers exploring their working. As men-
tioned earlier, Geva et al. (2021, 2022) have proposed an
interesting perspective of looking at how the FFN layer
of the Transformer contributes during language genera-
tion. Recent work (Meng et al., 2022; Yao et al., 2022)
exploring the capabilities of the FFN has also looked
into how the activations of FFNs could be used for un-
derstanding how autoregressive models deal with facts.
Other works (Li et al., 2022; Zhang et al., 2022) have
analysed activation patterns in FFNs to study sparsity
in Transformers. In other words, they show that only a
few neurons in the FFNs are activated corresponding to
inputs to Transformers.

On the front of studying multilingual models, Li-
bovický et al. (2019) demonstrated that representations
in encoder-only models can be split into language spe-
cific and language-neutral components. But to our
best knowledge, no equivalent study has been done for
autoregressive language models. Additionally, Desh-
pande et al. (2022); Blevins et al. (2022); Lauscher et al.
(2020); Choudhury and Deshpande (2021); Kudugunta
et al. (2019) have studied the pretraining behaviour and
capabilities of various encoder-only multilingual mod-
els. More recently, Pfeiffer et al. (2022) demonstrated
how separating parameters into language-specific mod-
ules during training can help improve the performance
across languages.

From the perspective of studying multilinguality in

4close to the input
5near the output
6in a decoder-only Transformer model

the human brain, neuroimaging studies (Crinion et al.,
2006; Videsott et al., 2010; Miozzo et al., 2010) have
shown that although neural circuits for different lan-
guages are highly overlapping, there are distinct brain
areas for language-specific processing and areas that are
language-agnostic.

3 Model and testing data

We use a pretrained XGLM model (Lin et al., 2021)
with 1.7 billion parameters, available on the Hugging
Face (Wolf et al., 2019) repository7 for our experiments.

We use sentences from the training data of the CzEng
2.0 corpus8 (Kocmi et al., 2020) for our experiments.
The model description of the XGLM model states that
the model was trained on CommonCrawl data of vari-
ous languages. CzEng heavily relies on various freely
accessible web sources and a part of the data included in
CzEng is also drawn from CommonCrawl among other
sources. Thus, we expect that the sentences used for the
experiments are of the same domain/style as the model
was originally trained on, and they can even overlap. We
do not consider such a possible overlap a serious prob-
lem for our analysis, because we are not measuring any
processing performance or generalization capability.

4 Experiment

We first extract a sample of sentences from the CzEng
corpus, giving us a set of Czech and English parallel sen-
tences. We only select sentences with lengths between
20 and 50. We then feed the model with all ‘prefixes’
of the sampled sentences from both languages. In other
words, for each sentence, we incrementally feed the
model one subword at a time and record our observa-
tions. For instance, for a Czech sentence like “Tenhle
úkol je obtížný” (This task is difficult), the prefixes fed
to the model would be “Tenhle”, “Tenhle úkol”, “Tenhle
úkol je” and “Tenhle úkol je obtížný”. The parallel sen-
tences ensure that the semantic contents of the sentences
for the two languages are similar. We go on to collect
the data about the model state corresponding to each
prefix.

Figure 2: FFN in close detail

7https://huggingface.co/facebook/xglm-1.7B
8https://ufal.mff.cuni.cz/czeng

121

From the collected data9, we extract the “selection co-
efficients” corresponding to each prefix for all detectors
across the layers of the model. Specifically, for detector
di in layer Lj , we define the selection coefficient for a
prefix pk as:

C(Lj ,di)
pk

= GeLU{di(pk)} (1)

Thus, for each prefix we obtain layer-wise selection
coefficients for the detectors (an example can be visu-
alised in Table 1). We then sort the detectors based on
the values of their corresponding selection coefficients.
We posit that for a layer, certain detectors are triggered
by specific prefix templates or languages. The selec-
tion coefficient is the indicator of the extent to which
a particular detector is triggered by a prefix. Thus, ob-
serving the selection coefficients of the detectors across
prefixes of different languages should indicate which
(and how many) detectors are relevant bilingually and
which (and how many) are relevant only for one of the
two examined languages. We do this by analysing the
top-k detectors after sorting the detectors by decreasing
selection coefficients.

Table 1: Selection coefficients of m detectors in layer L
for a total of n prefixes

Lang1, sent1, prefix_1 C11C12C13 . . . C1m

Lang1, sent1, prefix_2 C21C22C23 . . . C2m

...
...

Lang2, sentN, prefix_xx Ck1Ck2Ck3 . . . Ckm
Lang2, sentN, prefix_xy Cn1Cn2Cn3 . . . Cnm

5 Observations

As an example, Table 2 shows the top-1 detector (detec-
tor with maximum selection coefficient) for the prefixes
of an English and Czech sentence.

In the following sections, we present the results from
our observations of the selection coefficients of detec-
tors across the layers of the model.

5.1 Distribution of active detectors across layers

We collect the indices of the top-10 and top-10010 detec-
tors for each prefix. For a prefix Pi of all the considered
prefixes P0, P1, ..., Pn, we denote the set of the top de-
tectors Di where |Di| = t (i.e. the set cardinality of
|Di| is t). This way, we collect the list of the top t de-
tectors for all prefixes in a layer. For each layer Lk, we
obtain Lk = D0 ∪D1 ∪ ... ∪Dn and we plot the |Lk|

9from all sentences across Czech and English
10The top-10 list implies that we extract the list of the 10

detectors that had the maximum selection coefficients for a
prefix. Similarly, for the top-100 list, we extract 100 detectors
with the maximum selection coefficients.

Prefix Detector

Europol 2149
Europol zpracovává 2149

Europol zpracovává a 3942
Europol zpracovává a předává 200

Europol zpracovává a předává údaje 200

Europol 2149
Europol shall 2149

Europol shall process 2149
Europol shall process and 3424

Europol shall process and transfer 2149

Table 2: Prefixes from an example Czech-English sen-
tence pair, listing the most active detector ID (according
to selection coefficients) from layer 1.

across the layers (e.g. Figure 3). In other words, we
are checking how many unique detectors across prefixes
belong to the list of 10 or 100 most active detectors
for that layer. The fewer detectors in this set, the more
“compact" the representation of these sentences are. The
more detectors is in this set, the more “network capac-
ity" is used when processing the given sentences. We
make the plots for each of the two languages. Hence,
using the example in Table 2: for layer 1, we have
Len1 = (2149, 3424) and Lcs1 = (2149, 3942, 200) and
so |Len1 | = 2 and |Lcs1 | = 3.

191814151617101112132 31 6 74 5 2021229 238 24
Layers

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f u
ni

qu
e

de
te

ct
or

s

top-10
top-100

191814151617101112132 31 6 74 5 2021229 238 24
Layers

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f u
ni

qu
e

de
te

ct
or

s

top-10
top-100

Figure 3: Number of top detectors (|Li|) used across
layers when processing Czech (top plot) and English
(bottom plot) sentences.

122

Figure 3 shows that the top-100 list does not seem
to show any pattern, unlike the top-10 list. We observe
that for each prefix, only certain detectors exhibit high
values of selection coefficient. Selecting the top-100
leads to the inclusion of many detectors that repeatedly
appear across many prefixes with tiny values of selection
coefficient. We reason that, this leads to the pattern seen
with the top-10 list. We also posit that this is a callback
to the previous research that has indicated that FFNs
exhibit patterns of sparse activation.

The top-10 list shows that the number of detectors
for both languages increases between layers 1 to 4 (near
the input) and then decrease between layers 19 to 24
(near the output). Since this observation also includes
detectors that get triggered for both languages11, we
analyse the number of detectors that are intersecting
between the two languages (Czech and English). That is,
for each layer Lk, we identify the intersecting detectors
Ik = Lcsi ∩ Leni . In other words, we examine how the
number of keys getting triggered by both English and
Czech prefixes (multilingual detectors) vary across the
layers.

191814151617101112132 31 6 74 5 2021229 238 24
Layers

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f i
nt

er
se

ct
in

g
de

te
ct

or
s

Intersecting detectors (top-10 activations) for cs and eng
top-10
top-100

Figure 4: Distribution of multilingual detectors (inter-
secting detectors)

As Figure 4 shows, the number of intersecting de-
tectors also follows the same pattern as observed in
Figure 3. The number starts increasing in the layers
near the input and decrease near the output. It may be
argued that the spike in the number of unique detectors
(for individual languages) in the middle layers might
imply that the number of intersecting detectors would
also increase in the middle layers. However, we argue
that it might not always be the case. We validate our
argument in the following sections.

To look at the language specific responses of the de-
tectors across the layers, we look at the set difference
of the detectors seen in, Figure 3 i.e. the language-
specific detectors. So, for some layer k, we analyse
enk = Lenk \ Lcsi and12 csk = Lcsi \ Leni . From the re-

11for example, detector 2149 in the example shown in Ta-
ble 2

12From the example in Table 2, enk = 3424 and csk =

sults in Figure 5, we see that there is a steady drop in the
number of Czech-specific detectors in the middle layers.
No such effect is seen for English. Also, across all the
results presented here, we note that the observed num-
ber of detectors getting triggered by English prefixes is
considerably higher than that of Czech prefixes.

191814151617101112132 31 6 74 5 2021229 238 24
Layers

200

400

600

800

Nu
m

be
r o

f u
ni

qu
e

de
te

ct
or

s Unique detectors for cs (and not in en) across layers
top-10

191814151617101112132 31 6 74 5 2021229 238 24
Layers

1000

2000

3000

4000

Nu
m

be
r o

f u
ni

qu
e

de
te

ct
or

s Unique detectors for en (and not in cs) across layers
top-10

Figure 5: Distribution of language specific detectors

Next, we determine to what extent the actual language
can be identified from the detector activity.

5.2 Layers close to the input and output are
language specific

To confirm the existence of language-specific detectors,
we train a linear classifier over all the detectors for each
layer. The task of the classifier is to use the selection
coefficients to determine if the given prefix was in En-
glish or Czech. The results from the experiment are
shown in Figure 6. In the plot, we show the number of
detectors across different performance brackets. Each
series shows the number of detectors classifying with
an accuracy of >= k%.

We see that for performance brackets < 80%, the
layer closer to the input shows the highest accuracy in
predicting the language. Again for slabs, > 70% we see
that the accuracy increases in the last few layers. Thus,
we conclude that layers closer to the input and output
are more language-specific than the others.

6 Discussion
We started with the hypothesis that language-specific
detectors would be more common in the layers closer to
the input and output. We analysed the detectors across
the layers using sentences from a Czech-English par-
allel corpus. We note that in the underlying XGLM
model, English (with 803,527 million training tokens)
was much more dominant than Czech (with 8,616 mil-
lion training tokens) (Lin et al., 2021). We thus con-
sider the model to be a primarily English model that

3942, 200

123

1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Layers

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f d
et

ec
to

rs
>= 50
>= 60
>= 70
>= 80
>= 90

Figure 6: Classification percentages across layers. The
colour indicates the reached accuracy level of the pre-
diction.

saw some Czech sentences during pretraining. From
the results, we observe that the layers closer to the in-
put and output indeed perform more language specific
processing than others. We also see that considerably
lower number of detectors are triggered by the Czech
prefixes than English prefixes, probably reflecting the
data imbalance during training. While looking at the
behaviour of Czech-specific detectors, we find that their
numbers drop near the middle layers (8-15). We know
that the model is primarily English centric. And since
it is well known that higher-layers of Transformers are
involved in more semantic processing, it is likely that
the model uses more language-agnostic detectors and
only a few Czech-specific detectors for processing se-
mantic aspects of the input. Studies with humans have
previously shown that semantic processing in humans
is often language-agnostic. We thus see a possible way
to connect these observations in the future.

From a different perspective, the analysis of the se-
lection coefficients also agrees with the recent theories
and observations about the sparse nature of FFN mod-
ules. We hypothesise that the sparsity (lesser numbers
of unique detectors) might be an indicator of shallow
processing and density might be an indicator of seman-
tic processing. The sparsity argument might also be
extended to claim that only a subset of detectors are
required for language specific processing while greater
numbers of detectors are required for more language-
agnostic (i.e. semantic) However, such claims warrant
extensive experimentation that we wish to conduct as a
followup to this work.

7 Conclusion

In this study, we focused on the analysis of the Feed
Forward Layers (FFNs) of a pretrained multilingual
Transformer model. We look at the FFNs as a system

that first identifies patterns in the input representations
(detector), selects the relevant information (selector),
and then combines it to make a guess of the next token
(combiner). We assess the degree of language speci-
ficity of the detectors in this multilingual model with
two experiments. We observe that there are greater num-
ber of language specific detectors near the input and
output of the model. Additionally, we observe how data
imbalance during training is reflected in the behaviour
of the multilingual detectors. We also try to link our
observations with recent studies on the sparse activa-
tions in FFNs. Overall, our findings shed light on the
language specificity of FFNs in multilingual models.

Limitations

While our analysis provides valuable insights into the
behaviour of “detectors” in a multilingual Transformer
model’s Feed Forward Layers (FFNs), there is an im-
portant limitation to consider. Our analysis is limited
to only the XGLM model. This work does not consider
the multilingual dynamics of other models. Also, our
study is centred on the Czech-English language pair.
Different languages exhibit diverse linguistic character-
istics and complexities, and the behaviour of detectors
could vary significantly across various language pairs.
Extrapolating our findings to multilingual behaviour in-
volving other languages requires caution and further
investigation. Further, while we categorize detectors
as language-specific or multilingual based on their acti-
vation patterns, the specific linguistic cues that trigger
their activation remain complex and challenging to in-
terpret. Our study focuses on the quantitative aspects of
detector behaviour, and a deeper qualitative analysis of
the linguistic information captured by these detectors
could provide additional insights.

Ethics Statement

As the work is dedicated to evaluating existing models
on publicly available datasets, we are not aware of any
potential ethical issues or negative impacts.

Future Work

We wish to extend this work and test the generalizability
of our hypothesis across more language pairs and other
multilingual autoregressive language models.

8 Acknowledgements

This work has been funded from the 19-26934X
(NEUREM3) grant of the Czech Science Foundation
and the grant 205-09/260698 (SVV) of Charles Univer-
sity. The work has also been supported by the Ministry
of Education, Youth and Sports of the Czech Republic,
Project No. LM2023062 (LINDAT/CLARIAH-CZ).

124

References
Nora Belrose, Zach Furman, Logan Smith, Danny Ha-

lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

Terra Blevins, Hila Gonen, and Luke Zettlemoyer. 2022.
Analyzing the mono-and cross-lingual pretraining
dynamics of multilingual language models. arXiv
preprint arXiv:2205.11758.

Monojit Choudhury and Amit Deshpande. 2021. How
linguistically fair are multilingual pre-trained lan-
guage models? In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12710–12718.

Jenny Crinion, Robert Turner, Alice Grogan, Takashi
Hanakawa, Uta Noppeney, Joseph T Devlin, Toshi-
hiko Aso, Shinichi Urayama, Hidenao Fukuyama,
Katharine Stockton, et al. 2006. Language control in
the bilingual brain. Science, 312(5779):1537–1540.

Ameet Deshpande, Partha Talukdar, and Karthik
Narasimhan. 2022. When is bert multilingual? iso-
lating crucial ingredients for cross-lingual transfer.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3610–3623.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vocab-
ulary space. arXiv preprint arXiv:2203.14680.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5484–5495.

Tom Kocmi, Martin Popel, and Ondrej Bojar. 2020.
Announcing czeng 2.0 parallel corpus with over 2
gigawords. arXiv preprint arXiv:2007.03006.

Sneha Reddy Kudugunta, Ankur Bapna, Isaac Caswell,
Naveen Arivazhagan, and Orhan Firat. 2019. In-
vestigating multilingual nmt representations at scale.
arXiv preprint arXiv:1909.02197.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye,
Felix Chern, Felix Yu, Ruiqi Guo, et al. 2022.
Large models are parsimonious learners: Activa-
tion sparsity in trained transformers. arXiv preprint
arXiv:2210.06313.

Jindřich Libovický, Rudolf Rosa, and Alexander Fraser.
2019. How language-neutral is multilingual bert?
arXiv preprint arXiv:1911.03310.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, et al. 2021.
Few-shot learning with multilingual language models.
arXiv preprint arXiv:2112.10668.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Michele Miozzo, Albert Costa, Mireia Hernandez,
and Brenda Rapp. 2010. Lexical processing in
the bilingual brain: Evidence from grammati-
cal/morphological deficits. Aphasiology, 24(2):262–
287.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. arXiv preprint
arXiv:1905.05950.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Gerda Videsott, Bärbel Herrnberger, Klaus Hoenig,
Edgar Schilly, Jo Grothe, Werner Wiater, Manfred
Spitzer, and Markus Kiefer. 2010. Speaking in mul-
tiple languages: Neural correlates of language profi-
ciency in multilingual word production. Brain and
language, 113(3):103–112.

Wenxuan Wang and Zhaopeng Tu. 2020. Rethinking the
value of transformer components. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6019–6029.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yunzhi Yao, Shaohan Huang, Li Dong, Furu Wei,
Huajun Chen, and Ningyu Zhang. 2022. Kformer:
Knowledge injection in transformer feed-forward
layers. In Natural Language Processing and Chi-
nese Computing: 11th CCF International Conference,
NLPCC 2022, Guilin, China, September 24–25, 2022,
Proceedings, Part I, pages 131–143. Springer.

125

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022. Moefication:
Transformer feed-forward layers are mixtures of ex-
perts. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 877–890.

126

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 127–141
December 7, 2023. ©2023 Association for Computational Linguistics

Why bother with geometry?
On the relevance of linear decompositions of Transformer embeddings

Timothee Mickus
University of Helsinki

timothee.mickus@helsinki.fi

Raúl Vázquez
University of Helsinki

raul.vazquez@helsinki.fi

Abstract

A recent body of work has demonstrated that
Transformer embeddings can be linearly de-
composed into well-defined sums of factors,
that can in turn be related to specific net-
work inputs or components. There is however
still a dearth of work studying whether these
mathematical reformulations are empirically
meaningful. In the present work, we study
representations from machine-translation de-
coders using two of such embedding decompo-
sition methods. Our results indicate that, while
decomposition-derived indicators effectively
correlate with model performance, variation
across different runs suggests a more nuanced
take on this question. The high variability of
our measurements indicate that geometry re-
flects model-specific characteristics more than
it does sentence-specific computations, and that
similar training conditions do not guarantee
similar vector spaces.

1 Introduction

It stands to reason that important research efforts
are being devoted to explaining the behavior and
understanding the mechanics of Transformer-based
NLP models: Most models that are currently dis-
cussed within the NLP community are based on this
architecture, and they have achieved resounding
successes. One trend of work in particular attempts
to characterize Transformer models by means of
their geometry (Rogers et al., 2020; Ethayarajh,
2019; Timkey and van Schijndel, 2021, e.g.,).

However, most studies focus on a single hand-
ful of ‘foundation’ models or fine-tuned variants
thereof, and explicitly or implicitly assume that the
reported results generalize on to other models—yet
the effects of random initialization, training data
or variation in the definition of objective functions
are left unstudied. Moreover, and perhaps more
crucially, there is no guarantee that Transformer-
embeddings geometry is indicative of model qual-
ity: That embeddings are arranged in a certain fash-

ion in hyperspace says little of what downstream
performance we should expect.

Taken together, these two assumptions—that re-
sults applicable to one model will apply to many,
and that geometry can provide explanations—call
into question the validity of geometry-based ap-
proaches. We focus on two linear decomposition
approaches for Transformer embeddings (Mickus
et al., 2022; Oh and Schuler, 2023): works attempt-
ing to summarize model computation through their
effects on the resulting output embedding spaces.
By construction, these decompositions reflect topo-
logical features of the Transformer architecture.

Our goal is to verify whether these two assump-
tions are in fact supported. One would hope, for
instance, that the geometry a model settles on dif-
fers along training data but not random initializa-
tion. Another natural expectation to have is that
different uses of the model, such as forcing the
production of a given sentence or searching for a
plausible generation would yield distinct computa-
tions and therefore distinct geometric arrangements.
Lastly, if we intend to explain model performance
via embedding geometry, then we should observe
consistent differences in geometry whenever we
see differences in quality metrics.

To answer whether all three of these expectations
are met, we experiment with machine-translation
decoder embeddings and study how their geome-
try evolves over training and multilingualism. In
a nutshell, our experiments suggest a nuanced out-
look on the usefulness of linear decompositions.
Decomposition-derived indicators tend to correlate
well with corpus-level model performance, but are
less appropriate when it comes to sentence-level
performance. We also observe that variation in
geometry across different runs for a same transla-
tion task can exceed what we observe for models
trained for different translation tasks.

Our findings question the relevance of geometry-
based approaches for Transformer model explain-

127

ability. As our measurements display high variabil-
ity across different model training runs, this work
suggests that geometry reflects model-specific char-
acteristics more than it does sentence-specific com-
putations: Models trained in similar conditions
need not yield similar vector spaces.

2 Related works

There is a rich literature that connects the objective
of static embedding models such as word2vec to
characteristics of the resulting vector space. In par-
ticular, Allen and Hospedales (2019) worked out
how the linguistic regularities found by Mikolov
et al. (2013) result from the exact loss landscape.

As for contextual embeddings, research has been
more commonly limited to empirical observations
(Ethayarajh, 2019; Timkey and van Schijndel, 2021,
e.g.). Recently, Ferrando et al. (2022b,a); Modar-
ressi et al. (2022); Mickus et al. (2022); Oh and
Schuler (2023); Yang et al. (2023) and others have
developed methods to provide mechanistic inter-
pretations of Transformer outputs: These works
rely on linear algebra to derive mathematically ex-
act attributions, where a contextual embedding is
decomposed as a sum of interpretable vector terms.

These approaches build upon two peculiarities
of the Transformer architecture. Perhaps the most
famous one—at least, one that has found signif-
icant traction more generally across explainable
NLP—is that of the scaled dot attention mecha-
nism. Transformers were presented by Vaswani
et al. (2017) as attention-only models. Attention
mechanisms can be seen as weighted sums over
value vectors (Kobayashi et al., 2020), where the
attention weights are derived non-linearly. This
observation was first brought forth within the sus-
tained and ongoing discussion about the relevance
of attention weights, and whether they are efficient
means of explaining Transformer behaviors—a sub-
ject hotly debated (Jain and Wallace, 2019; Wiegr-
effe and Pinter, 2019; Pruthi et al., 2020). In par-
ticular, Serrano and Smith (2019); Kobayashi et al.
(2020) highlight the importance of considering the
full embedding space geometry.

The second characteristic of importance to Trans-
former decomposition approaches is the systematic
use of residual connections throughout a Trans-
former models, only interrupted by layer normal-
ization operations. This fact, often described as a
residual stream of information, has been leveraged
to interpret the behavior of feed-forward sub-layers

(Geva et al., 2021; Ferrando et al., 2023; Dar et al.,
2023) or layer commutativity (Zhao et al., 2021).
Given that on the one hand a layer norm is a linear
map, and on the other hand a residual connection
simply consists on adding a sub-network’s input to
its output, this entails that most of the computations
done in a Transformer are distributive.

3 Methodology

Our focus here is on sequence-to-sequence encoder-
decoder architectures (Vaswani et al., 2017). Trans-
former embeddings can be decomposed into a lin-
ear combination of nonlinear transformations using
properties of the residual connections and attention
mechanisms. Here, we focus on whether these de-
compositions do provide meaningful explanations,
or whether they merely reflect topological charac-
teristics of the Transformer architecture.1

3.1 Models & Data

Connecting with previous literature (Voita et al.,
2021; Ferrando et al., 2022a; Vázquez et al., 2022,
e.g.), our focus in this work is on decoder embed-
dings from Transformers trained on machine trans-
lation (MT) objectives, with varying degrees of
multilinguality. NMT systems provide a useful
framework to study the validity of explainability
methodologies. First, significant efforts have been
devoted to the creation of MT evaluation metrics
that correlate well with human intuitions. Empiri-
cal investigations of what drives phenomena such
as hallucinations also abound. Lastly, translation
as a task has the advantage that is straightforward
for humans to relate input to output.

Our models are trained on different subsets of
the Tatoeba Challenge corpus (Tiedemann, 2020),
each of them sampling up to 5M sentences per
language pair. We train models with sources of
different degrees of multilinguality: multilingual-
to-English, with 76M sentences; Indo-European-
to-English, with 58M sentences; Slavic-to-English,
with 33M sentences; and Russian-to-English with
5M sentences. For the bilingual dataset (Ru–En),
we train three different model seeds. All models
are trained using the marian-MT library (Junczys-
Dowmunt et al., 2018) for 72 hours on 4 V100
GPUs. We saved checkpoints every 1000 training
steps to compare decompositions at different train-
ing stages. Hyperparameters and training details
are listed in appendix A. We systematically run all

1Code at github.com/TimotheeMickus/seq2seq-splat.

128

of our experiments on the same held out test set of
19,425 Russian and English paired sentences.

3.2 Decomposition approaches

Z matrix
(Z)i ith row of Z
z (row) vector
k, κ,K scalars
y ⊕ z concatenation of vectors y and z⊕
n

zn z1 ⊕ z2 ⊕ · · · ⊕ zn

y ⊙ z element-wise multiplication of y and z⊙
n

zn z1 ⊙ z2 ⊙ · · · ⊙ zn

1⃗ vector with all components set to 1
0⃗ vector with all components set to 0
0m,n null matrix of shape m× n
In identity matrix of shape n× n

(a) General notations

Λ total number of sub-layers
λ sub-layer index
L total number of layers, i.e., Λ/3
l layer index
d dimension of representations
H number of heads
W

(m)
λ sub-module m in sub-layer λ weight matrix

b
(m)
λ bias for sub-module m in sub-layer λ

g
(ln)
λ layer-norm gain parameter in sub-layer λ

Eλ output of sub-layer λ (all embeddings)
eλ,t output of sub-layer λ at position t
ėλ,t output of sub-layer λ at position t before

layer-norm and residual connection
ëλ,t output of sub-layer λ at position t before

layer-norm
Xλ target-side input to sub-layer λ, Eλ−1

xλ,t tth target-side input of sub-layer λ, eλ−1

Xenc memory bank, i.e., output of the encoder
Aλ,h attention weight matrix for hth head of the

multi-head attention at sublayer λ
aλhtt′ Attention weight for head h, sub-layer λ

query t, value t′

ϕ non-linear activation function
mλt mean from the layer-norm of sub-layer λ
sλt standard deviation from λth layer-norm

(b) Transformer-specific notations

Table 1: Notations

We consider two approaches: a sub-layer-wise
decomposition, and a token-wise decomposition.
They are inspired by Mickus et al. (2022) and Oh
and Schuler (2023) and illustrated in fig. 1. In ta-
ble 1, we list the notations used throughout this
work. See appendix B for a primer on the Trans-
former architecture.

Sub-layer-wise decomposition. The first ap-
proach is a sub-layer-level decomposition in five
terms. That is, we decompose embedding e into
a linear combination of functions that refer to the
target-side input (i), the source attention (s), the

ma1

+

norm1

ma2

+

norm2

ff3

+

norm3

. . .

e = i+ s+ t+ f + c

X0 Xenc

(a) Sub-layer-wise decom-
position Dcpsl

ma1

+

norm1

ma2

+

norm2

ff3

+

norm3

. . .

e = s+ t+ c

X0 Xenc

(b) Token-wise decomposi-
tion Dcptok

Figure 1: Overview of decomposition methods, focus-
ing on the first three sublayers of the decoder. Colors
indicate what a decomposition term is imputed to.

target attention (t), the feed-forwards (f), or the
models’ biases (c). We note it as Dcpsl. As can be
seen in fig. 1a, it essentially entails that we break
down embeddings depending on where in the net-
work a specific term comes from. Hence, for token
position t:

et = it + st + tt + ft + ct (1)

where

it = f
(ln)
1 (x0,t) (2)

tt =

Λ/3−1∑

l=0

f
(ln)
3l+1

((
f
(ma)
3l+1 (X3l+1)

)
t

)
(3)

st =

Λ/3−1∑

l=0

f
(ln)
3l+2

((
f
(ma)
3l+2 (Xenc)

)
t

)
(4)

ft =

Λ/3−1∑

l=0

f
(ln)
3l+3

(
f
(ff)
3l+3 (x3l+3,t)

)
(5)

129

ct = b
(ln)
Λ + f

(ln)
1 (−m11⃗) +

Λ∑

λ=2

f
(ln)
λ

(
b
(ln)
λ−1 −mλ1⃗

)

+

Λ/3−1∑

l=0

f
(ln)
λ+1

(
b
(ma,O)
λ+1 +

H∑

h=1

Hλ+1,hb
(ma,V)
λ+1

)

+

Λ/3−1∑

l=0

f
(ln)
λ+2

(
b
(ma,O)
λ+2 +

H∑

h=1

Hλ+2,hb
(ma,V)
λ+2

)

+

Λ/3−1∑

l=0

f
(ln)
λ+3

(
b
(ff,out)
λ+3

)

(6)
The cumulative effects of the layer-norms after
sub-layer λ, f (ln)λ (x), the unbiased outputs of a
feed-forward layer, f (ff)λ (x), and of a multi-head
attention layer, f (ma)

λ (X), are defined as follows:

f
(ln)
λ (x) =

1
Λ∏

λ′=λ

sλ′

Λ⊙

λ′=λ

gλ′ ⊙ x

f
(ff)
λ (x) = W

(ff,out)
λ ϕ

(
W

(ff,in)
λ x+ b

(ff,in)
λ

)

f
(ma)
λ (X) = W

(ma,O)
λ

(
H⊕

h=1

Aλ,hW
(ma,V)
λ,h X

)

For convenience we also define the linear map asso-
ciated with going from a given head h to the output
of sub-layer λ:

Hλ,h = W
(ma,O)
λ Sh

Sh =
[
0 d

H
,
d(h−1)

H

I d
H

0 d
H
,
d(H−h)

H

]

Token-wise decomposition. A major issue that
stands in the way of linear decomposition ap-
proaches is the use of a non-linear activation func-
tion in feed-forward sub-layers. This has prompted
different approaches: side-stepping the problem
altogether and leaving this component unanalyzed
(Mickus et al., 2022; Ferrando et al., 2022b; Modar-
ressi et al., 2022); relying on local linear approxi-
mations of the activation function (Oh and Schuler,
2023); or limiting the scope of inquiry to activation
functions with the desired mathematical properties
(Yang et al., 2023).

The second decomposition we study, which we
note Dcptok, uses the locally linear approximation
of Oh and Schuler (2023) to distribute the feed-
forward sub-layer outputs to the input decompo-
sition. We then group all inputs into three terms
s, t, c, depending on whether a vector term ulti-
mately comes from the encoder, from the target
input (t) or model biases (c), as shown in fig. 1b.

Unlike Dcpsl, this entails grouping terms based
on what they originally were. More formally, we
define it as:

eλ,t = sλ,t + tλ,t + cλ,t (7)

and compute these operands by recurrence.
If we start by setting aside layer normalization

and residual connection for simplicity, we can get
a first approximation of what should be attributed
to the source-side input at a given sub-layer, given
prior computations:

ṡλ,t =





t∑
t′=1

aλhtt′Hλ,hW
(ma,V)
λ,h sλ−1,t′

if λ ≡ 1 mod 3

∑
n

(
f
(ma)
λ (Xenc)

)
n

if λ ≡ 2 mod 3

Fλ,tsλ−1,t if λ ≡ 0 mod 3

(8)

given the local linear approximation of the feed-
forward, Fλ,t = W

(ff,out)
λ Lλ,eλ,tW

(ff,in)
λ . The lo-

cal linear approximation itself Lλ,x of the activa-
tion function ϕ for sub-layer λ is defined as:

Lλ,x = Id ⊙ ϕ′
(
W

(ff,in)
λ x+ b

(ff,in)
λ

)

We can also remark that in the initial stages, the
source-side input is not used, meaning that:

s0,t = 0⃗

With an analogous line of thought, we can char-
acterize what in a given sub-layer hidden represen-
tation is owed to the target-side input as:

ṫλ,t =





t∑
t′=1

aλhtt′Hλ,hW
(ma,V)
λ,h tλ−1,t′

if λ ≡ 1 mod 3

0⃗ if λ ≡ 2 mod 3

Fλ,ttλ−1,t if λ ≡ 0 mod 3

(9)

t0,t = x0,t

And similarly, we can keep track of all biases
130

and offsets thus far ignored:

ċλ,t =





b
(ma,O)
λ +

H∑
h=1

Hλ,hb
(ma,V)
λ,h

+
t∑

t′=1

aλhtt′Hλ,hW
(ma,V)
λ,h cλ−1,t′

if λ ≡ 1 mod 3

b
(ma,O)
λ +

H∑
h=1

Hλ,hb
(ma,V)
λ,h

if λ ≡ 2 mod 3

b
(ff,out)
λ +W

(ff,out)
λ lλ,eλ,t

+W
(ff,out)
λ Lλ,eλ,tb

(ff,in)
λ

+ Fλ,tcλ−1,t
if λ ≡ 0 mod 3

(10)

c0,t = 0⃗

where the intercept of the local linear approxima-
tion of the feed-forward activation is defined as:

lλ,eλ,t = ϕ (êλ,t)− Lλ,eλ,t êλ,t

êλ,t = W
(ff,in)
λ eλ,t + b

(ff,in)
λ

Finally, we need to account for residual connec-
tions and layer normalisation so as to obtain the
exact decomposition for the next layer: 2

sλ,t =
1

sλ,t
gλ ⊙ (ṡλ,t + sλ−1,t) (11)

tλ,t =
1

sλ,t
gλ ⊙

(
ṫλ,t + tλ−1,t

)
(12)

cλ,t =
1

sλ,t
gλ ⊙

(
ċλ,t + cλ−1,t −mλ,t1⃗

)

+ b
(ln)
λ (13)

3.3 Scalar indicators
Linear decomposition approaches, by design, yield
sums of high-dimensional vectors. To reduce these
vectors to comprehendable scalars, we consider
two scalar-valued indicator metrics: one that eval-
uates the relative magnitude magnitude of a term
in a linear decomposition with respect to the total
embedding; and a cosine-based one as an indicator

2As our interest lies in disentangling source and target-
side contributions, the decomposition above does not properly
attribute weights to individual tokens, i.e., all inputs are not
disentangled. Also remark that the local linear approxima-
tion Lλ,x is defined with respect to the hidden state eλ,t: As
such, the computations it describes are specific to a particu-
lar contextualized embedding, which obfuscates token-level
attribution.

of co-directionality. We choose these indicators
due to their simplicity and interpretability.

We define the norm ratio as the ratio of l2 norms
so as to capture a sense of scale, and the cosine
similarity as:

nr (z, e) =
∥z∥2
∥e∥2

(14)

cos (z, e) =
z · e

∥z∥2∥e∥2
(15)

Intuitively, if a term z in some decomposition
Dcp of a contextual embedding e has a small norm,
then we should expect this term z to be unimpor-
tant as it effectively contributes little to the total
embedding e, resulting in a small norm ratio. On
the other hand, when a term z has a large norm,
this measure assigns importance to it, regardless
of its orientation with respect to the total embed-
ding e. This is instead captured through cosine
similarity: Co-directionality indicates whether a
term z is pointing in the same direction as the total
embedding e (when cos (z, e) = 1) or in the op-
posite direction (when cos (z, e) = −1). Cosine
similarity has long been used in IR and embedding
research (Singhal, 2001). Taken together, the two
indicators provide a more complete picture, allow-
ing interpretations while retaining simplicity.3

4 What is geometry indicative of?

Given our experimental protocol described in sec-
tion 3, we now explore what is encoded in linear
decomposition terms.

Do the decoding algorithms affect the geometry
of embeddings? The first element we consider
is whether forced inference, where we feed the
gold target to the model, and a beam-search de-
coding produce different embeddings, as far as a
linear decomposition would capture it. We consider
these two decoding algorithms, as they are com-
monly used in MT studies; moreover we strongly
expect that they should entail different behaviors
and information flows through the network: Forced
decoding uses a gold reference translation in ad-
dition to the source sentence, while beam search
doesn’t receive this input but instead is a mode

3In preliminary experiments, we also experimented with
Euclidean distance as well as the scalar product importance
metric µ of Mickus et al. (2022), eq. 6. We do not include
them in the present article for simplicity. Also remark that for
all decomposition term z of a given embedding e, we have
cos(z, e)nr(z, e) = µ(z, e)

131

searching heuristic. It is sensible to expect that the
decomposition of embeddings from both decoding
algorithms differ.

In particular, it makes sense to consider how
forced inference and beam-search decoding evolve
across training. Models are trained to optimize
the likelihood on iid. data: As such, differences
between these two decoding algorithms—if any
are to be found—should become less important
as training progresses. Hence, for each of our six
models detailed in section 3.1, we consider the
embeddings obtained at intervals of 1000 updates:
i.e., we compute output decoder embeddings af-
ter 1000, 2000, . . . , 1000N updates. We can then
measure whether scalar indicators defined in sec-
tion 3.3 differ across updates when using forced
inference or beam-search.

In other words, we define series of paired scalar
observations for each model, depending on which
decomposition (Dcp ∈ {Dcptok,Dcpsl}), term
(viz., z ∈ {i, s, t, f , c} for Dcpsl or z ∈ {c, s, t}
for Dcptok) and indicator used (f ∈ {nr, cos}).
We pair, checkpoint by checkpoint, the average of
the scalar indicator f across our held-out test set
when using either beam-search or forced inference,
before computing correlation measures.

Remarkably, we find both Spearman’s ρ and
Pearson’s r to be very highly correlated (ρ > 0.986
and r > 0.901) in all cases that we test.4 This ex-
treme correlation indicates that, across training,
embeddings derived through beam-search and em-
beddings derived through forced inference always
exhibit the same geometric structures: For instance,
if for a given checkpoint, decomposition and term,
we observe a low average cosine average between
the said terms and the full embeddings as obtained
through beam-search, then we are almost certain to
obtain a similarly low cosine with forced inference
as well. In other words, corpus-level scalar indi-
cators derived from linear decompositions do not
appear to be sensitive to which decoding algorithm
is used to compute embeddings.

Is geometry indicative of model performance at
the corpus level? We have just established that

4Only 7 setups yield Pearson correlation coefficient below
0.99, all but one involving the i term of the Dcpsl decompo-
sition: both cosine (r > 0.944) and norm-ratio (r > 0.977)
for the Indo-European-to-English model; the norm-ratio of
the multilingual-to-English model (r > 0.954); and the co-
sine for the three Russian-to-English models (with r > 0.901,
r > 0.974 and r > 0.979); the lowest of these Russian
models also yield r > 0.968 for the t term in Dcptok.

linear decompositions appear stable across differ-
ent means of decoding. This is broadly compatible
with two interpretations: either linear decomposi-
tions only capture idiosyncrasies of Transformer
geometries; or there are other factors that could
influence our scalar indicators. One likely candi-
date would be model performances: We expect the
embeddings of a highly performing model to differ
significantly from that of a randomly initialized one
or an under-trained one. By extension, differences
in quality, as measured through automated metrics,
should entail differences in geometry and in scalar
indicators derived thereof.

For simplicity, let f̄(M) denote the average of
applying function f across our held-out dataset D
using model M , i.e.

f̄(M) =
1

|D|
∑

x∈D
f(M(x))

To assess whether differences in geometry and qual-
ity are commensurate, we:

i) sample pairs of models Mi,Mi+1

ii) compute differences in scalar indicators
f̄z(Mi)− f̄z(Mi+1), for fz ∈ {nr, cos} from
eqs. (14) and (15);

iii) compute f̄s(Mi)−f̄s(Mi+1) for some scoring
function fs such as BLEU;

iv) compute the absolute value of Spearman corre-
lation between these two series |ρ (Sfz , Sfs)|5

We experiment with BLEU, COMET and chrF++
(Papineni et al., 2002; Rei et al., 2020; Popović,
2017) as scoring functions. Corresponding results
for BLEU are presented in fig. 2. We defer results
with COMET and chrF++ to appendix C.1, figs. 5
and 6, as they are in line with BLEU. The notations
s0, s1 and s2 refer to our three different runs for
Russian-to-English; sla, ine and mul correspond
to the Slavic-to-English, Indo-European-to-English
and multilingual-to-English model.

There are several trends that we can observe.
First, correlation magnitudes tend to be high: This

5This is similar to performing a representational similarity
analysis (Kriegeskorte et al., 2008) with the exception that we
are looking at signed differences and computing the magnitude
of the (anti-) correlations. Our aim is to capture whether
scalar indicators and scoring functions are consistent with one
another rather than determine what the optimal geometry is.
As such, the directionality of a given effect is irrelevant (i.e.,
we do not care whether the cosine for a specific term has to be
low or high for the model to perform well).

132

i s t f c
0

50

100
4
8
.5

7
1
.5

3
4
.8 4
6
.0

2
4
.73
3
.6

6
8
.3

3
6
.7 5

6
.3

9
.51
6
.8

7
2
.1

2
0
.4

5
5
.0

4
1
.3

9
.9

5
0
.9

7
.1

5
3
.3

1
5
.82
6
.0

6
4
.2

0
.7

7
2
.0

1
8
.7

1
0
.8

6
8
.7

2
6
.1

6
8
.1

4
2
.5

s0 s1 s2 sla ine mul

(a) Dcpsl, cos and BLEU

i s t f c
0

50

100

5
9
.5

5
7
.0 7
4
.3

5
7
.6

5
0
.46
8
.2

5
4
.5

8
0
.1

3
1
.9

5
9
.1

6
7
.5

2
8
.5

7
5
.4

5
6
.6

5
8
.4

5
5
.9

2
8
.9

6
5
.4

1
.9

6
5
.1

4
9
.2

7
0
.0

7
5
.3

4
.1

6
4
.9

2
5
.7

5
8
.1

4
5
.9

3
7
.9

7
2
.8

(b) Dcpsl, nr and BLEU

s t c
0

50

100

2
6
.9

3
.0

3
8
.7

3
1
.7

1
6
.9

6
.6

3
3
.0

3
6
.4

2
3
.5

2
7
.3

2
5
.9

4
8
.8

9
.0

4
8
.6

2
.2

2
3
.9

4
9
.9

2
2
.5

(c) Dcptok, cos and BLEU

s t c

2
9
.7

6
3
.6

6
3
.4

1
5
.7

4
6
.4 6
2
.0

4
3
.6 5
3
.9

5
6
.0

2
4
.9

2
6
.7

3
1
.3

6
6
.6

6
8
.6

6
1
.9

2
6
.9

3
5
.6

4
3
.8

(d) Dcptok, nr and BLEU

Figure 2: Corpus-level correlation magnitudes (Spear-
man’s |ρ|, in %) between scalar indicators (cos, nr) and
BLEU. Remark the high variability across models, hint-
ing at a lack of systematicity.

indicates that, on the whole, scalar indicators de-
rived from linear decompositions tend to reflect
model quality well (as captured by automatic met-
rics such as BLEU). Second, and perhaps most
importantly, we remark that results across the three
seeds for Russian-to-English can display a high
degree of variation, both in Dcptok and Dcpsl—for
instance, in Dcpsl, correlations between changes in
cosines and changes in BLEU range from |ρ| = 9.5
(in s1) to |ρ| = 41.3 (s2) for the c term. Third and
last, the two decomposition approaches Dcptok and
Dcpsl suggest different interpretations as to how
the decoders behave. For instance, compare target-
side input tokens (t in Dcptok) and target-side self-
attention sub-layer outputs (t in Dcpsl): While both
terms aim to explain how the target-side input re-
lates to the output embedding, the correlations we
derive from the scalar indicators differ between
decompositions. We find a surprisingly small cor-
relation magnitude between cos and BLEU for the
t term under Dcpsl in the ine model whereas the
s0 model presents the second highest magnitude—
but turning to the same measurements for the t
term under Dcptok, we find the exact opposite sit-
uation, with s0 being noteworthily lower than all

i s t f c
0

50

100

1
8
.1

1
7
.7

7
.5 1
0
.9

6
.49
.1 1
6
.3

6
.0 1
5
.6

3
.51
2
.7

1
3
.9

3
.5 1
0
.0

4
.88
.2 1
9
.9

5
.2 1
5
.3

2
.27
.9

2
6
.0

3
.2

2
4
.6

4
.41
0
.5 2
5
.0

5
.6

2
6
.7

5
.9

s0 s1 s2 sla ine mul

(a) Dcpsl, cos and COMET

i s t f c
0

50

100

8
.7 1
5
.6

1
8
.5

1
5
.7

1
5
.5

1
4
.0

1
5
.7

1
9
.7

9
.0 1
6
.7

7
.0 1
2
.3

1
3
.8

8
.4 1
3
.8

1
1
.7

1
5
.6

1
8
.6

6
.9

2
1
.5

1
0
.3 2
4
.5

2
5
.9

5
.0

2
6
.3

5
.3 1

7
.6 2
7
.4

8
.5

2
9
.9

(b) Dcpsl, nr and COMET

s t c
0

50

100

7
.5

8
.1

5
.07
.7

2
.4 4
.21
0
.8

0
.5 6
.31
3
.7

1
.6 1

3
.8

1
2
.3

1
0
.6

1
1
.2

2
.8

4
.0

1
7
.7

(c) Dcptok, cos and COMET

s t c

1
3
.6

1
5
.7

1
6
.9

1
1
.7

1
4
.8

1
5
.6

1
2
.5

1
5
.5

1
6
.6

1
7
.8

2
2
.6

2
2
.2

2
0
.8

2
5
.8

2
7
.0

1
9
.7

2
2
.5

2
3
.7

(d) Dcptok, nr and COMET

Figure 3: Sentence-level correlation magnitudes (Spear-
man’s |ρ|, in %) between scalar indicators (cos, nr) and
COMET. Magnitudes are often much lower than their
counterparts in fig. 2, suggesting a poorer fit.

other models, and ine being the second highest.
In sum, while embedding geometry seems to

be shaped in part by how effective a model is—as
attested by the often high correlation scores we can
observe—the relation between the two is neither
straightforward nor systematic across models.

Is geometry indicative of model performance at
the sentence level? We have thus far focused on
corpus-level measurements. To test whether em-
bedding geometry can provide useful explanations
for specific inputs, it is important that we verify
whether our observations also hold at the sentence
level.

To broach this question, we consider the fol-
lowing methodology: We first select a subset of
k = 3000 sentences; then for each sentence in said
subset, we randomly select two checkpoints per
seed. We then compute the correlation magnitude
between the signed differences in COMET scores
and the signed differences in scalar indicators. 6

Corresponding results are provided in fig. 3. We

6We only focus on COMET as it has been suggested to be
more appropriate for sentence-level quality estimation. We
also conduct supplementary experiments in appendix C.2 with
a slight modification of this methodology.

133

can make two important remarks. First, we can see
that correlation scores are often much lower than
what we observed at the corpus level.7 Nonetheless,
some setups still perform reliably well—in particu-
lar, norm ratio is found to yield higher correlation
magnitudes than cosine n Dcptok. This would en-
tail that model quality factors in the results we
obtain at the sentence level—if to a lesser extent.
Second, we still observe important variation across
all three seeds for Russian—often comparable to
variation attested across training conditions.

This result suggests that geometry-based expla-
nations are more in line with corpus-level statistics
than with sentence-level observations. This nat-
urally questions their usefulness as far as model
explainability is concerned, and echoes our previ-
ous findings about decoding algorithms: We estab-
lished that forced inference and beam search did
not entail different geometries, we now observe
that sentence-level quality is often less appropri-
ate than corpus-level quality when attempting to
account for the geometry a model settles on.

Is geometry indicative of training conditions?
Throughout our previous experiments, we have
seen that variation across our three Russian models
was often comparable to variation across differ-
ent training datasets. We now turn as to whether
this fact can be established more firmly: Is there
evidence that models that are trained in similar
circumstances develop similar geometry? One im-
portant aspect of this question consists in assessing
the evolution across training, rather than focusing
on individual checkpoints as we have thus far.

Thus, we now consider the time-series described
by our scalar indicators in eqs. (14) and (15) for
each term z of a given decomposition Dcp, through
the entire training. For each term and indicator, we
compare the time series of all different models us-
ing the dynamic time warping algorithm (DTW,
Bellman and Kalaba, 1959; Sakoe and Chiba,
1978). Our interest in doing this comparison resides
in being able to understand how distant the time
series of the different models are between them.
The DTW algorithm is especially suitable to our
use case, as it measures similarity in a manner that
is invariant to shifts and length differences between
two time series. In other words, it allows us to
measure how similar the series nrM1(z, e)|1,...,N1

and nrM2(z, e)|1,...,N2 are, disregarding the differ-

7In fact the p-value provided by scipy for these correlation
scores suggests that many of these correlations are spurious.

ent speed of convergence of both models M1 and
M2 at training time.

Corresponding results are provided in fig. 4.
Each of the heatmap corresponds to the time-series
relating to a given term. The upper triangle of each
heatmap relates to cosine, and the lower triangle
to norm-ratio time series. Individual cells indicate
the distance between the time series derived for the
models listed in row and column. For instance, the
cell in row 2, column 4 of the third plot in fig. 4a
corresponds to the distance measured between co-
sine measurements of the c term under Dcptok in
the s1 and sla models. Results are z-normalized,
as our interest lies in verifying whether Russian
models are distinct from other models rather than
establish the absolute difference.

The three Russian seeds correspond to the top
three rows and columns in each heatmap. A natural
expectation would be that comparisons between
Russian seeds should lead to more similar time
series, and thus lower (z-normalized) distances. In-
stead, what we observe is consistent with previous
experiments: Comparisons between two Russian
seeds may or may not yield lower distances. In
particular, s1 and s2 often yield very distinct time-
series, i.e., the models develop very different ge-
ometries despite their similar training conditions.

term
i s t f c

cos 0.002 0.367 0.352 0.108 0.022
nr 0.020 0.002 0.002 0.002 0.297

(a) Dcpsl

term
s t c

cos 0.503 0.316 0.380
nr 0.222 0.422 0.231

(b) Dcptok

Table 2: p-values derived from Pitman permutation tests

To provide a more thorough outlook on this ques-
tion, we conduct Pitman permutation tests (Dror
et al., 2018) to establish whether comparisons be-
tween two Russian models are statistically lower
than others. Corresponding results are provided in
table 2. As we can see, while select setups using
Dcpsl yield p-values beyond the commonly used
0.05 threshold, only half of the setup we experi-
ment with yield the expected result. In particular,

134

s0 s1 s2 sla ine mul

s0

s1

s2

sla

ine

mul
no

rm
 ra

tio

-0.8 -0.7 -0.4 0.3 -0.9

1.4 1.4 0.2 -0.7 0.8

-1.0 0.6 -0.1 2.6 -0.7

-1.1 0.9 -1.0 -0.6 -0.8

1.1 -1.0 0.3 0.7 0.6

-1.1 1.0 -1.0 -0.8 0.9

S
 cosine

s0 s1 s2 sla ine mul

-0.1 -0.1 0.3 0.1 0.6

1.2 1.0 1.8 1.3 0.7

-0.6 -0.5 -0.3 -0.9 -0.9

-1.3 1.3 -0.7 -0.9 -0.8

1.3 -0.5 -0.1 1.2 -1.9

-0.9 0.9 -0.9 -1.3 0.8

T
 cosine

s0 s1 s2 sla ine mul

-0.9 1.0 -1.3 2.3 -0.2

1.8 0.3 -0.4 0.8 -0.1

0.0 -0.6 0.9 -1.2 -0.4

-1.3 1.9 -0.1 0.7 -0.7

0.5 -0.4 -0.8 0.3 -0.7

-1.0 1.2 -0.4 -1.2 0.2

C
 cosine

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Oh & Schuler Decomposition
 layer 6

(a) DTW distances for Dcptok

s0 s1 s2 sla ine mul

s0
s1
s2
sla
ine

mul

no
rm

 ra
tio

-1.4-1.6 1.1 -0.3 0.4
-0.6 -1.4 0.6 -0.0 0.6
-1.4-0.7 2.0 0.6 0.6
0.1 -0.7-0.2 -0.7 0.1
-0.3-0.8-0.4-0.8 -0.6
1.8 1.4 1.8 0.2 0.5

I
 cosine

s0 s1 s2 sla ine mul

-1.2 1.4 1.6 -0.1 1.0
-0.8 0.4 1.0 -0.3 1.1
-1.8-0.7 -0.6-0.6-0.1
-0.0 0.7 0.6 -1.1-1.1
-0.7 0.0 -0.6-0.1 -1.2
1.4 1.4 1.8 -0.7-0.6

S
 cosine

s0 s1 s2 sla ine mul

-1.0-0.4 1.6 0.5 0.4
-1.1 0.8 1.6 -0.3 0.4
-1.3-0.9 0.5 0.1 -0.2
0.1 -0.4 0.1 -1.0-1.9
-0.2-0.5-0.1-0.5 -1.2
1.9 0.8 2.3 -0.3 0.1

T
 cosine

s0 s1 s2 sla ine mul

-0.2-2.1 0.1 0.8 1.1
-1.2 0.2 -0.1 0.6 1.7
-1.8-0.9 0.2 0.0 0.9
0.8 -0.1 0.9 -0.8-0.8
-0.8-0.3-0.7 0.7 -1.5
1.5 0.1 1.8 -0.1 0.2

F
 cosine

s0 s1 s2 sla ine mul

-0.0 0.8 -0.8-0.6-0.7
-0.2 2.5 -0.6-0.2-0.8
0.2 0.9 0.9 0.7 1.1
0.6 1.4 -0.8 -0.5-0.8
0.1 1.0 -0.6-1.3 -1.0
1.2 1.1 -0.8-1.3-1.5

C
 cosine

1

0

1

2

Mickus et al. Decomposition
 layer 6

(b) DTW distances for Dcpsl

Figure 4: Dynamic time warping distance measurements, z-normalized. Remark that distances between seed
replications (s0, s1, s0) do not differ from distances between models with different inputs.

all setups based on Dcptok are insignificant.
We therefore conclude that different decompo-

sition approaches lead to different interpretations
of what Transformer geometry encodes. Had we
only focused on Dcptok, we would have been lead
to a much firmer rejection of the notion that decom-
positions are stable across random initializations.
The inclusion of Dcpsl in our experiments forces
us to adopt a more nuanced approach: viz., that
the evidence in favor of geometry-based explain-
ability approaches is thin; and that results derived
from such approaches appear very brittle—the ex-
act methodology used brings about variations in
p-value of up to two orders of magnitude.

5 Conclusions

We have presented a series of statistical studies
questioning the usefulness of linear decomposi-
tion approaches. In particular, we have highlighted
that straightforward vector space characteristics,
such as angle and norm of the derived vector terms,
imply the following three points: (i) decomposi-
tions are invariant to the decoding algorithm em-
ployed; (ii) they are more in line with corpus-level
performance than sentence-level performance, and
(iii) variance across random seeds for the same
training conditions is often comparable to variance
across models trained on different corpora. Taken

together, our experiments suggest that Transformer
geometry is often highly model-specific. Observa-
tions about a specific model need not generalize.

As such, some of the assumptions underlying
geometry-based explanations of Transformer be-
haviors are not borne out. While it is true that the
geometry of successful models differs from that of
unsuccessful ones, our work puts forth evidence
that this difference is mostly trivial—geometry be-
ing model-specific necessarily entails that any par-
tition of models, be it based on performance or else,
will naturally highlight differences.

While our focus has been limited to linear de-
compositions and straightforward vector charac-
teristics, our experiments more broadly call into
question the validity of many related approaches,
which we hope to investigate in future work. That
straightforward vector characteristics do not yield
a coherent picture a minima entails that linear
decomposition approaches have to rely on non-
straightforward, high-dimensional relationships.
That similar training conditions cannot guarantee
similar vector spaces naturally leads us to doubt the
generalization power of methodologies that probe
a handful of foundational models: If we are unable
to ensure that our approaches would generalize to
other similar models, can we truthfully say that the
explanations we provide are indeed reasonable?

135

Acknowledgments

We thank Hande Celikkanat, Denis Paperno
and the three anonymous reviewers for their
insightful comments, as well as Jörg Tiedemann
for invaluable help with data selection.

This work is part of the FoTran project,
funded by the European Research Coun-
cil (ERC) under the EU’s Horizon 2020 re-
search and innovation program (agreement
№ 771113). We also thank the CSC-IT

Center for Science Ltd., for computational re-
sources.

References
Carl Allen and Timothy Hospedales. 2019. Analogies

explained: Towards understanding word embeddings.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 223–231. PMLR.

R. Bellman and R. Kalaba. 1959. On adaptive control
processes. IRE Transactions on Automatic Control,
4(2):1–9.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2023. Analyzing transformers in embedding space.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 16124–16170, Toronto, Canada.
Association for Computational Linguistics.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Javier Ferrando, Gerard I. Gállego, Belen Alastruey,
Carlos Escolano, and Marta R. Costa-jussà. 2022a.
Towards opening the black box of neural machine
translation: Source and target interpretations of the
transformer. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8756–8769, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Javier Ferrando, Gerard I. Gállego, and Marta R. Costa-
jussà. 2022b. Measuring the mixing of contextual

information in the transformer. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8698–8714, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Javier Ferrando, Gerard I. Gállego, Ioannis Tsiamas,
and Marta R. Costa-jussà. 2023. Explaining how
transformers use context to build predictions. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5486–5513, Toronto, Canada.
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7057–7075, Online. Association for Computa-
tional Linguistics.

Nikolaus Kriegeskorte, Marieke Mur, and Peter Ban-
dettini. 2008. Representational similarity analysis
- connecting the branches of systems neuroscience.
Frontiers in Systems Neuroscience, 2.

Timothee Mickus, Denis Paperno, and Mathieu Con-
stant. 2022. How to dissect a Muppet: The struc-
ture of transformer embedding spaces. Transactions
of the Association for Computational Linguistics,
10:981–996.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

136

Ali Modarressi, Mohsen Fayyaz, Yadollah
Yaghoobzadeh, and Mohammad Taher Pile-
hvar. 2022. GlobEnc: Quantifying global token
attribution by incorporating the whole encoder
layer in transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 258–271, Seattle,
United States. Association for Computational
Linguistics.

Byung-Doh Oh and William Schuler. 2023. Token-wise
decomposition of autoregressive language model hid-
den states for analyzing model predictions. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 10105–10117, Toronto, Canada. As-
sociation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham
Neubig, and Zachary C. Lipton. 2020. Learning to
deceive with attention-based explanations. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4782–
4793, Online. Association for Computational Lin-
guistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

H. Sakoe and S. Chiba. 1978. Dynamic programming
algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 26(1):43–49.

Sofia Serrano and Noah A. Smith. 2019. Is attention in-
terpretable? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2931–2951, Florence, Italy. Association for
Computational Linguistics.

Amit Singhal. 2001. Modern information retrieval:
A brief overview. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering,
24(4):35–43.

Jörg Tiedemann. 2020. The tatoeba translation chal-
lenge – realistic data sets for low resource and multi-
lingual MT. In Proceedings of the Fifth Conference
on Machine Translation, pages 1174–1182, Online.
Association for Computational Linguistics.

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4527–4546, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Raúl Vázquez, Hande Celikkanat, Vinit Ravishankar,
Mathias Creutz, and Jörg Tiedemann. 2022. A closer
look at parameter contributions when training neural
language and translation models. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 4788–4800, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Ana-
lyzing the source and target contributions to predic-
tions in neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1126–1140, Online.
Association for Computational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 11–20, Hong Kong, China. Association for
Computational Linguistics.

Sen Yang, Shujian Huang, Wei Zou, Jianbing Zhang,
Xinyu Dai, and Jiajun Chen. 2023. Local interpre-
tation of transformer based on linear decomposition.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 10270–10287, Toronto, Canada.
Association for Computational Linguistics.

Sumu Zhao, Damián Pascual, Gino Brunner, and Roger
Wattenhofer. 2021. Of non-linearity and commuta-
tivity in bert. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–8.

137

Sl
av

ic
bel bos bul ces cnr csb dsb hbs hrv hsb mkd
pol slk slv srp szl ukr

In
do

-E
ur

op
ea

n

afr anp arg asm ast bar ben bis bre bzj cat
ckb cor cos crs cym dan deu div djk dty ell
fao fas fra frp fry fur gla gle glg glv guj
hat hin hne hye hyw ind isl ita jak kas kea
kmr kri kur lad lav lij lim lit lmo ltg ltz
mai mar mfe min mol msa mwl nds nep nld nno
nob oci ori oss pan pap pdt pes pis pob por
prs pus rmn rmy roh rom ron san scn sco sin
spa sqi srd srm srn swe tgk tpi urd vec wae
wes wln yid zlm

m
ul

til
in

gu
al

abk ace ach ada aka alt alz amh ami ara arq
ary arz ava aze azz bak bas bbc bci bcl bem
bhw bin bod brx bts btx bug bum cab cak ceb
cha chk chr chv cjk cmn cnh cop crh ctu dhv
dik din dje dua dyu dzo efi epo est eus ewe
fas fij fil fin fon ful fuv gil grn guc gug
guw gym heb her hil hmn hne hun iba ibg ibo
ido ilo ish iso ixl jav jbo jpn kab kac kal
kam kan kat kau kaz kbp kek khm kik kin kmb
kon koo kqn kss ksw kua kwn lam lao lfn lin
loz lua lub lue lug lun luo lus lzh mah mal
mam mau meh men mgr mhr mlg mlt mon mos mri
mrj mxv mya nan naq nav nba nbl nch ncj ncx
ndc nde ndo ngl ngu nia nij niu nso nya nyk
nyn nyu nzi oke orm pag plt pon quc rar rnd
run sag sat seh ses sid sme smo sna som sop
sot ssw sun swa sxn syr tah tam tat tcf tdt
tel tgl tha tir tiv tll tmh tog toh toi toj
ton trs tsc tsn tso ttj tuk tum tur tvl twi
tyv tzh tzo udm uig umb urh uzb ven vie vmw
wal war wls wol wuu xho xmf yao yap yor yua
yue zai zam zne zpa zul

Table 3: List of language sources for multilingual mod-
els. More multilingual sources also contain languages
from less multilingual models. All models also contain
Russian.

A Model training details

As noted in the main text, we use the Tatoeba Chal-
lenge corpus (Tiedemann, 2020) and the marian-
MT library (Junczys-Dowmunt et al., 2018). Mod-
els were trained using four V100 nVidia GPUs.

Models use sources of different degrees of
multilinguality: multilingual-to-English (mul);
Indo-European-to-English (ine); Slavic-to-English
(sla) and three different seeds for Russian-to-
English (s0, s1 and s2). All languages included in
a more specific model are also present in all more
multilingual models. For instance, there are data-
points in the mul model’s training data for each of
the Slavic languages used to train the sla model. A
complete list of the languages used for multilingual
models in this study can be found in table 3; all
models also contain Russian.

Detailed hyperparameters is provided in table 4.
We refer the reader to Junczys-Dowmunt et al.
(2018) and the associated documentation8 for fur-
ther explanations. Models s0, sla, ine and mul
used the first of the three listed seeds, whereas s1
used the second and s2 the third. In practice, none
of the six models fulfilled the early stopping crite-
rion in the allocated runtime (72h).

B Supplementary details on
decompositions

Notation details. table 1 lists the notations used
throughout this work. Remark that, aside from
row-selection (marked (Z)i), symbol typesetting
indicates the type of mathematical object denoted:
i.e., aλhtt′ is a scalar and not a tensor of rank 4.

Presentation of the Transformer decoder archi-
tecture. The remainder of this appendix consists
in a general introduction to a Transformer decoder
architecture. We refer the reader to Vaswani et al.
(2017) for a more thorough overview.

A Transformer decoder is a stack of L layers,
each containing 3 sub-layers. Sub-layers are de-
fined by means of specific sub-layer components:
either multi-head attention mechanisms (ma) or
feed-forwards (ff).

The latter are multi-layer perceptrons of the
form:

ėλ,t = W
(ff,out)
λ ϕ

(
W

(ff,in)
λ xλ,t + b

(ff,in)
λ

)
+ b

(ff,out)
λ

where ϕ is a non-linear activation function (e.g.,
ReLU, SiLU, GELU...).

Multi-head attention mechanisms consist in
attention-based weighted average computations:

Ėλ = W
(ma,O)
λ

H⊕

h=1

Aλ,h

(
W

(ma,V)
λ,h X+ b

(ma,V)
λ,h

)

+ b
(ma,O)
λ

where the input X is either the previous sub-layer

output, up to token t included (i.e.,

[xλ,1

...
xλ,t

]
) or the

output of the Transformer encoder (Xenc). The
attention weights Aλ,h are computed as:

Aλ,h = softmax

(
Qλ,hK

⊤
λ,h√

d/H

)

Qλ,h = W
(ma,Q)
λ,h Xλ + b

(ma,Q)
λ,h

Kλ,h = W
(ma,K)
λ,h X+ b

(ma,K)
λ,h

8https://marian-nmt.github.io/docs/

138

H-param. Value

type transformer
quiet-translation true
max-length 500
mini-batch-fit true
workspace 24000
maxi-batch 500
valid-mini-batch 16
valid-freq 5000
save-freq 1000
disp-freq 5000

valid-metrics
perplexity
cross-entropy
bleu chrf

beam-size 12
normalize 1
allow-unk true
enc-depth 6
dec-depth 6
transformer-heads 8
transformer-
postprocess-emb d

transformer-
postprocess dan

transformer-ffn-
activation swish

transformer-
dropout 0.1

label-smoothing 0.1
learn-rate 0.0003
lr-warmup 16000
lr-decay-inv-sqrt 16000
lr-report true
optimizer-params 0.9 0.98 1e-09
clip-norm 5
fp16 true
tied-embeddings-
all true

early-stopping 150
cost-type ce-mean
exponential-
smoothing true

devices 0 1 2 3
sync-sgd true
seed 1111 1989 20232

Table 4: Hyperparameters for models

Remark that the matrix Aλ,h has size q × k, with
q the number of rows in Xλ and k the number of
rows in the input X. Specific cell values aλhij of
this attention matrix Aλ,h, also known as atten-
tion weights, can be seen as computing a similarity
score for the ith (linearly transformed) input contex-
tual embedding and the jth (linearly transformed)
attended vector.

Lastly, around each sub-layer, a residual connec-
tion and a layer-norm are applied:

eλ,t = g
(ln)
λ ⊙ ëλ,t −mλ,t1⃗

sλ,t
+ b

(ln)
λ

ëλ,t = ėλ,t + xλ,t

where mλ,t is the mean of the components of ëλ,t,
and sλ,t the corresponding standard deviation.

C Supplementary results

Numerical stability. Acros all experiments, all
decomposed embeddings were tested for numerical
stability: We ensure an absolute tolerance of tola =
10−8 and a relative tolerance of tolr = 10−5, or
more formally that the following is true:

∀Dcp ∀e
∣∣∣∣∣ e −

∑
z∈Dcp(e)

z

∣∣∣∣∣ ≤ tola + tolr

∣∣∣∣∣
∑

z∈Dcp(e)

z

∣∣∣∣∣

In practice, doing so requires 64-bit float precision,
despite the models having been trained with fp16.

C.1 Performance at the corpus level
In addition to the BLEU results presented in the
main text, we also compute correlation magnitudes
using COMET and chrF++ as scoring functions.
Corresponding results are presented in fig. 5 and
fig. 6.

Overall, results are similar to what we observed
with BLEU in fig. 2: Setups that yield low or
insignificant correlation magnitudes do so across
scoring functions. We nonetheless also attest varia-
tion across the different scoring functions, as some
specific setups can switch by ≈ 10% depending on
the scoring function.

C.2 Performance at the sentence level
In the main body of this article, we measure corre-
lations of sentence-level performance and scalair
indicators. One debatable methodological choice
is that we decide to compute signed differences for
observations corresponding to the same sentence.

On the one hand, this allows us to factor out
some intrinsic variation in scalar indicators that

139

i s t f c
0

50

100
5
5
.7

8
3
.6

5
4
.0 6
4
.9

3
.9

3
4
.2

8
0
.0

5
2
.6

7
2
.6

2
1
.83
2
.9

6
4
.2

4
3
.6

7
3
.3

1
9
.2

0
.5

4
3
.8

1
7
.8

6
9
.5

0
.1

1
9
.4

6
2
.1

5
.6

7
5
.7

1
8
.42
6
.5

6
5
.1

2
2
.3

7
2
.4

4
0
.3

s0 s1 s2 sla ine mul

(a) Dcpsl, cos and COMET

i s t f c
0

50

100

6
2
.8

4
9
.6

7
9
.5

5
4
.4 6
9
.4

6
3
.4

3
0
.3

8
5
.9

3
3
.6

7
6
.9

6
9
.5

4
3
.5

7
6
.4

3
6
.6

7
3
.6

5
3
.3

2
5
.9

7
9
.7

3
.5

6
7
.0

5
5
.4 6
7
.6 8
2
.8

0
.2

6
7
.7

3
1
.7

5
4
.6

5
1
.7

4
7
.8

7
0
.8

(b) Dcpsl, nr and COMET

s t c
0

50

100

1
9
.6

9
.0 1
6
.3

1
7
.8

8
.3

0
.8

5
0
.9

5
1
.6

8
.1

2
3
.4 3
0
.7

2
0
.7

1
5
.8

5
3
.8

0
.2

1
3
.7

4
0
.3

9
.1

(c) Dcptok, cos and COMET

s t c

2
0
.4

5
3
.9

5
4
.0

1
.3

6
0
.7 7
4
.3

6
1
.6

8
0
.6

8
3
.8

4
3
.6

2
.8

3
.4

5
6
.0

5
9
.8

5
8
.3

3
0
.4 4
1
.8 5
1
.2

(d) Dcptok, nr and COMET

Figure 5: Corpus-level correlation magnitudes (Spear-
man’s |ρ|, in %) between scalar indicators (cos, nr) and
COMET.

i s t f c
0

50

100

5
3
.2

7
9
.4

4
7
.3 5
7
.7

1
3
.03
1
.1

7
0
.1

3
9
.0 5
7
.6

1
2
.12
3
.0

7
3
.3

2
7
.7

6
2
.3

3
3
.2

7
.8

4
4
.7

9
.5

6
2
.0

1
1
.32
1
.5

6
2
.0

4
.9

7
2
.2

1
8
.9

1
8
.2

6
6
.9

2
7
.9

6
7
.6

4
3
.3

s0 s1 s2 sla ine mul

(a) Dcpsl, cos and chrF++

i s t f c
0

50

100

6
6
.0

5
0
.5

7
9
.7

5
7
.6

6
2
.1

6
6
.6

4
7
.4

8
0
.7

3
1
.7

6
3
.1

6
7
.2

3
4
.7

7
5
.3

4
8
.5 6
4
.5

5
5
.9

2
6
.8

7
3
.5

0
.1

6
6
.0

5
2
.1 6
8
.8 7
9
.2

2
.1

6
6
.1

3
1
.8

5
5
.9

4
6
.3

3
9
.8

7
2
.3

(b) Dcpsl, nr and chrF++

s t c
0

50

100

2
6
.6

0
.8

2
9
.1

2
4
.5

1
4
.7

3
.6

4
0
.9

4
3
.2

1
7
.1

2
5
.8

2
7
.7 3
9
.4

1
2
.3

5
0
.5

1
.8

1
9
.3

4
5
.4

1
5
.8

(c) Dcptok, cos and chrF++

s t c

2
3
.8

5
7
.7

5
7
.4

1
3
.5

5
1
.2 6
7
.1

5
2
.6 6
7
.3

6
9
.6

3
6
.6

1
3
.8

1
9
.9

6
2
.2

6
4
.4

5
9
.3

2
7
.6 3
8
.1 4
7
.3

(d) Dcptok, nr and chrF++

Figure 6: Corpus-level correlation magnitudes (Spear-
man’s |ρ|, in %) between scalar indicators (cos, nr) and
chrF++.

i s t f c
0

50

100

2
7
.1

1
6
.5

4
2
.0

4
1
.8

3
4
.0

6
.7 1
3
.1

6
.2 7
.9 9
.4

1
0
.0

1
.5 3
.2

4
.2

2
.41

5
.4

2
.1

1
8
.5

1
8
.4

1
.09
.3

2
.1

0
.6

0
.3 8
.8

6
.0 1
4
.1 2
8
.4

3
4
.8

1
3
.1

s0 s1 s2 sla ine mul

(a) Dcpsl, cos and COMET

i s t f c
0

50

100

2
9
.5 4
3
.2

3
1
.2

2
8
.2 4
2
.7

7
.8

7
.8

8
.8 1
6
.4

1
6
.3

9
.8

1
.1 8
.3

2
.0

2
.91
1
.9

1
9
.8

1
2
.8

8
.4 1
6
.2

2
.3

1
.2

1
.1 7
.7 9
.5

2
.7

3
5
.1

2
6
.2

2
.7

3
1
.1

(b) Dcpsl, nr and COMET

s t c
0

50

100

3
4
.7

3
2
.0

4
0
.0

3
.1

2
.1 9
.9

6
.5

5
.9

2
.21
3
.5

0
.6 1
0
.9

3
.0

1
.8

2
.9

2
2
.6

1
5
.1 2
4
.5

(c) Dcptok, cos and COMET

s t c

2
5
.6

9
.7

3
0
.2

1
0
.5

1
3
.0

1
4
.3

0
.7 2
.8

1
.08
.1 1
6
.8

2
0
.9

3
.5

3
.5

2
.1

1
8
.8

2
0
.4

2
1
.2

(d) Dcptok, nr and COMET

Figure 7: Sentence-level correlation magnitudes (Spear-
man’s |ρ|, in %) between scalar indicators (cos, nr) and
COMET, without sentence-level pairing.

we expect to arise from sheer difference of inputs:
Differences owed to sentence length, idiomaticity,
and so on might influence observations—which
is why the main results we present do control for
input.

On the other hand, one can argue that some in-
puts will be inherently poorly handled by a model,
regardless of its geometry, simply due to training
conditions. Consider for instance a model that
would have been solely trained on a bi-text derived
from subtitles: Its performances on data derived
from parliamentary debates will likely remain low
regardless of whether it converges on an efficient
set of parameters for its training data. More suc-
cinctly put, one can argue that distributional shifts
may impact a sentence-paired approach such as the
one we proposed earlier.

We therefore present in fig. 7 correlation mag-
nitudes derived on unpaired inputs—i.e., we sam-
ple two sentences and two checkpoints at random,
and compute the corresponding absolute value of
the correlation between signed differences. One
can broadly observe two facts: First, correlation
magnitudes are indeed often higher than what we
previously reported in fig. 3—however, do recall
that one can argue that more variance is expected

140

as we do not control for input variations. Second,
and perhaps more interestingly, we see that whether
high correlation magnitudes emerge or not appears
highly specific to a given model: in particular, s0
and mul almost systematically yields very high cor-
relation magnitudes, whereas other models tend to
produce often insignificant scores.

Overall, this supplementary experiment offers
an interesting angle: We find evidence that some
models’ geometry can reflect sentence-level perfor-
mance, but this does not generalize across different
random initializations under the same training con-
ditions.

141

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 142–154
December 7, 2023. ©2023 Association for Computational Linguistics

Investigating semantic subspaces of Transformer sentence embeddings
through linear structural probing

Dmitry Nikolaev Sebastian Padó
Institute for Natural Language Processing, University of Stuttgart
dnikolaev@fastmail.com pado@ims.uni-stuttgart.de

Abstract

The question of what kinds of linguistic in-
formation are encoded in different layers
of Transformer-based language models is of
considerable interest for the NLP commu-
nity. Existing work, however, has overwhelm-
ingly focused on word-level representations
and encoder-only language models with the
masked-token training objective. In this paper,
we present experiments with semantic struc-
tural probing, a method for studying sentence-
level representations via finding a subspace of
the embedding space that provides suitable task-
specific pairwise distances between data-points.
We apply our method to language models from
different families (encoder-only, decoder-only,
encoder-decoder) and of different sizes in the
context of two tasks, semantic textual similar-
ity and natural-language inference. We find
that model families differ substantially in their
performance and layer dynamics, but that the
results are largely model-size invariant.

1 Introduction

It is more or less generally assumed that the success
of bidirectional masked language models (MLMs),
such as BERT (Devlin et al., 2019), on downstream
tasks is largely due to the fact that in pre-training
they learn to compute rich and well-structured rep-
resentations of their inputs. More precisely, it is
often argued that the task of masked language mod-
elling encourages models to successively aggregate
lexical/collocational, syntactic, and semantic in-
formation from the input text as the activations
progress through encoder layers (Tenney et al.,
2019). The extent to which BERT-like models
follow the stages of the classical NLP pipeline
(Niu et al., 2022) or accumulate contextual infor-
mation (Kunz and Kuhlmann, 2022) has been ques-
tioned. However, the association of middle layers
of MLMs with syntax and higher levels with seman-
tic information is not widely disputed as a general
principle and is taken for granted in many papers on

model analysis and downstream applications (Chi
et al., 2020; Li et al., 2021; Sharma et al., 2022).

Despite the high volume of literature on Trans-
former representations, these studies are mostly
constrained in two ways: (i) they deal almost exclu-
sively with word/token-level and not sentence-level
embeddings, and (ii) the lion’s share of attention
is given to encoder-only MLMs, notably variants
of BERT (cf. Reif et al., 2019; Hewitt and Man-
ning, 2019; Vulić et al., 2020; Conia and Navigli,
2022). As a result, the representations computed
by text-to-text models, such as T5, and causal lan-
guage models, such as members of the GPT fam-
ily, remain understudied. This can be largely at-
tributed to the fact that the standard way of analyz-
ing pretrained language models, namely probing,
proceeds by applying linear classifiers to token rep-
resentations at different layers (Belinkov, 2022).
This approach is not as easily applicable to MLM-
derived sentence representations or to representa-
tions computed by other types of models.1 Con-
versely, while it is possible to provide nuanced anal-
yses of causal Transformer-based models (Geva
et al., 2021, 2022), such analyses are not easily
transferable to MLMs (Nikolaev and Padó, 2023).

In this study, we propose a unified methodol-
ogy for studying layer-specific sentence-level rep-
resentations extracted from masked, text-to-text,
and causal language models. We analyze these
representations via structural semantic probing,
largely inspired by Chi et al. (2020). Instead of
directly predicting features of interest from repre-
sentations, structural probing projects them onto
lower-dimensional subspaces where distances are
interpretable in terms of task properties, or where

1Cf., however, Liu et al. (2019) and works targeting repre-
sentations computed by LSTM-based LMs: Giulianelli et al.
(2018); Aina et al. (2019); Sorodoc et al. (2020); Sukumaran
et al. (2022), and others. In this work, we focus on the pro-
cessing of natural language, cf. Bhattamishra et al. (2020) and
Traylor et al. (2021) on the ability of LMs to tackle formal
languages.

142

different classes of data points are directly linearly
separable. By varying the dimensionality of the
projection space, we can gauge the amount of in-
formation contained in the embeddings.

While Chi et al. (2020) identify well-structured
syntactic subspaces, i.e. those encoding the topol-
ogy and labels of Universal Dependency trees, we
target sentence-level semantic subspaces and carry
out experiments on two semantic tasks, viz. sen-
tence similarity and natural language inference
(NLI). Our contributions are as follows:

1. We analyse the efficiency of solving different
semantics-level downstream tasks using only
suitably projected sentence embeddings de-
rived from vanilla pre-trained encoder-only,
encoder-decoder, and decoder-only models.

2. We conduct an extensive analysis of the in-
formativeness of embeddings derived from
different model layers using varying dimen-
sionalities of projection subspaces. Many of
the models we study have never been analysed
in this way, and we find that their behaviour is
influenced in interesting ways by both archi-
tecture and training regime.

3. We conduct our experiments at widely differ-
ing model scales: from BERT base, T5 mini,
and OPT 125m to T5 XXL, Llama 13B, and
OPT 66b. Our main finding is that the way in-
formation is structured across layers is largely
scale invariant, with models sharing the same
architecture and training regime demonstrat-
ing similar activation patterns.

4. We show that three major NLI datasets –
SNLI, MNLI, and ANLI – lead to very differ-
ent results when tackled with projected vanilla
embeddings. While SNLI and MNLI, surpris-
ingly, can be almost ‘solved’ with most vanilla
models, ANLI, in contrast, is nearly com-
pletely opaque, and only embeddings from
the biggest models are useful there.

The structure of the paper is as follows: § 2 intro-
duces structural probing and its application; § 3
lays out our experimental setup; § 4 presents and
discusses our findings, and § 5 concludes.

2 Semantic structural probing

In all our experiments, we assume that we are given
a set of sentences si ∈ S and a corresponding set

of sentence representations rsi,m,l ∈ R, where
each element is indexed with a sentence, a model
from which it was derived, and the model layer.
(Model and layer subscripts will be omitted when
not needed.) Depending on the task, we also have
labels of different types either for sentence pairs
(li,j) or individual sentences (li). We target the
following tasks:

1. Semantic textual similarity (STS): a pair of
sentences is labelled with a number from 0 to
5, where 0 corresponds to the smallest degree
of semantic similarity and 5 to the maximal
degree. We map these labels to the range [0,
1] of semantic differences.

2. Textual entailment (TE): an ordered pair of
sentences is labelled according to whether the
second sentence is entailed by the first one or
contradicts it. To simplify the analysis, we do
not address neutral sentence pairs.

To study the semantic organisation of sentence rep-
resentations, we aim to find a projection matrix
M to a lower-dimensional space, such that we can
directly ‘read off’ the answer from the application
of the matrix to elements ofR.

For the STS task, we choose an M that min-
imises the differences between the gold-label simi-
larities and the Euclidean distance between embed-
dings (averaged over the mini-batch):

LSTS = (||Mrsi −Mrsj ||2 − li,j)2 (1)

This corresponds to learning an approximation to
the Mahalanobis matrix MTM , that is, to learning
a distance metric in the embedding space. (This in-
terpretation carries over to our other experiments.)
This distance metric is optimised to correlate well
with the manually provided similarity judgements.
Correspondingly, we evaluate the performance of
the probing approach by computing the Spearman
correlation between ||Mrsi −Mrsj ||2 and li,j .

The number of columns of M is equal to the
dimensionality of the embedding space, but we
can control the number of rows and thus vary the
dimensionality of the projection subspace. In all
experiments, we use the sequence of the powers of
two from 21 to 29, augmented with the embedding
dimension of the model (e.g., 768 for BERT base).

We apply a similar approach for a subset of data
from the TE task: for sentence triplets where we
have both an entailment ei and a contradiction ci

143

for a given premise pi, we define qi = ||Mrpi −
Mrej ||2 and ri = ||Mrpi −Mrcj ||2 and minimise

LTE-triplet = [qi − ri]+ (2)

where [·] stands for max(0, ·). In this manner, we
encourage premises to be closer to their entailments
than to contradictions.

By replacing Euclidean distances with cosine
similarities, we can further tackle any premise–
hypothesis pair (pi, hi) by minimising LTE-pair =

{
(1− Cos(Mpi,Mhi))

2 if li = entail.,
(−1− Cos(Mpi,Mhi))

2 if li = contr.
(3)

where Cos is cosine similarity. In this manner, we
induce entailments to show positive cosine similar-
ities to their premises, and contradictions to show
negative similarities to their premises.2

We evaluate the TE models using accuracy. In
the triplet setting, we count as hits all cases where
ri − qi < 0. In the sentence-pair setting, we follow
the intuition above and consider answers to be cor-
rect if Cos(Mpi,Mhi) > 0 for entailments and
Cos(Mpi,Mhi) ≤ 0 for contradictions.

It must be stressed that by ‘evaluation’ we mean
a proxy measure of the informativeness of vanilla
embeddings and not a measure of how well the
models can solve the original task. The labels of
the tasks themselves constitute an ‘abuse of nota-
tion’ as in all cases we are dealing with reformu-
lations of the original tasks, which in the case of
NLI involve a considerable simplification. Thus,
numbers should not be compared to results on the
original tasks. Nevertheless, we believe that our
proxy tasks can provide interesting insights into
the models.

Representation extraction The extraction of
sentence representations depends on the architec-
ture of the model. When working with encoder-
only MLMs, such as BERT, we follow the standard
practice of averaging all token representations in
a given layer. When working with T5-type mod-
els, which have both an encoder and a decoder, we
hypothesise that the heavy lifting in representation
learning is being done by the encoder and apply the
same approach to it (cf. Ni et al., 2022). For causal
LM models, such as GPT-2, Llama, and OPT, we

2Even though Cosine, as a symmetrical measure, is not
an ideal match for asymmetrical entailment, it works well in
practice (Reimers and Gurevych, 2019).

extract the representation of the last token of the
input sentence.

Recall that since our goal is to probe general
models, we always work with vanilla pre-trained
versions with no fine-tuning. Our structural prob-
ing approach is, however, also applicable to fine-
tuned models.

3 Models, data, and experimental setup

3.1 Models
We experiment with the following models:

• MLMs: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2020), and ELECTRA
(Clark et al., 2020).

• Text-to-text: the original T5 series of models
(Raffel et al., 2020) and the T5-efficient model
series (Tay et al., 2022).

• Causal LMs: GPT-2 (Radford et al., 2019),
Llama3 and OPT (Zhang et al.).4

We aim at providing maximum coverage by model
type and size for all tasks, but due to very high
computational costs of running larger models on
large datasets (T5 XXL and causal LMs with 7b+
parameters), even in inference mode, gaps remain.

3.2 Datasets
For the STS task, we use the STS bench-
mark (Cer et al., 2017) distributed with the
sentence-transformers Python library.5

For the TE task, we use SNLI (Bowman et al.,
2015), MNLI (Williams et al., 2018), and ANLI
(Nie et al., 2020), all distributed by HuggingFace.

See the Appendix for the sizes of data splits.

3.3 Experimental setup
All experiments are implemented using PyTorch
and the transformers library (Wolf et al., 2020).6

Projection matrices are implemented as single Py-
Torch linear layers without bias and are fit to data
using AdamW (Loshchilov and Hutter, 2019) and
the learning rate of 10−5. A separate matrix is fit-
ted for each combination of the model, layer, and
subspace dimensionality.

3https://huggingface.co/openlm-research
4All model checkpoints were downloaded from Hugging-

Face.
5https://sbert.net/datasets/stsbenchmark.tsv.

gz
6Scripts for conducting the analyses can be found at https:

//github.com/macleginn/semantic-subspaces-code

144

For the STS task, where the dataset is compara-
tively small, the optimisation is allowed to run for
the maximum of 300 epochs with early stopping
after 10 epochs without improvement on the devel-
opment set. For the TE task, where training takes
much longer, each optimisation is run for 5 epochs
with the best checkpoint selected by performance
on the development set. All the results are reported
for the test set. In the context of the STS task,
we conduct 10 runs of each experiment to assess
the robustness of results to random initialisation of
projection matrices.

4 Results

In this section, we first describe our presentation of
the results of the experiments (§ 4.1) and then go
over individual tasks and model types (§ 4.2).

4.1 Presentation of results

The result for each experiment run is a matrix with
rows corresponding to projection-subspace dimen-
sionalities and columns corresponding to layers.
When it was feasible to run the experiments sev-
eral times, we obtain a matrix of averages and a
matrix of standard deviations. As we show below,
these matrices exhibit interesting patterns of how
semantic information is distributed in the models.

However, it is unwieldy to operate with a large
number of such matrices, and for summary compar-
ison of model architectures and sizes, we collapse
them into by-layer and by-dimensionality vectors
by applying the maximum function to the columns
or the rows of the matrices respectively. In order
to compare models of different sizes, which have
different numbers of layers, we further map layer
numbers to the interval [0, 1], encoding relative
layer position, such that 0 corresponds to the em-
bedding layer and 1 to the final layer, respectively.
We visualise these results as line graphs.

4.2 Results by task

4.2.1 Semantic textual similarity
Results across model architectures We first as-
sess to what extent sentence representations com-
puted by encoder-only, text-to-text, and causal lan-
guage models contain subspaces where distances
between representations mirror their semantic dis-
tances according to human annotations. Here, and
in the other experiments, our results provide a lower
bound on the amount of structure and informative-
ness of the embeddings extracted from vanilla pre-

BERT large cased
2 4 6 8 10 12 14 16 18 20 22 24

2 0.36 0.32 0.29 0.3 0.34 0.31 0.28 0.26 0.28 0.36 0.28 0.25
4 0.49 0.4 0.39 0.41 0.48 0.47 0.39 0.42 0.52 0.51 0.42 0.35
8 0.57 0.57 0.57 0.54 0.59 0.61 0.6 0.6 0.63 0.61 0.62 0.63

16 0.63 0.63 0.63 0.64 0.66 0.66 0.65 0.65 0.67 0.67 0.67 0.68
32 0.66 0.65 0.65 0.67 0.68 0.69 0.68 0.68 0.69 0.69 0.7 0.7
64 0.67 0.67 0.66 0.68 0.7 0.7 0.69 0.69 0.69 0.69 0.71 0.71

128 0.57 0.67 0.67 0.68 0.68 0.7 0.7 0.55 0.51 0.49 0.54 0.57
256 0.57 0.56 0.55 0.55 0.56 0.56 0.53 0.5 0.5 0.48 0.5 0.56
512 0.57 0.55 0.54 0.54 0.56 0.55 0.53 0.5 0.49 0.48 0.5 0.56

1024 0.57 0.55 0.54 0.54 0.56 0.55 0.52 0.5 0.49 0.47 0.49 0.56
1024′ 0.57 0.55 0.54 0.53 0.57 0.55 0.52 0.5 0.51 0.49 0.5 0.58

RoBERTa large
2 0.31 0.27 0.35 0.35 0.31 0.28 0.37 0.31 0.29 0.26 0.27 0.19
4 0.41 0.41 0.52 0.44 0.37 0.37 0.41 0.4 0.38 0.38 0.37 0.25
8 0.56 0.58 0.61 0.63 0.62 0.63 0.64 0.61 0.48 0.54 0.48 0.3

16 0.61 0.64 0.66 0.68 0.7 0.72 0.72 0.72 0.73 0.73 0.72 0.36
32 0.64 0.68 0.7 0.71 0.73 0.74 0.74 0.75 0.76 0.76 0.75 0.42
64 0.66 0.69 0.71 0.72 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.72

128 0.58 0.55 0.57 0.56 0.75 0.75 0.58 0.74 0.77 0.77 0.77 0.73
256 0.54 0.54 0.56 0.55 0.57 0.56 0.55 0.55 0.56 0.57 0.58 0.74
512 0.54 0.54 0.56 0.55 0.55 0.55 0.54 0.54 0.55 0.56 0.57 0.74

1024 0.54 0.54 0.56 0.54 0.55 0.55 0.54 0.54 0.54 0.55 0.56 0.52
1024′ 0.53 0.53 0.57 0.57 0.57 0.57 0.58 0.58 0.57 0.58 0.58 0.47

ELECTRA large
2 0.29 0.31 0.33 0.34 0.3 0.28 0.35 0.36 0.33 0.24 0.23 0.19
4 0.37 0.41 0.46 0.47 0.4 0.38 0.4 0.44 0.45 0.29 0.23 0.2
8 0.42 0.54 0.62 0.55 0.63 0.47 0.62 0.63 0.64 0.46 0.32 0.23

16 0.59 0.68 0.69 0.7 0.69 0.69 0.69 0.69 0.68 0.67 0.6 0.36
32 0.68 0.71 0.71 0.72 0.72 0.71 0.72 0.71 0.7 0.69 0.63 0.48
64 0.69 0.72 0.72 0.73 0.73 0.72 0.72 0.71 0.7 0.69 0.64 0.49

128 0.7 0.73 0.73 0.74 0.73 0.72 0.71 0.69 0.7 0.69 0.64 0.49
256 0.71 0.63 0.62 0.73 0.58 0.53 0.52 0.52 0.5 0.46 0.63 0.5
512 0.59 0.61 0.61 0.59 0.55 0.52 0.51 0.51 0.49 0.45 0.38 0.49

1024 0.59 0.6 0.6 0.58 0.55 0.52 0.51 0.51 0.48 0.44 0.38 0.31
1024′ 0.57 0.59 0.6 0.57 0.54 0.53 0.54 0.54 0.51 0.44 0.35 0.23

T5 large
2 0.27 0.28 0.28 0.25 0.25 0.25 0.24 0.23 0.21 0.21 0.16 0.2
4 0.37 0.36 0.36 0.34 0.36 0.33 0.33 0.29 0.28 0.27 0.22 0.25
8 0.45 0.45 0.43 0.42 0.42 0.41 0.41 0.36 0.32 0.32 0.3 0.31

16 0.49 0.5 0.5 0.48 0.48 0.46 0.45 0.4 0.36 0.36 0.33 0.35
32 0.52 0.53 0.53 0.52 0.51 0.49 0.49 0.42 0.39 0.37 0.35 0.39
64 0.54 0.56 0.56 0.54 0.53 0.53 0.51 0.44 0.4 0.39 0.36 0.45

128 0.55 0.57 0.57 0.56 0.55 0.53 0.53 0.45 0.4 0.4 0.36 0.74
256 0.56 0.57 0.57 0.56 0.56 0.54 0.54 0.45 0.41 0.4 0.37 0.74
512 0.56 0.58 0.58 0.57 0.56 0.54 0.54 0.46 0.41 0.4 0.37 0.73

1024 0.56 0.58 0.58 0.57 0.56 0.55 0.54 0.46 0.41 0.4 0.37 0.72
1024′ 0.54 0.54 0.51 0.44 0.41 0.38 0.31 0.22 0.2 0.14 0.14 0.49

Table 1: Spearman correlations of sentence-similarity
scores derived via projection from averaged-token rep-
resentations by model, layer (columns), and subspace
dimensionality (rows) with the STS benchmark scores.
1024′ stands for using vanilla representations without
projection. The results are averaged over ten runs.

trained models. Assuming, however, that our probe
provides a reasonable proxy for the informativeness
of the embeddings, we can also ask which layer
provides the richest embeddings and what is the
minimal necessary dimensionality of the projection
subspace to achieve good results.

Table 1 shows the full results for MLMs. (For
space considerations, odd-numbered layers were
omitted: they continue the same pattern.) It can be
seen that the task can be solved rather well using
only projected vanilla embeddings and that, while
RoBERTa shows better performance than BERT
(r = 0.77 vs. 0.71), best results are achieved using
the same setup: extracting representations from the
layers close to the last one and projecting them to
64 or 128 dimensions. ELECTRA, whose perfor-
mance is in between the classic MLMs (r = 0.74)
can also be made to perform well by using 128-

145

GPT-2 large
3 6 9 12 15 18 21 24 27 30 33 36

2 0.23 0.25 0.21 0.24 0.3 0.31 0.24 0.25 0.19 0.18 0.22 0.38
4 0.39 0.37 0.36 0.36 0.37 0.33 0.29 0.26 0.23 0.23 0.27 0.49
8 0.45 0.4 0.38 0.41 0.4 0.29 0.29 0.26 0.27 0.27 0.3 0.55

16 0.46 0.4 0.38 0.41 0.38 0.27 0.29 0.28 0.28 0.28 0.32 0.57
32 0.44 0.38 0.37 0.38 0.26 0.29 0.3 0.28 0.29 0.29 0.33 0.56
64 0.42 0.39 0.36 0.23 0.26 0.3 0.3 0.28 0.29 0.3 0.33 0.33

128 0.43 0.35 0.2 0.23 0.26 0.3 0.31 0.29 0.29 0.3 0.34 0.32
256 0.3 0.21 0.19 0.23 0.27 0.3 0.31 0.29 0.3 0.3 0.34 0.32
512 0.3 0.21 0.19 0.23 0.27 0.3 0.31 0.29 0.3 0.3 0.34 0.32

1280 0.29 0.21 0.2 0.23 0.27 0.3 0.31 0.29 0.3 0.3 0.34 0.32
1280′ 0.28 0.21 0.19 0.22 0.27 0.3 0.31 0.29 0.31 0.32 0.35 0.31

Llama 7B
1 2 5 8 11 14 17 20 23 26 29 32

2 0.11 0.09 0.21 0.17 0.24 0.37 0.36 0.35 0.3 0.24 0.23 0.43
4 0.11 0.12 0.34 0.24 0.5 0.49 0.45 0.44 0.33 0.27 0.26 0.53
8 0.11 0.24 0.42 0.44 0.56 0.55 0.52 0.4 0.28 0.3 0.3 0.57

16 0.11 0.17 0.47 0.56 0.58 0.56 0.5 0.3 0.29 0.32 0.33 0.54
32 0.12 0.3 0.51 0.56 0.57 0.53 0.3 0.3 0.3 0.32 0.34 0.35
64 0.12 0.39 0.51 0.54 0.54 0.31 0.3 0.3 0.3 0.32 0.34 0.35

128 0.12 0.41 0.51 0.52 0.49 0.3 0.29 0.3 0.3 0.33 0.34 0.34
256 0.12 0.42 0.5 0.49 0.31 0.29 0.29 0.3 0.3 0.33 0.34 0.34
512 0.13 0.43 0.49 0.44 0.3 0.29 0.29 0.3 0.3 0.33 0.34 0.33

4096 0.18 0.44 0.4 0.19 0.29 0.29 0.29 0.29 0.3 0.33 0.34 0.33
4096′ 0.2 0.15 0.16 0.19 0.34 0.35 0.35 0.36 0.36 0.41 0.43 0.36

OPT 30B
4 8 12 16 20 24 28 32 36 40 44 48

2 0.08 0.13 0.13 0.12 0.16 0.38 0.38 0.33 0.3 0.23 0.21 0.41
4 0.14 0.12 0.15 0.15 0.17 0.44 0.5 0.46 0.3 0.29 0.27 0.53
8 0.15 0.15 0.16 0.17 0.2 0.52 0.51 0.44 0.33 0.32 0.33 0.56

16 0.18 0.16 0.17 0.17 0.19 0.51 0.5 0.34 0.34 0.33 0.35 0.53
32 0.19 0.19 0.19 0.17 0.19 0.5 0.36 0.33 0.35 0.34 0.37 0.35
64 0.24 0.21 0.21 0.19 0.21 0.45 0.36 0.35 0.35 0.36 0.37 0.35

128 0.52 0.25 0.23 0.21 0.4 0.38 0.35 0.34 0.35 0.35 0.37 0.34
256 0.5 0.47 0.42 0.38 0.34 0.32 0.35 0.34 0.35 0.35 0.38 0.34
512 0.48 0.45 0.35 0.33 0.31 0.27 0.34 0.34 0.35 0.35 0.38 0.34

7168 0.3 0.29 0.28 0.26 0.23 0.26 0.34 0.33 0.35 0.35 0.38 0.33
7168′ 0.19 0.19 0.2 0.19 0.2 0.28 0.41 0.42 0.44 0.46 0.49 0.39

Table 2: Spearman correlations of sentence-similarity
scores derived via projection from averaged-token rep-
resentations by model, layer (columns), and subspace
dimensionality (rows) with the STS benchmark scores.
′ stands for using vanilla representations without projec-
tion. The results are averaged over ten runs.

dimensional subspace, but its best performance is
achieved much earlier in the model, on layers 8–
10, and then slowly degrades. This demonstrates
that the specialisation of higher levels on semantic
features, characteristic of BERT-like models (Li
et al., 2021), does not apply straightforwardly to
ELECTRA, which raises the question of what kind
of hierarchy of linguistic features ELECTRA en-
codes. In line with the results by Chi et al. (2020),
the use of very high-dimensional subspaces, with
or without projection, leads to bad performance.

The encoder from T5 large demonstrates yet an-
other pattern: the performance is low for almost all
parameter combinations, but then suddenly jumps
to 0.74 at the last layer. (The results on layer 23,
not shown in the table, are very similar to those
from layer 22.) Additionally, T5 seems to encode
semantics in a higher-dimensional subspace, with
projecting on 128 dimensions being the minimum
and 1024 still working well.

The results from causal models, shown in Ta-
ble 2, demonstrate a different consistent pattern.
The best performance is worse, r = 0.56–0.58,
and it is usually achieved in the last layer, simi-

larly to T5, but the optimal dimensionality of the
projections is much lower (between 8 and 32), de-
spite the models’ higher embedding dimensionality.
Also, there is a clear cyclic development in perfor-
mance across layers. E.g., with a dimensionality
of 16, GPT-2 large first goes high (0.46), then low
(≈ 0.28), then high again (0.57). Llama 7B shows
1.5 cycles and OPT 30B two full cycles (cf. also
Figure 2).

The relatively lower informativeness of causal
models’ representations compared to those pro-
vided by MLMs seems to support the argument
that they are less suited for representation learning
(Clark et al., 2020; Reimers, 2022). However, the
fact that they are most informative in the last layer
goes against the previous interpretation that the last
layer of GPT-2 undergoes a representation collapse
(Ethayarajh, 2019) and rather supports the argu-
ment that the extreme anisotropy of the last layer
of GPT-2 is an artefact of inadequate similarity
modelling (Timkey and van Schijndel, 2021).7

Results across model sizes We now study the
connection between the semantic content of mod-
els’ representations, as measured by our structural
probe, and their size. Classic MLMs, such as BERT
and RoBERTa, are only available in a few sizes, not
counting various smaller distilled versions, such
as TinyBERT (Jiao et al., 2020). Later models
(both text-to-text and causal) were published in
a larger size range. Aggregated results are pre-
sented visually in Figure 1 (cf. Section 4.1). The
left pane shows the performance of encoder-only
MLMs across two model sizes each. We see that
while bigger models perform better, the distribu-
tion of the semantic information across layers is
very similar across model sizes. This finding is
further strengthened by the analysis of the perfor-
mance of the T5-efficient, Llama, and OPT models
shown in the right-hand pane of Figure 1. All T5-
efficient models attain the best performance in the
very last layer and show some loss of informativity
in middle layers.

The three Llama models, shown in the left pane
of Figure 2, follow the pattern from Table 2: the
performance of the lower layers is almost zero,
while middle layers attain maximum performance,
which then decreases and goes up again at the end.
The behaviour of the OPT models is even more

7Figures 5 and 6 in the Appendix provide a visualisation
of the distribution of the performance by the normalised layer
position and projection-space dimensionality across models.

146

mlm text2text

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

LayerPosition

B
e
s
tC

o
rr

e
la

ti
o
n

Model

bert−base−cased

bert−large−cased

roberta−base

roberta−large

electra−base

electra−large

t5−efficient−mini

t5−efficient−base

t5−efficient−large

t5−efficient−xl

t5−efficient−xxl

Figure 1: Performance of encoder-only and text-to-text MLMs on the STS probing task by layer and model size.

llama opt

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

LayerPosition

B
e
s
tC

o
rr

e
la

ti
o
n

Model

llama_3b

llama_7b

llama_13b

opt−125m

opt−1.3b

opt−2.7b

opt−6.7b

opt−13b

opt−30b

opt−66b

Figure 2: Performance of Llama and OPT on the STS probing task by layer and model size.

complicated: nearly all of them demonstrate the
‘double dip’ pattern, where as the layer number in-
creases the performance first goes down, then up,
then down again, and finally reaches the peak in
the last layer. This oscillating pattern in the perfor-
mance of causal LMs does not fully align with the
the conclusions reached by Geva et al. (2021), who
claim that there exists a progression of lexical, syn-
tactic, and semantic features as information flows
through decoder-only models language models.

OPT, interestingly, is also the only model class
where we see a substantial effect of model size:
the smallest model, OPT 125m, shows a steady
increase in performance with a slight drop at the
very end. It outperforms all larger models and
nearly reaches the results of T5. This seems to
suggest that extremely small causal LMs have non-
trivial representation-learning capacities.

4.2.2 Natural Language Inference
In this section, we check if the distribution of se-
mantic information across model layers we identi-
fied in the context of the STS task can also be ob-
served in the context of NLI. We further check if the
patterns are dependent on the dataset and on the ex-
act operationalization: we contrast triplet-focused
probing, which is structurally close to our STS op-
erationalization, with cosine-similarity-based prob-
ing, which operates on the level of sentence pairs
and permits us to cover more data.

Figure 3 shows the performance of the MLMs,
text-to-text, and causal models of different sizes
on ANLI, MNLI, and SNLI; best results by model
class are summarised in Table 3. What comes to the
fore in this analysis are stark differences between
the three datasets, visible across all architectures.

ANLI presents the worst results across all model
147

mlm text2text causal

a
n
li

s
n
li

m
n
li

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

LayerPosition

B
e
s
tA

c
c
u
ra

c
y

Model

bert−base−cased

bert−large−cased

roberta−base

roberta−large

electra−base

electra−large

t5−efficient−mini

t5−efficient−base

t5−efficient−large

t5−efficient−xl

t5−efficient−xxl

llama_3b

llama_7b_v2

llama_13b

opt−125m

opt−1.3b

opt−2.7b

opt−6.7b

opt−13b

opt−30b

Loss

Triple

Cosine

Figure 3: Performance of models on NLI across datasets, model types and sizes, and model layers.

Triplet loss Cosine loss
Task

Model Acc Model Acc

OPT 30b 0.701 Llama 13b 0.613
Llama 3b 0.675 OPT 30b 0.609ANLI
ELECTRA l 0.658 ELECTRA l 0.561
ELECTRA l 0.939 OPT 30b 0.773
RoBERTa l 0.935 Llama 7b 0.764SNLI
OPT 6.7b 0.929 RoBERTa l 0.743
RoBERTa l 0.914 OPT 30b 0.86
OPT 30b 0.908 Llama 13b 0.856MNLI
ELECTRA l 0.902 ELECTRA l 0.821

Table 3: Best-performing model types (intervening mod-
els of the same type but different size were skipped) by
task and setting. Acc stands for accuracy; l, for large.

types, albeit with interesting differences. While
the T5-efficient models never do better than ran-
dom guessing and the MLMs guess randomly
in the cosine-similarity setting and sporadically
achieve accuracies of≈ 0.6 in the triplet setting, the
models from the Llama and OPT families consis-

tently achieve accuracies above 0.6 in both settings,
squarely beating the encoder-equipped models.

The results on SNLI show the greatest differ-
ences between operationalizations. In the triplet set-
ting, all encoder-based models achieve accuracies
of ≈ 0.93 in their lower layers, and the results then
remain stable or degrade (ELECTRA). Causal mod-
els attain similar results in the upper layers, and
T5-efficient models demonstrate slightly lower re-
sults regardless of the layer. In the cosine-similarity
setting, however, the task becomes much harder,
with no model showing accuracy above 0.77, and
causal models again showing best performance.

The differences between layers are most pro-
nounced in MNLI. In the triplet setting, MLMs
show the best performance in middle layers, while
text-to-text and causal models achieve slightly
worse results in upper layers. In the cosine-
similarity setting, however, middle and upper lay-
ers of causal models again demonstrate the best
performance, approaching 0.86.

148

mlm text2text causal

a
n
li

s
n
li

m
n
li

8 64 512 8 64 512 8 64 512

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

0.9

Dimensionality

B
e
s
tA

c
c
u
ra

c
y

Model

bert−base−cased

bert−large−cased

roberta−base

roberta−large

electra−base

electra−large

t5−efficient−mini

t5−efficient−base

t5−efficient−large

t5−efficient−xl

t5−efficient−xxl

llama_3b

llama_7b_v2

llama_13b

opt−125m

opt−1.3b

opt−2.7b

opt−6.7b

opt−13b

opt−30b

Loss

Triple

Cosine

Figure 4: Performance of models on NLI across datasets, model types and sizes, and projection-space dimensions.

On the whole, causal models demonstrate sur-
prisingly good results, outperforming T5-efficient,
competing with MLMs in the triplet setting, and
consistently outperforming them in the more chal-
lenging cosine-similarity setting.

Difference between layers The observations on
the distribution of information across model layers
made based on the STS task are largely repeated:
Llama models tend to achieve peak performance in
middle layers, while larger OPT models have a dip
in performance between early and late layers, with
the best performance attained near the end. The
largest OPT models are also distinguished by an
almost uninformative first layer.

Effect of subspace dimensionality Fig. 4 shows
that on MNLI and SNLI all models types achieve
peak performance with a dimensionality of at least
128 in the triplet-loss setting. This is in contrast
to the STS task, where only T5 profited from a
dimensionality above 64. However, no model can
profit from more than 16 dimensions for the cosine-

similarity setting, which highlights the influence
of the finer details of probing methodology on the
experimental results. The results on ANLI are gen-
erally inconclusive, as performance is low and un-
stable throughout; only OPT-30b seems to system-
atically gain from dimensionalities above 128.

Effect of model size Up to a certain point, the
size of the model is of a much smaller importance
than the architecture and training regime, and even
in the finer details of their performance, differently-
sized Llama models resemble each other more than
the OPT models that are close to them in parameter
count. When it comes to the best performance
on the probing task, however, the most successful
model is nearly invariably also the biggest in its
class, with the cosine setting being the most size
demanding.

5 Conclusion

Despite a surge of interest in prompting techniques
targeting large decoder-only language models (Liu

149

et al., 2023), there are still settings where vector
representations of sentences remain a competitive
alternative, e.g. semantic search and information
retrieval (Thakur et al., 2021; Zhuang et al., 2023).
Therefore, it seems worthwhile to investigate sen-
tence representations from pre-trained models so
as to not only better understand models themselves
but also guide practical applications.

The results of our study suggest two general ob-
servations. First, no architecture is best suited for
representation learning, and the informativeness of
vanilla sentence representations can only be mea-
sured with regard to a particular task. Thus, while
the pre-trained RoBERTa provides the best repre-
sentations for semantic textual similarity, beating
much larger Llama 13b or OPT 30b and 66b, when
it comes to NLI, causal models can provide more in-
formative embeddings even at smaller model sizes,
in line with the findings of Muennighoff (2022)
regarding the informativeness of causal model em-
beddings for semantic search.

Secondly, different models arrive at very dif-
ferent patterns of information processing across
layers. Most surprisingly, ELECTRA, despite its
similarities to BERT, demonstrates a degradation
in performance on all surveyed tasks in its upper
layers, which begs the question of what kind of
linguistic hierarchy this model encodes. Similarly,
Llama and OPT models, despite sharing the same
architecture, also show markedly differing patterns
of information restructuring.

In this study, we targeted two rather general
semantics-oriented tasks. However, the proposed
methodology can be applied to other problems –
straightforwardly to regression tasks, such as po-
litical scaling (Glavaš et al., 2017) or emotion-
intensity estimation (Zad et al., 2021), but also
to classification tasks, as long as they support a rea-
sonable similarity-based reformulation. We leave
the exploration of these areas to future work.

Limitations

The results of this study depend on a long series
of design choices as to the particular ways of ex-
tracting sentence embeddings, reformulating the
downstream tasks, choosing the loss function, etc.
We believe that the choices we made are justifiable
and help to provide a strong lower bound on the in-
formativeness of sentence representations, but the
results we obtained are still dependent on them and
different operationalization may lead to somewhat

different conclusions.
A more general issue with this type of analysis

is the fact that the notion of semantics as encoded
by LMs is not well defined, and while STS and
NLI are both reasonable approximations, there are
differences in the way the surveyed models encode
information relevant for these tasks, which, among
other things, points to the importance of lexical
effects. Disentangling these aspects is an important
area for future work on model interpretability.

Finally, the validation and test splits of the ANLI
dataset in the triplet setting are small, which leads
to noticeable instability of the performance of all
models, except for OPT 30b.

References
Laura Aina, Kristina Gulordava, and Gemma Boleda.

2019. Putting words in context: LSTM language
models and lexical ambiguity. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 3342–3348, Florence, Italy.
Association for Computational Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7096–7116, Online. Association for Computational
Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Ethan A. Chi, John Hewitt, and Christopher D. Man-
ning. 2020. Finding universal grammatical relations
in multilingual BERT. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5564–5577, Online. Association
for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than

150

generators. In International Conference on Learning
Representations.

Simone Conia and Roberto Navigli. 2022. Probing for
predicate argument structures in pretrained language
models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4622–4632, Dublin,
Ireland. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Under
the hood: Using diagnostic classifiers to investigate
and improve how language models track agreement
information. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 240–248, Brussels,
Belgium. Association for Computational Linguistics.

Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2017. Unsupervised cross-lingual scaling
of political texts. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 688–693, Valencia, Spain. Association
for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019.
A structural probe for finding syntax in word rep-
resentations. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Jenny Kunz and Marco Kuhlmann. 2022. Where does
linguistic information emerge in neural language
models? Measuring gains and contributions across
layers. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 4664–
4676, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Bai Li, Zining Zhu, Guillaume Thomas, Yang Xu, and
Frank Rudzicz. 2021. How is BERT surprised? Lay-
erwise detection of linguistic anomalies. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4215–4228, Online.
Association for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
7th International Conference on Learning Represen-
tations, New Orleans, 6-9 May 2019.

Niklas Muennighoff. 2022. SGPT: GPT sentence
embeddings for semantic search. arXiv preprint
arXiv:2202.08904.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.

151

Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9844–9855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Dmitry Nikolaev and Sebastian Padó. 2023. The uni-
verse of utterances according to BERT. In Proceed-
ings of the 15th International Conference on Compu-
tational Semantics (IWCS).

Jingcheng Niu, Wenjie Lu, and Gerald Penn. 2022.
Does BERT rediscover a classical NLP pipeline? In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 3143–3153,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B
Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
BERT. Advances in Neural Information Processing
Systems, 32.

Nils Reimers. 2022. OpenAI GPT-3 text embeddings
– Really a new state-of-the-art in dense text embed-
dings? Blog post.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese BERT-
networks. In Proceedings of EMNLP/IJCNLP, pages
3980–3990. Association for Computational Linguis-
tics.

Rishab Sharma, Fuxiang Chen, Fatemeh Fard, and
David Lo. 2022. An exploratory study on code atten-
tion in BERT. In Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehen-
sion, pages 437–448.

Ionut-Teodor Sorodoc, Kristina Gulordava, and Gemma
Boleda. 2020. Probing for referential information in
language models. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4177–4189, Online. Association for
Computational Linguistics.

Priyanka Sukumaran, Conor Houghton, and Nina
Kazanina. 2022. Do LSTMs see gender? Probing the
ability of LSTMs to learn abstract syntactic rules.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus,
Samira Abnar, Hyung Won Chung, Sharan Narang,
Dani Yogatama, Ashish Vaswani, and Donald Met-
zler. 2022. Scale efficiently: Insights from pretrain-
ing and finetuning transformers. In International
Conference on Learning Representations.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4527–4546, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Aaron Traylor, Roman Feiman, and Ellie Pavlick. 2021.
AND does not mean OR: Using formal languages to
study language models’ representations. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 158–167, Online.
Association for Computational Linguistics.

Ivan Vulić, Edoardo Maria Ponti, Robert Litschko,
Goran Glavaš, and Anna Korhonen. 2020. Probing
pretrained language models for lexical semantics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7222–7240, Online. Association for Computa-
tional Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

152

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Samira Zad, Maryam Heidari, James H Jr Jones, and
Ozlem Uzuner. 2021. Emotion detection of textual
data: An interdisciplinary survey. In 2021 IEEE
World AI IoT Congress (AIIoT). IEEE.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar,
Tianlu Wang, and Luke Zettlemoyer. OPT: Open
pre-trained transformer language models. ArXiv,
abs/2205.01068.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2023. Rankt5: Fine-tuning T5
for text ranking with ranking losses. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2308–2313.

A Dataset-split sizes

A.1 STS task
Train: 5749; dev: 1500; test: 1379.

A.2 NLI task
A.2.1 Euclidean triplet loss

• ANLI Train: 217940; dev: 116; test: 117.

• MNLI Train: 261775; dev: 6692; test: 6703.

• SNLI Train: 345241; dev: 3256; test: 3247.

A.2.2 Cosine-similarity loss
• ANLI Train: 94076; dev: 2132; test: 2132.

• MNLI Train: 261775; dev: 6692; test: 6703.

• SNLI Train: 367384; dev: 6765; test: 6781.

B Details of model performance

Performance of the models on the STS task by layer
and by projection-space dimensionality is shown
in Fig. 5 and 6 respectively.

153

Figure 5: Best performance on the STS task by layer.

Figure 6: Best performance on the STS task by projection-space dimensionality.

154

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 155–168
December 7, 2023. ©2023 Association for Computational Linguistics

Causal Abstraction for Chain-of-Thought Reasoning
in Arithmetic Word Problems

Juanhe (TJ) Tan
Stanford University / Stanford, CA

juanhe@stanford.edu

Abstract

Recent work suggests that large language mod-
els (LLMs) achieve higher accuracy on multi-
step reasoning tasks when prompted to gener-
ate intermediate reasoning steps, or a chain of
thought (CoT), before their final answer. How-
ever, it is unclear how exactly CoTs improve
LLMs’ accuracy, and in particular, if LLMs use
their CoTs to reason to their final answers. This
paper tries to answer this question with respect
to arithmetic word problems, by (i) evaluating
the correctness of LLMs’ CoTs, and (ii) using
causal abstraction to assess if the intermedi-
ate tokens produced as part of a CoT causally
impact LLMs’ final answers, in line with the
reasoning described by the CoT. We find that
for CoT-prompted LLMs, correct answers to
arithmetic problems are highly correlated with
correct CoTs, and that when LLMs produce
correct CoTs, they realize to a fairly large ex-
tent the causal models suggested by their CoTs.
Higher degrees of realization also seem associ-
ated with better overall accuracy on the arith-
metic problems. These findings suggest that
some CoT-prompted LLMs may do better on
multi-step arithmetic reasoning at least partly
because they use their CoTs to reason to their
final answers. However, for some LLMs, other
internal processes may also be involved.

1 Introduction

While large language models (LLMs) achieve good
zero- or few-shot performance on many natural lan-
guage processing (NLP) tasks (Brown et al., 2020),
they still seem to struggle with tasks that require
multiple steps of reasoning, especially when pre-
cise computations are needed e.g. arithmetic or
symbolic reasoning. Intriguingly, recent work sug-
gests that LLMs can do better at such tasks if they
are prompted to generate a chain of thought (CoT)
– that is, a series of intermediate reasoning steps
– before producing their final answer (Nye et al.,
2021; Wei et al., 2022; Kojima et al., 2022).

It remains unclear, however, how exactly CoT
prompting improves the LLMs’ performance. One
natural thought is that LLMs use their CoTs to
perform the intermediate computations needed to
solve a multi-step reasoning problem. But this hy-
pothesis makes several assumptions that need to
be verified. First, it assumes that the CoTs gener-
ated are relevant to, and would correctly solve, the
given questions. To evaluate this, we need to go
beyond the accuracy of the LLMs’ final answers, to
also assess the quality of their CoTs. Second, even
when an LLM produces text that describes some
correct reasoning steps, this does not imply that
the LLM actually follows those steps in arriving
at its answer, since the CoT may not represent the
LLM’s workings faithfully (Jacovi and Goldberg,
2020). In particular, there is no guarantee that the
LLM is using its generated CoT tokens to work out
its answer. For example, there might instead be an
independent underlying process within the LLM
that produces both the CoT tokens and the final
answer, such that the CoT tokens have no causal
effect on the answer. Thus, without evidence that
the CoT is causally impacting the LLMs’ answers
in the right ways, we cannot say whether the LLMs
are reasoning using their CoTs, or whether they are
e.g. simply predicting a plausible string of words
while generating the final answer separately.

This paper therefore explores the extent to which
CoT-prompted LLMs actually use their CoTs to rea-
son to their final answers, in the context of multi-
step arithmetic problems. First, we use an origi-
nal 5-point scale to evaluate the quality of LLMs’
CoTs, in terms of how correctly they would solve
the given questions. Then, we study whether the in-
termediate output tokens in a CoT causally impact
the LLM’s final answer, in the ways described by
the CoT. To do so, we use the methods of causal
abstraction, which have been used in other work to
structurally analyze the inner workings of LLMs
(Geiger et al., 2020, 2021). In our case, we model

155

the reasoning described in a generated CoT as a
causal model, with intermediate steps in the CoT as
variables that causally determine the LLM’s final
answer. Adapting the concepts from intervention-
ist theories of causality (Spirtes et al., 2001; Pearl,
2001), we then intervene on the variables within
the CoT, and compare the LLMs’ resultant answers
with the expected output from the hypothesized
causal model. This allows us to assess the extent
to which the LLM’s CoT realizes the causal model,
and thus the extent to which the LLM is using its
CoT to reason to its answer.

We study the performance of recently released
LLMs on arithmetic word problems, and find that
correct answers under CoT prompting are highly
correlated with correct CoTs. In addition, for ques-
tions where the LLMs produced a correct CoT and
answer, the LLMs appeared to realize the causal
model suggested by their CoTs to a fairly large ex-
tent. Higher degrees of realization were also associ-
ated with higher overall accuracy on the arithmetic
problems, though the results also suggest that other
internal processes may be important too.

Together, these findings provide some evidence
for the causal conclusion that some CoT-prompted
LLMs do better on multi-step arithmetic reasoning
tasks at least partly because they reason using their
CoTs. If this is correct, it would suggest that CoTs
can improve not just the performance but also the
explainability of certain LLMs on multi-step rea-
soning tasks, as we may then be able to bypass
their internal complexities to some extent, by using
their external CoTs to get a handle on what they are
doing. This is similar to how we can gain some un-
derstanding about how people are thinking without
looking into their brains, by asking them to explain
their reasoning.1 This approach requires some care,
though, as our results also suggest that the picture
might be more complex for some LLMs.

2 Prior Literature

2.1 CoT Prompting

Recent work suggests that CoT prompting can en-
able LLMs to achieve better accuracy on multi-step
reasoning questions. For example, Nye et al. (2021)
tried to get LLMs to perform algorithmic computa-
tions by training them to produce a "scratchpad",

1See e.g. Newell and Simon (1972). Even for humans,
though, it may be difficult to know or articulate how exactly
we reason our way to an answer, as there could be implicit
cognitive effects (Greenwald and Banaji, 1995).

which encodes the intermediate steps of the algo-
rithm, before producing the final answer. Wei et al.
(2022) showed that such additional training might
not be necessary, by using few-shot CoT prompt-
ing – where each exemplar in the prompt for the
LLM consists of a question, CoT, and answer – to
produce significant gains in accuracy without fine-
tuning any parameters. Kojima et al. (2022) went
even further by showing that zero-shot CoT prompt-
ing – where the LLM is prompted simply with a
question followed by an instruction like, "Let’s
think step by step," without any CoT exemplars –
could also improve performance considerably. This
most extreme setting provides the clearest evidence
that producing a CoT alone can improve LLM per-
formance, as even few-shot CoT prompting might
improve LLM performance in other ways (e.g.,
few-shot CoT exemplars may help the LLM infer
something about how to do the task more generally,
rather than prompt it to use the CoT it produces to
answer the specific question it was asked).

However, even if CoT prompting improves
task performance, it remains an open question
whether the LLM uses its CoT to reason to its
answer. For example, other work suggests that
task performance can also improve if LLMs are
prompted to produce an explanation after their an-
swer (Lampinen et al., 2022). In these cases, the ex-
planation has no causal impact on the answer, since
the LLMs are auto-regressive and can only generate
answers using tokens that come before, not after.
Hence, if pre-answer CoTs improve performance
in the same way as post-answer explanations, then
the generated CoTs would not themselves causally
impact the LLMs’ answer, and we cannot conclude
that the LLMs are using their CoTs to reason to
their answers. In such a case, it would seem more
likely that CoT prompting improves task perfor-
mance by triggering a different process within the
LLM compared to non-CoT prompting – perhaps
e.g. by biasing the LLM toward patterns seen more
often in training datasets that come with CoTs,
which may also happen to be datasets that solve
reasoning problems more accurately.

2.2 CoT Evaluation

Existing metrics for evaluating LLM-generated
CoTs focus on measuring the extent to which the
CoT helps a simulator to predict the LLM’s output
response to a given task, compared to a baseline of
predicting the LLM’s response from the task input

156

alone without the CoT (Hase et al., 2020; Wiegreffe
et al., 2021). Chen et al. (2023) go further in trying
to measure the new information that CoTs contain,
by comparing against a baseline of vacuous CoTs,
which consist of simply combining the given task
input and output. While these methods give some
indication of the correlation between LLMs’ CoTs
and outputs, they stop short of evaluating the cor-
rectness of CoTs, as well as the causal impact, if
any, of the CoTs on the LLMs’ output.

2.3 Causal Abstraction

The methods of causal abstraction have been used
to study the inner workings of LLMs performing
natural language inference (NLI) tasks (Geiger
et al., 2020, 2021; Wu et al., 2023; Yamakoshi
et al., 2023). The idea is as follows. Suppose we
hypothesize that a high-level causal model C ex-
plains how an LLM performs a given task. Then,
for each node c in C, we can look for some part
n of the LLM that might correspond to c. If inter-
ventions on n have the same impact on the LLM’s
output as the corresponding interventions on c have
on C’s output, then n plays a similar causal role in
the LLM as c does in C. If we find such an n in the
LLM for each node c in C, then we have evidence
that the LLM realizes C in performing the task, i.e.
that C is a causal abstraction of the LLM.

In practice, causal abstraction faces two chal-
lenges. First, if we use it to study an LLM’s inter-
nal workings, there may be intractably many loca-
tions n in an LLM that might correspond to each
node c in C. The alignment search for the right n
can thus be costly, and various methods, such as
Distributed Alignment Search (DAS) (Geiger et al.,
2023) and Boundless DAS (Wu et al., 2023), have
been developed to tackle this. Second, for any can-
didate location n, we may not know a priori which
interventions on n correspond to which interven-
tions on c (since n is embedded in a complicated
neural network and we may not know what its val-
ues represent). Thus, Geiger et al. (2020) propose
a method called interchange intervention, which
produces the desired interventions by changing the
inputs to the LLM accordingly. To illustrate, let i
and i′ be two different possible inputs to C, and
Di and Di′ be the embeddings of i and i′ in the
LLM respectively. Let Cc←i′(i) be the output of
C on input i when we intervene on c to give it the
value that it would have if the input were i′ instead,
and let LLMn←Di′ (Di) denote something similar

for the LLM and location n. Now, if the following
holds for every pair of inputs i, i′:

Cc←i′(i) = LLMn←Di′ (Di)

then each intervention on n corresponds to an
equivalent intervention on c. Using interchange
intervention, Geiger et al. (2020, 2021) find that,
at least on some significant subsets of their inputs,
the LLMs they test partially realize their hypothe-
sized causal model in performing certain NLI tasks
(Monotonicity NLI (MoNLI) and Multiply Quan-
tified NLI (MQNLI)). Using similar methods, Ya-
makoshi et al. (2023) find evidence of certain inter-
nal circuits within LLMs that play a causal role in
tackling the Winograd Schema Challenge, which
they hypothesize could indicate that the LLMs are
constructing implicit situation models that improve
task performance.

In our case, applying causal abstraction to the
CoTs produced by LLMs overcomes the two chal-
lenges above. Since CoTs are external to the LLM
and are expressed in natural language, a CoT itself
suggests a causal model, and it is transparent both
(i) which parts of the CoT should match which
nodes of the causal model, and (ii) which inter-
ventions on the CoT should correspond to which
interventions on the corresponding causal nodes.
This removes the need for alignment search and
interchange intervention, and we can instead inter-
vene on the CoTs directly for our study.

3 Data

We focus on one type of multi-step reasoning task
that has been found to benefit from CoT prompting:
arithmetic word problems (Wei et al., 2022; Kojima
et al., 2022). This is an interesting task to study as
it requires a mix of linguistic skills, which LLMs
are trained more directly for, and arithmetic skills,
which LLMs might find more challenging.

We use the GSM8K dataset (Cobbe et al., 2021),
which is widely used as a standard benchmark for
performance on arithmetic reasoning. It comprises
8.5K grade school math word problems, split into
a train (7.5K) and a test (1K) set. Each entry in the
dataset comprises a string for the math question,
and a separate string for the corresponding answer,
which includes multiple intermediate steps of rea-
soning and calculator annotations (see Table 1 for
example). As we do not fully know what data the
LLMs that we evaluate have been pre-trained on,

157

Question
A raspberry bush has 6 clusters of 20 fruit each
and 67 individual fruit scattered across the bush.
How many raspberries are there total?
Answer
First find the number of fruit in clusters: 20
fruit/cluster * 6 clusters = «20*6=120»120 fruit
Then add the number of individual fruit to find
the total number of fruit: 120 fruit + 67 fruit =
«120+67=187»187 fruit
187

Table 1: Example from GSM8K test set. Equations
in angled brackets « » indicate calculator annotations.
Final answer is entered after "####" for easy extraction.

some or all of them may have been exposed to por-
tions of the GSM8K training set. We therefore used
only the test set in our evaluations, in the hope that
the makers of the LLMs had avoided training them
on the test set, in order to report a fair assessment
of their arithmetic reasoning performance.2

4 Models

We select three recent LLMs for evaluation, from
three different sources, all accessible by API:

• OpenAI GPT-3.5 ("gpt-3.5-turbo")

• Cohere Command ("command")

• Google PaLM Bison ("text-bison-001")

One reason to focus on these LLMs is that the
public has no access to their internal representa-
tions. It is thus useful to test whether these LLMs
reason using their CoTs, since if so, we can better
understand them through their externally accessible
CoTs, without seeing their internal representations.

5 Methods

We divided our experiments into three parts.

5.1 Part 1: Accuracy Evaluation for CoT vs.
Non-COT Prompting

We first evaluated the three LLMs on the full
GSM8K test set, to contrast their performance un-
der CoT vs. non-CoT prompting. Our metric was
the accuracy of the final answer. The aim was

2We acknowledge, though, that there is no guarantee that
the LLMs have not been exposed to the test set, since there is
also an incentive to train on test examples to achieve artificially
better performance.

to verify that CoT prompting indeed improves the
task performance of the LLMs. This can be seen
as a replication of earlier work (Wei et al., 2022;
Kojima et al., 2022) using more recent models.

Under non-CoT prompting, each test question
was followed simply by the instruction, "Pre-
fix your final answer with "Answer:"." to facil-
itate easy extraction of the LLMs’ answer. For
CoT prompting, we used the zero-shot prompting
paradigm from Kojima et al. (2022), to isolate the
effect of producing a CoT on the LLMs’ perfor-
mance. Specifically, for OpenAI GPT-3.5 and Co-
here Command, each question was followed by,
"Let’s think step by step. Prefix your final answer
with "Answer:".", based on Kojima et al. (2022)’s
finding that the instruction, "Let’s think step by
step," produced the best results. For PaLM Bison,
we could only consistently elicit a CoT by tweaking
the instruction to, "Think step by step and prefix
your final answer with "Answer:"." instead.

5.2 Part 2: CoT Quality Evaluation
Next, we randomly selected 100 GSM8K test exam-
ples for a more in-depth analysis of the quality of
the LLMs’ generated CoTs. The aim was to go be-
yond measuring the accuracy of the final answers,
to get a richer evaluation of the LLMs’ arithmetic
reasoning performance. This would also give us
a sense of the extent to which the generated CoTs
may be helping the LLMs to do better at multi-step
arithmetic reasoning (though no causal conclusions
can be drawn yet). For example, if the CoTs pro-
duced by the LLMs were incorrect or irrelevant to
their final answers, then it cannot be that the LLMs
were using their CoTs to reason to their answers.

We manually assessed the quality of the CoTs
on a novel 5 point scale, from 0 to 4 (see Appendix
A for illustrative examples). First, we gave a score
of 0 if the LLM could not have reasoned its way
to its answer using its CoT. This was the case if
the LLM produced (i) no CoT,3 (ii) no final answer
(e.g. it got "stuck" and kept producing the same
sequence of words in its CoT, never getting to the
final answer), (iii) a CoT that was irrelevant to or
did not lead to its final answer, or (iv) a CoT after
its final answer, in which case the CoT could not
have causally impacted the final answer.

Second, if the LLM produced both a final answer,
and a CoT that preceded and led to the final answer,

3A "vacuous" CoT in the sense of Chen et al. (2023), which
simply repeats the input question followed by the final answer,
would fall in this category and would thus be scored 0.

158

we rated the quality of the CoT, by evaluating the
causal model that it suggested. We considered two
main factors. First, would the causal model, if
correctly executed, solve the problem correctly?
This came in degrees: the causal model could be
completely off-track, or it could have made partial
progress toward the solution but ultimately failed
due to important misunderstandings of the problem,
or it could be a full and correct solution. Second,
if the CoT suggested a causal model that would
correctly solve the problem, did the CoT describe
a correct execution of the model? For example,
there could be errors in computing an arithmetic
operation, or a wrong number might be used as an
input. Based on these factors, we gave the CoT a
score of 1 (lowest-quality) to 4 (highest-quality):

1. The CoT does not make any progress toward
solving the question at all.

2. The CoT makes some progress toward solving
the problem (i.e. it correctly takes at least one
intermediate step needed to solve the prob-
lem), but ultimately fails to do so.

3. The CoT would have correctly solved the prob-
lem, if not for some minor mistakes in execu-
tion (e.g. computational errors).

4. The CoT correctly solves the problem and is
correctly executed.

This scale reflects the view that it is better to ex-
hibit a correct line of reasoning that is incorrectly
executed (a 3-rating), than a wrong line of reason-
ing that is correctly executed (a 1- or 2-rating),
which is how a human student might plausibly be
graded on similar arithmetic problems. In addition,
we note that, except for 4-ratings, which are only
compatible with a correct final answer, each of the
other ratings (0-3) is compatible with a correct or
incorrect final answer. It is just that, if a correct fi-
nal answer was reached with a <4-rated CoT, then
this would have been a fluke.

5.3 Part 3: Causal Abstraction Analysis
Finally, of the 100 GSM8K test examples for which
we assessed CoT quality, we selected all 27 exam-
ples where all LLMs’ CoTs were rated 4, to enable
cross-model comparisons for our causal abstrac-
tion analysis. For each example, we developed one
causal model for each LLM, comprising some in-
put and intermediate nodes and one output node.
All three models shared the same input nodes, as

these were variables given in the question. But each
model might have different intermediate nodes, as
the CoTs might solve the question in different ways.
The total number of input and intermediate nodes
for each causal model ranged from 3 to 10.

Next, we matched each input and intermediate
node c in a causal model C, with the corresponding
variable v in the LLM’s CoT. We then tested if the
same intervention on both c and v (while keeping
all other independent nodes and variables the same)
yielded the same final answer from C as from the
LLM. If so, we considered the intervention "suc-
cessful". We used the percentage of interventions
that were successful, as a measure of the degree to
which the LLM’s CoT realized the causal model.

Concretely, to intervene on a variable v in the
LLM’s CoT, we identified the first instance of v in
the sequence of tokens preceding the final answer,
and replaced that instance with the intervention
value a. If v corresponded to an input node, its first
occurrence would be in the question itself, so we
would prompt the LLM with the question and CoT
prompt only, except with the variable v changed to
value a.4 If v corresponded to an intermediate node,
its first occurrence would be in the LLM’s CoT, so
we would prompt the LLM with the question and
CoT prompt, followed by the LLM’s original re-
sponse, but truncated at the end of the sentence
where v first appears, and with v changed to value
a.5 The LLM then completed the rest of the CoT
and gave its final answer accordingly, which we
compared with the outcome of the similarly inter-
vened causal model. (See Table 2 and Figure 1 for
illustration.) To ensure the same type of output
after interventions, we always ran all LLMs with
temperature 0 (i.e. deterministic outputs).

For each input and intermediate node in each
causal model, we generated 10 intervention values,
which generally ranged from 0 to either 100 or 2×
the original node value, whichever was higher. We
put constraints on these interventions so that they
would not impose unfair demands on the LLMs.
For example, we ensured that the final answer after

4 We intervened within the question prompt rather than the
CoT for input variables due to some difficulties with the latter
approach. For instance, often, input variables first appear in
CoTs as part of an equation that computes an intermediate
variable, and so intervening on them without retaining the
intermediate variable would require truncating the CoT in the
middle of the equation. This was hard for LLMs to complete,
compared to truncating the CoT at the end of a sentence.
Future work could explore different approaches to this issue.

5For Cohere Command, we found we also had to append
another instruction "Continue from here."

159

Original Prompt and Response
A raspberry bush has 6 clusters of 20 fruit each
and 67 individual fruit scattered across the bush.
How many raspberries are there total?
Think step by step and prefix your final answer
by "Answer:".
There are 6 * 20 = 120 raspberries in the clus-
ters. There are 120 + 67 = 187 raspberries total.
Answer: 187
Intervened Prompt and Response
A raspberry bush has 6(v0) clusters of 20(v1)
fruit each and 67(v2) individual fruit scattered
across the bush. How many raspberries are there
total?
Think step by step and prefix your final answer
by "Answer:".
There are 6 * 20 = 206(v3) raspberries in the
clusters. There are 206 + 67 = 273 raspberries
total.
Answer: 273

Table 2: Example of intervention, using a GSM8K test
question and actual response from PaLM Bison. Blue
italics indicate LLM’s response. The generated CoT
suggests a causal model (Figure 1(A)). Variables in
CoT are bolded and labeled in parentheses for reference
(labels are not part of generated text). Intervention uses
a new prompt, comprising the original prompt followed
by the generated CoT, up to the first instance of the
desired variable v3, which is edited to the desired value
(red underlined). The LLM completes the rest, and the
resultant outcome 273 is then compared to the similarly
intervened outcome in the causal model (Figure 1(B)).
Since they are equal, the intervention is successful.

Figure 1: (A) is the causal model suggested by the
original generated CoT in Table 2. The individual nodes
c0 to c3 are easily matched to the variables v0 to v3 of
the CoT. Intervention is done by setting c3 to 206 (red
underlined), as in (B), resulting in the outcome of 273
determined by the causal model. Since this equals to
the LLM’s output after the corresponding intervention
in the CoT (Table 2), the intervention is successful.

intervention would remain a non-negative integer
(as with the original GSM8K examples), and that
intermediate steps would not involve unrealistic
figures (e.g. a negative number of objects). Due to
these constraints, for some nodes, we could only
generate fewer than 10 interventions. In total, the
number of interventions across the 27 examples
range from 1,323 to 1,403 per LLM.

6 Results and Analysis

6.1 Part 1: Accuracy Evaluation

LLM CoT Non-CoT
OpenAI GPT-3.5 77.4 45.8
Cohere Command 31.7 6.1
PaLM Bison 65.9 17.3

Table 3: Accuracy scores (as %) compared to gold an-
swers on the full GSM8K test set (1,319 examples).

As expected, CoT prompting improved each
LLM’s accuracy significantly, compared to non-
CoT prompting.6 But performance across LLMs
differed considerably, with OpenAI GPT-3.5 scor-
ing best at 77.4, compared with Cohere Command
at 31.7. (For comparison, GPT-4 reportedly scored
92.0 using 5-shot CoT prompting (OpenAI, 2023).)
Even without CoT prompting, GPT-3.5 scored 45.8,
higher than Command under CoT prompting. An
informal check showed that even without CoT
prompting, GPT-3.5 often produced CoTs on its
own, which could be the result of task-specific pre-
training or reinforcement learning.

6.2 Part 2: CoT Quality Evaluation

For the questions that the LLMs correctly answered,
the vast majority of the CoTs were rated 4 (99% for
OpenAI GPT-3.5, 83% for Cohere Command, and
97% for PaLM Bison).7 Thus, the LLMs showed a

6We note that the results in Table 3 might not be fully
accurate, as we used a simple regex matching to extract the
LLMs’ final answers, by assuming they prefixed their answers
with "Answer:". But the LLMs did not always follow this
format, so we might have missed some correct answers and
thus underestimated their accuracy. Nonetheless, since this
happens for both CoT and non-CoT prompting, Table 3 should
suffice to show the broad trend that CoT prompting indeed
improves LLMs’ performance on the GSM8K test set. We did
not refine the results further as our focus is on understanding
whether LLMs use their CoTs to reason to their answers, and
not on measuring the exact accuracy of the LLMs.

7Manual changes were made to grade as "correct" four
test examples where GPT-3.5 got the right answer, but did
not prefix it with "Answer:". We also found one error in the
GSM8K test set (see Appendix C for details).

160

OpenAI Cohere PaLM
Ratings C I C I C I

4 80 0 30 0 73 0
3 0 3 2 6 0 1
2 1 11 3 34 2 19
1 0 4 1 15 0 4
0 0 1 0 9 0 1

Table 4: Number of examples with different CoT ratings
(out of 100). "C" indicates examples where the LLM
got the correct final answer, "I" where it was incorrect.
Charts for visual comparison are in Appendix B.

strong correlation between getting the correct final
answer, and producing a correctly formulated and
executed CoT. While we cannot yet draw a causal
conclusion that the LLMs got the correct answer
because they produced a correct CoT, our findings
here are consistent with this hypothesis, and sug-
gest that there is some important relationship within
the LLMs between producing a correct CoT and
a correct final answer. It is not, for instance, that
producing any text before the final answer enables
the LLMs to get the correct answer more often – it
is important that the text produced is a correct CoT.
Otherwise, we would expect a similar CoT ratings
distribution for both correctly and incorrectly an-
swered questions, but our findings show that in fact
they are very different.

That there is an important connection between
the content of the CoTs and the LLMs’ final an-
swers is also suggested by our finding that there
were virtually no cases in which the CoT produced
bore no relation at all to the LLM’s final answer.
Such cases would have received a 0-rating, but only
11 CoTs in total (1% of all CoTs for OpenAI GPT-
3.5, 9% for Cohere Command, and 1% for PaLM
Bison) were rated 0, and of these only 2 could not
be said to lead to the final answer declared by the
LLM (the others either produced no CoT or no
answer, or produced a relevant CoT but only after
the answer). In other cases, even when the CoT
was not the right way to solve the problem, the
LLM would almost always report the result that the
CoT arrives at as its final answer. All this suggests
that the LLM’s workings encode significant corre-
lations between the content of their CoTs and their
final answers. However, this still falls short of any
causal conclusions, since for instance it may be that
some common process within the LLM produces
both the CoT and the final answer, but the CoT
does not itself causally impact the final answer.

Separately, it is worth noting that, among ques-
tions that the LLMs answered wrongly, only a small
proportion of CoTs were rated 3 (16% for OpenAI
GPT-3.5, 9% for Cohere Command, 4% for PaLM
Bison), which signifies a correctly formulated CoT
that was incorrectly executed e.g. due to compu-
tation errors. This suggests that LLMs’ mistakes
on the GSM8K dataset might not mainly be at-
tributable to computational deficiencies. Instead,
most CoTs for incorrectly answered questions were
rated 2 (58% for OpenAI GPT-3.5, 53% for Cohere
Command, 76% for PaLM Bison), which signifies
an incomplete CoT that does not fully solve the
question. Such CoTs usually exhibited conceptual
errors that reflected a semantic misunderstanding
of the question. That said, more of the incorrect
CoTs were rated 2 than 1 (21% for OpenAI GPT-
3.5, 23% for Cohere Command, 16% for PaLM
Bison), suggesting that, even when the CoTs were
incorrect, they more often than not made some
progress toward solving the question.

In a few cases, LLMs’ CoTs had numbers that
neither came from the question nor resulted from
a computation in the CoT (e.g. Appendix D). It is
unclear what causes this, but it may be related to
LLMs’ tendencies to "hallucinate" more generally.

6.3 Part 3: Causal Abstraction Analysis

LLM All Input Intermediate
OpenAI 83.0 94.8 60.3
Cohere 66.0 66.5 66.3
PaLM 80.7 81.1 80.3

Table 5: Average percentage of successful interventions
on all nodes (both input and intermediate, excluding
output node), input nodes only, and intermediate nodes
only, across 27 4-rated CoTs.

For each LLM, for each of the 27 selected exam-
ples, we first compute the percentage of successful
interventions for each node. We then compute the
mean percentage across (i) all non-output nodes,
(ii) input nodes only, and (iii) intermediate nodes
only, for that example. Finally, we compute the
mean of these example-specific means, across all
27 examples, to get Table 5. A more detailed break-
down by example is provided in Appendix E.

All three LLMs demonstrated a fairly high aver-
age percentage of successful interventions across
all non-output causal nodes (66.0 and above, com-
pared to a theoretical maximum of 100). We also
examined the results for input and intermediate

161

nodes separately, as they have different implica-
tions. For input nodes, since we intervene on them
within the question prompt rather than the CoT (see
Footnote 4), their results reflect how the LLM is
using the variables in the question rather than the
tokens produced in the CoT. In contrast, the results
for the intermediate nodes reflect more directly the
LLM’s use of its CoT tokens. We note that the per-
centage of successful interventions remains fairly
high when considering only intermediate nodes,
ranging from 60.3 for OpenAI GPT-3.5 to 80.3 for
PaLM Bison. While it is difficult to interpret what
these figures mean precisely, their absolute magni-
tudes strongly suggest that the LLMs’ CoT tokens
do exhibit significant causal influence on their final
answers. For if there were no such causal impact,
we would expect the percentages for the interme-
diate nodes to be close to 0, since intervening on
the CoT tokens should not affect the LLMs’ final
answers at all, much less alter them in line with
the predictions of the hypothesized causal models.
Hence, we tentatively conclude that, at least on our
27 examples, all the LLMs realized the causal mod-
els suggested by their CoTs to a fairly high extent,
and that they largely used their CoTs to get to their
answers, in the ways described in the CoTs.

Besides their absolute magnitudes, the relative
percentages across the LLMs are also suggestive.
Focusing first on Cohere Command and PaLM Bi-
son, we note that the results for their input vs. their
intermediate nodes are remarkably similar (66.5
vs. 66.3 for Command, 81.1 vs. 80.3 for Bison),
despite the differences in how we intervened on
the two node types. This consistency could indi-
cate that these percentages do indeed reflect the
degree to which the LLMs realize the full causal
models (i.e. including both input and intermediate
nodes) suggested by their CoTs. Moreover, com-
pared to Command, Bison not only has a higher
percentage of successful interventions across all
nodes, but also does better on the whole GSM8K
test set. This suggests the causal interpretation that
the two LLMs might be doing better at multi-step
arithmetic reasoning under CoT prompting at least
partly because they realize the causal model im-
plied by their CoTs, since they seem to do better
when the degree of realization is higher.

OpenAI GPT-3.5’s results also support this inter-
pretation if we consider all the non-output nodes as
a whole, since it registers the highest percentage of
successful interventions there (83.0) and also does

best on the full GSM8K test set. But separating in-
put and intermediate nodes reveals a more nuanced
picture. For GPT-3.5, the average percentage of
successful interventions differed significantly for
input (94.8) vs. intermediate (60.3) nodes, and
its percentage for intermediate nodes is lower than
even Cohere Command’s (66.3). This suggests that,
compared to the other LLMs, GPT-3.5 may be us-
ing its CoT tokens to a smaller extent in getting
to its answer (though it adapts better to changes in
the input variables given in a question). Indeed, for
many of the unsuccessful intermediate node inter-
ventions, GPT-3.5 seemed to ignore the intervened
value in generating its completion. This suggests
that some other internal process, not causally de-
pendent on its CoT tokens, is producing its final
answer in these cases.

In other cases, GPT-3.5 exhibited self-correcting
behavior, by explicitly correcting the intervened
value in its CoT completion. To explain, an in-
termediate node intervention always introduces a
computational error, since the correct intermediate
value is fully determined by the input values (which
remain unchanged), but the intervention changes
the intermediate node to a different value. In some
cases, GPT-3.5 seemed to recognize this error, by
producing tokens acknowledging a "mistake", be-
fore producing the correct intermediate value and
completing the CoT from there (see Appendix F
for an example). Unlike the earlier cases where
GPT-3.5 seems to ignore the intervened intermedi-
ate value, however, such self-correcting behavior
requires GPT-3.5 to use the intervened CoT token
to generate its response, since it is only then that it
can detect the "mistake" (given that we intervene
only on the CoT token and not on any of GPT-
3.5’s internal representations). Still, self-correcting
behavior also requires GPT-3.5 to have internal rep-
resentations of the correct intermediate value, so
that it can compare this with the intervened CoT
token to notice the "mistake". This again points to
an internal process for producing its final answer
that is not causally dependent on its CoT tokens.

These findings thus complicate our earlier sug-
gestion that LLMs do better on multi-step arith-
metic reasoning because they use their CoTs to
reason to their answers. At least for GPT-3.5, bet-
ter performance may also depend on some internal
processes that operate independently of the CoT to-
kens. While the reasons for GPT-3.5’s intervention-
ignoring and self-correcting behavior are unclear,

162

one possibility could be that GPT-3.5 received spe-
cific reinforcement learning that encouraged such
behavior. It may also be possible that GPT-3.5
was exposed to some of the GSM8K test examples
during training.

7 Conclusion

In conclusion, we found that (i) LLMs achieved sig-
nificantly higher accuracy on the multi-step arith-
metic reasoning GSM8K test set under CoT vs.
non-CoT prompting, (ii) correct LLM answers
were highly correlated with correctly formulated
and executed CoTs, and (iii) when LLMs produced
both correct CoTs and correct answers, they real-
ized the causal models suggested by their CoTs to
a fairly large extent. For Cohere Command and
PaLM Bison, greater degrees of realization were
associated with higher accuracy on the GSM8K
test set, suggesting that some CoT-prompted LLMs
might do better at multi-step arithmetic reasoning
at least partly because they use their CoTs to reason
to their answers. The results for OpenAI GPT-3.5,
however, suggest that for some LLMs, other inter-
nal processes may also be involved.

Because we studied only a small number of ex-
amples and interventions, future work could scale
up to more examples, with more robust human eval-
uation methods such as inter-annotator agreement.
In addition, future work could explore cases where
LLMs produce incorrect CoTs, to examine whether
LLMs nonetheless realize the causal models sug-
gested by those CoTs, and whether those incorrect
causal models could be salvaged by appropriate
interventions. This would provide more assurance
that externally generated CoTs faithfully represent
how the LLMs are producing their final answers,
and suggest ways to improve their performance by
directly intervening on their CoTs. Future work
could also explore few-shot CoT prompting ap-
proaches, which may work differently from the
zero-shot paradigm, and/or explore how to extend
these methods to other types of reasoning tasks,
beyond arithmetic reasoning.

Finally, it could be useful to replicate these exper-
iments with LLMs whose internal representations
are accessible. This way, we can compare the re-
sults with the results that we get when we intervene
within those LLMs, and observe how such internal
interventions affect the external CoTs. This could
help us to better understand why LLMs differ in
the degree to which their CoTs realize the hypothe-

sized causal models, and perhaps also shed light on
interesting phenomena such as the self-correcting
behavior of some LLMs,

Limitations

This paper only examines a few LLMs’ behavior,
for a small subset of examples and associated inter-
ventions, from a single dataset (GSM8K test set). It
should not be assumed that the findings will gener-
alize to all LLMs or all examples from the dataset,
much less to examples from other datasets, even if
those examples represent a similar task (multi-step
arithmetic reasoning). For better generalization,
the experiments should ideally be replicated at a
larger scale involving more LLMs, more exam-
ples, and more interventions, but this may require
more time and labor resources, and/or a change in
methodology to enable easier scaling.

This paper is also limited to only one type of rea-
soning task, and the findings may not generalize to
other tasks, such as question answering, symbolic
reasoning, or natural language inference tasks.

The experiments in this paper were conducted
in a controlled setting, with temperature 0 (i.e. de-
terministic outputs). There is no guarantee that the
findings will extend to other settings e.g. when tem-
perature is higher and so there is more randomness
in the output of an LLM, in which case the LLM
may no longer use the tokens generated in its CoT
in the same way.

Finally, this paper only found evidence that
LLMs may in some cases partially realize the
causal models suggested by their CoTs. It is still un-
clear what the precise theoretical interpretation of
such partial realizations should be. In cases where
LLMs answered a question correctly but seemed
not to realize the causal model suggested by their
CoT, this paper does not indicate how else the LLM
might be getting the question right.

Ethics Statement

While this paper suggests some very modest ev-
idence that externally generated CoTs in certain
specific settings may provide faithful explanations
or interpretations of how an LLM arrived at its final
answer to a question, it may not be safe to assume
that this is the case in general. When using an LLM
for a task, the reasoning provided may not really
be how it arrives at its final answer, and due cau-
tion should be taken to check that the reasoning
provided is factual and sensible, before relying on

163

it for making substantive decisions. For example,
an LLM may claim to have reasoned to an answer
in a fair way, but may have in fact relied on implicit
biases within its internal workings. Independent
checks should be done to verify any claims made
in an LLM’s CoT.

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments and suggestions.
We would also like to thank Thomas Icard, Kawin
Ethayarajh, Atticus Geiger, and Zhengxuan Wu for
helpful discussions and feedback on the paper.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Hanjie Chen, Faeze Brahman, Xiang Ren, Yangfeng Ji,
Yejin Choi, and Swabha Swayamdipta. 2023. REV:
Information-theoretic evaluation of free-text ratio-
nales. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2007–2030, Toronto,
Canada. Association for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. In Advances in Neural Information Process-
ing Systems, volume 34, pages 9574–9586. Curran
Associates, Inc.

Atticus Geiger, Kyle Richardson, and Christopher Potts.
2020. Neural natural language inference models
partially embed theories of lexical entailment and
negation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 163–173, Online. Association
for Computational Linguistics.

Atticus Geiger, Zhengxuan Wu, Christopher Potts,
Thomas Icard, and Noah D. Goodman. 2023. Find-
ing alignments between interpretable causal variables
and distributed neural representations.

A G Greenwald and M R Banaji. 1995. Implicit so-
cial cognition: attitudes, self-esteem, and stereotypes.
Psychological Review, 102(1):4–27.

Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal.
2020. Leakage-adjusted simulatability: Can models
generate non-trivial explanations of their behavior
in natural language? In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4351–4367, Online. Association for Computational
Linguistics.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we
define and evaluate faithfulness? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4198–4205, On-
line. Association for Computational Linguistics.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan,
Kory Mathewson, Mh Tessler, Antonia Creswell,
James McClelland, Jane Wang, and Felix Hill. 2022.
Can language models learn from explanations in con-
text? In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 537–563,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

A. Newell and H.A. Simon. 1972. Human Problem
Solving. ACS symposium series. Prentice-Hall.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten
Bosma, David Luan, Charles Sutton, and Augustus
Odena. 2021. Show your work: Scratchpads for inter-
mediate computation with language models. CoRR,
abs/2112.00114.

OpenAI. 2023. Gpt-4 technical report.

Judea Pearl. 2001. Direct and indirect effects. In
Proceedings of the Seventeenth Conference on Un-
certainty in Artificial Intelligence, UAI’01, page
411–420, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Peter Spirtes, Clark Glymour, and Richard Scheines.
2001. Causation, Prediction, and Search. The MIT
Press.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Sarah Wiegreffe, Ana Marasović, and Noah A. Smith.
2021. Measuring association between labels and
free-text rationales. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10266–10284, Online and Punta

164

Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Zhengxuan Wu, Atticus Geiger, Christopher Potts, and
Noah D. Goodman. 2023. Interpretability at scale:
Identifying causal mechanisms in alpaca.

Takateru Yamakoshi, James McClelland, Adele Gold-
berg, and Robert Hawkins. 2023. Causal interven-
tions expose implicit situation models for common-
sense language understanding. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 13265–13293, Toronto, Canada. Association
for Computational Linguistics.

A Examples of CoT Quality Ratings

The following are all real CoT examples from Co-
here Command on the GSM8K test set.

A.1 0-rating: No CoT provided

Question: John likes to have a glass of water with
breakfast, lunch and dinner. Finally, he has one
before he goes to bed as well. John does this every
weekday, but on the weekends he likes to relax and
have a soda with dinner instead. How many glasses
of water does John drink in a week?

CoT: Answer: 5

A.2 0-rating: CoT does not lead to answer

Question: Kelly has 5 quarters and 2 dimes. If she
buys a can of pop for 55 cents, how many cents
will she have left?

CoT: She has 55 cents because 5 quarters are
worth $0.25 and 2 dimes are worth $0.10. She has
55 cents because $0.25 + $0.10 = $0.35. She has
55 cents because $0.35 - $0.55 = -$0.20. She has
55 cents because -$0.20 + $0.55 = $0.35.

Answer: 55

A.3 1-rating: CoT makes no progress

Question: Sandra’s neighbor gives her a basket of
9 eggs every time she babysits their daughter. To
make a Spanish flan, she needs 3 eggs. If Sandra
has been tasked to make 15 Spanish flans for her
school fundraiser, how many times does Sandra
have to babysit?

CoT: Sandra needs to make 15 Spanish flans, so
she needs to use 3 eggs 15 times. She gets 9 eggs
each time she babysits, so she needs to babysit 9 /
3 = 3 times.

Answer: 3

A.4 2-rating: CoT makes some progress
Question: The marching band is ordering new
uniforms. Each uniform comes with a hat that
costs $25, a jacket that costs three times as much
as the hat, and pants that cost the average of the
costs of the hat and jacket. How much does each
uniform cost total?

CoT: The jacket costs 3 * 25 = $75. The pants
cost 75 / 2 = $37.5. So, the total cost of the uniform
is 25 + 75 + 37.5 = $137.5.

Answer: $137.5

A.5 3-rating: CoT is correct, but incorrectly
executed

Question: To have the car for the weekend, Wil-
son’s report card needs to show that he received
80 or higher in his math class. His math grade is
calculated by the average of 5 test scores. On those
tests, he received: 65, 94, 81, 86 and 74. What is
his current math grade?

CoT: His current math grade is calculated by the
average of 5 test scores. So, his current math grade
is (65 + 94 + 81 + 86 + 74) / 5 = 665 / 5 = 133.

Answer:133

A.6 4-rating: CoT is correct, and correctly
executed

Question: Ryan plants 2 flowers a day in his gar-
den. After 15 days, how many flowers does he have
if 5 did not grow?

CoT: He plants 2 flowers a day for 15 days so
he plants 2 * 15 = 30 flowers. But 5 did not grow
so he has 30 - 5 = 25 flowers.

Answer: 25

B Charts for CoT Quality Ratings

Figure 2: OpenAI GPT-3.5 CoT ratings, broken down
by ratings(left) and correct/incorrect final answer (right)

165

Figure 3: Cohere Command CoT ratings, broken down
by ratings(left) and correct/incorrect final answer (right)

Figure 4: PaLM Bison CoT ratings, broken down by
ratings(left) and correct/incorrect final answer (right)

C Error in GSM8K Test Set

In the example below, since Marin and Nancy each
eat 4 apples a day, together they eat 8 apples a day.
The correct answer should thus be that they eat 240
apples in 30 days, not 150 as the GSM8K gold
answer claims.

Question: Marin and his neighbor Nancy each
eat 4 apples a day. How many apples do they eat in
30 days?

Gold Answer: In one day, Marin and Nancy eat
4 + 1 = «4+1=5»5 apples.

In 30 days, they eat 30 * 5 = «30*5=150»150
apples.

150

D Example of "Hallucinatory" CoT

In the example below, from Cohere Command, it
is unclear where the "3,200" figure comes from.

Question: Gissela, Gordy, and Gary are truck
drivers. Gissela has a truck large enough to haul
4,000 pounds of gravel. Gordy’s truck can haul 800
pounds more than Gissela’s truck. And when Gary
brings his truck and joins Gissela and Gordy, the
three trucks combined can haul a total of 11,600
pounds of gravel. How many pounds of gravel can
Gary’s truck carry?

CoT: Gissela’s truck can carry 4,000 pounds of

gravel. Gordy’s truck can carry 4,800 pounds of
gravel. So, the total amount of gravel that the two
trucks can carry is 4,000 + 4,800 = 8,800 pounds.
Therefore, the total amount of gravel that the three
trucks can carry is 8,800 + 3,200 = 11,600 pounds.
Since Gary’s truck can carry 800 pounds more than
Gissela’s truck, Gary’s truck can carry 4,000 + 800
= 4,800 pounds of gravel.

Answer: 4,800

E Breakdown of Average Percentage of
Successful Interventions by Example

The following tables provide a breakdown, by ex-
ample, and type of node, for the average percentage
of successful interventions for each LLM.

Example No. All Input Intermediate
59 97.5 100.0 90.0
65 35.0 56.7 13.3
113 97.5 100.0 90.0
190 96.7 100.0 90.0
206 97.0 100.0 92.5
208 82.0 100.0 55.0
262 82.5 100.0 30.0
335 76.7 100.0 30.0
352 92.5 96.7 80.0
431 86.7 91.3 75.0
454 70.0 100.0 10.0
457 100.0 100.0 100.0
511 80.0 100.0 40.0
613 86.7 85.0 90.0
671 91.6 96.4 85.2
723 55.0 82.5 0.0
742 81.7 100.0 63.3
788 52.0 86.7 0.0
792 90.0 100.0 60.0
872 70.6 89.2 15.0
879 88.0 96.7 75.0
888 92.5 100.0 70.0
934 91.7 97.5 80.0
977 92.0 96.7 85.0
986 70.0 98.0 23.3
1099 100.0 100.0 100.0
1112 86.5 87.5 85.5
mean 83.0 94.8 60.3

Table 6: Percentage of successful interventions by ex-
ample, for OpenAI GPT-3.5

166

Example No. All Input Intermediate
59 72.0 66.7 80.0
65 31.7 60.0 3.3
113 82.5 83.3 80.0
190 50.0 30.0 90.0
206 21.0 8.3 40.0
208 38.0 36.7 40.0
262 85.0 80.0 100.0
335 63.3 52.5 85.0
352 97.5 100.0 90.0
431 85.7 84.0 90.0
454 52.5 75.0 30.0
457 90.0 93.3 85.0
511 90.0 85.0 100.0
613 16.7 10.0 30.0
671 89.6 90.4 88.6
723 95.0 92.5 100.0
742 62.5 65.0 60.0
788 84.0 86.7 80.0
792 47.5 50.0 40.0
872 60.0 60.0 60.0
879 30.0 33.3 25.0
888 92.5 93.3 90.0
934 34.3 40.0 26.7
977 75.0 80.0 60.0
986 68.9 64.0 75.0
1099 76.7 92.5 45.0
1112 90.4 84.2 96.7
mean 66.0 66.5 66.3

Table 7: Percentage of successful interventions by ex-
ample, for Cohere Command

Example No. All Input Intermediate
59 100.0 100.0 100.0
65 51.7 76.7 26.7
113 100.0 100.0 100.0
190 96.7 100.0 90.0
206 67.0 56.7 82.5
208 82.0 86.7 75.0
262 97.5 96.7 100.0
335 83.3 95.0 60.0
352 92.5 93.3 90.0
431 64.8 66.7 60.0
454 93.3 95.0 90.0
457 98.0 96.7 100.0
511 100.0 100.0 100.0
613 40.0 10.0 100.0
671 92.2 96.4 86.7
723 100.0 100.0 100.0
742 86.0 83.3 90.0
788 25.0 30.0 10.0
792 95.0 100.0 80.0
872 13.8 11.7 20.0
879 74.0 73.3 75.0
888 95.0 96.7 90.0
934 94.3 95.0 93.3
977 97.5 96.7 100.0
986 55.0 56.0 53.3
1099 100.0 100.0 100.0
1112 84.8 78.3 94.4
mean 80.7 81.1 80.3

Table 8: Percentage of successful interventions by ex-
ample, for PaLM Bison

F Example of OpenAI GPT-3.5’s
Self-Correcting Behavior for
Intervened CoTs

Intervened Prompt: Seven bottles of soda cost
$21.00 while 4 bottles of water cost $8. If David
wants to buy 3 bottles of soda and 2 bottles of water,
how much will that cost?

Let’s think step by step. Prefix your final answer
by "Answer:"

First, we need to find the cost of one bottle of
soda. We can do this by dividing the total cost of
seven bottles by seven:

$21.00 ÷ 7 = $3.00 per bottle of soda
Next, we need to find the cost of one bottle of

water. We can do this by dividing the total cost of
four bottles by four:

$8.00 ÷ 4 = $49 per bottle of water
GPT-3.5’s Completion: Oops, it looks like there

167

was a mistake in the previous calculation. Let me
correct it:

$8.00 ÷ 4 = $2.00 per bottle of water
Now that we know the cost of one bottle of soda

and one bottle of water, we can calculate the total
cost of 3 bottles of soda and 2 bottles of water:

(3 x $3.00) + (2 x $2.00) = $9.00 + $4.00 =
$13.00

Answer: The total cost of 3 bottles of soda and
2 bottles of water is $13.00.

168

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 169–179
December 7, 2023. ©2023 Association for Computational Linguistics

Enhancing Interpretability using Human Similarity Judgements to Prune
Word Embeddings

Natalia Flechas Manrique1, Wanqian Bao1, Aurelie Herbelot2, Uri Hasson1∗
1University of Trento 2Denotation UG

∗uri.hasson@unitn.it

Abstract

Interpretability methods in NLP aim to pro-
vide insights into the semantics underlying spe-
cific system architectures. Focusing on word
embeddings, we present a supervised-learning
method that, for a given domain (e.g., sports,
professions), identifies a subset of model fea-
tures (columns of the embedding space) that
strongly improve prediction of human similar-
ity judgments. We show this method keeps
only 20-40% of the original embeddings, for
8 independent semantic domains, and that it
retains different feature sets across domains.
We then present two approaches for interpret-
ing the semantics of the retained features. The
first obtains the scores of the domain words (co-
hyponyms) on the first principal component of
the retained embeddings, and extracts terms
whose co-occurrence with the co-hyponyms
tracks these scores’ profile. This analysis re-
veals that humans differentiate e.g. sports based
on how gender-inclusive and international they
are. The second approach uses the retained
sets as variables in a probing task that pre-
dicts values along 65 semantically annotated
dimensions for a dataset of 535 words. The fea-
tures retained for professions are best at predict-
ing cognitive, emotional and social dimensions,
whereas features retained for fruits or vegeta-
bles best predict the gustation (taste) dimension.
We discuss implications for alignment between
AI systems and human knowledge.

1 Introduction

The popularity of Large Language Models (LLMs)
such as ChatGPT1 or BLOOM (Scao et al., 2022)
has recently prompted an active area of research
around the notion of ‘alignment’, i.e. the ability
of NLP models to meet human expectations (see
Wang et al., 2023 for a survey). While techniques
such as Supervised Fine-Tuning (SFT) and Rein-
forcement Learning with Human Feedback (RLHF)

1https://openai.com/chatgpt

have become de facto standards to steer models to-
wards human behaviour, the structural differences
that make models in need of alignment are not fully
elucidated. Why is it that NLP systems organise
their knowledge the way they do? And which op-
erations might increase their similarity to human
cognition? These questions remain unsolved, not
only for LLMs but also for simple word embedding
models such as GloVe (Pennington et al., 2014) or
Word2Vec (Mikolov et al., 2013).

Alongside the question of alignment, a range
of model compression techniques have recently
been proposed, including pruning, distillation and
quantization (Xu and McAuley, 2023), to increase
system efficiency at runtime. Many distilled mod-
els perform on a par with their larger counterparts
(Sanh et al., 2019; Jiao et al., 2020), prompting
questions about the nature of semantic encoding in
both the original and the compressed architecture.
Some investigations have focused on the increased
(or decreased) fairness of distilled models, in partic-
ular their ability to faithfully reproduce reality, with
inconclusive results so far (Ramesh et al., 2023).
Others have concentrated instead on the correlation
between compression and a model’s ability to re-
produce human behaviour itself (Tarigopula et al.,
2021). Most importantly, there is evidence that
pruned networks develop different internal repre-
sentations (Ansuini et al., 2020).

In this paper, we bring together the question of
alignment and the methodological toolbox given by
pruning techniques. The general aim of the follow-
ing experiments is to understand the semantics of
non-contextual word embeddings (GloVe) by eval-
uating how those embeddings can be fine-tuned in
a way that supports explainability and best predicts
Human Similarity Judgments (HSJs) for words in
specific categories (i.e., co-hyponyms).

The guiding assumption is that for co-hyponyms
that belong to a basic-level category (Rosch et al.,
1976), learning a small subset of relevant features

169

can markedly improve the prediction of HSJs as
compared to the use of all features. For exam-
ple, considering a set of co-hyponyms that all be-
long to the SPORTS category, it is expected that im-
proved prediction of HSJs between those words can
be achieved by identifying a humanly-salient low-
dimensional subspace that encodes domain-specific
discriminatory properties such as ball game or
played in a team.

We have three aims in this study. Aim 1 is to
determine whether pruning improves prediction of
HSJs for word-pairs in a study consisting of 8 in-
ternal replications (independent datasets). This pre-
liminary step is a necessary prerequisite to support
our two subsequent goals, which are focused solely
on explainability. Aim 2 focuses on quantifying
the position of each co-hyponym in the pruned la-
tent space, and then querying the entire vocabulary
to identify words whose co-occurrence with co-
hyponyms tracks those positions. This provides a
data-driven description of the latent dimensions un-
derlying the pruned feature-set. Aim 3 is to identify
the semantics of the pruned sets via a probing task.
Specifically, we evaluate how well these (sub)sets
of features predict a set of human annotations for
a set of 535 pre-defined words for which annota-
tions on interpretable features have been collected
(Binder et al., 2016).

Our main contribution is in showing that pruning
supervised by HSJ is a transparent and effective
method to study which human-relevant semantics
are contained in word embeddings.

2 Related Work

Our work builds upon existing research that es-
tablishes a connection between human compari-
son processes and image representations created
by deep neural networks (DNNs). Several prior
studies in the area of computer vision have used
feature-reweighting (Kaniuth and Hebart, 2021; Pe-
terson et al., 2017) or feature-pruning (Tarigopula
et al., 2021) to improve alignment between human
similarity judgments (HSJ) and DNN-generated
image representations. Extending the approach to
language, Richie and Bhatia (2020) applied a fea-
ture reweighting to optimize the prediction of HSJ
from word-pair embeddings. Following Peterson
et al. (2017) they modeled word-pair similarity as a
weighted dot product, using regression, and solving
for as many weights as features. While interesting,
this procedure has various issues. First, the weights

are proportional to feature-products rather than to
feature value. This makes the method less inter-
pretable. Second, the method operationalizes the
assumption that the DNN has learned a meaning-
ful basis set of features that is applicable to all
domains, and that the features just need saliency
adjustment per domain. Third, the data do not lend
themselves to downstream analyses as they do not
select a subset of features or directly reweight them.
In contrast, the view we present for adapting the
features to the domain is that there exists a subspace
of meaning/features in the DNN whose saliency is
already properly calibrated, and what needs to be
done is just to identify the relevant/irrelevant fea-
tures for the domain. Pruning and reweighting are
therefore two different approaches to understand-
ing latent content.

Prior work has also used pruning to predict HSJ.
Tarigopula et al. (2021) showed that when applied
to image embeddings extracted from the penulti-
mate layer of VGG-19, pruning markedly improves
prediction of out of sample similarity judgments
while maintaining around 20% or fewer of the
layer’s features. However, image and word em-
beddings are derived in different ways and and it is
unclear whether the findings generalize to the text
domain.

The other work relevant to the current effort is
on interpretation of word embeddings. Chersoni
et al. (2021) and Utsumi (2020) present a prob-
ing method for studying the semantic dimensions
latent in word embeddings by constructing a map-
ping between embedding-vectors and human-rated
semantic features. We do the same, but instead of
using the entire feature set, use the feature-subsets
produced by a supervised-pruning procedure. This
is a fundamental departure from prior work as it
ultimately probes for semantic features in pruned
embedding subsets and in this way highlights the
latent dimensions that are important to humans.

Finally, our effort links up to recent work on
alignment, which focuses on elucidating differ-
ences between computational systems and human
behaviour: recent examples are Hu et al. (2023),
who compare pragmatic phenomena in humans and
Large Language Models, or Bao et al. (2023), who
attempt to reproduce human word acquisition by
implementing conceptual attribute comparison in
their model. Of relevance to our approach, Park
et al. (2023) remove spurious correlations between
network features via pruning, with the aim to re-

170

duce machine-specific biases in the learned model.
Their work is however focused on images rather
than text.

3 Datasets

3.1 Human similarity judgements

Our HSJ dataset was made available by Richie and
Bhatia (2020) via OSF2. The data covers words in
eight categories: furniture, clothing, birds, vegeta-
bles, sports, vehicles, fruits and professions. Hu-
man similarity ratings were obtained for word pairs
within but not across categories, with each cate-
gory containing around 20-30 words. Participants
(N = 365) were recruited from the US population
using an online recruitment and data collection sys-
tem (mean age = 33 years, 55% female). Each par-
ticipant was randomly assigned to one of the eight
categories. For most categories, participants only
completed some of all possible pairwise similarity
judgements, which only made group-level analy-
ses possible. Consequently, judgements were aver-
aged across participants and organized in similarity
matrices, which we will refer to as representation-
similarity matrices (RSMs).

One reason to use datasets where all words be-
long to the same taxonomic category is that such
similarity judgments are know to be based on
comparison. In contrast, similarity judgments for
thematically-related words (e.g., chair-carpenter)
also reflect the degree of association (Wisniewski
and Bassok, 1999). This has been identified as
a central problem in evaluating word-embeddings
using human similarity judgments (Faruqui et al.,
2016).

3.2 Word embeddings

For all words in the eight categories, we collected
300-dimensional GloVe embeddings (Global Vec-
tors for Word Representation, Pennington et al.,
2014)3. These embeddings are referred to as GloVe
6b Giga + Wiki in Richie and Bhatia (2020), be-
cause they were obtained by training on the Giga-
Word Corpus and Wikipedia, which have a com-
bined size of 6B tokens. For each of the eight
categories, we arranged embeddings into matrices,
with words as rows and features as columns. To
operationalize word-pair similarity, we computed

2https://osf.io/d7fm2/?view_only=
c5ba5d34a5e34ff3970a652c07aadc5c

3https://nlp.stanford.edu/projects/GloVe/

Pearson’s correlations across all embeddings within
each category and organized them into RSMs.

4 Algorithms

4.1 Pruning Algorithm and Cross Validation

Algorithm 1 completely describes our pruning algo-
rithm, which is a sequential feature selection proce-
dure. We briefly summarize its main elements. The
objective of the algorithm is to identify a reduced
subset of features, so that when that subset is used
to produce the Object × Object Similarity ma-
trix, SMDNNRED, the resulting matrix produces a
maximal fit to the human similarity judgments. The
fit between the two similarity matrices matrices is
computed using the Spearman’s rank correlation
coefficient (ρ). The effectiveness of the pruning
solution is evaluated by applying the set of features
found for our training data to an unseen test data
sample, as explained below.

For both word embeddings and human judgment
similarity matrices we create the test and train par-
titions on a given fold so that the test partition
consists of all pairwise similarity ratings associ-
ated with a target word i. This means that if for N
words the number of unique pairwise judgments is
(N2 −N)/2, we construct the test partition to con-
sist of the N pairwise similarity judgments associ-
ated with the left-out ith word. The test partition’s
size is therefore (1/N)×(N2−N)/2, and the train
partition consists of all other pairwise judgments.

As a baseline value, we use the average sec-
ond order isomorphism measure (2OI) for the test
partition for each fold before pruning, as reported
in Table 1. This was defined as the Spearman’s
ρ between two sets of similarity matrices: 1) the
N similarity judgments associated with the target
word as estimated from the full, non-pruned word
embeddings, and 2) the ground-truth judgments as
provided by humans. The 2OI measure was chosen
to make the results comparable with the work of
Richie and Bhatia (2020).

4.2 Feature set interpretation

After applying the pruning algorithm, we perform
a Principal Components Analysis (PCA) and iden-
tify those vocabulary words whose co-occurrence
profile with the category words tracks the first-PC
scores for those words. This results in a human-
readable representation of the main discrimina-
tive features in the pruned space. The process is
achieved in two steps, as detailed below. As a

171

Algorithm 1 Pruning: Main algorithm. ρ refers to Spearman’s correlation

Inputs:
• SMHM : similarity Matrix of human similarity judgments
• SMDNN : similarity Matrix of similarity estimations derived from the GloVe by computing

Pearson’s R between the embeddings of two words

1. Compute baseline Spearman’s Rho ρ(SMHM ,SMDNN), using the full set of features.
2. Rank features

• For each feature:
– Remove the feature from original embeddings, compute reduced similarity matrix
SMDNNRED.

– Calculate difference D = ρ(SMHM , SMDNN)− ρ(SMHM , SMDNNRED).
• Rank features based on D, with higher values indicating greater importance.

3. Construct pruned embeddings
• Initialize an empty set of features.
• Iterate over ranked features in descending order of importance according to D

– Reinsert one feature at a time.
– Calculate ρ after each feature reinsertion, store values in array a.

• Determine the maximum value in array a .
• The index of the maximum value delimits the set of features to be included in the pruned

embeddings.

control we also applied this PCA analysis to non-
pruned embeddings

4.2.1 Identifying a word’s immediate context
To compute the PMI of each vocabulary word with
each of the category words we used code provided
by Kabbach and Herbelot (2021)4 who computed
the Positive PMI between all word combination in
the WIKI4 corpus (4% of the English Wikipedia
sampled across the entire dump).

We use PMI rather than positive PMI (PPMI)
because, for our analysis, the extent to which pairs
of words co-occur less frequently than would be
expected by independence is also meaningful.

Note that for purposes of the current analyses,
we needed to identify those vocabulary words that
were part of the contexts for each of the words
in the category. This category-related corpus vo-
cabulary is created as follows: For every word in
a given category (target word), we select words
whose joint probability with the target word is not
zero (i.e. words whose PMI value with the target
word is not zero), forming a set of context words
for a given target word. More formally, we denote
the set of all vocabulary words as V . We can define

4https://github.com/akb89/counterix/blob/
master/counterix/core/weigher.py

an “immediate context” subset, denoted by N(i),
as the subset of words in V that are adjacent to the
target word i, within a word window of ±2 words:
N(i) = {w ∈ V |P (w, i) ̸= 0}
where w is an element (word) in V , and P (w, i)
denotes the joint probability of word w and target
word i.

After computing the immediate contexts for each
category co-hyponym, we combine these context-
sets. We denote the category as C and the vocab-
ulary as V . The "Category context" or the vocab-
ulary of the category is the union of the context
word sets of all the target words in the category,
C =

⋃
N(i). This combines, for a given category,

all the immediate-contexts subsets.

4.2.2 Find the correlations between the PMI
vectors and the first PC of each category

For each category, the Spearman’s correlation be-
tween each PMI vector of each corpus-vocabulary
word and the category-words’ scores on the first
principal component was calculated, alongside its
statistical significance. The vocabulary was ranked
depending on the correlation results. Note that PCA
was performed twice in our analysis: once on un-
pruned embeddings specific to a category and once
on pruned embeddings, each comprising only the

172

20-30 words within the given set. In contrast, the
words we identified as correlated with the scores
on the first PC were queried from the entire corpus
used in the study.

Many vocabulary words end up in the Category
context-set even though they are not lexical items
relevant to our analysis. For this reason we only
included words that were within the most frequent
15K dictionary-words in the corpus, and further
eliminated proper nouns and numbers. As relevant
correlations we considered those whose statistical
significance satisfied p < .05. Finally, we required
that more than 60% of the components of the PMI
vectors must be non-zero values so that the corre-
lation was not driven by a few zero vs non-zero
entries.

5 Results

5.1 Improved prediction of human judgments

For each fold we compute the baseline 2OI of the
test partition, and the 2OI value computed when
using the pruned feature-set identified by the al-
gorithm using the train partition. The results are
summarized in Table 1 and show that for all 8 data
sets, pruning improved out of sample prediction
of human behavior, in some cases by considerable
magnitudes.

Because, within each category, there are as many
test-partition folds as words, we could compute a
paired T-test between each test partition’s baseline
Spearman ρ (prior to pruning), and the ρ value
obtained after pruning. As shown in Table 1, the
difference in 2OI values was statistically significant
for 7 of the 8 datasets. We note that the maximum
correlation achievable in such cases is limited by
the noise-ceiling in the human judgments. In prior
work (Peterson et al., 2017) the noise ceiling was
operationalized as the similarity between different
individual’s ratings, and was typically in the range
of 0.6− 0.8 (for images). This value could not be
estimated for the current datasets because not all
participants made similarity ratings for the same
word-pairs.

Further, the number of features retained through
pruning varied considerably across categories. No-
tably, within each category, the standard deviation
of this statistic across folds was low, meaning that
pruning produced relatively systematic set-sizes for
different train folds.

Figure 1: Dice coefficient indicating overlap of features
sets pruned by different categories

5.2 Supervised-pruning selects for different
features across domains

To determine whether a core set of features was
maintained across the eight categories, we simply
summed, for each GloVe feature, the number of
times it was retained for each of the 8 prunings.
We found that no feature was retained across all
8 datasets or even 7 of the 8. The strongest over-
lap was seen in 6 features that were included in 6
pruned datasets. However, 220 of the features were
kept for only 3 datasets or less. Thus, there was no
core set of features that remained in all cases.

We also evaluated whether there were category
pairs which, when pruned, tended to maintain sim-
ilar sets of features, which would be an indicator
of similar semantics. For each pair of categories
we computed the Dice coefficient between the two
sets (Dice, 1945). As can be seen in Figure 1, the
value of the coefficient was low across the board,
and most so for SPORTS.

5.3 Pruned feature sets are interpretable

To interpret the semantics of the pruned feature
sets we applied PCA to the pruned embeddings and
interpreted the results as detailed in §4.2. In this
analysis we did not use cross validation, but pruned
the complete word-by-features embedding matrix
for each of the eight datasets. For example, if 120
features were retained by pruning the FURNITURE

embeddings, we applied PCA to the 20 (furniture
words) x 120 (retained features) embedding matrix.

Table 2 presents the sizes of the Category con-
texts per category (Hits) and of those, the number

173

Category Baseline Mean Pruned Mean T value (Pruned-Baseline) Features Retained
Furniture 0.46 (0.03) 0.63 (0.04) 4.47*** 121.00 (3.3)
Clothing 0.37 (0.02) 0.52 (0.03) 4.74*** 84.21 (1.5)
Vegetables 0.30 (0.05) 0.45 (0.07) 3.59** 58.05 (4.7)
Sports 0.40 (0.02) 0.52 (0.03) 4.13*** 101.39 (0.88)
Vehicles 0.66 (0.02) 0.74 (0.03) 3.78** 131.05 (4.51)
Fruit 0.38 (0.04) 0.42 (0.05) 0.66 88.48 (2.90)
Birds 0.20 (0.02) 0.37 (0.03) 3.58** 57.57 (1.80)
Professions 0.45 (0.02) 0.57 (0.02) 3.72*** 102.43 (1.22)

Table 1: Prediction accuracy (Spearman’s Rho) for human similarity judgments from GloVe embeddings. Baseline:
prediction for test partition when using all GloVe features. Pruned: predictions based only on the pruned set learned
using the training partition. Features Retained: average number of features retained from training ±SDE. T values
are from paired T-tests within category. ** p < .01, *** p < .001.

Category Hits Prn Full Cmn
Furniture 15968 45 23 19
Clothing 8615 20 11 6
Birds 8850 12 10 6
Vegetables 2888 1 2 0
Sports 16075 92 99 58
Vehicles 18146 22 44 0
Fruit 8263 4 6 2
Professions 25125 92 127 88

Table 2: Hits: Size of Category context-set. Prn/Full:
number of words significantly correlated with the scores
of the category’s first PC when computed from Pruned
or Full (unpruned) embeddings. Cmn: number of words
in common for pruned and full solutions.

of words whose PMI correlated significantly with
the scores on each category’s first PC. We can ob-
serve the number of words showing significant cor-
relations was relatively similar when using pruned
and non-pruned embeddings. However, the overlap
was not necessarily strong in all eight domains.

To understand how meaning is organized in the
pruned embeddings, the first evaluation is based on
examining the scores of the category-co-hyponyms
on the first Principal Component. These are shown,
for SPORTS, in the first column of Figure 2. One
can immediately see a separation between more
typical team sports which are here are associated
with negative-sign scores, and less typical sports,
including running, walking and ballet.

For SPORTS, the top-20 correlated words include
asian, men’s, european, federation, women’s, inter-
national, female, championship, see full results
here in attached file. These align with the 1st
PC scores in having high PMI with words in the
SPORTS category such as basketball, tennis, gym-

nastics and soccer and low PMI with ballet, golfing,
fishing or chess. This list of words returned by the
query emphasizes the international and inclusive
(gender, country) dimension of some sports vs. oth-
ers. This of course does not mean that running and
walking are less federated or international than the
others, it just means that these concepts are less
frequently associated when discussing these sports.

We also find meaningful divergences between
the words identified as correlated with the 1st
PC of the pruned and non-pruned embeddings
as this indicates differences emphasized via prun-
ing. For SPORTS, the noun player is identified
for the pruned embeddings. In contrast, for the
non-pruned embeddings, the verb play is more
dominant, as well as its morphological variations
played, playing, plays. This appears to emphasize
the competitive/non-competitive dimension which
was not as salient in the pruned embeddings. In
contrast, the pruned results include olympic and
medal whereas the nonpruned do not.

In FURNITURE, the selected words under the
pruning condition appear to highlight spatial and
physical dimensions, including prepositions and
modifiers such as out, center, around. For the un-
pruned condition, on the other hand, words associ-
ated with technology are more prominent (technol-
ogy, system, powered. Interesting divergences were
found also for several other categories. For exam-
ple, for CLOTHING, the pruned embeddings more
strongly emphasized the condition of clothes as be-
ing new or worn (e.g., worn, wearing, wore, new).
In contrast, for VEHICLES the full embeddings em-
phasized more strongly the verb drive and its mor-
phological variants including drives, driver, driving,
drive, driven, drove). Thus, the dimension of being
driven is fleshed out when analyzed against the full

174

Figure 2: PMI values for words that correlate with co-hyponym scores on first PC computed from pruned embeddings

embeddings, but not against the pruned ones. Be-
cause human comparisons are not strongly based
on this dimension, it is effectively partialed out via
the supervised pruning. This shows how a dimen-
sion may be central within text-meaning (corpus)
but not human meaning.

5.4 Pruned feature sets predict basic semantic
features

Having shown that our pruned feature sets can be
given a human-readable interpretation, we turn to
our final question and seek to explain why they
provide better correlation with HSJs, i.e. why they
align. To do so, we use the curated dataset of
Binder et al. (2016), which consists of 535 words
with human ratings on 65 semantic features belong-
ing to 14 basic semantic areas including Vision,
Gustation, Temporal, Causal, and Cognition. Previ-
ous work (Chersoni et al., 2021; Utsumi, 2020) con-
structed a regression model (Partial Least Squares
Regression; PLSR) that successfully predicted the
65 dimensions from those words’ GloVe embed-
dings. We use the same procedure, but apply it to
the feature sets found via supervised pruning to de-
termine if sets pruned by different domains encode
different semantics.

For each of the 8 categories, we trained a PLSR
model on 534 words.5 mapping GloVe to Binder
features using each category’s pruned features. The
trained model was applied to the left-out word, pre-
dicting its 65 feature-values (leave-one-out cross
validation; LOOCV). This resulted in a 533× 65
prediction matrix for all words. For each of the 65
features we could compare the values in the predic-
tion matrix to the true values, using Spearman’s ρ.
Finally, we averaged the correlation values within
the 14 larger-scale semantic areas to obtain a sin-
gle value per domain. Note that for this analysis,
we only used the top-60 ranked features for each
category, thus ensuring that the model got the same
amount of data across experiments for a fair com-
parison between the different pruned feature sets.
We chose the value of 60 as it approximated the
number of features retained for Clothing, Birds,
Vegetables, Professions, and Sports when applying
pruning outside a cross-validation framework.

Figure 3 shows the results. Replicating prior
work (Chersoni et al., 2021; Utsumi, 2020), for all
8 domains the Cognition area was generally best

5Used appears twice as noun and verb separately, but in
GloVe there is only one used vector and thus one fewer word
than in Binder’s actual dataset.

175

Figure 3: Accuracy in predicting human ratings using pruned features. Cell-values indicate the Spearman’s ρ
between PLSR predicted results from pruned embeddings (N = 60 features per category) and the actual values
from Binder’s dataset.

predicted, while Gustation and Space were gener-
ally predicted less well. The features retained for
PROFESSIONS offer the highest prediction scores
for 7 of the 14 semantic areas, with a very large rel-
ative advantage for prediction of Cognition-related
semantic features, and for features in the Social
category. PROFESSIONS also predicted Emotion
features best, though with a weaker advantage com-
pared to other category’s’ pruned sets. In con-
trast, the pruned feature sets from FRUITS and
VEGETABLES predicted Gustation features the best,
whereas VEHICLES and SPORTS predicted Motor
features best. Overall, the values showed a rela-
tively narrow spread within semantic domains, with
the exception of Cognition and Gustation. One rea-
son for the limited range is that we capped the
features included to top-60 across all prunings as
explained above. Using the full sets of (different-
sized) embeddings pruned for each category pro-
duced much more substantial variations because
larger sets of GloVe dimensions better captured the
human ratings, as demonstrated on out of sample
data.

Interestingly, feature sets pruned for CLOTHING

produced the best prediction of Olfaction, which
consisted of one human rated dimension: “hav-
ing a characteristic or defining smell or smells”.
The different sorts of clothing materials in the
set {mittens/wool, belt/leather, beanie/cloth} could

have been a relevant dimension for comparison.
CLOTHING also produced the best prediction of
Attention which consisted of two dimensions, “
someone or something that grabs your attention”
and “someone or something that makes you feel
alert, activated, excited, or keyed up in either a
positive or negative way”. The fact that these
two dimensions were predicted by clothing may
be due to the specific items in the set that dif-
fered according to evening-wear/non-eveningwear,
intimate/non-intimate items, mens/womens wear
and sports/non-sports (e.g., suit/jeans, skirt/pants,
pajamas/tuxedo).

These results suggest that the identified dimen-
sions contained in the pruned sets reflect informa-
tion that is central to the way people compare ob-
jects in these categories.

6 Conclusion

We have shown in this work that supervised pruning
applied to a word embedding model can improve
prediction of human similarity judgements. Thus
from an engineering perspective, pruning joins sev-
eral techniques for improving prediction of human
similarity judgments, which include reweighting
the embedding space keeping all features (Richie
and Bhatia, 2020) or constructing new embedding
spaces from association norms to predict similarity
(De Deyne et al., 2016).

176

The method was shown to select different fea-
tures across domains, demonstrating high levels of
conceptual discrimination. Further, the pruned fea-
ture sets were interpretable with respect to the first
component of a PCA analysis, allowing us to de-
scribe how humans discriminate between elements
of a category – and giving the model itself a tool to
justify its semantic ‘beliefs’ to a potential user. The
probing task provided additional, fine-grained in-
formation on the semantics in the different pruned
feature-sets.

Given its performance and inherent interpretabil-
ity, supervised pruning can advance computations
related to word-similarity, word-analogy and senti-
ment analysis, as well as domain adaptation. Most
importantly, this method allows an AI system to
construct a model of human domain knowledge
through pruned embeddings, which diverges from
the AI system’s own internal organization of the
domain (i.e., via full embeddings). This alignment
can increase the synergy between the AI system
and users, establishing a more robust foundation of
shared understanding.

Limitations

In Aim 1, one important question that remains to
be answered is how the results would generalize
if the type of embedding and / or the similarity
dataset were different. Furthermore, understanding
how this methodology could be applied to con-
textualized embeddings remains to be determined.
There are two approaches that could be potentially
applied: the first one is to construct a single “omni-
contextual” embedding from a set of contextualized
embeddings. For example, Chersoni et al. (2021)
extract from Wikipedia 100 contexts in which a
target word appears, and obtain a unified embed-
ding by averaging the vectors produced in each
context. This could be sufficient for then using
supervised pruning of the sort we described here.
However, if the aim is to improve the perceived
similarity of specific polysemous senses instanti-
ated in context, a different approach is needed, One
possibility would be to use Cosimlex (Armendariz
et al., 2019) (or a similarly constructed dataset) that
presents two words in two different contexts that
highlight two different senses. One then defines
the pruning loss function so that it increases the
similarity of one pair but not the other one and
vice versa, and then identifies the distinct features
produced by the process. That said, it has been
shown that LLMs currently struggle in capturing
polysemous word senses (Haber and Poesio, 2020),
as evaluated against contextualized similarity judg-
ments and more work is still required to improve
baseline levels.

In Aim 2, we based our analysis on the first prin-
cipal components of the datasets, another interest-
ing venue would be to analyse the second principal
component as well.

In Aim 3, We use leave one word out CV. As
indicated by Utsumi (2020), this might be prob-
lematic for this dataset because it gives a rela-
tive advantage to left-out words that have many
semantically-similar words in the training set. Ut-
sumi (2020) predicts word-cluster features instead,
but the limitation of that method is in determining
cluster semantics. Chersoni et al. (2021) predict
both single-word and cluster semantics. The deci-
sion to use leave-one-word-out CV may contribute
to why some domains (e.g., Cognition) are pre-
dicted better than others, but does not contribute to
differences in prediction for different pruned fea-
ture sets, as in all cases the same 535 words are
mapped from GloVe to Binder features.

177

Finally, we consider that the dimensions high-
lighted by supervised pruning may be related to
the the set of words being compared, to the extent
that the similarity ratings are impacted by contrast-
relation in the specific category set. This is to say
that if similarity ratings were obtained for a differ-
ent set of, say, sports co-hyponyms, the dimensions
identified may differ.

References

Alessio Ansuini, Eric Medvet, Felice Pellegrino, and
Marco Zullich. 2020. On the similarity between hid-
den layers of pruned and unpruned convolutional neu-
ral networks:. In Proceedings of the 9th International
Conference on Pattern Recognition Applications and
Methods, page 52–59, Valletta, Malta. SCITEPRESS
- Science and Technology Publications.

Carlos Santos Armendariz, Matthew Purver, Matej Ular,
Senja Pollak, Nikola Ljubesic, M. Robnik-Sikonja,
Mark Granroth-Wilding, and Kristiina Vaik. 2019.
Cosimlex: A resource for evaluating graded word
similarity in context. In International Conference on
Language Resources and Evaluation.

Yuwei Bao, Barrett Lattimer, and Joyce Chai. 2023. Hu-
man inspired progressive alignment and comparative
learning for grounded word acquisition. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15475–15493, Toronto, Canada. Association
for Computational Linguistics.

Jeffrey R Binder, Lisa L Conant, Colin J Humphries,
Leonardo Fernandino, Stephen B Simons, Mario
Aguilar, and Rutvik H Desai. 2016. Toward a brain-
based componential semantic representation. Cogni-
tive neuropsychology, 33(3-4):130–174.

Emmanuele Chersoni, Enrico Santus, Chu-Ren Huang,
and Alessandro Lenci. 2021. Decoding word embed-
dings with brain-based semantic features. Computa-
tional Linguistics, 47:1–36.

Simon De Deyne, Amy Perfors, and Daniel J Navarro.
2016. Predicting human similarity judgments with
distributional models: The value of word associa-
tions. In Proceedings of COLING 2016, the 26th
international conference on computational linguis-
tics: Technical papers, pages 1861–1870.

Lee R Dice. 1945. Measures of the amount of ecologic
association between species. Ecology, 26(3):297–
302.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. arXiv
preprint arXiv:1605.02276.

Janosch Haber and Massimo Poesio. 2020. Word sense
distance in human similarity judgements and contex-
tualised word embeddings. In Proceedings of the
Probability and Meaning Conference (PaM 2020),
pages 128–145.

Jennifer Hu, Sammy Floyd, Olessia Jouravlev, Evelina
Fedorenko, and Edward Gibson. 2023. A fine-
grained comparison of pragmatic language under-
standing in humans and language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 4194–4213, Toronto, Canada. Associ-
ation for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4163–4174.

Alexandre Kabbach and Aurélie Herbelot. 2021. Avoid-
ing conflict: When speaker coordination does not
require conceptual agreement. Frontiers in Artificial
Intelligence, 3.

Philipp Kaniuth and Martin N. Hebart. 2021. Feature-
reweighted representational similarity analysis: A
method for improving the fit between computational
models, brains, and behavior. NeuroImage, 257.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Geon Yeong Park, Sangmin Lee, Sang Wan Lee, and
Jong Chul Ye. 2023. Training debiased subnetworks
with contrastive weight pruning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7929–7938.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Methods
in Natural Language Processing.

Joshua C. Peterson, Joshua T. Abbott, and Thomas L.
Griffiths. 2017. Evaluating (and improving) the corre-
spondence between deep neural networks and human
representations. Cognitive science, 42 8:2648–2669.

Krithika Ramesh, Arnav Chavan, Shrey Pandit, and
Sunayana Sitaram. 2023. A comparative study on the
impact of model compression techniques on fairness
in language models. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15762–
15782.

Russell Richie and Sudeep Bhatia. 2020. Similarity
judgment within and across categories: A compre-
hensive model comparison. Cognitive science, 45
8:e13030.

178

Eleanor Rosch, Carolyn B Mervis, Wayne D Gray,
David M Johnson, and Penny Boyes-Braem. 1976.
Basic objects in natural categories. Cognitive psy-
chology, 8(3):382–439.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Homa Priya Tarigopula, Scott Laurence Fairhall, and
Uri Hasson. 2021. Improved prediction of behav-
ioral and neural similarity spaces using pruned dnns.
bioRxiv.

Akira Utsumi. 2020. Exploring what is encoded in
distributional word vectors: A neurobiologically mo-
tivated analysis. Cognitive Science, 44(6):e12844.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi,
Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. 2023. Aligning large lan-
guage models with human: A survey. arXiv preprint
arXiv:2307.12966.

Edward J Wisniewski and Miriam Bassok. 1999. What
makes a man similar to a tie? stimulus compatibility
with comparison and integration. Cognitive psychol-
ogy, 39(3-4):208–238.

Canwen Xu and Julian McAuley. 2023. A survey on
model compression and acceleration for pretrained
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
10566–10575.

179

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 180–198
December 7, 2023. ©2023 Association for Computational Linguistics

When your Language Model cannot even do Determiners right: Probing for
Anti-Presuppositions and the Maximize Presupposition! Principle

Judith Sieker and Sina Zarrieß
Computational Linguistics, Department of Linguistics

Bielefeld University, Germany
{j.sieker, sina.zarriess}@uni-bielefeld.de

Abstract
The increasing interest in probing the linguistic
capabilities of large language models (LLMs)
has long reached the area of semantics and
pragmatics, including the phenomenon of pre-
suppositions. In this study, we investigate a
phenomenon that, however, has not yet been
investigated, i.e., the phenomenon of anti-
presupposition and the principle that accounts
for it, the Maximize Presupposition! princi-
ple (MP!). Through an experimental inves-
tigation using psycholinguistic data and four
open-source BERT model variants, we explore
how language models handle different anti-
presuppositions and whether they apply the
MP! principle in their predictions. Further, we
examine whether fine-tuning with Natural Lan-
guage Inference data impacts adherence to the
MP! principle. Our findings reveal that LLMs
tend to replicate context-based n-grams rather
than follow the MP! principle, with fine-tuning
not enhancing their adherence. Notably, our
results further indicate a striking difficulty of
LLMs to correctly predict determiners, in rela-
tively simple linguistic contexts.

1 Introduction

Presuppositions have held a significant position
in semantic and pragmatic studies over the past
decades (e.g., Beaver et al. (2021)). Also in the re-
search on linguistic knowledge represented in large
language models (LLMs) (Belinkov and Glass,
2019; Ettinger, 2020; Schuster and Linzen, 2022),
focus has shifted more and more towards explor-
ing LLMs’ capabilities in semantic and pragmatic
discourse processing (Ruis et al., 2022; Hu et al.,
2023; Sieker et al., 2023), encompassing the explo-
ration of presuppositions (Jiang and de Marneffe,
2019; Jeretic et al., 2020). In this context, the pri-
mary emphasis has largely been on classification
tasks, examining whether language models cap-
ture inferences triggered by presuppositions, using
datasets that were developed in particular for Natu-
ral Language Inference (NLI) tasks; and it became

apparent that LLMs mostly acquire surface-level
patterns rather than deeply engaging with underly-
ing knowledge representations (Jeretic et al., 2020;
Kabbara and Cheung, 2022; Cong, 2022).

Our goal in this paper is to explore whether pre-
suppositions and, in particular, pragmatic princi-
ples underlying the phenomenon of presupposi-
tions, are captured in LLMs that are pretrained on
large text corpora. Rather than relying on NLI sen-
tence classification tasks, which typically involve
various aspects of semantic and pragmatic linguis-
tic knowledge, we aim to introduce a controlled
linguistic diagnostic following the idea of minimal
pair analysis, which has been well established in
work on diagnosing syntactic knowledge in LLMs
(Warstadt et al., 2020). More specifically, in this
study, our focus lies on a special kind of presup-
position that, despite its comparable prevalence in
language, has not yet received equivalent attention
in research, the so-called anti-presupposition (Per-
cus, 2006) and, furthermore, the pragmatic princi-
ple that accounts for it, Heim (1991)’s Maximize
Presupposition! principle (MP!).

Given that anti-presupposition triggers are sim-
ple instances found in minimal pairs that exhibit
a clear preference for one trigger over the other
(see Section 2), they present an optimal oppor-
tunity to explore the degree to which language
models incorporate linguistic competencies, par-
ticularly pragmatic principles like the MP! prin-
ciple. Still, to the best of our knowledge, it has
remained unexplored how LLMs deal with anti-
presuppositions and, beyond, whether they con-
sider the MP! principle as part of their predictive
processes. In this paper, we use a simple mini-
mal pair analysis that tests the LLMs’ ability to
predict determiners, when being presented with
contexts featuring anti-presupposition triggers, uti-
lizing data sourced from the field of psycholin-
guistics. Given that determiners rank among the
most frequent words in many languages, it may be

180

expected that LLMs are able to not only pick up
their surface-level occurrence patterns, but learn
deeper generalizations about their discourse-level
functions and principles of use. Yet, as we show
in this paper, LLMs show a striking difficulty to
correctly predict determiners in our diagnostic set-
up, challenging the idea that determiners pose only
minimal challenges for LLMs (Yang et al., 2023)
and supporting the hypothesis that they struggle
with fundamental aspects of linguistic reasoning.

In the following, Section 2 presents background
on anti-presuppositions and the Maximize Presup-
position! principle as well as prior research in the
domain, Section 3 describes the setup of our exper-
imental investigation and Section 4 describes the
results.

2 Background

(Anti-)presuppositions. Presuppositions are
background information or information that inter-
locutors assume to be part of the common ground
(Stalnaker, 1973). Generally, presuppositions
are introduced by particular words or syntactic
constructions, so-called presupposition triggers
(Beaver et al., 2021). For instance, in Example (1),
taken from Schneider et al. (2019), the indefinite
determiner a triggers the presupposition that there
is more than one (unique) pen.

(1) Please hand me a pen.

What is more, the indefinite determiner raises an
intriguing linguistic question, leading us to the cen-
tral focus of this paper: Its classification is uncer-
tain in terms of whether it triggers a presupposi-
tion or is more fittingly categorized as a so-called
anti-presupposition (Percus, 2006). That is, cer-
tain expressions containing presupposition triggers
might appear inappropriate in situations where the
truth of a presuppositionally stronger element is
implied – in other words, where the presupposition-
ally stronger element is part of the common ground
(cf., e.g., Percus (2006), Schneider et al. (2019),
Blunier (2022)). For a clearer illustration, see (2),
where the presupposition that there is precisely one
sun is fulfilled in the common ground, therefore,
making the sentence appear odd.

(2) A sun is shining.

More precisely: The determiner "the" carries a
stronger presupposition compared to the indefi-
nite determiner "a" (i.e., it is presuppositionally

stronger), as "the" implies both existence and
uniqueness. Therefore, in (2), using the indefinite
determiner becomes inappropriate, as it is estab-
lished that only one entity of the mentioned type
exists. Similarly, uttering (1) is appropriate in a
context with three pens and a single pencil, yet it
is unsuitable in a context featuring only one pen
and three pencils. In the latter, due to uniqueness,
a definite determiner would be anticipated.

Like presuppositions, anti-presuppositions are
associated with specific words or constructions.
Apart from the (in-)definite determiners, other trig-
gers include both and all, as well as the verbs know
and believe, see (3) and (4) from Percus (2006).

(3) John assigned the same exercise to all of
Mary’s students. –> anti-presupposes that
Mary has exactly two students.

(4) Mary believes that Jane is pregnant. –>
anti-presupposes that Jane is pregnant.

Maximize presupposition! principle (MP!).
The phenomenon of anti-presuppositions can be at-
tributed to a broader pragmatic principle proposed
by Heim (1991), adding to Grice (1975)’s conversa-
tional maxims. This principle is known as the Max-
imize Presupposition! principle (MP!), and it states:
Presuppose as much as possible! Essentially, MP!
accounts for anti-presuppositions by proposing that
sentences will be blocked in contexts where other
sentences with stronger presuppositions (while be-
ing identical in all other respects) would convey the
same meaning. In other words, MP! mandates the
speaker to always use the strongest presupposition
among a set of alternatives, provided that these pre-
suppositions are fulfilled (Percus, 2006; Schneider
et al., 2019; Blunier, 2022; Panzeri and Foppolo,
2021). For example, in the case of (4), MP! pre-
dicts that Jane is not pregnant. This is because if
she were indeed pregnant, the speaker would have
chosen the alternative "know" (which would intro-
duce the presupposition of Jane’s pregnancy). Put
differently: when hearing (4), the hearer assumes
that the presupposition of the stronger alternative
is false, that is, the presupposition of the stronger
alternative is anti-presupposed. Similarly, we can
explain the anti-presupposition in (3): Here, "both"
blocks the use of a sentence containing "all" since
"both" represents the presuppositionally stronger
alternative. However, it’s essential to note that (anti-
)presuppositions are context-dependent, meaning
that they need to be evaluated in relation to the

181

knowledge or beliefs shared between the conversa-
tional participants (e.g., Beaver et al. (2021)). For
instance, revisiting (3) in a specific context where
"Mary is a new teacher at a small, private school,
and John is her colleague who knows that Mary
has only two students," the interpretation of (3)
changes. I.e., in this context, (3) no longer gives
rise to the same anti-presupposition as it would
without this additional information.

Related Work. Research from psychol-
ogy and psycholinguistics has explored anti-
presuppositions and the MP! Principle, albeit with
much lesser emphasis compared to other pragmatic
principles or phenomena. For example, both
Yatsushiro (2008) and Panzeri and Foppolo (2021)
examined whether children are sensitive to the MP!
principle. Both studies both found an evolutionary
trend, wherein sensitivity to the principle increased
with age. Furthermore, Bade and Schwarz (2021)
conducted four experiments to investigate the
derivation of inferences triggered by different
anti-presupposition triggers, finding results in
support of the MP! principle. Also, Schneider
et al. (2019) investigated the processing efforts of
English definite and indefinite determiners. They
employed a mouse-tracking study and found that
processing of the indefinite determiner is more
difficult than processing the definite determiner, as
well providing evidence for the MP! principle.

Now, when it comes to investigating anti-
presuppositions and the MP! principle within the
realm of language models, there seems to be a
gap in research. However, in general, there is an
increasing interest in examining the linguistic capa-
bilities captured in LLMs, often facilitated through
the utilization of linguistic test suites and experi-
mental datasets (e.g., Belinkov and Glass (2019);
Ettinger (2020)). And, while much previous re-
search has concentrated on dissecting the syntactic
competence of LLMs (e.g., Hu et al. (2020); Mar-
vin and Linzen (2018)), recent investigations have
extended to exploring the prowess of LLMs in se-
mantic and pragmatic discourse processing (e.g.
Ruis et al. (2022); Hu et al. (2023); Sieker et al.
(2023)). Overall, as illustrated by, e.g., Chang and
Bergen (2023), it appears that LLMs are capable of
performing basic logical reasoning tasks; yet, they
still face challenges when confronted with complex
reasoning.

In the context of exploring presuppositions
within the field of LLMs, one case study, for ex-

ample, is carried out by Jeretic et al. (2020). Their
investigation centered around the extend to which
NLI models are able toy capture the inferences trig-
gered by presuppositions (and implictures), leading
to mixed results. For example, their findings sug-
gest that the BERT model rejects presuppositions
involving numeracy (e.g., those containing the trig-
ger "both") and that, in general, language models
occasionally lack knowledge of basic word mean-
ings. Furthermore, Kabbara and Cheung (2022)’s
study, which consisted of fine-tuning LLMs on
Jeretic et al. (2020)’s ImpPres dataset to assess
their performance on tasks involving presupposi-
tions, indicated that the models predominantly re-
lied on surface-level lexical and structural cues,
rather than engaging in any form of pragmatic rea-
soning. Cong (2022) conducted a minimal pair
analysis of presuppositions (and scalar implicaturs),
also by fine-tuning LLMs on Jeretic et al. (2020)’s
ImpPres dataset, testing the language models on a
cloze task. The results yieled a mixed picture, for
example, revealing that GPT-3’s performance was
mostly at chance, whereas DistillBERT displayed
some understanding of the implications.

The preceding studies concerning the pragmatic
knowledge captured in LLMs (not only, but also
in the area of presuppositions) highlight that the
models face notable challenges in this domain, es-
pecially when dealing with more complex forms
of reasoning. Nonetheless, these discoveries also
emphasize the valuable role of psycholinguistic
datasets when evaluating the (pragmatic) linguistic
capabilities of language models. Given that the
study of anti-presuppositions and the MP! princi-
ple has yet to be examined within the context of
language models, i.e., representing a domain that
awaits exploration, we approach this task by incor-
porating carefully controlled psycholinguistic data,
which we will outline in the next section.

3 Experimental Setup

We investigate whether language models follow
the MP! principle by analyzing their predictions
involving two different anti-presupposition triggers.
To carry out this investigation, we conduct minimal
pair analyses. This paradigm involves contrasting
two linguistic items that are nearly identical except
for a single aspect and is, therefore, particularly
well-suited for investigating anti-presuppositions
as these tend to appear in pairs. Furthermore, the
technique of minimal pair analysis is not only com-

182

monly employed in linguistic experiments, but it
has also been shown by several studies that it can
furthermore be a productive approach for investigat-
ing the linguistic properties captured in language
models (e.g., Marvin and Linzen (2018); Warstadt
et al. (2020); Cong (2022); Hu and Levy (2023)).1

Data. We ground our study on German data from
Schneider et al. (2019), who investigated the MP!
principle with regards to definite and indefinite de-
terminers in the context of visualized stories.2 The
data from Schneider et al. (2019) offer a valuable
avenue to investigate anti-presuppositions, given
that (anti-)presuppositions are sensitive to context,
i.e., their interpretation very much depends on the
shared knowledge or beliefs among the conversa-
tional participants (cf. Section 2).

Concretely, in their study, Schneider et al. (2019)
utilized mouse-tracking to examine how definite
and indefinite determiners are processed, both
when used felicitously and infelicitously. For this,
participants were asked to judge the appropriate-
ness of sentences in the context of a visualized
story. Each experimental trial began with a con-
text that featured a shopping basket with three
pieces of fruit, accompanied with a context sen-
tence, such as "Jan’s mother was shopping. She
bought one banana and two pears". Then, par-
ticipants were presented with the next part of the
story, where Jan received one of the initially intro-
duced fruit (e.g., "Of these, Jan received the ba-
nana."), and asked to judge this stimulus sentence
against the provided context by selecting "true" or
"false" response boxes. Schneider et al. (2019)’s
study had six conditions, resulting from combining
two determiners (definite vs. indefinite) with three
types of sentences (false vs. felicitous vs. infelic-
itous). While in infelicitous conditions the (anti-
)uniqueness presupposition of the determiner used
in the stimulus sentence was violated, in felicitous
conditions, the context satisfied this presupposition:
That is, for definite determiners, Jan received the
unique fruit, while for indefinite determiners, Jan
received one of the non-unique fruits. Cf. (5) for
sentences examples of the felicitous conditions.3

1All source code for replicating the experimental in-
vestigations can be found here: https://github.com/clause-
bielefeld/antipresuppositions.

2Their data is publicly available here: https://osf.io/w5yr4/.
3As in our study we only make use of the felicitous condi-

tions to investigate MP! in LLMs, we will not further elaborate
on the other conditions. Please refer to the original paper for
more details, also regarding the experimental setup.

(5) Context: Jan’s mother was shopping. She
bought one banana and two pears.
a. Felicitous definite: Of these, Jan re-

ceived the banana.
b. Felicitous indefinite: Of these, Jan

received a pear.

Schneider et al. (2019) find, among other things,
that, for both felicitous and infelicitous conditions,
the mouse cursor’s deviation towards the final re-
sponse location commenced later for sentences
with indefinite determiners, and in general, that
there was a delay in response for infelicitous sen-
tences. Their findings, thus, indicate that pro-
cessing indefinite determiners is more challenging
than processing definite determiners, providing ev-
idence in support of the MP! principle.

Prompts. We utilize Schneider et al. (2019)’s ex-
perimental items to construct prompts, in which
we mask the position of the definite and indefinite
determiners, respectively, allowing us to test the
language models’ predictions for these words (and
with it to investigate whether determiners really
are "easy" words for LLMs (Yang et al., 2023)).
Prompts always consist of a context sentence, fol-
lowed by the sentence that contains the masked
determiner, i.e. they follow the format in (6).

(6) Jan’s mother was shopping. She bought
one {unique_fruit} and two {non-unique
fruits}. Of these, Jan received [MASK]
{unique_fruit | non-unique fruit}.

Just like in Schneider et al. (2019)’s study, the
second sentence of a prompt starts with the word
"Davon" ("Of these") to underscore that Jan re-
ceived a fruit from the three fruits introduced in the
context sentence. To evaluate if the choice of the
proper name "Jan" influenced the language mod-
els’ performance, we experimented with alternative
names, including potentially more internationally
recognized ones like "Tom" or "Peter." As it turned
out, the choice of names did not yield any dis-
cernible differences in the results. Therefore, we
opted to retain Schneider et al. (2019)’s original
prompts. And, as well similar to Schneider et al.
(2019), we employ seven fruit types (Banane (ba-
nana), Zitrone (lemon), Orange (orange), Birne
(pear), Ananas (pineapple), Pflaume (pear), Erd-
beere (strawberry)), each paired with the feminine
determiner to prevent early disambiguation and en-
sure consistency in sentence structure. The absence

183

Context: Jan’s mother was shopping. She bought one
banana and two pears.

(a) Unique fruit:
Of these, Jan re-
ceived [the | a]
banana.

(b) Non-unique
fruit: Of these,
Jan received [a |
the] pear.

(c) Pair of fruits:
Of these, Jan re-
ceived [both |
all] pears.

Figure 1: Exemplified conditions of our study (images in-
cluded for illustration purposes only).

of any fruit starting with a vowel further offers the
advantage of obviating the need to elicit the proba-
bility of English "an".

Conditions. In our study, we make use of the fe-
licitous definite and felicitous indefinite conditions
(cf. (5)), which we refer to as unique fruit and
non-unique fruit condition, respectively (cf. Fig-
ure 1). Furthermore, we go beyond Schneider et al.
(2019)’s original design and introduce supplemen-
tary conditions to enhance the robustness of our de-
sign and derive more insightful conclusions about
the potential existence of the MP! principle in lan-
guage models. That is, on the one hand, we extend
the original German data with its corresponding
English translations, following the pattern as seen
in (6), for instance. Firstly, this allows to explore
possible crosslingual differences. Secondly, as in
English we introduce the unique fruit with the nu-
meral "one" (e.g., "She bought one banana"), this
allows us to investigate the inability to interpret the
indefinite determiner as a numeral, a contrast to
the German "eine" where such an interpretation is
feasible (cf. Schneider et al. (2019)).

On the other hand, we include another min-
imal pair in our investigation, namely the anti-
presupposition triggers "beide" (both) and "alle"
(all), referred to with the pair of fruits condition
(cf. Figure 1). These triggers are not only well
compatible with the experimental items, they fur-
ther allow us to investigate potential differences
between anti-presupposition triggers and to com-
pare our investigation to other studies that included
these triggers, e.g., Jeretic et al. (2020) (see Section
2). To investigate both and all, we retain the sen-
tence structure and keep the masked token at the
same position as in (6), and simply change the num-

ber of the received fruit to the plural form. Here, as
both is "presuppositionally stronger" than all (see
Section 2), language models should predict "both"
rather than "all" if they follow the MP! principle in
their predictions.

All together, for both English and German, we
investigate whether LLMs adhere to the MP! prin-
ciple when making predictions with the conditions
summarized and exemplified in Figure 1.4 In ac-
cordance with MP!, the language models should
predict the word highlighted in green with a higher
score compared to the word highlighted in red.

Models. We use the Hugging Face framework for
reproducibility, employing their Fill-Mask-pipeline
and the models listed below:

1. bert-base-german-cased (for German)
2. bert-base-cased (for English)
3. bert-base-multilingual-cased (for German and

English)
4. xlm-roberta-base (for German and English)

We focus our investigation on BERT and BERT
model variants. As we are interested in evaluat-
ing whether language models adhere to the MP!
principle, and fine-tuned models do not necessarily
reflect the linguistic properties of language mod-
els in general (cf. Ettinger (2020) or Chang and
Bergen (2023)), we center our investigation on the
predictions of these base models. However, due to
less favorable outcomes regarding the models’ com-
pliance with the MP! principle, we also investigate
whether there could be an effect from fine-tuning
these models on exisiting NLI datasets. Further-
more, even though recent LLM evaluations strongly
rely on ChatGPT or GPT-4 (e.g., Cai et al. (2023),
Kocoń et al. (2023)), we omit such models from
our analysis. This is motivated by the absence of
token probability access through the OpenAI API.
Furthermore, in line with Hu and Levy (2023), we
are of the view that that restricting our interactions
with LLMs to high-level prompting might result in
missing the opportunity to measure and understand
their linguistic capabilities more comprehensively.

For fine-tuning the models, we make use of
Wang et al. (2019)’s SuperGLUE benchmark.5 We

4For simplicity, Figure 1 shows only the English version.
5That is, of its BoolQ (Boolean Questions, Clark et al.

(2019)), COPA (Choice of Plausible Alternatives, Roemmele
et al. (2011)), MultiRC (Multi-Sentence Reading Comprehen-
sion, Khashabi et al. (2018)), CB (CommitmentBank, de Marn-
effe et al. (2019)), and RTE (Recognizing Textual Entailment)
datasets.

184

Figure 2: Mean probability scores of definite and indefinite
determiners for the unique fruit and non-unique fruit condi-
tions, as exemplified in Figure 1. German on the left, English
on the right. Results are aggregated over the individual LLMs.

preprocess the data by concatenating the pertinent
input sequences (similar to Raffel et al. (2019)) and
then masking the specific minimal pairs of inter-
est (i.e., the words "the," "a," "all," and "both").
We fine-tune all models on approximately 10.000
datapoints, using three epochs, a learning rate of
2e-5 and a weight decay of 0.01. As the Super-
GLUE benchmark is available in English only, we
investigate fine-tuning only for English data.6

Evaluation. To assess whether the LLMs adhere
to the MP! principle in their predictions, we prompt
the models with our sentences and get their 150
predicted words and respective probability scores
for the masked token. Our assumption is that a
language model adheres to the MP! principle in
its predictions when the score for the felicitous to-
ken (e.g., "the"/"die" in the unique fruit condition)
surpasses the score for the infelicitous token (e.g.,
"a"/"eine" in the unique fruit condition). We calcu-
late Ettinger (2020)’ metrics of Completion Sensi-
tivity and Prediction Accuracy. With Completion
Sensitivity, we measure the percentage of items
for which the models assign a higher score to the
felicitous token than to the infelicitous token. With
Prediction Accuracy, we calculate the percentage
of items for which the felicitous token is among the
model’s top k predictions. Further, in the Tables
in Appendix A.2, we collect all mean probability
scores. The efficacy of using such direct proba-
bility measurements for assessing language model
generalization capabilities has been shown by, for
example, Hu and Levy (2023) and Hu et al. (2023).

4 Results and Discussion

Determiners. Figure 2 depicts the probability
scores for the definite and indefinite determiners,

6Cf. Appendix A.1 for preprocessed examples of each
dataset. Also, see the github (https://github.com/clause-
bielefeld/antipresuppositions) for more specifics on the data
preprocessing and the fine-tuning approach.

for German and English data, aggregated over the
individual models (but see Table 3 in the Appendix
for results separated for models). Strikingly, com-
paring the two determiners across languages and
conditions (and also models, cf. Table 3), the indef-
inite determiner is predominantly predicted with
the highest score. Thus, the definite determiner
is predicted with exceedingly low scores, even in
the unique fruit condition; this is particularly no-
ticeable for German. In English, the indefinite
determiner also obtains highest scores across the
conditions, however, the scores for the indefinite
determiner are notably lower. Remarkably, in Ger-
man, the indefinite determiner receives a higher
score even in the unique fruit condition compared
to the non-unique fruit condition. Furthermore, the
Completion Sensitivity scores displayed in Table
1 highlight that while all models attain 100% or
nearly 100% in the non-unique fruit condition, the
highest score of the unique fruit condition is at only
14.29%, achieved by the bert-base-multilingual-
cased model. Still, as visible in the Prediction
Accuracy scores in Table 2, the definite determiner,
despite not being favored over the indefinite deter-
miner as expected by the MP! principle, appears
within the top three predictions in the unique fruit
condition for most models.

With this distribution it may seem that the mod-
els adhere to the MP! principle in their predictions
at least for the non-unique fruit condition. However,
we posit that this observed distribution, instead, is
a result of the LLMs merely repeating the singu-
lar determiner or numeral present in the context
of the prompt. This interpretation is supported by
the crosslingual comparison: in German, the de-
terminer "eine" is a homonym for the indefinite
determiner "a" and the numeral "one" in English,
and the German LLMs repeat this word in all con-
ditions. Plus, in the English prompts, where the
unique fruit is introduced with the numeral "one",
the LLMs clearly favour to predict this numeral in
the continuation, across both conditions, as shown
in Figure 2.

Turning our attention now to the results of the
fine-tuned models which are presented in Appendix
A.2.1. First, in Table 7, we can observe consistently
higher values for the two determiners and notably
lower values for the number "one", across all mod-
els. Thus, fine-tuning on NLI data indeed seems
to have a substantial effect on the prediction of the
models. However, the models continue to exhibit

185

model lang. unique n-unique pair
bert-base-german-cased DE 0 100 85.71
bert-base-cased EN 14.29 85.71 90.48

bert-base-multilingual-cased
DE 7.14 92.86 7.14
EN 14.29 85.71 0

xlm-roberta-base
DE 7.14 92.86 80.95
EN 0 100 100

Table 1: Completion Sensitivity scores for the unique fruit
(here: "unique"), non-unique fruit (here: "n-unique") and pair
of fruits (here: "pair") conditions, cf. Figure 1.

model lang. unique n-unique pair
bert-base-german-cased DE 95.24 100 59.52
bert-base-cased EN 0 85.71 4.76

bert-base-multilingual-cased
DE 100 85.71 85.71
EN 100 85.71 0

xlm-roberta-base
DE 80.95 78.57 83.33
EN 16.67 100 85.71

Table 2: Prediction Accuracy scores for for the unique fruit
(here: "unique"), non-unique fruit (here: "n-unique") and pair
of fruits (here: "pair") conditions, cf. Figure 1. For unique
fruit and non-unique fruit conditions k = 3, for pair of fruits
condition k = 40.

a clear inclination toward predicting the indefinite
determiner more strongly than the definite deter-
miner, again also within the unique fruit condition.
This is also supported by the Completion Sensi-
tivity scores in Table 5. Further, although Com-
pletion Sensitivity in the unique fruit condition for
the fine-tuned xlm-roberta model slightly improves,
all other values remain unchanged. However, the
Prediction Accuracy scores in Table 6 show that
the determiners are now almost always among the
top three predictions, which is an improvement, for
example, for the bert-base-cased and xlm-roberta-
base models in the unique fruit condition. Still,
overall, fine-tuning on NLI data does not seem to
have resulted in the models adhering more closely
to the MP! principle or decreasing their reliance
on replicating bigrams from the provided context.
Rather, the results indicate that masking the deter-
miners during fine-tuning has caused the models
to overly predict these words without effectively
capturing underlying linguistic patterns.

"Both" and "all". The outcomes concerning
our supplementary condition pair of fruits involv-
ing the presupposition triggers "beide"/"both" and
"alle"/"all" are depicted in Figure 3 (see Table 4
in the Appendix for results separated for models).
First, it is noteworthy that the scores assigned to
these anti-presupposition triggers in both German

Figure 3: Mean probability scores of "beide"/"both" and
"alle"/"all" for the pair of fruits condition, as exemplified
in Figure 1. As scores were so small, we use a logarithmic
scale instead of a linear scale. German on the left, English on
the right. Results are aggregated over the individual LLMs.

and English are notably low. Thus, in general, the
models rarely predict "beide"/"both" or "alle"/"all"
when prompted with our sentences. This is also
substantiated by the fact that we had to adjust the
parameter k to a value of 40 when calculating the
Prediction Accuracy for this condition, in order
to obtain comparable values at all (cf. Table 2).
Further, we can observe that the German triggers
"beide" and "alle" are predicted with a higher proba-
bility compared to their English counterparts. How-
ever, only for English, "both" is predicted with a
higher probablity than "all", as expected according
to the MP! principle.

Intriguingly, we find noticeable differences be-
tween the models, as, for example, shown by the
Completion Sensitivity in Table 1. For instance,
while the results for the models bert-base-german-
cased and xlm-roberta-base may suggest that these
two models, to some extent, adhere to the MP!
principle in their predictions, the results of the
bert-base-multilingual-cased model speak other-
wise (also visible in Table 4). Given the overall re-
markably low values for the words "both" and "all",
we further examined the predicted words and scores
for the numerals "zwei"/"two", "drei"/ "three" and
"vier"/"four" (cf., e.g., Figure 3 again). Clearly, we
find that the models predominantly predict numbers
for the masked tokens and, particularly the num-
ber "zwei"/"two", which, in this context, appears
to be sensible. Intriguingly, however, the models
also tend to predict those numbers that do not align
with the given context at all. That is, if the context
indicates that the mother only bought two bananas,
Jan should not be receiving three or more of them.
Interestingly, these results are reminiscent of the
outcomes observed by Jeretic et al. (2020). On the
one hand, they suggest a potential deficiency in the
models’ comprehension of basic word meanings,
such as that of the term "two". On the other hand,
these authors similarly encountered challenges for

186

LLMs when dealing with presuppositions involv-
ing numeracy (cf. Section 2). We posit that the
general inclination to predict numerals in this con-
dition, and especially the number "zwei"/"two",
might again be attributed to the models relying
on (and replicating) words detected in the prompt
rather than considering pragmatic principles such
as the MP! principle.

If we now briefly examine the scores of the fine-
tuned models for this condition too, as shown in
the Tables in Appendix A.2.1, it is evident that,
even though there seems to be some enhancement
in predictions concerning the adherence to the MP!,
across all models, numbers (including those that do
not make sense in the given context) are still pre-
dicted with the highest probability. These results,
thus, again suggest that fine-tuning on NLI data
does not enhance the models’ capacity to adhere to
the MP! principle in their predictions. Instead, they
underscore that the models continue to replicate
patterns from the context of the prompts, much like
the outcomes observed in the other conditions. The
rather limited difference in values between fine-
tuned and base models for "all" and "both," unlike
the distinct contrast observed for "the" and "a",
could potentially stem from the less frequent occur-
rence of the words "all" and "both" in the datasets
compared to the determiners.7 See Section A.2.1
for a more detailled discussion of the results of the
fine-tuned models in the pair of fruits condition.

Additional conditions. In order to gain further
support for our finding that the LLMs primarily re-
peat patterns from the provided context, we exam-
ined additional conditions (with models and evalua-
tion metrics remaining the same) and provide them
in the Appendix: the conditions are documented in
examples (7) to (11) in Appendix A.2.2, the results
can be found in the subsequent Tables 9 to 14. We
will briefly summarize these here.

The conditions (7), (8) and (9) were constructed
to further examine the notion that the models pre-
dominantly reproduce words from the prompt when
making predictions. This was achieved by incor-
porating the target words into the context of the
prompts. The results provided in Tables 9, 10 and
11, respectively, make the impression that all mod-
els in all conditions (and languages) now follow
the MP! principle. However this alignment, in-
stead, implies a departure from the principle itself:
The tendency to now predict the words "die/"the",

7Which is, e.g., visible in the examples in Appendix A.1.

"beide"/"both" as well as "a" for English with a
higher score can be traced back to these words be-
ing introduced in the context sentence. In other
words, these results support our proposition that
LLMs primarily adhere to context-based bigrams
and replicate them in their predictions, rather than
operating in accordance with the MP! principle.

Next, see the conditions (10) and (11), aimed
at investigating the possibility of "manipulating"
the language models – not through fine-tuning, but
via an alternative form of prompting – in order
to encourage them to align more closely with the
MP! principle. The results depicted in Tables 12
to 11 show that neither of the two strategies has
succeeded in shifting the models’ predictions to-
wards the MP! principle. That is, all the Tables
exhibit a striking resemblance in their distribution
to their corresponding counterparts from the initial
experiment. Furthermore, it appears that partic-
ularly the scenario where the prompt is enriched
with additional information ((11)) has no (or even
a negative) influence on the models’ predictions –
which could once again imply that language mod-
els occasionally struggle with basic word meanings
(cf. Jeretic et al. (2020)).

Recap and comparative analysis. Summing up,
our investigation shows that the LLMs investigated
here do not follow the MP! principle when pre-
dicting masked tokens. That is, the results across
all our conditions (i.e., those presented in Figure 1
and in (7) to (11)) strongly support the interpreta-
tion that the models’ alternative strategy is based
on replicating words detected in the given input
prompt. With these results, we find analogies to
existing research. For example, similar to some of
Ettinger (2020)’s results on the CPRAG-102 test,
our findings suggest that LLMs do not appropri-
ately take into account the context provided by the
preceding sentence. Also, our findings point to
a potential deficiency in the models’ comprehen-
sion of basic word meanings and challenges when
dealing with presuppositions involving numeracy,
a shortcoming also noted by Jeretic et al. (2020).
And while Parrish et al. (2021) found that within
their NOPE dataset, which consists of natural lan-
guage examples, numerical determiners presented
only minor challenges for NLI models, they too
encountered similar challenges with newer models
when testing them on Jeretic et al. (2020)’ ImpPres
dataset. Additionally, our findings point to an in-
adequacy of BERT model variants in effectively

187

acquiring representations of entities – a factor that
has been demonstrated to enhance the quality of
generated text – aligning with observations made
by, for example, Févry et al. (2020) and Yamada
et al. (2020). And, what is more, our results show
great resemblance to those of Kim et al. (2019)
who investigated language models’ understanding
of function words. While their study wasn’t fo-
cused on testing for MP!, it revealed that a probing
classifier could not differentiate between correct
and incorrect uses of definite or indefinite articles
any better than chance, too countering the notion
that determiners only present minimal challenges
for LLMs (Yang et al., 2023).

5 Conclusion

This paper investigated whether LLMs follow
the MP! principle by analyzing their predictions
involving two different minimal pairs of anti-
presupposition triggers, i.e., expanding prior work
on probing the semantic and pragmatic discourse
knowledge captured in LLMs. Our findings re-
veal that the language models we studied do not
follow the MP! principle when predicting masked
determiners but, instead, tend to repeat words from
the given input prompt. Furthermore, we find that
fine-tuning language models on NLI datasets does
not enhance their capacity to adhere to the MP!
principle; rather, it appears to lead to an excessive
prediction of the triggers of interest, devoid of cap-
turing underlying linguistic patterns. The observed
deviation from the MP! principle contrasts with
the assumption that determiners only pose minimal
challenges for LLMs (Yang et al., 2023) and lends
further support for the hypothesis that these models
cannot truly grasp and reflect fundamental aspects
of language use that govern presupposition and
pragmatics. However, it’s important to acknowl-
edge that our conclusions are based on our choice
of models and a relatively limited range of exam-
ples, and further research is needed to confirm and
qualify this observation.

Considering that (anti-)presuppositions are om-
nipresent in everyday language, it is imperative
for language models to effectively capture them,
for example, in tasks such as Question Answering
(Kim et al., 2021; Yu et al., 2023). Therefore, fu-
ture research directions might involve exploring
the potential utility of Visual Question Answering
tasks to gain deeper insights into the models’ un-
derstanding of prompts and whether they are able

to appropriately represent discourse entities within
them.

Limitations

While our study provides valuable insights into
the behavior of LLMs regarding the MP! principle,
we acknowledge the limitations of our approach
that may restrict the generalizability of our results.
One major limitation of our work is its confine-
ment to a singular domain, i.e., to the context re-
lated to fruits, which we adopted from Schneider
et al. (2019). While this delimited context was suf-
ficient to illustrate the lack of MP! adherence in
the studied language models and their difficulty to
predict determiners, it would be beneficial to en-
compass a broader set of contexts and various types
of prompts (or anti-presupposition triggers), in or-
der to ascertain the generalizability of our findings.
Another limitation of our study pertains to the lim-
ited exploration of differences between individual
LLMs and to employing one fine-tuning-approach
only, owing to space limitations. Additionally, we
did not investigate language models from alternate
families, for example, including those based on the
GPT architecture. This limitation stemmed in part
from the challenge of devising suitable prompts for
such models. Therefore, we recognize the need for
further research that encompasses a broader range
of models of different sizes and training objectives,
a more diverse set of templates, and an increased
dataset size to achieve a more comprehensive un-
derstanding of how LLMs interact with the MP!
principle.

Ethics Statement

The data we used in this study was obtained either
from psycholinguistic publications or was gener-
ated by the authors without the use of harmful con-
tent. Additionally, no experiments were conducted
involving human participants, and no new mod-
els or datasets are being introduced. The primary
objective of this paper is to provide insights into in-
ternal knowledge of modern LLMs and contribute
to enhancing their interpretability. Therefore, while
we do not foresee any ethical concerns specific to
this paper, the broader ethical concerns pertaining
to LLMs remain of relevance to our research (cf.,
e.g., Bender et al. (2021).

188

Acknowledgements

The authors acknowledge financial support by the
project “SAIL: SustAInable Life-cycle of Intelli-
gent Socio-Technical Systems" (Grant ID NW21-
059A), an initiative of the Ministry of Culture and
Science of the State of Northrhine Westphalia.

References
Nadine Bade and Florian Schwarz. 2021. New data

on the competition between definites and indefinites.
Experiments in Linguistic Meaning, 1(0):15–26.

David I. Beaver, Bart Geurts, and Kristie Denlinger.
2021. Presupposition. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy, Spring
2021 edition. Metaphysics Research Lab, Stanford
University.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

David Blunier. 2022. Antipresuppositions, logophors
and shifted indexicality. In Proceedings of the 23rd
Amsterdam Colloquium., pages 45–54.

Zhenguang G Cai, David A Haslett, Xufeng Duan,
Shuqi Wang, and Martin J Pickering. 2023. Does
ChatGPT resemble humans in language use?

Tyler A Chang and Benjamin K Bergen. 2023. Lan-
guage model behavior: A comprehensive survey.
arXiv.org.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Yan Cong. 2022. Psycholinguistic diagnosis of lan-
guage models’ commonsense reasoning. In Proceed-
ings of the First Workshop on Commonsense Repre-
sentation and Reasoning (CSRR 2022), pages 17–22,
Dublin, Ireland. Association for Computational Lin-
guistics.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The CommitmentBank: Inves-
tigating projection in naturally occurring discourse.
Proceedings of Sinn und Bedeutung, 23.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En-
tities as experts: Sparse memory access with entity
supervision. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4937–4951, Online. Association
for Computational Linguistics.

H. P. Grice. 1975. Logic and Conversation, pages 41 –
58. Brill, Leiden, Niederlande.

Irene Heim. 1991. Artikel und Definitheit, pages 487–
535. De Gruyter Mouton, Berlin • New York.

Jennifer Hu, Sammy Floyd, Olessia Jouravlev, Evelina
Fedorenko, and Edward Gibson. 2023. A fine-
grained comparison of pragmatic language under-
standing in humans and language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 4194–4213, Toronto, Canada. Associ-
ation for Computational Linguistics.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725–1744, Online. Association for Computational
Linguistics.

Jennifer Hu and Roger Levy. 2023. Prompt-based meth-
ods may underestimate large language models’ lin-
guistic generalizations.

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and
Adina Williams. 2020. Are natural language infer-
ence models IMPPRESsive? Learning IMPlicature
and PRESupposition. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8690–8705, Online. Association
for Computational Linguistics.

Nanjiang Jiang and Marie-Catherine de Marneffe. 2019.
Do you know that florence is packed with visitors?
evaluating state-of-the-art models of speaker commit-
ment. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
4208–4213, Florence, Italy. Association for Compu-
tational Linguistics.

Jad Kabbara and Jackie Chi Kit Cheung. 2022. Inves-
tigating the performance of transformer-based NLI
models on presuppositional inferences. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 779–785, Gyeongju,

189

Republic of Korea. International Committee on Com-
putational Linguistics.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what differ-
ent NLP tasks teach machines about function word
comprehension. In Proceedings of the Eighth Joint
Conference on Lexical and Computational Semantics
(*SEM 2019), pages 235–249, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Najoung Kim, Ellie Pavlick, Burcu Karagol Ayan, and
Deepak Ramachandran. 2021. Which linguist in-
vented the lightbulb? presupposition verification for
question-answering. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3932–3945, Online. Association
for Computational Linguistics.

Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz
Kochanek, Dominika Szydło, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil
Kanclerz, Anna Kocoń, Bartłomiej Koptyra, Wik-
toria Mieleszczenko-Kowszewicz, Piotr Miłkowski,
Marcin Oleksy, Maciej Piasecki, Łukasz Radliński,
Konrad Wojtasik, Stanisław Woźniak, and Prze-
mysław Kazienko. 2023. ChatGPT: Jack of all trades,
master of none. Information Fusion, 99:101861.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Francesca Panzeri and Francesca Foppolo. 2021. Chil-
dren’s and adults’ sensitivity to gricean maxims and
to the maximize presupposition principle. Front. Psy-
chol., 12:624628.

Alicia Parrish, Sebastian Schuster, Alex Warstadt, Omar
Agha, Soo-Hwan Lee, Zhuoye Zhao, Samuel R. Bow-
man, and Tal Linzen. 2021. NOPE: A corpus of
naturally-occurring presuppositions in English. In
Proceedings of the 25th Conference on Computa-
tional Natural Language Learning, pages 349–366,
Online. Association for Computational Linguistics.

Orin Percus. 2006. Antipresuppositions. Theoretical
and Empirical Studies of Reference and Anaphora:

Toward the establishment of generative grammar as
an empirical science,, pages 52–73.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unified Text-to-Text
transformer.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of Plausible Alter-
natives: An Evaluation of Commonsense Causal Rea-
soning. In AAAI Spring Symposium on Logical For-
malizations of Commonsense Reasoning, Stanford
University.

Laura Ruis, Akbir Khan, Stella Biderman, Sara Hooker,
Tim Rocktäschel, and Edward Grefenstette. 2022.
Large language models are not zero-shot communi-
cators.

Cosima Schneider, Carolin Schonard, Michael Franke,
Gerhard Jäger, and Markus Janczyk. 2019. Prag-
matic processing: An investigation of the (anti-
)presuppositions of determiners using mouse-
tracking. Cognition, 193:104024.

Sebastian Schuster and Tal Linzen. 2022. When
a sentence does not introduce a discourse entity,
transformer-based models still sometimes refer to it.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 969–982, Seattle, United States. Association
for Computational Linguistics.

Judith Sieker, Oliver Bott, Torgrim Solstad, and Sina
Zarrieß. 2023. Beyond the bias: Unveiling the qual-
ity of implicit causality prompt continuations in lan-
guage models. In Proceedings of the 16th Inter-
national Natural Language Generation Conference,
pages 206–220, Prague, Czechia. Association for
Computational Linguistics.

Robert Stalnaker. 1973. Presuppositions. Journal of
Philosophical Logic, 2(4):447–457.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020

190

Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Dongjie Yang, Zhuosheng Zhang, and Hai Zhao. 2023.
Learning better masking for better language model
pre-training. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7255–7267, Toronto,
Canada. Association for Computational Linguistics.

Kazuko Yatsushiro. 2008. Quantifier acquisition: Pre-
suppositions of “every”. SuB, 12:663–677.

Xinyan Yu, Sewon Min, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2023. CREPE: Open-domain ques-
tion answering with false presuppositions. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 10457–10480, Toronto, Canada. As-
sociation for Computational Linguistics.

191

A Appendix

A.1 Data Preprocessing

Here, we present examples of our preprocessing approach for each of the datasets we consider from Wang
et al. (2019)’s SuperGLUE benchmark.

BoolQ (Boolean Questions, Clark et al. (2019)

• Original input:

– question – is there any meat in a chiko roll
– passage – Chiko Roll – A Chiko Roll’s filling is primarily cabbage and barley, as well as carrot,

green beans, beef, beef tallow, wheat cereal, celery and onion. This filling is partially pulped and
enclosed in a thick egg and flour pastry tube designed to survive handling at football matches.
The roll is typically deep-fried in vegetable oil.

– label – 1

• Preprocessed input:

– Chiko Roll – A Chiko Roll’s filling is primarily cabbage and barley, as well as carrot, green
beans, beef, beef tallow, wheat cereal, celery and onion. This filling is partially pulped and
enclosed in a thick egg and flour pastry tube designed to survive handling at football matches.
The roll is typically deep-fried in vegetable oil. Is there any meat in a chiko roll? Yes.

• Masked input:

– Chiko Roll – [MASK] Chiko Roll’s filling is primarily cabbage and barley, as well as carrot,
green beans, beef, beef tallow, wheat cereal, celery and onion. This filling is partially pulped
and enclosed in [MASK] thick egg and flour pastry tube designed to survive handling at football
matches. [MASK] roll is typically deep-fried in vegetable oil. Is there any meat in [MASK]
chiko roll? Yes.

COPA (Choice of Plausible Alternatives, Roemmele et al. (2011))

• Original input:

– premise – The girl had a phobia of dogs.
– choice1 – She rescued an abandoned dog.
– choice2 – She was bitten by a dog.
– question – cause
– label – 1

• Preprocessed input:

– The girl had a phobia of dogs. What was the cause for this? She was bitten by a dog.

• Masked input:

– [MASK] girl had [MASK] phobia of dogs. What was [MASK] cause for this? She was bitten
by [MASK] dog.

MultiRC (Multi-Sentence Reading Comprehension, Khashabi et al. (2018))

• Original input:
192

– paragraph – You know that friction also causes heat. Think about when you rub your hands
together. It is friction that makes them warm. But why does this happen? Friction causes the
molecules on rubbing surfaces to move faster. Faster moving particles have more heat energy.
Heat from friction can be useful. Can you think of other places where you might find friction?
Friction also lets you light a match. Heat from friction can also cause problems. It can cause a
car to overheat. To reduce friction, oil is added to the engine. Oil coats the surfaces of moving
parts. This coating of oil makes them slippery. When things are slippery there is less friction.
Have you ever seen a sign that says, slippery when wet? This too has to do with friction. Water,
like oil, can reduce friction. The wet surface may allow your shoes to slide more easily.

– question – What can happen in a car when there is too much friction?
– answer – It can overheat

• Preprocessed input:

– You know that friction also causes heat. Think about when you rub your hands together. It is
friction that makes them warm. But why does this happen? Friction causes the molecules on
rubbing surfaces to move faster. Faster moving particles have more heat energy. Heat from
friction can be useful. Can you think of other places where you might find friction? Friction
also lets you light a match. Heat from friction can also cause problems. It can cause a car to
overheat. To reduce friction, oil is added to the engine. Oil coats the surfaces of moving parts.
This coating of oil makes them slippery. When things are slippery there is less friction. Have
you ever seen a sign that says, slippery when wet? This too has to do with friction. Water, like
oil, can reduce friction. The wet surface may allow your shoes to slide more easily. What can
happen in a car when there is too much friction? It can overheat.

• Masked input:

– You know that friction also causes heat. Think about when you rub your hands together. It is
friction that makes them warm. But why does this happen? Friction causes [MASK] molecules
on rubbing surfaces to move faster. Faster moving particles have more heat energy. Heat from
friction can be useful. Can you think of other places where you might find friction? Friction
also lets you light [MASK] match. Heat from friction can also cause problems. It can cause
[MASK] car to overheat. To reduce friction, oil is added to [MASK] engine. Oil coats [MASK]
surfaces of moving parts. This coating of oil makes them slippery. When things are slippery
there is less friction. Have you ever seen [MASK] sign that says, slippery when wet? This too
has to do with friction. Water, like oil, can reduce friction. [MASK] wet surface may allow your
shoes to slide more easily. What can happen in [MASK] car when there is too much friction? It
can overheat.

CB (CommitmentBank, de Marneffe et al. (2019))

• Original input:

– premise – Matthew rode on feeling a little more at peace with himself. He skirted the spruce
plantation and supposed that at some point he should tell Sara about it. He could imagine that
she might be interested in its money-making propensity at the end of the year.

– hypothesis – Sara might be interested in its money-making propensity at the end of the year
– label – 0

• Preprocessed input:

– Sara might be interested in its money-making propensity at the end of the year: Matthew rode
on feeling a little more at peace with himself. He skirted the spruce plantation and supposed
that at some point he should tell Sara about it. He could imagine that she might be interested in
its money-making propensity at the end of the year.

193

• Masked input:

– Sara might be interested in its money-making propensity at [MASK] end of [MASK] year:
Matthew rode on feeling [MASK] little more at peace with himself. He skirted [MASK] spruce
plantation and supposed that at some point he should tell Sara about it. He could imagine that
she might be interested in its money-making propensity at [MASK] end of [MASK] year.

RTE (Recognizing Textual Entailment) datasets

• Original input:

– premise – The University has also apologized for the incident saying, "[we] are very sorry that
the incident happened and the person will be dealt with according to law. The university is a
place for discussion, debate and considered argument, not for shoe throwing". According to
authorities, there was never any real threat to the prime minister. The man will appear before a
judge on February 10.

– hypothesis – A man threw a shoe at the Prime Minister.
– label – 0

• Preprocessed input:

– A man threw a shoe at the Prime Minister: The University has also apologized for the incident
saying, "[we] are very sorry that the incident happened and the person will be dealt with
according to law. The university is a place for discussion, debate and considered argument,
not for shoe throwing". According to authorities, there was never any real threat to the prime
minister. The man will appear before a judge on February 10.

• Masked input:

– [MASK] man threw [MASK] shoe at [MASK] Prime Minister: [MASK] University has also
apologized for [MASK] incident saying, "[we] are very sorry that [MASK] incident happened
and [MASK] person will be dealt with according to law. [MASK] university is [MASK]
place for discussion, debate and considered argument, not for shoe throwing". According to
authorities, there was never any real threat to [MASK] prime minister. [MASK] man will appear
before [MASK] judge on February 10.

194

A.2 Further Results

model language condition def. determiner indef. determiner English ’one’

bert-base-german-cased German unique fruit 8.91 69.11 –
non-unique fruit 8.10 67.52 –

bert-base-cased English unique fruit 1.38 8.65 78.95
non-unique fruit 1.46 10.46 78.77

bert-base-multilingual-cased
German unique fruit 19.16 64.96 –

non-unique fruit 7.79 28.34 –

English unique fruit 5.99 20.78 42.65
non-unique fruit 8.96 25.72 33.50

xlm-roberta-base
German unique fruit 7.18 73.28 –

non-unique fruit 2.76 50.43 –

English unique fruit 0.51 6.30 90.05
non-unique fruit 0.46 11.28 85.42

Table 3: Model predictions for German and English data for the unique fruit and non-unique fruit conditions, as exemplified
in Figure 1. Also, for English, predictions for the numeral "one". We report the mean values of each word to be the predicted
masked token as the final scores (mutliplied by 100). Bold values indicate results that conform to the predictions of the MP!.

model language condition beide/both alle/all zwei/two drei/three vier/four

bert-base-german-cased German pair of fruits 0.15 0.09 40.82 11.44 5.02
bert-base-cased English 0.11 0.08 27.72 20.27 9.55

bert-base-multilingual-cased German pair of fruits 0.38 0.89 32.28 16.98 2.94
English 0.04 0.11 6.52 8.19 4.67

xlm-roberta-base German pair of fruits 0.20 0.18 28.89 21.39 9.15
English 0.11 0.04 40.90 19.94 12.45

Table 4: Model predictions for German and English data for the pair of fruits condition, as exemplified in Figure 1. We report
the mean values of each word to be the predicted masked token as the final scores (mutliplied by 100). Bold values indicate
results that conform to the predictions of the MP!.

A.2.1 Fine-tuned models

model language unique fruit non-unique fruit pair of fruits

bert-base-casedFT English 14.29 85.71 69.05
bert-base-multilingual-casedFT English 14.29 85.71 100
xlm-roberta-baseFT English 1.19 98.81 100

Table 5: Completion Sensitivity Accuracy scores for the fine-tuned models for English and the unique fruit, non-unique fruit
and pair of fruits conditions, as exemplified in Figure 1.

model language unique fruit non-unique fruit pair of fruits

bert-base-casedFT English 100 85.71 30.95
bert-base-multilingual-casedFT English 100 100 38.10
xlm-roberta-baseFT English 100 100 54.76

Table 6: Prediction Accuracy scores for the fine-tuned models for English and the unique fruit, non-unique fruit and pair of
fruits conditions, as exemplified in Figure, as exemplified in Figure 1. Here, for all conditions k = 3.

195

model language condition def. determiner indef. determiner English ’one’

bert-base-casedFT English unique fruit 17.46 80.43 1.39
non-unique fruit 15.95 81.47 1.60

English unique fruit 15.55 83.94 0.27
bert-base-multilingual-casedFT

non-unique fruit 15.01 84.66 0.18

English unique fruit 4.63 94.46 0.66
xlm-roberta-baseFT

non-unique fruit 4.41 94.69 0.54

Table 7: Predictions of the fine-tuned models for English data for the unique fruit and non-unique fruit conditions, as exemplified
in Figure 1. Also, predictions for the numeral "one". Again, for each condition, we report the mean values of the determiners to
be the predicted masked token as the final score, and we multiply the mean scores by 100. Bold values indicate conditions where
the results conform to the predictions of MP!.

model language condition beide/both alle/all zwei/two drei/three vier/four

bert-base-casedFT English pair of fruits 10.78 7.33 15.88 12.24 3.61

bert-base-multilingual-casedFT English pair of fruits 3.88 1.90 5.55 3.87 2.73

xlm-roberta-baseFT English pair of fruits 12.63 2.10 11.28 15.75 6.78

Table 8: Predictions of the fine-tuned models for English data for the pair of fruits condition, as exemplified in Figure 1. Again,
we report the mean values of each word to be the predicted masked token as the final score, and we multiply the mean scores by
100. Bold values indicate conditions where the results conform to the predictions of MP!.

"Both" and "all". In Tables, 5, 6 and 8, it is evident that, in comparison to the base models,
"both" is now being predicted with a higher probability than "all" for all models, i.e., including the
bert-base-multilingual-cased model. Additionally, as visible in Table 8, the values for the numbers
show a decrease. However, there is also an increase in the values for "all". Most importantly, across
all models, numbers (including those that do not make sense in the given context) are still predicted
with the highest probability. Interestingly, the Completion Sensitivity values in Table 5 once again
exhibit variations among the models. That is, fine-tuning leads to a substantial enhancement in the
bert-base-multilingual-cased model (from 0% to 100%), while the xlm-roberta-base model maintains its
high performance and the bert-base-cased model, in contrast, even experiences a decline. Conversely, the
Prediction Accuracy results in Table 6 demonstrate a marked enhancement across all models, as evident
from our ability to set parameter k = 3. Remarkably, for all models, "both" now ranks within the top
three predictions, a significant shift from its previous distribution within the top 40 predictions.

A.2.2 Additional conditions
In comparison to our main conditions exemplified in Figure 1, we indicate the modified or newly included
words in the prompts of these additional conditions by underlining.

(7) [Definite determiner in the context sentence.]
Context: Jan’s mother was shopping. She bought the banana and two pears.
a. Unique fruit (the / a): Of these, Jan received [MASK] banana.
b. Non-unique fruit (a / the): Of these, Jan received [MASK] pear.

(8) [Indefinite determiner in the context sentence for English.]
Context: Jan’s mother was shopping. She bought a banana and two pears.
a. Unique fruit (the / a): Of these, Jan received [MASK] banana.
b. Non-unique fruit (a / the): Of these, Jan received [MASK] pear.

(9) ["both" in the context sentence.]
Context: Jan’s mother was shopping. She bought one banana and both pears.
a. Pair of fruits (both / all): Of these, Jan received [MASK] pears.

196

(10) [Adjectives "einzige"/"single" in the context sentence.]
Context: Jan’s mother was shopping. She bought a single banana and two pears.

a. Unique fruit (the / a): Of these, Jan received [MASK] banana.
b. Non-unique fruit (a / the): Of these, Jan received [MASK] pear.

(11) [Extended information in the stimulus sentence.]
Context: Jan’s mother was shopping. She bought one banana and two pears.
a. Unique fruit (the / a): Of the items that Jan’s mother bought, Jan received [MASK]

banana."
b. Non-unique fruit (a / the): Of the items that Jan’s mother bought, Jan received [MASK]

pear."
c. Pair of fruits (both / all): Of the items that Jan’s mother bought, Jan received [MASK]

pears.

model language condition def. determiner indef. determiner English ’one’

bert-base-german-cased German unique fruit 48.01 29.54 –
non-unique fruit 23.05 51.47 –

bert-base-cased English unique fruit 44.48 12.97 32.88
non-unique fruit 11.74 15.05 62.41

bert-base-multilingual-cased
German unique fruit 83.80 4.74 –

non-unique fruit 15.93 17.47 –

English unique fruit 82.99 9.19 0.64
non-unique fruit 48.05 23.65 7.66

xlm-roberta-base
German unique fruit 41.28 19.42 –

non-unique fruit 9.65 36.91 –

English unique fruit 20.13 11.50 63.10
non-unique fruit 12.86 13.87 69.18

Table 9: Model predictions for German and English data for the unique fruit and non-unique fruit conditions with the definite
determiner in the context sentence, as exemplified in (7).

model language condition def. determiner indef. determiner English ’one’

bert-base-cased English unique fruit 5.68 34.19 42.36
non-unique fruit 2.89 23.00 61.07

bert-base-multilingual-cased English unique fruit 14.79 61.95 3.24
non-unique fruit 14.21 51.15 9.62

xlm-roberta-base English unique fruit 2.04 25.08 68.90
non-unique fruit 1.03 23.16 71.24

Table 10: Model predictions for the unique fruit and non-unique fruit conditions with the indefinite determiner in the context
sentence for English, as exemplified in (8).

model language condition beide/both alle/all zwei/two drei/three vier/four

bert-base-german-cased German pair of fruits 5.98 0.75 33.92 7.37 2.86
bert-base-cased English pair of fruits 0.72 0.17 38.60 18.16 7.04

bert-base-multilingual-cased German pair of fruits 23.38 10.42 13.99 10.86 0.65
English pair of fruits 0.39 0.31 10.82 9.89 5.29

xlm-roberta-base German pair of fruits 3.94 0.56 41.60 15.15 4.94
English pair of fruits 0.73 0.09 55.72 17.69 8.15

Table 11: Model predictions for German and English data for the pair of fruits condition with "both" in the context sentence,
as exemplified in (9).

197

model language condition def. determiner indef. determiner English ’one’

bert-base-german-cased German unique fruit 8.47 62.04 –
non-unique fruit 7.56 65.34 –

bert-base-cased English unique fruit 1.74 9.18 75.46
non-unique fruit 1.52 10.44 78.05

bert-base-multilingual-cased
German unique fruit 9.95 42.49 –

non-unique fruit 5.59 24.69 –

English unique fruit 7.34 20.31 32.19
non-unique fruit 9.49 26.70 28.10

xlm-roberta-base
German unique fruit 3.30 49.30 –

non-unique fruit 1.79 41.83 –

English unique fruit 0.36 5.74 90.32
non-unique fruit 0.48 9.50 87.39

Table 12: Model predictions for German and English data for the unique fruit and non-unique fruit conditions with the adjectives
"einzige"/"single" in the context sentence, as exemplified in (10).

model language condition def. determiner indef. determiner English ’one’

bert-base-german-cased German unique fruit 7.61 57.68 –
non-unique fruit 7.25 56.33 –

bert-base-cased English unique fruit 1.82 7.05 79.67
non-unique fruit 1.94 8.25 80.11

bert-base-multilingual-cased
German unique fruit 14.76 65.44 –

non-unique fruit 4.67 29.82 –

English unique fruit 2.44 17.01 68.75
non-unique fruit 3.78 29.35 50.84

xlm-roberta-base
German unique fruit 1.91 60.91 –

non-unique fruit 0.73 38.63 –

English unique fruit 0.86 10.32 85.02
non-unique fruit 0.85 15.09 80.75

Table 13: Model predictions for German and English data for the unique fruit and non-unique fruit conditions with extended
information in the stimulus sentence, as exemplified in (11).

model language condition beide/both alle/all zwei/two drei/three vier/four

bert-base-german-cased German pair of fruits 0.14 0.18 12.76 4.30 1.37
bert-base-cased English pair of fruits 0.10 0.18 21.76 18.59 9.26

bert-base-multilingual-cased German pair of fruits 0.37 1.10 41.81 14.04 2.20
English pair of fruits 0.11 0.05 34.21 18.36 7.09

xlm-roberta-base German pair of fruits 0.13 0.11 33.80 17.52 8.62
English pair of fruits 0.17 0.10 40.70 19.87 10.21

Table 14: Model predictions for German and English data for the pair of fruits condition with extended information in the
stimulus sentence, as exemplified in (11).

198

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 199–211
December 7, 2023. ©2023 Association for Computational Linguistics

Introducing VULCAN:
A Visualization Tool for Understanding our Models and Data by Example

Jonas Groschwitz
University of Amsterdam∗

j.d.groschwitz@uva.nl

Abstract

Examples are a powerful tool that help us un-
derstand complex concepts and connections. In
computational linguistics research, looking at
example system output and example corpus en-
tries can offer a wealth of insights that are not
otherwise accessible. This paper describes the
open-source software VULCAN, a visualiza-
tion tool for strings, graphs, trees, alignments,
attention and more. VULCAN’s unique abil-
ity to visualize both linguistic structures and
properties of neural models make it particularly
relevant for neuro-symbolic models. Neuro-
symbolic models, combining neural networks
with often linguistically grounded structures,
offer a promise of increased interpretability in
an age of purely neural black-box end-to-end
models. VULCAN aims to facilitate this inter-
pretability in practice. VULCAN is designed
to be both easy to use and powerful in its capa-
bilities.

1 Introduction

Humans effortlessly abstract patterns and complex
generalizations from even small sets of examples
(Posner and Keele, 1968; Gick and Holyoak, 1983;
Brown and Kane, 1988). This ability is particularly
useful for researchers in the field of NLP: Look-
ing at entries in a corpus helps us understand what
kinds of structures and phenomena occur in the cor-
pus, and looking at example model outputs helps
us understand the abilities and limitations of the
model. This empowers us to form a more precise
notion of how much we can (or cannot) trust the
model to be correct, and it often provides us with
ideas for how the model can be improved.

Here we introduce VULCAN: Visualizations for
Understanding Language Corpora And model pre-
dictioNs. VULCAN is a flexible, user-friendly tool
for visualizing linguistic structures and NLP model
predicions. For example, Fig. 1 shows VULCAN

∗Work done in part at the University of Edinburgh

visualizing an entry from the Little Prince Abstract
Meaning Representation (AMR; Banarescu et al.,
2013) corpus.1 It shows both the gold AMR anno-
tation (left) and an AMR predicted by a semantic
parser (right).

Beyond visualizing linguistics structures like
strings, trees and graphs, VULCAN can also dis-
play information such as alternative model predic-
tions, attention (including transformer’s multi-head
attention; Vaswani et al., 2017) and alignments.

Thus, VULCAN is particularly useful for inter-
preting neuro-symbolic models, which combine
neural networks with explicit (often linguistically
grounded) reasoning and structures. One sell-
ing point of neuro-symbolic models is their inter-
pretability. VULCAN, with its unique ability to
display both linguistic structures and properties of
neural models, makes that interpretability accessi-
ble in practice.

VULCAN also includes an advanced search
functionality to find examples relevant to a cer-
tain research question or problem statement. The
software is designed to be easy to use, and to be
applicable to a wide range of corpora and models.
VULCAN is available open source.2

2 Related Work

Many NLP visualization tools exist. However, they
tend to be limited to a smaller range of linguistic
objects they can display, are often tied to a spe-
cific framework, and don’t always allow displaying
model properties such as attention. We provide a
selection of examples here:

• AllenNLP Interpret (Wallace et al., 2019) is a
flexible tool to visualize neural models’ pre-
dictions, including features such as visualiz-
ing attention. However, AllenNLP Interpret
does not visualize more complex objects such

1https://amr.isi.edu/download/
amr-bank-struct-v3.0.txt

2https://github.com/jgroschwitz/vulcan

199

Figure 1: VULCAN visualizing a sentence, the corresponding gold Abstract Meaning Representation (AMR)
semantic graph (left) and a predicted AMR (right).

as trees and graphs. Further, it is closely tied
to the AllenNLP library (Gardner et al., 2018),
development of which has been discontinued.

• Spacy’s Displacy3 is limited to POS tags and
dependency trees. It does not show e.g. alter-
native model predictions.

• NeAt-vision4 and VisuaLLM (Trebuňa and
Dusek, 2023) visualize model information,
such as alternative predictions including their
likelihoods,but only support strings.

• MaltEval (Nilsson and Nivre, 2008) allows
comparison between gold annotation and
model prediction, but is limited to dependency
trees.

• AMR-utils5 visualizes AMR graphs only.

• Many corpora have their own online visual-
ization. For example for the Universal Depen-
dencies (de Marneffe et al., 2021) treebanks,
multiple examples can be found.6 VULCAN
makes basic corpus browsing functionality
available out of the box.

In sum, VULCAN fills a gap by visualizing both
linguistic structures and (neural) model proper-
ties, a crucial combination for interpreting neuro-
symbolic systems.

There are also more general visualization tools

3https://demos.explosion.ai/displacy
4https://github.com/cbaziotis/neat-vision
5https://github.com/ablodge/amr-utils
6E.g. http://lindat.mff.cuni.cz/services/

teitok/ud211/index.php?action=browser&class=lang
and https://clarino.uib.no/iness-prod/sentences.

available. This includes LATEX packages like TikZ,7

and e.g. the graph plotting software Graphviz.8

Their broad functionality, that usually goes far be-
yond NLP, can be a hurdle for learning how to use
them effectively and can make them cumbersome
to use even for experts. By contrast, VULCAN
is designed to require little specialized knowledge
and comparatively little effort to use. Further, these
general tools tend to be non-interactive, and often
have long compile times.

3 The Core Design of Vulcan

The core functionality of VULCAN is to visualize
entries in a corpus, as well as model predictions on
that corpus. Advanced functionality includes the
display of further information such as alternative
predictions and their likelihood. A full description
of features follows in Section 4.

Fig. 1 shows an example, where VULCAN visu-
alizes an entry from the Little Prince AMR corpus.1

This is the third sentence in the corpus, displayed
together with the annotated AMR from the corpus
(left) and a predicted AMR (right; this AMR was
predicted by the parser of Groschwitz et al., 2018).

Throughout this paper, we will make a distinc-
tion between the host, who runs VULCAN and
provides the data, and the viewer, who looks at
the visualizations. In practice, host and viewer can
be the same person: take for example a researcher
who uses VULCAN to visualize her model’s pre-
dictions on the development set, in order to analyze

7https://tikz.net
8https://graphviz.org

200

errors and find the best next step for improving the
model. This researcher is then both the host and
the viewer. But if, say, VULCAN is used to host a
visualization of a corpus on the web, to showcase
the corpus to the public, then host and viewer are
different people.

Following this principle of host and viewer,
VULCAN uses a server/client design. The server
side is operated by the host; the viewer interacts
with the client side, which runs in the browser.
Thus, the viewer simply sees an intuitive browser
interface like the one in Fig. 1.

During setup by the host, VULCAN takes as
input a file in a dictionary format (see Section 6),
containing all (and only) the information required
for the visualization. All model predictions, atten-
tion etc. that are to be visualized must be included
in this input file, which uses a simple, generic for-
mat – this allows VULCAN to be agnostic about
the model’s implementation framework. The dic-
tionary can be presented as a pickle or JSON file
(generating JSON is particularly widely supported
across programming languages). Inside the dic-
tionary, structures like graphs and trees can be in-
cluded in a variety of formats: VULCAN supports
a range of input codecs (Section 6) that can be
further extended (Section 7).

The visualization can then be accessed from a
browser as long as the server program runs. View-
ers can browse the corpus, and access further in-
formation through e.g. mouseover interaction (Sec-
tions 4, 6.2).

4 Features

This section describes the visualization capabilites
of VULCAN in detail.

Throughout this section, we will use three exam-
ples:

UD Visualizes the PUD test set of the Japanese
Universal Dependency treebank (Fig. 2; Mc-
Donald et al., 2013). This is an example of
visualizing only a corpus and no model predic-
tions. This also highlights VULCAN’s ability
to render characters outside the latin alphabet.

LEAMR Visualizes the alignments predicted by
LEAMR (Blodgett and Schneider, 2021) on
the Little Prince AMR dataset.1 LEAMR
aligns nodes of the AMR semantic graphs to
tokens, using a combination of heuristics and
machine learning.

AM-parser Visualizes the predictions of the AM
parser (Groschwitz et al., 2018) on the Lit-
tle Prince AMR dataset.1 The AM parser is
a neuro-symbolic compositional parser that
predicts a so-called AM tree for a given sen-
tence, which consists of graph fragment su-
pertags and dependency edges that represent
graph-combining operations. The AM tree
then deterministically evaluates to an AMR
graph. Here, VULCAN shows the AM tree
both directly on top of the sentence and stan-
dalone (right), and shows both the gold and
the predicted AMR for comparison (left and
center respectively).

4.1 Visualized structures.
Vulcan can currently visualize:

• Strings and their tokenization (all examples),

• Tags for strings (UD, AM-parser examples,
Figs. 2, 4),

• Tables,

• Trees (AM-parser example, Fig. 4),

• Dependency trees (UD, AM-parser examples,
Figs. 2, 4),

• Graphs (LEAMR, AM-parser examples,
Figs. 3, 4).

Each of these structures has labeled elements:
tokens for sentences, cells in a table, nodes in a
graph etc. Each such element can be labeled with a
string, but also with a more complex structure from
the list above. For example, note how in Fig. 4,
the supertags on top of the string are themselves
graphs, and the nodes in the AM tree on the right
are labeled with graphs as well.

4.2 Alignments and model internals
VULCAN displays alignments by highlighting
aligned elements in blue when mousing over an
element. For example, in the LEAMR visualization,
when the mouse hovers over a token in the sen-
tence, aligned graph nodes are highlighted (and
vice versa).

Similarly, attention (e.g. Bahdanau et al., 2015)
is visualized: the higher the attention weight, the
stronger the highlighting shade (Fig. 5). VULCAN
can also visualize transformer’s multihead attention
(Vaswani et al., 2017). In that case, the highlighting
takes the shape of a matrix, where the different
heads of one layer are each represented in one row

201

Figure 2: VULCAN visualizing a dependency tree over Japanese text (Universal Dependencies).

Figure 3: VULCAN visualizing alignments for an AMR from the Little Prince corpus. The mouseover on the token
‘constrictor’ highlights the aligned node in the graph.

Figure 4: VULCAN visualizing predictions of the AM parser.

202

Figure 5: VULCAN visualizing multihead attention (left) and the attention of a single head (right), on a machine
translation example.9

Figure 6: VULCAN visualizing alternative supertags for the token constrictor from the example shown in Fig. 4
(CTRL + mouseover effect; screenshot of detail).

(Fig. 5, left). The viewer can also select a specific
attention head from a drop-down menu in the web-
interface, to show only the weights from that head
(Fig. 5, right).

Finally, for each element, VULCAN can display
alternative labels predicted by the model, and their
assigned probabilities, as long as this information
is provided by the host. This feature is accessed by
mousing over an element with the CTRL key pressed.
Fig. 6 shows the top five supertags predicted as
most likely, for the AM-parser example.

4.3 Search function

VULCAN provides a search interface to filter a
corpus for entries matching certain criteria. The
search functionality is based on a range of prede-

fined search patterns that can also be combined.
An example search for the visualization shown in
Fig. 1 is illustrated in Figs. 7-9.

Any search can have multiple search filters that
a corpus entry must all satisfy in order for it to be
included in the search results. The two search filters
of this example are shown in Fig. 7 and Fig. 8.

For each search filter, the viewer first selects
which structure of the corpus entry the filter ap-
plies to (Fig. 7A). Then, an outer search pattern
(Fig. 7B) is selected. For example, should the filter
focus on the graph’s nodes, on the edges, or on the
graph as a whole?

Then, multiple inner search patterns (Fig. 7C)

9Note that this example is fictional, for illustrating VUL-
CAN’s capabilities only. No actual model was trained.

Figure 7: VULCAN’s search interface (screenshot of detail). The blue markers A-D were added to the screenshot
for reference in the paper.

203

Figure 8: Second search filter used in Fig. 9 (screenshot of detail).

Figure 9: Search results with highlights. The search filters used here are the ones from Figs. 7 and 8, with the
matching nodes and tokens highlighted in green and red respectively.

can be selected (the available inner search patterns
depend on the selected outer pattern). The inner
patterns specify the actual search criteria, e.g. a
node having a certain label.

Executing the search then displays all corpus
entries that match all patterns. The structure’s ele-
ments (here nodes and tokens) that match the pat-
terns are highlighted in the search results, see Fig. 9.
Each filter has its own color (Fig. 7D), here green
and red.

5 Case Study

To illustrate the kinds of insights VULCAN makes
available, let us take a closer look at the AM-parser
example from Section 4. Specifically, we will inves-
tigate the sentence Once when I was six years old
I saw a magnificent picture in a book, called True
Stories of Nature, about the primeval forest. The
VULCAN visualization is shown in Fig. 10. In this

case study, we will gain insights into the probabil-
ity distributions that the parser predicts in practice
and find the reasons why the parser makes a spe-
cific error. Based on these insights, we develop
concrete ideas for a statistical analysis to confirm
the found issues, and possible model changes to
address them.

But before we jump into the analysis, let us
look at the AM parsing model in more detail (see
Groschwitz et al., 2018 for a full description). Re-
call that the AM parser predicts a so-called AM
tree, consisting of dependency edges and supertags,
that then evaluates to an AMR graph. Given a sen-
tence, the parser computes for each token, let us say
here the token at position i, three types of scores:

1. The supertag scores ω(G) for each possible
graph fragment supertag G from a lexicon
during training.10

10Technically, this score is further split into scores for delex-

204

Figure 10: Vulcan visualization for the sentence in the case study of Section 5, with each structure zoomed in on
the relevant parts. From left to right, top to bottom: gold AMR graph, predicted AMR graph, predicted AM tree,
input sentence with predicted AM tree. The numbers above each token specify the head of that token; -1 signifies a
dummy token outside the sentence for tokens that do not contribute to the actual AM tree.

2. The head scores ω(k → i), the likelihood
that the head of the token at position i is the
token at position k. I.e. the likelihood that
the incoming edge at position i comes from
position k.

3. The edge label scores ω(l|k → i) that a de-
pendency edge from k to i has label l.

A symbolic decoding algorithm then finds the
best AM tree based on these scores and the type
constraints of the AM algebra. This AM tree then
evaluates deterministically to the graph.

In the visualization in Fig. 10, the heads and su-
pertags of that best AM tree are shown above each
token, and the dependency edge labels (APP_s etc.)
are shown directly on the edge. Note that some
tokens in the graph do not have a supertag assigned
to them, and are not part of the dependency trees.
These tokens do not contribute directly to the final
graph, and the parser has decided to ignore them.
For a token to be ignored this way, three things
must happen: (1) it must have the dummy supertag
represented here with an underscore “_”, (2) its
head must be a ficticious token at position −1, and
(3) the label of the incoming edge must be IGNORE
(note that IGNORE edges are omitted in the visual-
ization here). That is, the supertag, head and edge

icalized supertags and separate lexical labels. This detail is
however not relevant for the analysis here, and we bundle the
scores into one.

label scores all contribute to a token being ignored
(they do not have to all say that ignoring the to-
ken is most likely, but in total must make ignoring
the token the most likely choice for the decoding
algorithm).

This case study focuses on the token was, the
fourth token in the sentence. It should be ignored
– it does not directly contribute information that is
represented in the gold AMR –, but it is not. Here
we want to find out why.

Figures 11-13 show the top five supertags, heads
and incoming-edge-labels, respectively, for the to-
ken was. Each possible prediction is given with
its score ω as a probability. We can make a first
observation immediately: the scores differ wildly
in how confident the model is. The scores for the
supertag (Fig. 11) have medium confidence, with
the dummy supertag “_” having the highest score
by quite a margin, but the other options also having
a significant amount of probability mass among
them. By contrast, the score distribution for the
head (Fig. 12) is very flat. The option of choosing
saw as the head, (wrongly) predicted as most likely,
has just barely a higher score than the (correct)
choice of the dummy token at position −1, which
is fourth most likely. By contrast in the other direc-
tion, the distribution for the edge label is extremely
peaky, assigning nearly all of the probabily mass to
the label MOD_mod. The correct edge label IGNORE
is not even in the top five.

205

Figure 11: Top five supertags with probability scores
for the token was (CTRL + mouseover effect).

Figure 12: Top five possible heads with probability
scores for the token was (CTRL + mouseover effect).

This explains why the token was is not ignored:
while the supertag and head prediction together
would indicate ignoring the token, they are not
strong enough to overcome the confidently wrong
edge label prediction.

A first takeaway then is that the score distribu-
tions may be unevenly balanced in general. Look-
ing at some more examples further supported this
hypothesis. A possible next step would be to ex-
amine the "peakiness" and "flatness" of the score
distributions with corpus-wide metrics, for exam-
ple by measuring the average entropy of supertag,
head, and edge label scores, and see if the pat-
tern holds: that the head scores are consistently
overly flat, and edge label scores are consistently
too peaky. If so, countermeasures such as hyperpa-
rameters to balance out the scores during decoding
would be a promising avenue to improve parser
performance.

A second takeaway is to look more closely at the
edge label predictions. Why are they so confidently
wrong? The answer lies in the following design de-
cision of the AM parser. To save computation time,
not all edge label scores ω(l|k → i) are computed.
Instead, for each token position i, edge label scores
are only computed for the most likely head kmax,
and then this distribution is used for all k. That is,
for all possible heads k, the score ω(l|k → i) is
approximated as ω(l|kmax → i). In our example,
kmax = 8 (saw). But the training data taught the
parser that IGNORE edge labels go with the dummy
head k = −1. Thus, the score of the IGNORE la-
bel here, which would be the correct prediction, is
very low. As a conclusion, this shortcut to save
computation time has a cost in terms of accuracy
here. Revisiting this decision is another promising

Figure 13: Top five edge label alternatives with prob-
ability scores for the incoming edge to the token was
(CTRL + mouseover effect).

avenue to improve parsing performance.
This concludes the case study. Looking at the

probability distributions for just a single token gen-
erated multiple hypotheses for how the parser could
be improved. A good first next step towards con-
firming these hypotheses would be to look at more
examples and see if the pattern holds. Then, corpus-
wide statistical analyses can serve as further con-
firmation where applicable. Finally, implementing
model changes, and iterating this pattern of evalu-
ation, interpretation and implementation continue
the research loop.

6 Usage and Data Formats

6.1 Hosting corpora with VULCAN
The key step in hosting a corpus with VULCAN
is to create a VULCAN visualization file. Once
such a file exists, running vulcan takes just one line
(technical details in the code documentation).

Technically speaking, a VULCAN visualization
file is simply a dictionary in a specific format,
which can be provided as a JSON or pickle file.
However, VULCAN contains Python functions that
allow building a VULCAN visualization file in an
intuitive way, without having to worry about the
concrete dictionary format.

The general idea is that each entry in the cor-
pus has a fixed set of structures that we want to
visualize. For example, in Fig. 1, there are struc-
tures named the ‘Gold graph’, ‘Predicted graph’
and ‘Sentence’. To build a VULCAN visualization
file, one first specifies this fixed list of structures
that each corpus entry consists of. Then one adds
the corpus entries one by one.

More technically speaking, the first step is to
create a VulcanFileBuilder object, whose con-
structor takes as only parameter a dictionary like
this (again, for the example in Fig. 1):

{"Gold graph": "penman_string",
"Predicted graph": "penman_string",
"Sentence": "string"}

It maps structure names (like “Gold graph”) to their
visualization type (like “penman_string“). The vi-

206

sualization type is a string that describes what input
codec to use for a structure, and how the structure
will be visualized (as a table, graph, etc.). For ex-
ample, “penman_string“ is registered in VULCAN
as a format that uses the Penman11 input codec to
read a string encoding of a graph, and then displays
the output as a graph. VULCAN features a range of
input codecs for common formats, such as Penman
graphs and NLTK12 trees.

After this initialization, corpus entries
can be added with VulcanFileBuilder’s
add_instances_by_name function. The function
adds one corpus entry at a time, and takes as only
argument a dictionary like this:

{"Gold graph": "(b / be-loc...",
"Predicted graph": "(b / be-loc...",
"Sentence": "Here is a copy of

the drawing ."}

(with the string encodings of the graphs abbrevi-
ated here). The dictionary maps structure names
to the actual structures for this corpus entry, en-
coded in a way that is compatible with the input
codec specified during initialization. For example,
the string “(b / be-located-at-91 :ARG1 ...”
(and so on) is in the correct format for the Penman
codec.

Alignments, attention scores and alternative la-
bel predictions can be added similarly, using the fol-
lowing format. In VULCAN, each element within
a structure (a token in a string, a cell in a table, a
node in a graph, etc.) has a unique identifier in that
structure, the element name. For example, a token’s
name is its position in the sentence. Alignments
and attention are specified as dictionaries that map
pairs of element names to a score (for alignments,
the scores are 1 or 0). Alternative label predictions
are also encoded as a dictionary, mapping an ele-
ment’s name to a list of its alternative labels (and
their scores). These generic formats make it easy
to create input for VULCAN from any source.

A VULCAN visualization file can also be built
by hand, e.g. if the host prefers building it in a
programming language other than Python. The full
dictionary file format is described in Appendix A.

6.2 Viewing corpora with VULCAN
Viewing a VULCAN visualization essentially con-
sists of opening the respective website in a browser.
Navigating and searching the corpus is performed

11https://github.com/goodmami/penman
12https://www.nltk.org/

with self-explanatory buttons. Intuitive zoom
(mousewheel) and drag gestures are implemented
so that the viewer can focus in on a specific part
of an object (like in Fig. 10), or view the object as
a whole. Mousing over an element shows corre-
sponding alignments and attention, where applica-
ble (Figs. 3, 5). Mousing over an element while
holding the CTRL key displays alternative label pre-
dictions (if given; e.g. Fig. 6).

6.3 Under the hood
The server side of VULCAN is implemented in
Python. Communication between the client and the
server uses Eventlet13 and Socket.IO.14 VULCAN
can be hosted both locally and on the web. The
client side is implemented in JavaScript and D3.15

7 Extensibility

VULCAN is modular, built with extensibility in
mind. In particular, it is straightforward to add
new input codecs, and to add new search patterns.
This way, the host can customize VULCAN to their
needs.

Future work could also add functionality to vi-
sualize completely new objects, such as images, or
the ability to play sound files.

8 Conclusion

We have displayed the capabilities of VULCAN, a
visualization tool for linguistic structures, neural
models, and their interactions.

Among the features showcased in this paper
are the visualization of strings, trees, graphs and
complex supertags, as well as alternative predic-
tions with their likelihoods and multi-head atten-
tion. This combination of features makes VUL-
CAN particularly suited to facilitate the interpreta-
tion of neuro-symbolic models in practice. VUL-
CAN also features a powerful search functionality
and has broad compatibility due to its flexible input
format.

We built VULCAN to make it easier to gain
insights into corpora and models by looking at ex-
amples. We hope that VULCAN will play a part in
making neural models in natural language process-
ing and generation more interpretable and tangible.

13https://eventlet.net/
14https://socket.io/
15https://d3js.org/

207

Limitations

One potential application of VULCAN is formal
error analysis. However, in this use case, VUL-
CAN can currently only contribute the visualiza-
tion. Other tasks, such as logging of errors, must
be done separately (though possible future work
could extend VULCAN to allow error annotation
within the visualization interface). For a detailed
discussion of good practices in error analysis, see
e.g. van Miltenburg et al. (2021).

As mentioned in Section 7, VULCAN does not
yet support visualization of multimodal elements
such as images, audio or video.

Ethics Statement

We do not see any particular ethics concerns with
this work.

Acknowledgements

Many thanks go to Meaghan Fowlie and Matthias
Lindemann for their feedback and encouragement.
Special thanks to Ivan Titov and Raquel Fernández
for their support in making this work possible. This
work has been funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)
– 492792184.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Austin Blodgett and Nathan Schneider. 2021. Prob-
abilistic, structure-aware algorithms for improved
variety, accuracy, and coverage of AMR alignments.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3310–3321, Online. Association for Computational
Linguistics.

Ann L Brown and Mary Jo Kane. 1988. Preschool chil-
dren can learn to transfer: Learning to learn and learn-
ing from example. Cognitive psychology, 20(4):493–
523.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia. Association for Computational
Linguistics.

Mary L Gick and Keith J Holyoak. 1983. Schema induc-
tion and analogical transfer. Cognitive psychology,
15(1):1–38.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831–1841, Melbourne,
Australia. Association for Computational Linguistics.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu Castelló,
and Jungmee Lee. 2013. Universal Dependency an-
notation for multilingual parsing. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 92–97, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Jens Nilsson and Joakim Nivre. 2008. MaltEval: an
evaluation and visualization tool for dependency
parsing. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Michael I Posner and Steven W Keele. 1968. On the
genesis of abstract ideas. Journal of experimental
psychology, 77(3p1):353.

František Trebuňa and Ondrej Dusek. 2023. VisuaLLM:
Easy web-based visualization for neural language
generation. In Proceedings of the 16th International
Natural Language Generation Conference: System
Demonstrations, pages 6–8, Prague, Czechia. Associ-
ation for Computational Linguistics.

Emiel van Miltenburg, Miruna Clinciu, Ondřej Dušek,
Dimitra Gkatzia, Stephanie Inglis, Leo Leppänen,
Saad Mahamood, Emma Manning, Stephanie Schoch,
Craig Thomson, and Luou Wen. 2021. Underreport-
ing of errors in NLG output, and what to do about it.

208

In Proceedings of the 14th International Conference
on Natural Language Generation, pages 140–153,
Aberdeen, Scotland, UK. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Computa-
tional Linguistics.

209

A Format of VULCAN visualization files

VULCAN visualization files, the input to the VUL-
CAN software, consist of basic list and dictionary
structures. VULCAN can read them in pickle and
JSON format.

At the top level, VULCAN visualization files are
lists of dictionaries. The list contains two types of
dictionaries: one for data that specifies the struc-
tures (graphs, strings, etc.) to be visualized. and
one for linkers that specifies alignments and atten-
tion.

A data dictionary describes all structures of one
type in the corpus. For example, for the visualiza-
tion in Fig. 1, there is one data dictionary for all
“Gold graph” objects, one for all “Predicted graph”
objects, and one for all “Sentence” objects. A data
dictionary has the entries specified in Table 1:

A linker dictionary describes a relation between
two structures: alignments or attention (both use
the same format). It has entries as specified in
Table 2

A.1 Label alternatives format
The entries for one ‘label alternative’ are:

Dictionary key Value
“label” The alternatively predicted la-

bel (can itself be a string,
graph, etc).

“format” Like the format in the data
dictionary above. Specifies
the format the label is in.

“score” The score (or likelihood) that
was predicted for this label

We recommend specifying the top k label alterna-
tives, where k is around 3-5.

210

Key Value
“type” For data dictionaries, this is always the string “data”

“name” The name of this structure, e.g. “Gold graph”. This is displayed in
the top right of the visualization for this structure.

“format” A name from a predefined list of possible formats. This specifies
the format in which the structures are provided; in particular, what
input codec to use and whether to display the structure as a string,
graph, etc.

“instances” The list of objects of this type in the corpus. For example, all gold
graphs, or all predicted graphs, or all sentences. The objects in this
list must be in the format specified in the “format” entry.

“label_alternatives” Optional. A list, with one entry for each instance in “instances”.
Each such entry is a dictionary, mapping element names to a list
of ‘label alternatives’. Each ‘label alternative’ is itself a dictionary
with entries specified in Section A.1.

“dependency_trees” Optional. Only available if the structures are strings (or tagged
strings, which are treated as tables on a technical level). A list of
dependency trees, one for each entry in “instances”. A dependency
tree is a list of triples (source, target, label), where source is the
0-based index of the edge’s origin (-1 if the edge has no origin, e.g.
the root indicator), target is the 0-based index of the word the edge
points to, and label is the edge label (a string).

Table 1: Key-value pairs of the data dictionary.

Dictionary key Value
“type” For linker dictionaries, this is always the string “linker”

“name1” The name of one of the structures that this links (for example,
"AMR" in Fig. 3).

“name2” The name of the other structure that this links (for example, "Sen-
tence" in Fig. 3).

“scores” A list of outer dictionaries, one for each entry in the corpus. Each
outer dictionary maps element names from the structure with name
name1 to inner dictionaries. Each inner dictionary maps element
names from the structure with name name2 to scores between 0 and
1. Closer to 1 means a higher attention weight. For alignments, use
1 for aligned (and 0 for not aligned, but this is the default value and
does not need to be specified). In other words, the outer and inner
dictionaries describe a sparse matrix between the element names of
the structure name1 and the element names of the structure name2;
the entries in the matrix are the scores. (Sparse in the sense that
not all entries in the matrix need to be specified in the matrix; they
default to 0).

Table 2: Key-value pairs of the linker dictionary.

211

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 212–221
December 7, 2023. ©2023 Association for Computational Linguistics

The Self-Contained Negation Test Set

David Kletz1,2 and Pascal Amsili2 and Marie Candito1

(1) Université Paris Cité & LLF (CNRS/UPC)
(2) Université Sorbonne Nouvelle & Lattice (CNRS/ENS-PSL/USN)

david.kletz@sorbonne-nouvelle.fr, marie.candito@u-paris.fr, pascal.amsili@ens.fr

Abstract

Several methodologies have recently been pro-
posed to evaluate the ability of Pretrained Lan-
guage Models (PLMs) to interpret negation. In
this article, we build on Gubelmann and Hand-
schuh (2022), which studies the modification of
PLMs’ predictions as a function of the polarity
of inputs, in English. Crucially, this test uses
“self-contained” inputs ending with a masked
position: depending on the polarity of a verb
in the input, a particular token is either seman-
tically ruled out or allowed at the masked po-
sition. By replicating Gubelmann and Hand-
schuh (2022) experiments, we have uncovered
flaws that weaken the conclusions that can be
drawn from this test. We thus propose an im-
proved version, the Self-Contained Neg Test,
which is more controlled, more systematic, and
entirely based on examples forming minimal
pairs varying only in the presence or absence
of verbal negation in English.

When applying our test to the roberta and
bert base and large models, we show that only
roberta-large shows trends that match the
expectations, while bert-base is mostly in-
sensitive to negation. For all the tested models
though, in a significant number of test instances
the top-1 prediction remains the token that is
semantically forbidden by the context, which
shows how much room for improvement re-
mains for a proper treatment of the negation
phenomenon.

1 Introduction

The treatment of negation by PLMs has recently
been the subject of various works whose conclu-
sions are fairly contradictory.

On the one hand, Kassner and Schütze (2020)
and Ettinger (2020) compare the predictions of
Transformer-based language models (Vaswani
et al., 2017) in minimal pairs varying in polarity (1).

(1) a. A robin is a [MASK].
b. A robin is not a [MASK].

Noting that changes of polarity in the model’s in-
puts result in little or no change for both top-1
predictions and the entire vocabulary distribution,
these authors conclude that the models are insensi-
tive to negation.

However, it has been established that the pres-
ence of negation can be detected in contextual rep-
resentations. Celikkanat et al. (2020) thus find
“traces” of negation on the negated verb, its subject,
its object. Moreover, the extent to which negation is
diffused in contextual representations follows syn-
tactic constraints: Kletz et al. (2023) show that the
presence of negation in contextual representations
is stronger for tokens within the scope of negation,
this effect being visible even when controlling for
the distance between the token and negation.

As pointed out by Gubelmann and Handschuh
(2022), this apparent contradiction can be ex-
plained by the fact that Kassner and Schütze (2020)
study the factual knowledge of models, and there-
fore use contexts involving world knowledge, such
as (1). The inability of models not to predict bird
in the negated case could be explained by stored
factual knowledge taking precedence over the abil-
ity to capture that negation reverses the truth value
of a proposition. Especially as there is an asymme-
try in the number of acceptable words to replace
the mask: only a few are possible for the positive
version, but a huge number are for the negative one,
which can’t be a favorable situation when only the
top-1 prediction is studied.

Gubelmann and Handschuh (2022) have thus
proposed a test where the inputs supplied to the
models are self-contained (in our terminology): a
context sentence is followed by a target sentence
containing a masked position. The context sentence
is either negative or affirmative. In the negative
case, it renders semantically impossible a certain
token at the masked position (sail in example (2)),
which is itself plausible in the positive case (see
section 2.2).

212

(2) Jessica is an architect who doesn’t like to
sail. However, she does like to [MASK].

Gubelmann and Handschuh (2022) observe a vari-
able sensitivity to negation depending on the mod-
els tested, suggesting that the truth-value inversion
effect of negation is more or less captured depend-
ing on the model.

In this article, we build on (Gubelmann and
Handschuh, 2022) (hereafter GH22), taking up the
idea of self-contained inputs, allowing us to target
understanding of the semantics of negation inde-
pendently of world knowledge. Our contributions
are the following:

• a finer-grained analysis of GH22 experiments,
uncovering a much more contrasted picture.
In particular, averaged results for different in-
put patterns mask significant sensitivity to fac-
tors other than negation (e.g., an intensifier
really or does).

• the development of a more controlled test1,
using self-contained inputs organized in mini-
mal pairs differing only in polarity, as well as
the introduction of control tests (double nega-
tion, use of a non-negative adverb instead of
not, and variations on coreference between
NPs in the context sentence and the target sen-
tence).

Finally, this test enables us to make a detailed
assessment of four models, and to conclude that
among these, only roberta-large reasonably
meets the defined criteria. Crucially, a number of
models like bert-large seemed reasonably sen-
sitive to negation in GH22, do pass our baseline
test, but don’t pass the control tests at all, calling
into question the positive interpretation of the base-
line test. This highlights the many limitations to
PLMs’ understanding of negation for English, and
the need for highly controlled tests to reach solid
conclusions.

2 Replication of (Gubelmann and
Handschuh, 2022)

2.1 Presentation of the test
The GH22 test aims at studying the tokens pre-
dicted at a masked position, within an input con-
sisting of two sentences, a C(ontext) sentence fol-
lowed by a T(arget) sentence. The actual exam-
ples provided as input to PLMs are obtained by

1https://github.com/davkletz/self-neg-test

instantiating variables within patterns: the context
sentence C contains a variable ACT, to be instan-
tiated with a verb (called ACT-token), like sail in
(3), embedded in a negative (doesn’t like to ACT)
or affirmative (tries to ACT as often as possible)
phrase. We refer to Cn and Cp as the negative
and affirmative contexts. The sentence T contains
a masked position, and is defined in such a way
that repetition of the ACT-token is acceptable with
an affirmative context (Cp), while semantically im-
possible with a negative context (Cn): for example,
repeating sail in the masked position is plausible
in (4) while semantically impossible in (3).

(3) NAME(Jessica) is PROF(an architect) who
doesn’t like to ACT(sail). However,
PRON(she) does like to [MASK].

(4) NAME(Jessica) is PROF(an architect) who
tries to ACT(sail) as often as possible. So,
PRON(she) really likes to [MASK].

The metric proposed by GH22 is the rate of repe-
tition of the ACT-token (%-ACT-repetition), i.e.
the percentage of instantiated examples for which
the top-1 at position MASK is the ACT-token it-
self. In the Cp case, a high repetition rate is ac-
ceptable, as the ACT-token is not mandatory at
this position, but plausible. In the Cn case, a high
%-ACT-repetition is clearly a sign of a failure of
the model, by construction of the input examples.
Note, however, that a weak %-ACT-repetition may
be due to a good “understanding” of negation by
the model, but may also stem from inconsistencies,
if the model predicts agrammatical tokens in top-1
in this context.

GH22 also varied other parameters, such as the
presence or absence of ACT-coordinated verbs in
C2, intensifiers does and/or really in T, and a dis-
course connective in T (contrastive however if C
is negative, mplicative so if C is affirmative). De-
tails of the combinations tested by GH22 are given
Table 1.

2.2 Pattern instantiation

The authors generated the input examples by in-
stantiating first the variables NAME (with typically
feminine or masculine first names), PROF (with
a profession), and PRON (third person pronoun,
same gender as NAME). Then, for any instantiated
triplet (NAME, PROF, PRON), the ACT-token is

2As in NAME is a PROF who doesn’t like to ACT, ACT1
or ACT2.

213

pol. main v in C aux adv conn.
N doesn’t like to D - D
N doesn’t like to D - -
N doesn’t like to - - -
P tries to D D D
P tries to - D -

Table 1: Details of the parameter combinations tested
by GH22. Columns: pol. is the polarity of the context
(negative or positive); main v in C indicates which verb
was used in the C sentence; aux (resp. adv) indicates
whether does (resp. really) is used in T; conn. indicates
whether T begins with a connective (contrastive however
for Cn, and implicative so for Cp). In addition, in GH22,
all these configurations are combined with the gender
of the subject proper noun (fem/masc) and with 0, 1 or
2 verbs coordinated to ACT.

.

chosen by considering the tokens predicted at the
masked position in the sentence (5): either the first
one, the 50th, 100th or 200th in the predicted dis-
tribution. As a consequence, the examples that will
be given as input vary from one model to another,
the ACT-token being adapted for each triplet and
model).

(5) NAME is PROF and PRON likes to [MASK]

2.3 Critical analysis

The reason we give these details is that a careful
examination of the data set and a replication of the
GH22 experiments reveal variance in the results
and certain asymmetries, making it difficult to draw
firm conclusions.

Firstly, the GH22 test is not organized on the
basis of minimal pairs varying only in polarity
(like the pair (1) above, from Kassner and Schütze
(2020)). Such minimal pairs cannot be formed,
firstly because the parameter combinations are not
exactly the same for cases with positive context
(Cp) and those with negated context (Cn), and sec-
ondly because the embedding verb is different in
Cp and Cn (tries to ACT as often as possible versus
doesn’t like to ACT). So it’s hard to tell whether the
variations in %-ACT-repetition are due to negation
sensitivity or to other parameters.

These parameters (connectives and intensifiers)
have a major impact on the interpretation of the
examples, and more specifically on the discourse
link between the context and target sentences. The
test is based on:

• examples with an affirmative context, for
which a repetition of the ACT is expected and
corresponds to a discourse relation ‘elabora-
tion’ (for instance, in the context “Jessica is
an architect who tries to dance as often as
possible”, the second sentence “She likes to
dance” goes in the same direction);

• examples with a negative context, for which
a non-repetition of ACT is expected, corre-
sponding to a ‘contrast’ between C and T.

In GH22, the interpretation of the discourse rela-
tion between C and T is supported by various clues
in addition to the absence or presence of negation
in C: (i) the possible co-reference between NAME
and PRON, (ii) the semantic link between the main
predicates in C and in T (e.g. for Cp cases, the link
between try to ACT as often as possible and like
to ACT) and (iii) the intensifiers does and really
and the discourse connectives. Because they make
the elaboration or contrast relation explicit, con-
nectives make the test easier, and weaken the pos-
sibility of analyzing the models’ “understanding”
of negation. Intensifiers strengthen the elaboration
relation in the positive case, but the effect is more
ambiguous in the negative case. This excessive
number of parameters weakens the interpretation
that can be made of this test.

And indeed, while overall the PLMs tested show
a sensitivity to negation in the GH22 results (i.e. the
repetition rate is lower for Cn cases than for Cp),
in replicating their experiments we observed signif-
icant variance depending on the various parameters
cited above, notably the presence of coordinated
verbs in C, and the rank for the choice of ACT-
token (GH22 give results aggregating ranks 1 and
50). In the next sub-section, we present our repli-
cation of GH22 in detail, before moving on in the
next section to our proposal for a more controlled
test, based on minimal pairs varying only in po-
larity, and on additional control tests to ensure a
correct interpretation of the results.

2.4 Partial replication
In this sub-section, we present our replication re-
sults for GH22. To focus on the ways models deal
with negation, we have ignored a number of param-
eters, and systematized the combination of retained
parameters. More specifically, we have limited
ourselves to (i) patterns with no coordination in
context sentences and (ii) instantiations using rank-
1 ACT-token (we observed significant variations

214

with respect to these parameters). We also dis-
card patterns with connectives, which allows us
to reconcile the affirmative and negative versions
of the tested inputs (since the connectives differ
along with the polarity of C), and above all to re-
move cues favoring or hindering the repetition of
the ACT.

To sum up, the parameters we have kept for this
replication are the presence/absence of negation in
C, the presence/absence of the intensifiers does and
really in T, and we test all 8 combinations.

We apply this reduced test to the models
bert-large-cased (Devlin et al., 2019) and
roberta-large (Liu et al., 2019). The results are
summarized in Table 2.

n° pol. aux adv roberta-l bert-l

1
P

- -
44.2 24.6

N 27.3 3.3

2
P D -

31.8 91.8
N 25.1 58.3

3
P

- D 94.1 99.6
N 25.3 73.6

4
P D D 99.8 100
N 55.9 96.3

Table 2: %-ACT-repetition rates, for the two models
roberta-large & bert-large, using GH22 patterns
without coordination in the context sentence C nor dis-
course connectives. As in GH22, the ACT-token is
chosen as the top-1 prediction for NAME is a PROF and
PRON likes to [MASK]. Columns: pol: polarity in C;
aux: presence of does in T; adv: presence of really in T.

The results are analyzed by comparing the P
lines with their corresponding N lines, and consid-
ering the drop in repetition (drop = P rate− N rate).
GH22 consider that the greater the drop, the more
sensitive the model is to negation. For both models,
a drop is indeed observed for all 4 pairs of P/N pat-
terns, so we can say that the test is effective. Note,
however, that for bert-large-cased, the drop is
small in patterns with really. The model seems to
interpret intensifiers as elaborations, and doesn’t
seem to be able to interpret a contrast despite the
negation in the context sentence (NAME is a PROF
who doesn’t like to ACT. PRON really does like to
[MASK]).

These results underline the strong interference of
intensifiers on ACT repetition rates and drops, yet
only a pattern without intensifiers (or connectives)
comes close to a minimal pair targeting negation.

In addition, we believe that the method has a

significant shortcoming. For patterns with positive
polarity, the ACT repetition rate can be far from
100% (e.g., 31.8 for roberta-large, pattern 2P).
For this pattern, therefore, 100 − 31.8 = 68.2%
of the affirmative examples are such that the top-
1 prediction is not the ACT. This corresponds to
cases like (6)).

(6) Maria is a doctor who tries to pad as often
as possible.
She does like to [MASK]top-1=teach.

However, in this case, GH22 count a non-repetition
in the corresponding negative example (as in ex-
ample (7)) as a proper handling of negation by the
model.

(7) Maria is a doctor who doesn’t like to pad.
She does like to [MASK]top-1=follow.

But such a non-repetition can no longer be taken
as an evidence for an understanding of negation:
it is not so striking not to repeat the single forbid-
den token (pad), since it was not repeated in the
affirmative case (as in (6)).

In order to circumvent the shortcoming, we pro-
pose to consider by construction only examples
leading to a repetition of the ACT-token in the af-
firmative case.

3 Our proposal: the Self-Contained Neg
Test

3.1 Patterns

On the basis of the above findings, we propose to
create a test that is strongly inspired by GH22, but
that allows us to draw a more reliable conclusion:
we want to be able to attribute any drop in the ACT-
token repetition rate solely to negation, and thus
judge whether a model has mastered the semantics
of verbal negation.

We keep the principle of “self-contained” inputs,
composed of a context sentence (C), and a target
sentence (T) ending with a masked position, syn-
tactically calling an infinitive verb. But we propose
a single pattern for C and T, each sentence being ei-
ther affirmed or negated, so that variation in C and
T is limited to the presence or absence of negation.
We give the two variants Cp and Cn and the two
variants Tp and Tn in table 3. By combining these
variants, we obtain four patterns (CpTp, CpTn, but
also CnTp and CnTn).

215

Context Target
Cp: NAME is a PROF

who likes to ACT.
Tp: PRON is happy

to [MASK].
Cn: NAME is a

PROF who doesn’t
like to ACT.

Tn: PRON isn’t
happy to [MASK].

Table 3: Context and target sentences, either positive
and negative, used for the base Self-Contained Neg Test.

Note that in CpTp, and to a lesser extent CnTn,
although the repetition of the ACT-token is not
mandatory, it leads to a pragmatically felicitous
discourse. In contrast, the repetition is semantically
forbidden in CpTn and CnTp.

3.2 Instantiation of examples

As in GH22, final examples are obtained by instan-
tiating NAME, PROF and ACT (PRON is she or
he depending on the gender of the proper noun in-
stantiating NAME), but we modify the way ACT is
instantiated, to resolve the shortcoming described
in section 2.4: we only consider by construction
positive examples (pattern CpTp) leading to a top-1
repetition. To do this, instead of using a different
sentence, external to the test (GH22 used (5)), we
take the CpTp pattern (NAME is a PROF who likes
to ACT. PRON is happy to [MASK].), and for each
pair [NAME, PROF], for each model, we instanti-
ate ACT with an English intransitive verb such that
the top-1 prediction at the masked position is that
very same verb.

More precisely, the instantiation procedure is
as follows: we have four lists (100 female proper
nouns, 100 male proper nouns, 91 professions,
and a number of monotokenized intransitive
verbs, the number varying according to the
tokenizer of the models). For proper nouns and
professions, we re-use the GH22 lists. For verbs,
we use monotokenized infinitives among English
verbs that may have an intransitive usage, by
cross-referencing the list on this wiktionary page
https://en.wiktionary.org/wiki/Category:
English_intransitive_verbs and the verbs
present in Verbnet (Schuler, 2006). We apply this
procedure to two bert models (bert-base-cased,
bert-large-cased) and two roberta models
(roberta-base and roberta-large), and we
obtain 597 and 106 verbs for the bert and
roberta models respectively.

For each PLM and for each of the
2*100*91=18200 [NAME, PROF] pairs, we

compute the subset of verbs in the list that lead to
a top-1 repetition. The number of such [NAME,
PROF, verb] triplets is shown in row number 4 of
table 5. We then randomly select at most 20 verbs
for each model and each [NAME,PROF] pair (row
6 of table 5). Note that these subsets hence depend
on the tested model.

Table 4 illustrates the process for the pair [Jes-
sica, dancer].

Instantiated NAME/PROF: Jessica, dancer
Tested verb: smoke
Tested example: Jessica is a dancer who likes
to smoke. She is happy to [MASK].
model top 1 pred. retained?
bert-base-cased smoke D
bert-large-cased smoke D
roberta-base dance no
roberta-large chat no

Table 4: Example of selection of [NAME, PROF,
ACT] triplets, for a given instantiated [NAME=Jessica,
PROF=dancer] pair. When instantiating ACT with
smoke, the top-1 at the MASK position is smoke
(repetition) for the models bert-base-cased and
bert-large-cased, and will eventually be selected
when retaining 20 random such verbs for the given input
pair.

For each model, the triplets thus obtained to in-
stantiate NAME, PROF, ACT are then used to form
the saturated examples for each of the patterns.

3.3 Test interpretation

For each pattern, we can detail how a decrease or
stability in %-ACT-repetition should be interpreted
in relation to the rate of 100% repetition for CpTp.
As we’ll always be comparing %-ACT-repetition
with the 100% rate obtained by construction for
CpTp, we prefer to consider a measure of rate de-
crease: drop = 100 − %-ACT-repetition.

• CnTp: this pattern is an evolution of patterns
proposed by GH22, but designed here to form
a true minimal pair with CpTp. By construc-
tion, ACT-token is semantically impossible at
the masked position, so a small drop would
mean that the model doesn’t interpret negation
in C. On the contrary, the larger the drop (the
maximum being 100), the more likely it is that
the model interprets correctly the negation in
C. Note that any other verb is semantically

216

model bert-b-c bert-l-c roberta-b roberta-l

1. Available verbs 597 597 106 106

2. Available NAME,PROF pairs 18200 18200 18200 18200

3. Tested triplets (row 1 × row 2) (*106) 10.9 10.9 1.9 1.9

4. ↪→ leading to ACT repetition (*106) 2.4 2.0 1.2 0.4

5. Ratio (row 4/row 3, %) 21.7 18.4 61.9 18.3

6. Selected triplets 364000 363922 362027 107856

Table 5: Statistics for the selection stage of triplets instantiating NAME, PROF, ACT, for each model. Row 3:
number of tested triplets (NAME, PROF, verb). Row 4: number of such triplets for which the instantiated CpTp
example leads to a repetition (top-1 prediction is identical to the ACT-token). Row 6: number of selected triplets
among those of row 4 (retaining at most twenty verbs for each [NAME,PROF] pair).

and discursively possible in the masked posi-
tion, and corresponds to a contrast discourse
relation between Cn and Tp.

• CpTn: we also add the case where nega-
tion is in the target sentence, and therefore
closer to MASK. Here again, ACT-token is se-
mantically impossible at the masked position,
and the drop interpretation is the same as for
CnTp.

• Control pattern CnTn: here the repetition of
the ACT-token is discursively natural. A high-
performing pattern is expected to have only a
marginal drop. The pattern is used to check
that a negation in one sentence is correctly
interpreted in relation to the polarity in the
other sentence, and not just in isolation.

• Control pattern CpTv: we also add a con-
trol where the modification with respect to
CpTp is not the addition of the negative ad-
verb, but the addition of another adverb, very,
in T. This pattern makes it possible to check
whether a drop in CpTn is really attributable
to the negation in T, and not simply to the ad-
dition of any adverb. More generally, as ACT
has been instantiated to obtain 100% repe-
tition in the CpTp pattern, this CpTv pattern
makes it possible to check the stability of ACT-
token repetition: if a model’s predictions are
often different depending on the presence or
absence of very in NAME is a PROF who likes
to ACT. PRON is (very) happy to ACT, then
this would be a sign that any change could
potentially have a lot of impact, and it would
prevent any positive interpretation of a drop
for this model.

3.4 Properties of the test

These patterns have been chosen to limit the factors
that can be used to interpret the discourse relation
between C and T. In our case, the interpretation is
solely driven by (i) the coreference between NAME
and PRON, (ii) the semantic link between like to
ACT and be happy to ACT and (iii) the absence
or presence of negation on these predicates: only
(iii) varies within the test, (i) and (ii) remain stable,
and no intensifier or discourse connector cues are
added that would favor or hinder the repetition of
ACT-token.

In this way, we can form true minimal pairs
varying only by a negation, in C or in T: for each
triplet instantiating NAME, PROF and ACT, we
have four minimal pairs (CpTp / CpTn), (CpTp /
CnTp), (CnTn / CnTp) and (CnTn / CpTn).

By forcing an ACT repetition rate of 100% for
the CpTp pattern, we totally avoid positive exam-
ples that don’t lead to a repetition, which render
the corresponding negative examples unusable (cf.
sub-section 2.4). What’s more, the CpTp pattern
now serves as a reference point, and decreases in
%-ACT-repetition are more comparable one with
another, whether for a comparison between models,
for the same pattern, or a for comparison between
patterns for the same model. Finally, we make sure
to obtain instantiated examples where the discourse
relation between like to ACT and be happy to ACT
is “understood”. In this way, a lower repetition rate
in a negative context will be all the more signifi-
cant.

Note that the procedure to select [NAME, PROF,
verb] triplets yields a large number of ACT-
repetitions in CpTp (cf. the ratios for each model
provided at row 5 of table 5). This confirms that

217

repetition in the CpTp pattern is pragmatically felic-
itous, although not mandatory. We observe that this
ratio is much higher for the roberta-base model
compared to the other three models. We cannot
state whether this stems from a higher tendency to
repeat tokens or from a preference to interpret the
discourse relation between the two sentences as an
elaboration.

3.5 Models evaluation

We apply our test to the four above-mentioned mod-
els and provide the results in Table 6.

Recall that passing our test implies having strong
drops for the CpTn and CnTp patterns, and that
these drops be greater than in the control pattern
CpTv, and to a lesser extent in the CnTn pattern.

The bert-base-cased model fails the test com-
pletely: the drop is almost non-existent for the
CpTn and CnTp patterns. Moreover, the drop is
much stronger for the CpTv control pattern: in the
context of NAME is a PROF who likes to ACT,
the model repeats ACT less often in PRON is
very happy to MASK than in PRON isn’t happy
to MASK.

Although the drop of the bert-large-cased
model is larger for the CpTn and CnTp configura-
tions than those of bert-base-cased, its drop in
the CpTv configuration is still too high to conclude
that this model understands negation.

The roberta-base model shows drops closer
to our expectations: its CnTn drop is smaller than
those of CpTn and CnTp (20.7 and 46.7). But since
the drop for the CpTv control is 21.3, only the 46.7
drop is significant.

Finally, the model that seems to have acquired
the most robust understanding of negation is
roberta-large, having both a drop of over 50%
for CpTn and CnTp, and a small drop for the con-
trols. The maximum drop is obtained for CnTp, i.e.
with a negation in the context sentence. It remains
to be investigated why this configuration is better
handled than CpTn.

To sum up, none of the models reaches drops
close to 100% for CpTn and CnTp: many examples
lead to a repetition of a token that is semantically
forbidden by the context sentence. Nevertheless,
it seems that the roberta models, and in partic-
ular roberta-large, “understand” the semantic
value of verbal negation in English better than bert.
Moreover, within a family of models, the large
version performs better.

4 Additional controls: forcing
non-coreference

In the results analyzed in the previous section, the
drop can only be interpreted as an understanding of
negation if the model has resolved the co-reference
between the proper noun in C and the pronoun in
T. In the absence of such a resolution, a repetition
of the ACT is neither forbidden nor required.

While the ability of bert to resolve coreference
has been evidenced by Clark et al. (2019), we need
to ensure that this resolution is effective in the case
of our patterns. To do this, instead of directly test-
ing coreference resolution, we build a set of alter-
native examples to the base examples, in which
non-coreference is forced. In practice, we replace
the pronoun in T by a proper noun other than the
one used in C, with two variants, depending on
whether or not these two proper nouns have the
same gender (cf. examples 1 and 2 table 7). If
the model does indeed resolve coreference in base
examples, then we should observe a much smaller
drop for examples with forced non-coreference: in
the absence of coreference, the context sentence
no longer gives information about the target sen-
tence, and therefore no longer prohibits or favors
the choice of a particular token. As the sequences
have been selected to favor repetition of the ACT
token, this repetition should however remain high.

We also consider cases where we help the model
establish a co-reference, so as to test only the im-
pact of negation, independently of the models’ abil-
ity to establish the co-reference between the proper
noun and the pronoun in the basic examples. To
this end, we use the same proper noun in C and T
(cf. example 3 table 7). The repetition gives a less
natural example, but in which the coreference is
forced.

Triplets are selected using the same procedure
as in section 3.2, namely retaining only triplets
leading to a top-1 repetition for the CpTp pattern,
and at most 20 verbs for a given [NAME,PROF]
pair.

Results for roberta models are provided in ta-
ble 8 (those for bert models are in appendix A,
table 9). A first observation is that the number of
selected triplets (first row of tables 8 and 9) un-
dergoes a severe decrease. This is consistent with
the fact that in such configurations, repetitions are
pragmatically less felicitous.

An efficient model is expected to obtain small
drops for the Non-Coref columns, while retaining

218

Pattern bert-b-c bert-l-c roberta-b roberta-l

CpTn 3.6 44.7 27.7 64.7
CnTp 1.2 16.5 66.9 82.8
CnTn 1.5 9.7 12.1 43.5
CpTv 25.5 42.9 23.3 26

Table 6: Drops of the %-ACT-repetition with respect to 100% for CpTp, when applying the Self-Contained Neg Test
to four PLMs. To pass the test, drops should be high for the first two lines, and low for the last 2.

id Type Context Target

1 non coref, same gender Joyce is a designer who likes to smoke. Janet really likes to [MASK].
2 non coref, other gender John is a dentist who likes to dance. Anna really likes to [MASK].
3 forced coref by repetition Judith is a diplomat who likes to drink. Judith really likes to [MASK].

Table 7: Examples of the corefence control test. In 3, coreference is forced by using the same name in C and T. In 1
and 2, coreference is ruled out by using distinct names, of either same or different genders.

large drops in the Coref column, for the CpTn and
CnTp cases. The drops in CnTn and CpTv controls
should remain small.

Pattern Coref Non-Coref
Same-gend. Other-gend.

(×103) 118.7 39.6 44.7
CpTn 3.9 7.5 6.9
CnTp 12.6 3.3 3.4
CnTn 1.5 3.4 2.4
CpTv 8.7 4.5 4.8

(a) roberta-base

Pattern Coref Non-Coref
Same-gend. Other-gend.

(×103) 60.8 4.4 5.1
CpTn 28.9 11.7 12.1
CnTp 64.1 1.9 10.8
CnTn 14.3 6.2 7.1
CpTv 17.3 9.4 11.5

(b) roberta-large

Table 8: Last 4 rows: drops of the %-ACT-repetition
for the roberta models, when forcing coreference by
using the same name in C and T (Coref) or forcing non-
coreference using different names (Non-Coref), either
of same or different genders. First row (#): number
of selected [NAME, PROF, ACT] triplets, among those
leading to a top-1 repetition in the CpTp pattern (still
retaining at most twenty verbs for each [NAME,PROF]
pair).

We can see this is not the case for the
roberta-base model: the drops in the upper left
part of table 8a are smaller with respect to the
“vanilla” examples (with a pronoun in T sentences).

It is as if the model interpreted the same two names
as non-coreferent. It is though impossible to con-
clude whether this is the case (in which case the
smaller drops do not mean that negation is mis-
understood), or whether the model interpreted the
coreference correctly, but failed to interpret nega-
tion.

On the other hand, the trends observed for
roberta-large (table 8b) do follow our expec-
tations: the drops do remain large for the Coref
case for CpTn and CnTp (and significantly larger
than for the CnTn and CpTv controls) but they are
small for the non-coreference patterns. This con-
firms the observations made for this model with the
previous test, and thus further confirms the abilitiy
of this model to capture the semantics of verbal
negation.

5 Conclusion

In this paper we propose a methodology and a
dataset to study PLMs’ abilities to correctly in-
terpret the semantics of negation, more precisely
verbal negation in English. We were inspired by
Gubelmann and Handschuh (2022), who proposed
self-contained examples, consisting of two sen-
tences, the first serving as a context that favors
or hinders the repetition of a certain verb in the
second sentence. After critically analyzing this test,
we propose an improved version, which is more
controlled, more systematic, and entirely based on
examples forming minimal pairs varying only in
the presence or absence of verbal negation. We
have sought to minimize the interpretations that the
models have to make in addition to the negation

219

interpretation, so that the observed results can be
more reliably interpreted as the model’s good or
bad “understanding” of negation.

We applied our test to four pretrained
Transformer-based language models. A detailed
analysis of the results shows a continuum of situa-
tions: bert-base is globally unable to take ver-
bal negation into account, bert-large is a lit-
tle better at first sight, but the control tests we
added show its limitations. roberta-base par-
tially passes the basic test, but is disappointing
when it comes to controlling co-reference resolu-
tion. Only the roberta-large model shows trends
in line with expectations, for both base and control
patterns, clearly showing some ability to capture
the semantics of verbal negation in English.

However, for all the models we tested, a signif-
icant number of examples get a top-1 prediction
that is exactly the token semantically forbidden
by the context. This shows how much room for
improvement remains for this type of models.

We chose to focus on verbal negation, being the
most frequent form of negation in English, but we
plan to extend our test to other forms of negation.
Extension to other languages is also considered.

6 Limitations

The Self-Contained Neg Test only works on a
Masked language modeling task. As such it is
clearly designed for bidirectional models. Apply-
ing it to generative language models would require
a complete rethinking of the test.

References
Hande Celikkanat, Sami Virpioja, Jörg Tiedemann, and

Marianna Apidianaki. 2020. Controlling the Im-
print of Passivization and Negation in Contextualized
Representations. In Proceedings of the Third Black-
boxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pages 136–148, Online.
Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Allyson Ettinger. 2020. What BERT Is Not: Lessons
from a New Suite of Psycholinguistic Diagnostics for
Language Models. Transactions of the Association
for Computational Linguistics, 8:34–48.

Reto Gubelmann and Siegfried Handschuh. 2022. Con-
text matters: A pragmatic study of PLMs’ negation
understanding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4602–4621,
Dublin, Ireland. Association for Computational Lin-
guistics.

Nora Kassner and Hinrich Schütze. 2020. Negated and
Misprimed Probes for Pretrained Language Models:
Birds Can Talk, But Cannot Fly. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7811–7818, Online.
Association for Computational Linguistics.

David Kletz, Marie Candito, and Pascal Amsili. 2023.
Probing structural constraints of negation in pre-
trained language models. In The 24rd Nordic Confer-
ence on Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Karin Kipper Schuler. 2006. VerbNet: A Broad-
Coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis, University of Pennsylvania.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

220

A Results non coreference for bert
models

Pattern Coref Non-Coref
Same-gend. Other-gend.

(×103) 21.4 7.2
CpTn 2.0 3.4 2.9
CnTp 2.2 2.3 2.3
CnTn 1.4 4.1 3.7
CpTv 10.3 13.1 15.3

(a) bert-base

Pattern Coref Non-Coref
Same-gend. Other-gend.

(×103) 47.1 14.3 16.5
CpTn 41.1 47.9 44.7
CnTp 5.8 6.4 5.7
CnTn 2.9 7.3 5.8
CpTv 38.5 44.8 45.7

(b) bert-large

Table 9: Last 4 rows: drops of the %-ACT-repetition
for the bert models, when forcing coreference by us-
ing the same name in C and T (Coref) or forcing non-
coreference using different names (Non-Coref), either
of same or different genders. First row (#): number
of selected [NAME, PROF, ACT] triplets, among those
leading to a top-1 repetition in the CpTp pattern (still
retaining at most twenty verbs for each [NAME,PROF]
pair).

221

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 222–232
December 7, 2023. ©2023 Association for Computational Linguistics

Investigating the Effect of Discourse Connectives on Transformer Surprisal:
Language Models Understand Connectives; Even So They Are Surprised

Yan Cong
Purdue University
cong4@purdue.edu

Emmanuele Chersoni
The Hong Kong Polytechnic University

emmanuelechersoni@gmail.com

Yu-Yin Hsu
The Hong Kong Polytechnic University

yu-yin.hsu@polyu.edu.hk

Philippe Blache
Aix-Marseille University

philippe.blache@univ-amu.fr

Abstract
As neural language models (NLMs) based on
Transformers are becoming increasingly dom-
inant in natural language processing, several
studies have proposed analyzing the semantic
and pragmatic abilities of such models.

In our study, we aimed at investigating the ef-
fect of discourse connectives on NLMs with
regard to Surprisal scores. We did this by fo-
cusing on the English stimuli of an experimen-
tal dataset, in which the expectations about an
event in a discourse fragment could be reversed
by a concessive or a contrastive connective.

By comparing the Surprisal scores of several
NLMs, we found that bigger NLMs show
patterns similar to humans’ behavioral data
when a concessive connective is used, while
connective-related effects tend to disappear
with a contrastive one. We have additionally
validated our findings with GPT-Neo using an
extended dataset, and results mostly show a
consistent pattern.

1 Introduction

Psychologists and cognitive scientists have claimed
that understanding a discourse involves construct-
ing a situation model; that is, a dynamic mental
representation of the state of affairs denoted by the
text (Van Dijk and Kintsch, 1983; Zwaan and Rad-
vansky, 1998). Extensive evidence has shown that
humans use a general knowledge of events and their
connections to anticipate upcoming input in the pro-
cess of language comprehension (McRae and Mat-
suki, 2009). In this sense, discourse connectives
might play an important role in updating human sit-
uation models and in modulating our expectations
about "what is coming next", because concessive
(such as even so) and contrastive connectives (such
as however) signal to the comprehender that the up-
coming proposition is going to contradict what was
previously said, or negate the previous expectations
(Xiang and Kuperberg, 2015).

Experimental studies have shown that such con-
nectives have a facilitating effect on human sen-
tence processing (Asr and Demberg, 2020), es-
pecially when humans are processing incoherent
words and scenarios (Xiang and Kuperberg, 2015).
Consider the following example taken from Xiang
and Kuperberg (2015), in which the concessive
connective even so causes an effect of expectation
reversal:

(1) Liz took the test and failed it. Even so, she
went home and celebrated wildly.

Given the scenario described in the first sentence
(failing a test), the underlined verb in the second
sentence is surprising and unexpected. However,
after including a connective reversing the readers’
expectations, examples like (1) are considered as
coherent by human speakers.

The recent literature on natural language process-
ing (NLP) has shown an increasing interest in the
use of Surprisal scores (Hale, 2001; Levy, 2008)
computed by neural language models (NLMs)
to account for sentence processing phenomena
(Futrell et al., 2018; Van Schijndel and Linzen,
2018; Wilcox et al., 2018), including facilitation
(Michaelov and Bergen, 2020, 2022a,b; Michaelov
et al., 2023) and interference effects (Cong et al.,
2023) in online sentence processing. However,
to the best of our knowledge, no studies have at-
tempted to model the facilitation effects of conces-
sive and contrastive connectives at different levels
of discourse coherence thus far.

In our study, we aim to fill this research gap by
investigating the effect of discourse connectives on
NLMs’ Surprisal scores. First, we focus on the con-
cessive connective even so, and on the contrastive
connective however as an alternative.

Based on the whole discourse, we first computed
the Surprisal scores for target words using NLMs to
observe the extent to which they were affected by

222

the coherence of the stories. We found that NLMs,
and particularly the larger models, show patterns
that are quite similar to human behavioral data.
Moreover, we noticed that the connective-related
effects do not show up with contrastive connective,
suggesting that the NLMs are sensitive to the dif-
ference between connective types: the semantics
of concessive connectives entails a reversal of pre-
vious expectations about an upcoming event that
is not conveyed by contrastive connectives. Using
our biggest model, GPT-Neo, we ran additional
analysis adding more connectives of the two types
and computing the Surprisal scores either in an
inter-sentential and an intra-sentential setting. The
results were mostly consistent with our first experi-
ment, corroborating the previous findings.

2 Related Work

2.1 NLM Estimation of Word Surprisal

Transformer-based NLMs (Vaswani et al., 2017;
Devlin et al., 2019; Radford et al., 2019) have be-
come increasingly popular in NLP research, and
a number of studies designed tests to investigate
their actual linguistic abilities (Tenney et al., 2019a;
Jawahar et al., 2019; Tenney et al., 2019b). Some
of these studies have specifically analyzed the Sur-
prisal scores computed by the models, to under-
stand the extent to which they are sensitive to lin-
guistic phenomena that have been shown to affect
human sentence processing. For example, Misra
et al. (2020) investigated the predictions of BERT
in a setting aimed at reproducing human semantic
priming; they reported that BERT was indeed sensi-
tive to “priming”, and predicted a word with lower
Surprisal values when the context included a re-
lated word as opposed to an unrelated one. Using a
similar methodology, Cho et al. (2021) modeled the
priming effect of verb aspect on the prediction of
typical event locations, finding that BERT outputs
lower Surprisal scores for typical locations. How-
ever, differently from humans, it does so regardless
of verb aspect.

Michaelov and Bergen (2022a) investigated the
issue of collateral facilitation; that is, a scenario
when anomalous words in a sentence are processed
more easily by humans due to the presence of
semantically related words in the context. They
compared the Surprisal scores obtained from sev-
eral Transformers NLMs and found that most of
them reproduced the same significant differences
between the conditions that were observed by hu-

mans’ behaviors. Michaelov et al. (2023) used
NLM surprisal scores to replicate the effect of the
discourse context in reducing the N400 amplitude
for anomalous words, using the Dutch stimuli in
the experiments by Nieuwland and Van Berkum
(2006).1

2.2 Discourse Connectives in NLP

The importance of connectives in NLP research
is due to the fact that they lexicalize specific dis-
course relations (Braud and Denis, 2016; Ma et al.,
2019). During the acquisition of annotations for
discourse-parsing tasks, the connectives sometimes
provide a clue to the discourse relations, which are
sometimes implicit. In such cases, human anno-
tators are asked to insert the connective that they
consider to be more appropriate (Yung et al., 2019).

Ko and Li (2020) proposed to investigate GPT-
2’s linguistic competence in terms of discourse
coherence by testing the model’s ability to produce
the correct connectives, when given a discourse re-
lation linking two clauses. Using both organic gen-
eration and fine-tuned scenarios, they observed that
GPT-2 did not always generate coherent discourse,
although the generations were better aligned with
human behavior in the fine-tuned scenario.

Pandia et al. (2021) evaluated several NLMs on
the prediction of the correct connectives in contexts
that required Gricean-like pragmatic knowledge
and in which a specific connective would corre-
spond to an implicature. For example, in cases
such as Maggie did the paperwork by hand and the
company bought new computers, which is to say,
Maggie did the paperwork by hand [MASK] the
company bought new computers., the model had
to predict before in the [MASK] position to show
an understanding that the implied meaning of and
in this context was and then). The authors showed
that, when controlling strictly for low-level lexical
and syntactic cues, the models performed at chance
level at best.

In contrast to previous studies, we did not ask the
NLMs to predict a missing connective in a cloze

1The N400 is one of the most widely studied component
in the literature on event-related potentials (ERP). The N400
component is a negative-going deflection that peaks around
400 milliseconds after presentation of the stimulus word and,
although there are different interpretations of its meaning,
there is a general agreement among researchers that it may
represent a sort of brain signature of semantic complexity
(Hagoort, 2003). Therefore, a reduced N400 amplitude due
to the presence of semantically-related words in the discourse
context can be interpreted as a facilitation effect.

223

setting; instead, we analyzed the impact of a con-
cessive/contrastive connective on the model’s ex-
pectations for a given event, which might be co-
herent or not with the scenario. In practical terms,
this translates into analyzing the Surprisal of the
model at the verb in the subordinate clause: we
predict that if the model is linguistically competent
and can identify coherence correctly, the coherent
items should be assigned lower Surprisal scores.

3 Experimental Settings

3.1 Dataset
We used the English stimuli provided by Xiang and
Kuperberg (2015), who designed 180 sets of two-
sentence discourse items, each with four conditions
as in (2) (45 scenarios per condition). The target
word (underlined) appeared in the final sentence.

(2) a. Liz had a history exam on Monday.
She took the test and aced it. She went
home and celebrated wildly. (Plain,
Coherent)

b. Liz had a history exam on Mon-
day. She took the test and failed it.
She went home and celebrated wildly.
(Plain, Incoherent)

c. Liz had a history exam on Monday.
She took the test and failed it. Even so,
she went home and celebrated wildly.
(Even so, Coherent)

d. Liz had a history exam on Monday.
She took the test and aced it. Even so,
she went home and celebrated wildly.
(Even so, Incoherent)

We also created alternative versions of (2-c) and
(2-d) by replacing Even so with However. Note
that, as however is a contrastive connective, its
semantics signals an upcoming contrast, but not
necessarily the denial of previously-held expecta-
tions as in concessive relations (Izutsu, 2008), and
thus, it was interesting for us to test and compare
the consistency of the reversal effect.

Xiang and Kuperberg (2015) collected cloze
probabilities and typicality judgments for their
items (Table 1). The coherent items had the high-
est cloze probability scores and coherence ratings,
whereas the incoherent items had the lowest ones.
The coherent even-so items exhibited significantly
lower cloze probability and coherence ratings than
the plain coherent ones did; while the incoherent
even-so items were rated as more plausible than

Scenario type Cloze probability Coherence
Coherent 0.42 4.8

Incoherent 0.03 1.7
Even-so Coherent 0.31 3.3

Even-so Incoherent 0.04 2.4

Table 1: Summary table for the human data in Xiang
and Kuperberg (2015). Cloze probability is represented
as the proportion of total responses from 40 participants.
5: very coherent; 1: incoherent.

the plain incoherent ones, the difference was not
significant.

Their EEG experiment showed some differences
from the behavioral data: The N400 component for
the target verb was more reduced in the coherent
even-so items (i.e., lower processing costs), com-
pared to the plain coherent ones, while incoherent
items with even-so showed higher processing costs
than the plain incoherent ones at the target verb,
eliciting a P600 component.2

3.2 Language Models

For the models in this paper, we use the imple-
mentation of Minicons (Misra, 2022)3, which is
an open source library that provides a standard
API for behavioral and representational analyses
of NLMs. We experimented with three variants of
autoregressive LMs of different sizes: the original
GPT-2 Base, with 124 million parameters (Radford
et al., 2019); DistilGPT-2 with 82 million param-
eters (Sanh et al., 2019), which was trained as a
student network with the supervision of GPT-2;
and our biggest model GPT-Neo, with 1.3 billion
parameters (Gao et al., 2020; Black et al., 2021).

Using autoregressive NLMs, we computed the
Surprisal scores for the targets in the stimuli - the
critical verb in the final clause. Notice that, in the
four conditions of the same item, the verb to be
predicted is always the same. More formally, the
Surprisal for the target T in the context C (Surp)
was computed as:

Surp(wt) = −logP (wt|w1...t−1) (1)

When wt was tokenized into multiple subword
tokens, we simply used the average of the subword

2The P600 is positive-going wave peaking around 600 ms
after the presentation of a stimulus word. In online sentence
processing studies, it is generally associated with the presence
of syntactic anomalies and structural reprocessing (Osterhout
and Holcomb, 1993; Luck, 2014).

3https://github.com/kanishkamisra/
minicons-experiments

224

GPT-2 DistilGPT-2 GPT-Neo
Intercept *** *** ***

DisCohere *** *** ***
DisConn ** *** ***

length *
DisCohere:
DisConn *** *** ***

Table 2: Even so dataset: Summary table for the signifi-
cance scores of different predictors of Surp. Notation:
∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001.

GPT-2 DistilGPT-2 GPT-Neo
Intercept *** *** ***

DisCohere *** *** ***
DisConn

length *
DisCohere:
DisConn * ***

Table 3: However dataset: Summary table for signifi-
cance scores of the different predictors of Surp.

tokens probabilities.4 However, we found that this
happens only for the 14% of the target verbs in the
dataset (only 23 out of 163 targets are not included
in the models’ vocabulary).

For each NLM, we fitted a linear mixed-effects
model using the Surprisals (Surp) of the target
verbs as the dependent variable. The independent
variables include: the coherence of the discourse
DisCohere (coherent vs. incoherent), the presence
of discourse connectives DisConn (with connec-
tive vs. plain/without connective), their interaction
(DisCohere:DisConn), and the token length of the
stimulus (length). We used the ID of the items
(ITEM_ID) as the random intercept in our mod-
els. We used the lmerTest package (Kuznetsova
et al., 2017) for model fitting and results; finally,
the pairwise comparisons with Tukey adjustment
were carried out by means of the EMMEANS pack-
age (Lenth, 2019) in R.

4 Results

For the original Even so data (Table 2), our results
revealed that all three NLMs showed significant
sensitivity to the coherence of the discourse (DisCo-
here) and to the presence of connectives (DisConn).
Interaction effects were found in all the NLMs, and
only GPT-Neo showed effects on length. Interest-
ingly, the replacement of Even so with However
caused the DisConn effects to disappear in all the
NLMs (Table 3). Interaction effects were found

4Upon request of the reviewers, results for the experiment
with the sum of the Surprisal scores instead of the average can
be found in the Appendix.

GPT-2 DistilGPT-2 GPT-Neo
CohereNoconn
CohereConn -0.45* -0.426* -0.89***

IncohereNoconn
IncohereConn 0.365* 0.475*** 0.716***

IncohereConn
CohereConn 0.23 -0.205 0.539**

IncohereNoconn
CohereNoconn 1.044*** 0.695*** 2.144***

Table 4: Even so dataset: Summary table for the esti-
mate and the p-values of the pairwise comparisons.

GPT-2 DistilGPT-2 GPT-Neo
CohereNoconn
CohereConn -0.49* -0.211 -1.228***

IncohereNoconn
IncohereConn -0.151 0.047 0.066

IncohereConn
CohereConn 0.715*** 0.455*** 0.857***

IncohereNoconn
CohereNoconn 1.054*** 0.712*** 2.15***

Table 5: However dataset: Summary table for the esti-
mate and p-values of the pairwise comparisons.

in GPT-2 and GPT-Neo, and again, only GPT-Neo
showed sensitivity to length.

The pairwise comparisons examining the effects
of Even so at each level of Coherence (Table 4)
showed that, for all the models, there is a decrease
of Surprisals from Even so coherent scenarios (con-
dition c.) to plain coherent scenarios (condition a.),
and an increase of Surprisals from Even so inco-
herent scenarios (condition d.) to plain incoherent
scenarios (condition b.). Pairwise comparisons ex-
amining effects of Coherence at each level of Even
so showed a significant increase of Surprisals from
Even so coherent scenarios (condition c.) to Even
so incoherent scenarios (condition d.) only with
GPT-Neo. All the NLMs showed an increase of
Surprisals from plain coherent scenarios (condition
a.) to plain incoherent ones (condition b.).

Fewer significant effects were found after replac-
ing Even so with However (Table 5). Regarding
the effects of However at each level of Coherence,
GPT-2 and GPT-Neo revealed a decrease of Sur-
prisals from However coherent scenarios (condi-
tion c.) to plain coherent scenarios (condition a.).
All NLMs showed no significant effects of Sur-
prisals from However incoherent condition (con-
dition d.) to plain incoherent condition (condition
b.). As for the effects of Coherence at each level
of However, all the NLMs showed an increase of
Surprisals from However coherent condition (con-
dition c.) to However incoherent condition (condi-
tion d.), and an increase of Surprisals from plain

225

GPT-2 DistilGPT-2 GPT-Neo
DisCohere ✓ ✓ ✓
DisConn ✓ ✓ ✓

DisCohere:
at each level of

DisConn
✓

DisConn:
at each level of

DisCohere
✓ ✓ ✓

Table 6: Even so dataset: Comparison of effects be-
tween Human behavioral results and NLMs Surprisals.
Notation: ✓ = alignment with Human in significance
and direction of the effect.

coherent condition (condition a.) to plain incoher-
ent condition (condition b.).

Comparing the outcome with the study by Xiang
and Kuperberg (2015), one can observe that the
model scores tend to align with human typicality
judgements (cf. Table 1), and the largest one (i.e.
GPT-Neo) shows the same effect pattern (cf. Table
6). A difference, however, is that all the NLMs
assign significantly higher Surprisals to plain inco-
herent items than Even so incoherent ones.

Our results suggest that NLMs are sensitive to
the expectation reversal determined by connectives.
Besides the human-like pattern in the distribution
of the Surprisal scores for the Even so dataset, it is
also noticeable that replacing the connective with
However makes the connective-related effects dis-
appear. This is coherent with the intuition and
the claims made in formal semantics literature, for
which However simply introduces a semantic op-
position, while Even so additionally presupposes
an expectation being denied (Karttunen and Peters,
1979; Izutsu, 2008).

4.1 Extended Study

Our experiments on Surprisal suggest that our
larger NLM, GPT-Neo, shows similar patterns to
humans behavioral data with the concessive con-
nective even so. Interestingly, all NLMs show dis-
tinct patterns with concessive and contrastive con-
nective, with no connective-related effects when
however is used. This might be due to the fact that
contrastive connectives per se just indicate a seman-
tic opposition, but differently from concessive ones,
they do not necessarily deny an expectation about
an event. However, one might ask if the NLMs
would consistently score the discourse items even
when using different concessive or contrastive con-
nectives.

To verify this, we extended our study with GPT-

Neo: 1) we selected more connectives for the two
groups, a) but, yet and still for the contrastive group
and b) nonetheless, nevertheless and regardless for
the concessive one; in each item of the original
stimuli by Xiang and Kuperberg (2015), we re-
placed the original even so connectives with the
new ones, obtaining 6 new datasets (one for each
of the newly-introduced connectives); 2) NLMs
predictions have been shown to be extremely sen-
sitive even to small changes in the input (Jiang
et al., 2020); in our case, the predictions might
have been affected by the fact that the connectives
always appeared in a new sentence after a full stop
(inter-sentential setting). Therefore, we also carry
out the experiment after replacing the final full
stop of the second sentence with a comma (intra-
sentential setting), and lower-casing the discourse
connectives, as it can be seen in Example (3):

(3) a. Liz took the test and failed it. Even so,
she went home and celebrated wildly.
(inter-sentential)

b. Liz took the test and failed it, even so,
she went home and celebrated wildly.
(intra-sentential)

Our choice of connectives was based on Webber
et al. (2019), which describes and annotates but, yet,
still as contrastive connectives that share the same
syntax and semantics as however, and nonetheless,
nevertheless, regardless as concessive connectives
that introduce events in the same manner as even
so does. Moreover, using those connectives it was
easy to modify our stimuli by replacing the original
even so and maintaining at the same time the same
word order and syntax of the experimental items.

The procedure for computing the Surprisal
scores with the NLMs and running the linear mixed
models is the same of Section 3.2, but this time we
only used GPT-Neo, as it was the model with the
most similar pattern to human behavioral data.

As shown in Tables 7-8, the results suggest
that the pattern found in inter-sentential even
so/however mostly gets reproduced across differ-
ent inter-/intra-sentential connectives. still is the
connective that shows more discrepancy: as intra-
sentential connective, we found connectives (Dis-
Conn) effects, which were absent in however. It
is interesting to notice that the presence or not of
the DisConn effect is what sets apart the two sets
of connectives: similarly to even so, nevertheless,
nonetheless and regardless all display significant

226

Figure 1: Boxplots of the GPT-Neo Surprisals for all the inter-/intra-sentential connectives (mean of the scores
is marked in yellow). Notation: A (red): IMPLAUS_CONN; B (blue): IMPLAUS_NOCONN; C (green):
PLAUS_CONN; D (purple): PLAUS_NOCONN.

227

even so nevertheless nonetheless regardless still yet but however
Intercept *** *** *** *** *** *** *** ***

DisCohere *** *** *** *** *** *** *** ***
DisConn *** * * ***

length * * * * * ** *
DisCohere:
DisConn *** *** *** *** *** *** *** ***

Table 7: Extended INTER dataset: Summary table for the significance scores of different predictors of Surp using
GPT-Neo. Notation: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001.

even so nevertheless nonetheless regardless still yet but however
Intercept *** *** *** *** *** *** *** ***

DisCohere *** *** *** *** *** *** *** ***
DisConn *** ** ** *** ***

length * * * *** ** * ** *
DisCohere:
DisConn *** *** *** *** *** *** *** ***

Table 8: Extended INTRA dataset: Summary table for the significance scores of different predictors of Surp using
GPT-Neo. Notation: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001.

effects, while the contrastive connectives yet and
but do not. Still represents the exception to this pat-
tern, and a possible reason might be its ambiguity,
as this word can appear as a noun, an adjective, a
verb or an adverb, besides its connective usage.

The scores for all settings can be visualized
in Figure 1. Across connectives types, GPT-Neo
showed the highest Surprisals scores in the inco-
herent without connectives (IMPLAUS_NOCONN)
condition, whereas the lowest scores were ob-
served in the coherent without connectives
(PLAUS_NOCONN) condition. We did not find a lot
of variance across conditions. We also observed a
few outliers, mostly occurring in the coherent with
connectives (PLAUS_CONN) condition.

We conducted follow-up comparisons and sum-
marized our results in Table 9. In most cases, for
main and interaction effects, GPT-Neo’s behavior
across concessive connectives aligned well with
even so in both the statistical significance and direc-
tion of the effects. A discrepancy was found in the
follow-up comparisons: the inter-/intra-sentential
regardless did not align well with even so for the
coherence effects with respect to connectives (Dis-
Cohere: at each level of DisConn).

Similarly to still, we speculate that a possible
reason could be the ambiguity of this word, as
regardless can appear in a sentence as an adjective
or as a preposition (with the meaning of in spite
of/despite), and thus it might lead the NLM to less
accurate predictions. Interestingly, and differently
from the other concessive, it can be noticed from
Figure 1 (in the first boxplots of the second and of

the fourth row) that with the regardless connective
the IMPLAUS_CONN items (red boxes) tend to
have similar, or lower Surprisal scores than the
PLAUS_CONN ones (green boxes).

Concerning contrastive connectives, inter-/intra-
sentential but did not align with however for the
connectives effects with respect to coherence (Dis-
Conn: at each level of DisCohere). Additionally,
our findings indicate that intra-sentential still did
not align with however regarding coherence effects
(DisCohere: at each level of DisConn), and that
inter-sentential yet did not align with however re-
garding connective effects (DisConn: at each level
of DisCohere). In general, contrastive connectives
are less consistent with regard to the pattern found
in the original experiment, showing that, for how
the stimuli were built, the denial of expectations
introduced by a concessive connective is an im-
portant cue for modulating the coherence of the
continuation of the story.

5 Conclusion

In our paper, we proposed an analysis of the Sur-
prisal scores of NLMs on the target verbs of a psy-
cholinguistic dataset where the items differed by
the coherence of the discourse, and by the inclu-
sion of a connective reversing the expectations on
the verb. We found that our NLMs show patterns
that are quite similar to human behavioral data, in
particular the biggest model, GPT-Neo. More in-
terestingly, in all models the effects related to the
connective disappear when a contrastive connec-
tive is used to replace the concessive one. This

228

nevertheless nonetheless regardless still yet but
Align with inter-sentential even so Align with inter-sentential however

DisCohere ✓ ✓ ✓ ✓ ✓ ✓
DisConn ✓ ✓ ✓ ✓ ✓

DisCohere:
at each level of

DisConn
✓ ✓ ✓ ✓ ✓

DisConn:
at each level of

DisCohere
✓ ✓ ✓ ✓

Align with intra-sentential even so Align with intra-sentential however
DisCohere ✓ ✓ ✓ ✓ ✓ ✓
DisConn ✓ ✓ ✓ ✓ ✓

DisCohere:
at each level of

DisConn
✓ ✓ ✓ ✓

DisConn:
at each level of

DisCohere
✓ ✓ ✓ ✓ ✓

Table 9: Extended dataset: comparing GPT-Neo Surprisal scores across connectives. Notation: ✓ = aligned in
significance and direction of the effect.

suggests that the concessive connective leads to an
expectation reversal for the upcoming verb, while
the contrastive one does not, coherently with pre-
vious descriptions of connectives from the formal
semantics literature (Karttunen and Peters, 1979;
Izutsu, 2008).

Given that the psycholinguistic dataset we used
in our modeling is relatively small for NLP settings
and limited to two connectives, we additionally
constructed an extended datasets to validate our
findings. We extended our investigation in two
ways: expanding the dataset by varying the setting
in which the connective was found (inter- or intra-
sentential) and connectives themselves, including
six more contrastive/concessive connectives. Our
results indicate that the findings even so are mostly
consitent, as they generalize across settings and
concessive connectives.

We acknowledge that there are some significant
limitations in our current investigations. First, we
have human data only for even so in the inter-
sentential setting, for which we could establish
an interpretation baseline. There is no behavioral
or neural data for all the other connectives. This
implies that we interpreted some of our findings
based on intuitions about discourse connectives,
assuming that the human behavioral pattern will be
similar for other concessive types. We recognize
that this is an important limitation to the cognitive
plausibility of our evaluation, and for future re-
search we plan to collect more human judgements
for discourse connectives, possibly including also
languages other English.

Second, our analysis was mainly focused on
comparing Surprisal scores to human behavioral
patterns (or, by extension, to the patterns found in
the original experiment with concessive connec-
tives), but we did not apply any advanced inter-
pretability method to identify which specific in-
put tokens influence the predictions for the target
verb. More direct evidence for the causal role of
discourse connectives in reversing the predictions
could be obtained, for example, by analyzing the
changes of the probability rank of the verb in the
target position; or by applying contrastive explana-
tions to sentences differing only for the presence
of connectives (Yin and Neubig, 2022).

Acknowledgements

This research was funded by the PROCORE grant
at the Hong Kong Polytechnic University (project
3-RABX, "Exploring the Influence of Discourse
Connectives on the Predictions of Humans and Pre-
trained Language Models"). We would also like
to thank their three anonymous reviewers for their
constructive feedback.

References
Fatemeh Torabi Asr and Vera Demberg. 2020. Inter-

pretation of Discourse Connectives Is Probabilistic:
Evidence from the Study of But and Although. Dis-
course Processes, 57(4):376–399.

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. zenodo.org.

229

Chloé Braud and Pascal Denis. 2016. Learning
Connective-based Word representations for Implicit
Discourse Relation Identification. In Proceedings of
EMNLP.

Won Ik Cho, Emmanuele Chersoni, Yu-Yin Hsu, and
Chu-Ren Huang. 2021. Modeling the Influence of
Verb Aspect on the Activation of Typical Event Lo-
cations with BERT. In Findings of ACL-IJCNLP.

Yan Cong, Emmanuele Chersoni, Yu-Yin Hsu, and
Alessandro Lenci. 2023. Are Language Models Sen-
sitive to Semantic Attraction? A Study on Surprisal.
In Proceedings of *SEM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL.

Richard Futrell, Ethan Wilcox, Takashi Morita, and
Roger Levy. 2018. RNNs as Psycholinguistic Sub-
jects: Syntactic State and Grammatical Dependency.
arXiv preprint arXiv:1809.01329.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800GB Dataset of Diverse Text for Lan-
guage Modeling. arXiv preprint arXiv:2101.00027.

Peter Hagoort. 2003. Interplay Between Syntax and
Semantics During Sentence Comprehension: ERP
Effects of Combining Syntactic and Semantic Viola-
tions. Journal of Cognitive Neuroscience, 15(6):883–
899.

John Hale. 2001. A Probabilistic Earley Parser as a
Psycholinguistic Model. In Proceedings of NAACL.

Mitsuko Narita Izutsu. 2008. Contrast, Concessive, and
Corrective: Toward a Comprehensive Study of Oppo-
sition Relations. Journal of Pragmatics, 40(4):646–
675.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What Does BERT Learn about the Structure
of Language? In Proceedings of ACL.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How Can We Know What Language
Models Know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Lauri Karttunen and Stanley Peters. 1979. Conventional
Implicature. In Presupposition, pages 1–56. Brill.

Wei-Jen Ko and Junyi Jessy Li. 2020. Assessing Dis-
course Relations in Language Generation from GPT-
2. In Proceedings of INLG.

Alexandra Kuznetsova, Per B. Brockhoff, and Rune
H. B. Christensen. 2017. lmerTest Package: Tests in
Linear Mixed Effects Models. Journal of Statistical
Software, 82(13):1–26.

Russell Lenth. 2019. emmeans: Estimated Marginal
Means, aka Least-Squares Means. R Package Ver-
sion 1.4.2.

Roger Levy. 2008. Expectation-based Syntactic Com-
prehension. Cognition, 106(3):1126–1177.

Steven J Luck. 2014. An Introduction to the Event-
related Potential Technique. MIT Press.

Mingyu Derek Ma, Kevin K Bowden, Jiaqi Wu, Wen
Cui, and Marilyn Walker. 2019. Implicit Discourse
Relation Identification for Open-domain Dialogues.
In Proceedings of ACL.

Ken McRae and Kazunaga Matsuki. 2009. People Use
their Knowledge of Common Events to Understand
Language, and Do So as Quickly as Possible. Lan-
guage and Linguistics Compass, 3(6):1417–1429.

James A Michaelov and Benjamin K Bergen. 2020.
How Well Does Surprisal Explain N400 Amplitude
under Different Experimental Conditions? In Pro-
ceedings of CONLL.

James A Michaelov and Benjamin K Bergen. 2022a.
Collateral Facilitation in Humans and Language Mod-
els. In Proceedings of CONLL.

James A Michaelov and Benjamin K Bergen. 2022b.
’Rarely’a Problem? Language Models Exhibit In-
verse Scaling in their Predictions Following ’Few’-
type Quantifiers. arXiv preprint arXiv:2212.08700.

James A Michaelov, Seana Coulson, and Ben-
jamin K Bergen. 2023. Can Peanuts Fall in Love
with Distributional Semantics? arXiv preprint
arXiv:2301.08731.

Kanishka Misra. 2022. minicons: Enabling Flexi-
ble Behavioral and Representational Analyses of
Transformer Language Models. arXiv preprint
arXiv:2203.13112.

Kanishka Misra, Allyson Ettinger, and Julia Taylor
Rayz. 2020. Exploring BERT’s Sensitivity to Lex-
ical Cues using Tests from Semantic Priming. In
Findings of EMNLP.

Mante S Nieuwland and Jos JA Van Berkum. 2006.
When Peanuts Fall in Love: N400 Evidence for the
Power of Discourse. Journal of Cognitive Neuro-
science, 18(7):1098–1111.

Lee Osterhout and Phillip J Holcomb. 1993. Event-
related Potentials and Syntactic Anomaly: Evidence
of Anomaly Detection During the Perception of Con-
tinuous Speech. Language and Cognitive Processes,
8(4):413–437.

Lalchand Pandia, Yan Cong, and Allyson Ettinger.
2021. Pragmatic Competence of Pre-trained Lan-
guage Models through the Lens of Discourse Con-
nectives. In Proceedings of CONLL.

230

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners. In
Open-AI Blog.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a Distilled Version
of BERT: Smaller, Faster, Cheaper and Lighter. In
Proceeding of the NeurIPS EMC2Workshop.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT Rediscovers the Classical NLP Pipeline. In
Proceedings of ACL.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, et al.
2019b. What Do You Learn from Context? Prob-
ing for Sentence Structure in Contextualized Word
Representations. arXiv preprint arXiv:1905.06316.

Teun Adrianus Van Dijk and Walter Kintsch. 1983.
Strategies of Discourse Comprehension. Academic
Press New York.

Marten Van Schijndel and Tal Linzen. 2018. Modeling
Garden Path Effects without Explicit Hierarchical
Syntax. In Proceedings of CogSci.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in Neural Information Process-
ing Systems, 30.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind
Joshi. 2019. The Penn Discourse Treebank 3.0 An-
notation Manual. Philadelphia, University of Penn-
sylvania, 35:108.

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard
Futrell. 2018. What Do RNN Language Mod-
els Learn about Filler-gap Dependencies? arXiv
preprint arXiv:1809.00042.

Ming Xiang and Gina Kuperberg. 2015. Reversing
Expectations during Discourse Comprehension. Lan-
guage, Cognition and Neuroscience, 30(6):648–672.

Kayo Yin and Graham Neubig. 2022. Interpreting Lan-
guage Models with Contrastive Explanations. In
Proceedings of EMNLP.

Frances Yung, Vera Demberg, and Merel Scholman.
2019. Crowdsourcing Discourse Relation Annota-
tions by a Two-step Connective Insertion Task. In
Proceedings of the ACL Linguistic Annotation Work-
shop.

Rolf A Zwaan and Gabriel A Radvansky. 1998. Situa-
tion Models in Language Comprehension and Mem-
ory. Psychological Bulletin, 123(2):162.

A Appendix

Upon request of the reviewers, we additionally re-
run the experiment by computing the sum of the
Surprisal scores of the subtokens (Surp-sum) for
out-of-vocabulary target verbs, instead of taking
the average.The findings are summarized in Tables
10-11.

The results mostly show consistent patterns.
Compared with the average of the surprisals of
the subtokens (Tables 7-8), with the sum the Dis-
Conn effect in inter-sentential nevertheless disap-
pears, while weakly-significant DisConn effects
appear for the inter-sentential still and for the intra-
sententials yet and however.

231

even so nevertheless nonetheless regardless still yet but however
Intercept *** *** *** *** *** *** *** ***

DisCohere *** *** *** *** *** *** *** ***
DisConn *** ** ** ***

length * *
DisCohere:
DisConn *** *** *** *** *** *** *** ***

Table 10: Extended INTER dataset: Summary table for the significance scores of different predictors of Surp-sum
using GPT-Neo. Notation: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001.

even so nevertheless nonetheless regardless still yet but however
Intercept *** *** *** *** *** *** *** ***

DisCohere *** *** *** *** *** *** *** ***
DisConn *** *** *** *** *** * *

length * ** ** ** *
DisCohere:
DisConn *** *** *** *** *** *** *** ***

Table 11: Extended INTRA dataset: Summary table for the significance scores of different predictors of Surp-sum
using GPT-Neo. Notation: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001.

232

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 233–249
December 7, 2023. ©2023 Association for Computational Linguistics

METAPROBE: A Representation- and Task-Agnostic Probe

Yichu Zhou
School of Computing

University of Utah
flyaway@cs.utah.edu

Vivek Srikumar
School of Computing

University of Utah
svivek@cs.utah.edu

Abstract

Probing contextualized representations typi-
cally involves comparing task-specific model
predictions against ground truth linguistic la-
bels. Although this methodology shows what
information can be recovered by a classifier, it
does not reveal how a classifier uses the repre-
sentation to make its decision. To address the
latter problem, we ask: Do task-classifiers rely
on representation- and task-independent geo-
metric patterns in the embedding space? We ex-
plore this question by developing METAPROBE,
an approach that uses geometric properties of
representations to predict the behavior of task-
specific classifiers (i.e, their predictions as op-
posed to the ground truth). Our experiments
reveal the existence of universal geometric pat-
terns across representations that can predict
classifier predictions. Consequently, this al-
lows us to posit a geometric explanation for
the impressive performance of contextualized
representations.

1 Introduction

Pre-trained contextualized representations (e.g., Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al.,
2019b; He et al., 2021) have advanced the state-
of-the-art across NLP. Unsurprisingly, probing
representations, i.e., understanding what linguistic
information they encode, and how they do so, has
provoked much recent interest in the NLP research
community (e.g., Hupkes and Zuidema, 2018; Ten-
ney et al., 2019; Voita and Titov, 2020; Lasri et al.,
2022; Immer et al., 2022; Belinkov, 2022; Choud-
hary et al., 2022; Wang et al., 2023).

Although previous work undoubtedly helps un-
derstand contextualized representations, they suffer
from two major drawbacks. First, they do not offer
a justification of how classifiers trained on a rep-
resentation arrive at their decisions. For example,
the commonly used paradigm of classifier-based
probing treats representations as black boxes, and
relies on the final predictive performance to infer

the knowledge encoded in them. Second, since
previous work probes representations individually,
they do not uncover common patterns in classifiers’
decisions across tasks and representations. The
fact that most contextualized representations work
well on across tasks (Liu et al., 2019a) leads us
to conjecture the existence of universal patterns
in the decision processes of classifiers that can be
uncovered by examining representations.

In this work, we ask: Are there universal geomet-
ric patterns in how contextualized representations
embed text that explain their impressive perfor-
mance across tasks? To explore this question, we
propose a new supervised probing paradigm that
studies predictions of multiple task-specific clas-
sifiers (henceforth task-classifiers) based on geo-
metric properties of representations. By mimicking
the behavior of task-classifiers in this fashion, we
discover and analyze the patterns in the representa-
tions that lead to task-classifier decisions.

We present METAPROBE, an instantiation of this
idea of exploring universal geometric patterns in
contextualized representations. Given an unseen
example and a representation, METAPROBE esti-
mates how probable it is for a trained task-classifier
to predict each label. Importantly, it does so only
using features that use geometric properties of the
representation and the task data. In other words,
instead of trying to mimic the consensus of an-
notators as standard classifiers do, METAPROBE

mimics other classifiers trained on the same rep-
resentation and data. This probability distribution,
coupled with the choice of features, allows us to
analyze the usefulness of a representation for pre-
dicting an example. For example, a uniform label
distribution for an example indicates that the cur-
rent representation is not informative for that exam-
ple because classifiers will be maximally confused
about it. METAPROBE is a linear model; conse-
quently, its parameters help understand which geo-
metric properties are relevant for task-classifiers.

233

Our experiments on ten NLP datasets (covering
five different tasks) and four contextualized repre-
sentations reveal task- and representation-agnostic
patterns in how the geometry of embeddings is em-
ployed by successful models. We show that these
common patterns can serve as “zero-shot probes”
for unseen tasks (manifested as datasets) and rep-
resentations. Finally, by inspecting the learned
METAPROBE parameters, we find that the task-
classifiers make their decisions using not only sim-
ple geometric properties such as distances between
examples (which is usually employed by a nearest
neighbor probe), but also more sophisticated geo-
metric properties, e.g. involving potential changes
to the decision surfaces that separate two differ-
ent labels (which cannot be captured by a nearest
neighbor probe).

In summary, the contributions of this work are:
1. We propose a new supervised probing

paradigm of predicting the behavior of task-
classifiers using the geometric structure of
examples in an embedding space. We in-
stantiate this idea with a linear model called
METAPROBE.

2. We hypothesize and verify the existence of
universal geometric patterns over contextual-
ized representations that can explain the pre-
dictions of classifiers trained over them.

3. Via experiments, we show that METAPROBE

identifies important geometric properties that
account for the predictive decision process of
a task-classifier, even on previously unseen
tasks and representations.

2 Two Characteristics of Representations

Contextualized representations have two character-
istics: their predictiveness and their descriptive in-
trinsic properties. Existing probing methodologies
focus on one or the other (Michael et al., 2020).
Predictive probing involves training supervised
classifiers to predict one or more specific linguistic
properties using the given representations. Repre-
sentation quality is evaluated using various criteria,
e.g. accuracy, complexity, etc., derived from the
learned classifiers (e.g. Conneau et al., 2018; Kim
et al., 2019; Kassner and Schütze, 2020; Goodwin
et al., 2020; Pimentel et al., 2020b,a; Aghazadeh
et al., 2022; Tucker et al., 2022; Gonen et al., 2022;
Arps et al., 2022). In contrast, descriptive prob-
ing looks into the intrinsic structure of representa-
tions (Ethayarajh, 2019; Zhou and Srikumar, 2021;

Xypolopoulos et al., 2021; Chang et al., 2022), and
focuses on discovering properties of the representa-
tion using cluster analysis (Aharoni and Goldberg,
2020) or visualization technqiues (Reimers et al.,
2019; Vig, 2019).

2.1 Predictiveness of Representations

A large class of today’s NLP applications involve
building a classifier (denoted by h henceforth) us-
ing a dataset (denoted byD) with a pre-trained con-
textualized representation such as RoBERTalarge
(denoted by ϕ) as a feature space. As a result, a
representation’s predictiveness—that is, the perfor-
mance of a classifier trained over it—has received
most attention in the probing literature (e.g., Xiang
et al., 2022; Evci et al., 2022, and many others).
However, Zhou and Srikumar (2021) point out that
using the performance of a single task-classifier
may not relibly characterize the quality of a repre-
sentation because other confounding factors may
affect its performance. Instead, the entire set of
classifiers H learned over the representation may
provide more information. With such a set, we
can ask several natural questions about an unseen
example x:

• What label will the majority of the classifiers
in H predict for x?

• Which labels are confusable for x? That is,
which labels will be predicted by at least one
of the classifiers in H?

• Suppose we draw a random classifier from H .
What is the probability that it will predict a
label y?1

The first question is commonly investigated in pre-
dictive probing work by taking the average accu-
racy of multiple runs. It directly shows how well
a contextualized representation captures a linguis-
tic property. The second question can tell us how
confidently a representation encodes an example
x—something that the answer to the first question
does not reveal. The last question tells us how
difficult the example x is. For example, if the prob-
ability that a randomly chosen classifier in H pre-
dicts a label is uniformly distributed over the label
set (see footnote 1), then the representation ϕ is
not informative for x even though many individual
classifiers in H may be correct in their predictions.

1Note that the probability described here is different from
the distribution over labels predicted by any single classifier.
Here, the label uncertainty is due to the choice of classifiers.

234

2.2 Descriptive Properties of Representations
One shortcoming of predictive probing is that it
treats the representation as a blackbox. It cannot
reveal how representations help learned classifiers
to make their decisions. This question is the focus
of another line of work, called descriptive prob-
ing (e.g., Reif et al., 2019; Voita et al., 2019; Saphra
and Lopez, 2019), and we refer to the attributes un-
covered by such work as the descriptive intrinsic
properties of a representation. Descriptive prob-
ing analyzes a representation on its own terms by
finding patterns in the representations without ref-
erence to any specific task. We can ask:

• Are there any task-agnostic regularities in a
representation?

• Do they correlate with an NLP task?
• If so, how do they contribute to the predictive

behavior of the representation?
However, without a target task, descriptive prob-

ing fails to connect these structural patterns with
the predictiveness of a representation.

2.3 Quantifying Predictiveness and
Descriptive Properties

To understand how task-classifiers make their de-
cisions for unseen examples, we propose to use
descriptive aspects of a representation to estimate
its predictiveness for a target task. We first need to
quantify these two characteristics.

Quantifying Predictiveness. As discussed in
§2.1, we care about how different task-classifiers
behave on the given representation. Beyond the
usual source of uncertainty stemming from the data,
we also have uncertainty over the choice of classi-
fiers (Hewitt and Liang, 2019; Talmor et al., 2020;
Zhou and Srikumar, 2021). One way to address this
is to “marginalize away” the uncertainty by enumer-
ating all (or, many of) the possible classifiers. That
is, we can quantify the predictiveness of a represen-
tation by having many classifiers make predictions
on the same example. The empirical distribution
over their predictions captures the predictiveness of
the representation for this example. We will refer
to this label distribution for each unseen example
x as predicted label distribution:

Ppred(y | x) = 1

|H|
∑

h∈H

1[h(x) = y] (1)

Here, the set H is the set of classifiers learned
from a dataset D using a representation ϕ, and the
notation 1[·] represents the indicator function.

As an illustration, given an example and 100
task-classifiers, suppose 90 classifiers predict label
A, 5 predict B, and 5 predict C. The empirical distri-
bution of interest is the distribution that allocates
90% probability to A and 5% each to B and C.

Two points are worth noting about Ppred. First,
Ppred is a property of a representation ϕ and an
example x, and not any specific task-classifier. Sec-
ond, Ppred does not require the ground truth la-
bel. It describes how task-classifiers would behave
given the representation and an example.

Quantifying Descriptive Intrinsic Properties.
To quantify the descriptive properties of a repre-
sentation, we use geometric attributes based on
DIRECTPROBE (Zhou and Srikumar, 2021), a re-
cently proposed supervised clustering technique.
Given a representation ϕ and training set D, DI-
RECTPROBE returns a set of linearly separable clus-
ters of examples, which we will call C = {Ci}ni=1.
Each cluster Ci is guaranteed to contain examples
from D that have the same label. There may be
multiple clusters for a label as the labels may not
be linearly separable in the given representation.
Importantly, any decision boundary separating the
labels must cross the regions between differently
labeled clusters. Abstractly, we can think of the
clusters as forming a geometric layout of labels in
the embedding space. Subsequent work by Zhou
and Srikumar (2022) showed that the margin be-
tween two clusters correlates with the how well
task-classifiers using the representation generalize.
In this work, we take a step further to explore other
geometric properties beyond the margin.2

3 From Descriptive Properties to
Predictiveness

In this section, we first present METAPROBE, a
linear model that uses the geometric features of
a representation to predict the predicted label dis-
tribution (from §2.3) for an example. Then, we
introduce the geometric features we will explore
in this work. Finally, we describe details about the
training process of METAPROBE.

3.1 Modeling Predicted Labels
Given a pair of dataset and representation (D,ϕ),
suppose q is the predicted label distribution (eq. (1))
for an unseen example x. Let C = {Ci}ni=1 denote
the set of DIRECTPROBE clusters for the data. We

2We use the DIRECTPROBE implementation from https:
//github.com/utahnlp/DirectProbe.

235

define METAPROBE to be a linear model that uses
only properties of the clusters C and an example x
to predict the predicted label distribution q.

Before getting into the details of METAPROBE,
we first give a high level overview. Recall from
§2.3 that each DIRECTPROBE cluster is associated
with one label, but a label may be spread across
multiple clusters. For an unseen example, a natural
prediction strategy is to use the nearest cluster and
its label, which was explored by Zhou and Sriku-
mar (2021). Rather than predicting a single label,
we seek to construct a distribution over all labels
(i.e. the predicted label distribution). To do so,
we consider all clusters. For each cluster Ci, we
compute a score that indicates the affinity between
x and Ci. Since a label may correspond to multiple
DIRECTPROBE clusters, we score labels by aggre-
gating the scores of clusters for each label, before
normalizing to obtain a valid probability distribu-
tion over the labels. To operationalize this idea,
we extract geometric features ψ(x,Ci) ∈ Rd that
characterize the relationship of the example x to
the cluster Ci (described in §3.2). The score of x
and Ci is the weighted combination of its features:

s(x,Ci) =W⊤ψ(x,Ci) (2)

where W ∈ Rd is a learned parameter vector that
is shared by all clusters.

Let v ∈ Rn be the score vector for all n clusters,
i.e. vi = s(x,Ci). While we may normalize the
scores using the softmax function σ to obtain a
probability distribution σ(v) ∈ Rn over clusters,
we are interested in the distribution over labels
rather than over clusters. We resolve this mismatch
and score each label using the sum of scores for all
its clusters. To do so, we introduce a matrix M ∈
{0, 1}n×m (where m is the number of labels):

Mij =

{
1 if i-th cluster has j-th label
0 otherwise

(3)

We project the scores over clusters to the scores
over labels by multiplying the score vector by M .
Then, we can compute the predictive label distribu-
tion for x as softmax(v ·M).

3.2 Geometric Features for METAPROBE

In the discussion that follows, we will assume that
for an example x, the clusters in C are indexed their
closeness to x. That is, C1 is closer to x than C2

and so on.3 Also, for brevity, we use the notation
x to denote both an example and its representation
ϕ(x); the context will make it clear whether we are
referring to an example or a point in the represen-
tation space. For each pair (x,Ci), we extract fea-
tures to decide if x should be merged by cluster Ci.
We consider three classes of features: cluster-only
features, distance features, and merging features.

Cluster-only Features. We first consider the
properties of the cluster Ci by itself. For exam-
ple, such features allow us to investigate how the
number of examples in the cluster affects the deci-
sion of a task-classifier. Specifically, we consider
four properties for each cluster Ci: (i) The number
of examples it contains; (ii) the average pairwise
distances between them; (iii) the standard devia-
tion of the pairwise distances; and (iv) the distances
between the cluster Ci and other clusters.

Distance Features. Intuitively, the cluster-only
features are insufficient to explain the decision of a
task-classifier for an example x. Distances between
x and Ci are also informative. For example, if x
is inside the cluster Ci (having zero distance), any
task-classifier will likely assign it the same label as
Ci. We have four distance features: (i) An indicator
for whether x is inside the convex hull of points in
Ci; (ii) the distance between x and the convex hull
of Ci; (iii) the distance between x and the centroid
of Ci; (iv) the distance between x and the span of
a pair of clusters (Ci, Cj), for 1 ≤ j ≤ k. 4 We
include the distances between x and the span of a
pair of clusters because this information might be
helpful to find confusing labels for a task-classifier.

Merging Features. Apart from the cluster-only
and distance features, we also consider how much
geometry will change if we merge x into the cluster
Ci. For example, suppose we find that including
x in Ci produces a convex hull in the embedding
space that overlaps with some other existing cluster
belonging to a different label. (Recall that DIRECT-
PROBE clusters are linearly separable, and hence
non-overlapping.) In this case, a task-classifier will
probably not predict label of Ci. We use three sets
of features to estimate the change caused by merg-
ing x to Ci: (i) An indicator for whether x can

3In this work, all distances are Euclidean. Other distances
may offer novel geometric insights, and studying them is a
direction of future work.

4This feature follows the intuition thatCj could be a strong
competitors for Ci if x lies in the span of (Ci, Cj)

236

◦ ◦
◦◦

◦ ◦
◦
Cj

■ ■

■

■
■

Ci

Wbefore

⋆ ◦ ◦
◦◦

◦ ◦
◦
Cj

■ ■

■

■
■

Ci⋆

Wafter

Figure 1: Diagram of the geometry. ⋆ marks the unseen
example. Ci and Cj are two clusters in the neighbor-
hood of the unseen example. Ci is the current cluster
we are considering. Left (right) subfigure shows the
layouts before (after) merging the unseen example to
Ci. Wbefore and Wafter are the max-margin hyperplanes
between Ci and Cj before and after merging.

be merged by Ci without breaking the linear sep-
arablability condition; (ii) the change in distance
between the merged x and Ci and another cluster
Cj for 1 ≤ j ≤ k, i ̸= j; (iii) the change of the
max-margin hyperplanes between the merged x
and Ci and Cj for 1 ≤ j ≤ k, i ̸= j.

As an illustration, let us look at the last of the
merging features, Figure 1 shows a simple example.
It shows the max-margin hyperplanes before and
after merging an example ⋆ to Ci, represented by
Wbefore and Wafter, respectively. The last merg-
ing feature is defined as ∥Wbefore−Wafter∥1

∥Wbefore∥1+∥Wafter∥1 . Ap-
pendix F gives additional details for all features.

3.3 Training METAPROBE

Next, we will discuss the process of training
METAPROBE, summarized as Algorithm 1 and Fig-
ure 2. After training, we use the learned linear
classifier (parameterized by W) to make predic-
tions for unseen examples as described in §3.1.

Task-classifier Set. Since METAPROBE seeks to
mimic the predicted label distribution from eq. (1),
we need to estimate the distribution for one or more
dataset-representation pairs. Recall that we need a
set of task-classifiersH to compute the distribution.
To this end, we train a large set of classifiers—
from simple linear classifiers to two-layer neural
networks with various activation functions—on the
training split of each dataset and representation,
resulting in N task-classifiers in total per setting 5,
i.e., |H| = N (Algorithm 1, line 4). Appendix C
gives more details about this undertaking.

Sampling for Training Set. Next, we need a col-
lection of examples (points in the embedding space)
that can be paired with the empirical predicted label

5In our experiments, N = 1010.

distribution. But we cannot use the task training set
for this purpose: not only are the classifiers above
trained on it, we also use it to construct DIRECT-
PROBE clusters for feature extraction. To resolve
this issue, we note that we seek to examine the
geometry of the representation space, and not the
text that led to the embeddings. Moreover, the task
classifiers operate on embeddings, and are unaware
of whether those embeddings are derived from lin-
guistically meaningful text. Consequently, we can
use any points in the embedding space, provided
they are distributionally similar to real data points.

Following this observation, we sample 20k
points in the embedding space by linearly inter-
polating training examples. Let v0 and v1 be two
randomly chosen vectors from the training set (em-
bedded by a representation). We sample a random
point vs in the span of these two vectors. That is,

vs = αv0 + (1− α)v1 (4)

where α is uniformly sampled from [0, 1]. These
points need not correspond to a linguistically mean-
ingful textual input, but since they live in the span
of training points, our trained classifiers can make
predictions on them.

We use the learned task-classifiers to make pre-
dictions for the sampled vectors and compute the
predicted label distribution using eq. (1). Note
that there is no ground truth for these sampled vec-
tors; we seek to understand how task-classifiers
make their decisions—a process independent of
the ground truth. These sampled 20k vectors and
their predicted label distributions, form the training
data for METAPROBE (Algorithm 1, lines 4-6).

Optimization. Finally, to complete the discus-
sion on training, let us look at the loss function
whose minimization will provide the weights W
that define METAPROBE. Let q denote the target
predicted label distribution for an example x, and
v denote its score vector as defined by eq. (2). We
use the Kullback-Leibler divergence between the
two label distributions as our loss:

ℓ(q, p) = KL(q, p) = KL(q, softmax(v ·M)) (5)

We use standard optimization tools for training and
optimization. Appendix D has details.

4 Representations and Tasks

In this section, we describe the English representa-
tions and tasks we will use in our experiments.

237

◦ ◦
◦◦

◦ ◦ ■ ■

■

■
■

▲ ▲

▲▲
▲

▲
▲

▲(a)

◦ ◦
◦◦

◦ ◦ ■ ■

■

■
■

▲ ▲

▲▲
▲

▲
▲

▲(b)

DIRECTPROBE

◦ ◦
◦◦

◦ ◦ ■ ■

■

■
■

▲ ▲

▲▲
▲

▲
▲

▲

••

•

•

••
•

•

••

(c)

Sample METAPROBE training set

H = {h1, h2, · · · , hN}(d)
Train N
classifiers

■
◦
▲(e)

Predicted label
distribution

Figure 2: An illustration of training steps for METAPROBE. (a) A dataset with three labels (◦,■,▲) embedded in a
representation space. (b) The clusters of points C obtained by DIRECTPROBE. Each cluster has only one label, but
there are two ▲ clusters. (c) Ten interpolated data points (•). The original dataset is also shown in the panel for reference,
but is not used as METAPROBE training data. (d) The N classifiers that are trained on the original data. (e) The classifiers are
applied to the sampled points to obtain the predicted label distribution, which is the supervision for training METAPROBE.

Algorithm 1 Training METAPROBE using a collec-
tion of dataset-representation pairs D.
Input: Dataset-Rep pairsD = {(D,ϕ)}, METAPROBE feature extractor ψ,

Number of task-classifiersN
Output: METAPROBE modelW
1: Initialize data for METAPROBE Dg ← ∅
2: for (D,ϕ) ∈ D do
3: C ← DIRECTPROBE(D,ϕ)
4: H ← TrainN classifiers on (D,ϕ)

5: D̂ ← generate interpolated data fromD,ϕ,H

6: Dg ← Dg ∪ ψ(D̂, C)
7: end for
8: Train a linear modelW onDg

9: returnW

Representations. We conduct experiments on
four English representations: RoBERTabase,
RoBERTalarge (Liu et al., 2019b), Distil-
BERT (Sanh et al., 2019) and ELMo (Peters
et al., 2018). As a group, they represent a diverse
collection of architectures, pre-training methods,
and pre-training data. Their characteristics are
summarized in Appendix B.

Tasks. We investigate five different English NLP
tasks represented by ten datasets, covering various
usages of word representations, and diverse linguis-
tic phenomena. We briefly describe them here and
Appendix A gives details about these tasks.

Preposition supersense disambiguation (PS)
is a task of predicting supersense labels for single-
token prepositions. It involves two sets of labels:
semantic role (PS-role) and semantic functions
(PS-func). We use the annotation from Streusle
v4.2 corpus (Schneider et al., 2017).

Part-of-speech Tagging (POS) the task of pre-
dicting part-of-speech tags for each token in the
sentence. We use the English portion of the paral-

Groups Tasks Datasets Representations

Training PS,POS,TC PS-role, PS-func, POS
TREC-6, TREC-50

RoBERTabase
RoBERTalarge

Test NER,SR,TC CoNLL04, SciERC
SemEval, ATIS

ELMo
DistilBERT

Table 1: Summary of datasets and representations.

lel universal dependencies treebank (ud-pud, Nivre
et al., 2016).

Text Classification (TC) predicts a label for a
piece of text. We use three datasets in this work:
TREC-6, TREC-50 (Li and Roth, 2002) and
ATIS (Tür et al., 2010).

Semantic Relation (SR) involves predicting
the semantic relation between a pair of nominals.
We use three datasets for semantic relation task:
CoNLL04 (Roth and Yih, 2004), SciERC (Luan
et al., 2018) and SemEval 2010 Task 8 (SemEval)
(Hendrickx et al., 2010) dataset.

Named Entity Recognition (NER) requires
finding named entities in a sentence. In this work,
we use the SciERC (Luan et al., 2018) dataset.

The above datasets and representations are di-
vided into training and test groups (shown in Ta-
ble 1), which will be used in cross task/representa-
tions experiments in §5.2.

5 Experiments and Analysis

In this section, we will look at the main find-
ings obtained using METAPROBE. Across our
experiments, we compare the performance of
METAPROBE against a linear probe and a nearest
neighbor probe (1-NN). The linear probe baseline
represents a general setting of predictive probing.

238

The 1-NN probe builds upon the simplest geometric
property: the distance between one unseen example
and its closest labeled example. For efficiency, for
METAPROBE, we consider the closest c = 10 clus-
ters of unseen examples.6 To account for outliers,
we ignore clusters with fewer than two examples.

Note that we do not seek to build a better probe.
Instead, METAPROBE provides a comparable per-
formance and also exposes the more sophisticated
geometric structures of the representations used by
predictors, which other probing approaches that
operate directly on embeddings can not reveal.

5.1 Single Task & Representation

First, let us examine if the geometry of represen-
tations can predict the task-classifiers’ behavior.
Table 2 summarizes the results for single task/repre-
sentation setting, where we evaluate METAPROBE

on the test sets using the representations on which
it was trained. We make the prediction using
the label with maximum probability predicted by
METAPROBE.
Finding 1: The geometry of representations in-
deed contains information that can predict the
decisions of task-classifiers. The third column
from the left of Table 2 shows the accuracies of
METAPROBE. The last three columns show the
accuracy differences between METAPROBE and a
linear probe, 1-NN probe, and average accuracy
over 1010 task-classifiers respectively. For exam-
ple, a linear probe achieves 79.65% (77.90+1.75)
with RoBERTabase on the PS/role task. It is not sur-
prising that the linear probe sometimes fares better
than METAPROBE; the latter is trained for the pre-
dicted label distribution (instead of gold labels) and
uses the sampled points (instead of the actual train-
ing set). What is surprising is that METAPROBE

matches or even outperforms a linear probe in some
cases. We see that METAPROBE achieves higher
accuracy on four of ten cases than a linear probe
and 1-NN probe, and on three of ten cases than the
average accuracy over 1010 task-classifiers. These
observations suggest that using only geometric fea-
tures from the embeddings, METAPROBE can pre-
dict task-classifiers’ predictions.

6We consider the ten closest DIRECTPROBE clusters to
keep computation costs down. Importantly, this does not
change the results; an example is unlikely to be merged with
distant clusters. In terms of the implementation, this choice
means that the matrix M in Equation (3) is a {0, 1}c×m ma-
trix, and that each example x has its own separate M because
different examples will have different sets of closest clusters.

Task/Dataset Rep MetaProbe Linear
Probe

1-kNN
Probe

Average
CLS

PS/role RoBERTabase 77.90 +1.75 +0.66 +1.23
RoBERTalarge 74.18 +3.06 0.00 +1.01

PS/func RoBERTabase 83.15 +5.69 +5.03 +5.14
RoBERTalarge 82.71 +3.72 +1.31 +3.67

POS/ud-pud RoBERTabase 94.06 +0.37 +0.21 +0.34
RoBERTalarge 93.85 -0.37 -0.44 -0.11

TC/TREC-6 RoBERTabase 91.40 -3.20 +0.60 +0.79
RoBERTalarge 90.80 -1.20 -0.20 -0.43

TC/TREC-50 RoBERTabase 84.00 -7.20 -7.00 -0.93
RoBERTalarge 81.40 1.80 -3.00 1.08

Table 2: Accuracy comparsion in single task/representa-
tion setting. The last three columns show the accuracy
difference between METAPROBE and other probes and
task-classifiers.

Finding 2: Different datasets and representa-
tions independently learned similar patterns.
Since METAPROBE is a linear model, we can exam-
ine its weights to see if the task-classifiers trained
on different representations and datasets exploit
similar geometric properties. To do so, we compute
the Pearson correlation between the METAPROBE

weights learned from different datasets and repre-
sentations. The correlations range from 0.58 to
0.97, averaging at 0.80, with even the lower end
being a strong positive correlation. Appendix G
shows the full table. The high correlations of these
feature weights suggest that the patterns behind the
decision process of task-classifiers are universal.

5.2 Cross Tasks & Representations

We hypothesized above that task-classifiers make
decisions based on universal geometric patterns.
A natural experiment to verify this hypothesis is
to apply the learned model to unseen datasets and
representations. To this end, in this subsection, we
investigate the cross tasks/representations setting.

We sampled 2k training points from each dataset
and representation in the training group of Table 1
to compose a cross task/representation training set
(with 20k points in all). We train METAPROBE on
this cross task/representation dataset and evaluate it
on unseen tasks (test tasks in Table 1) and represen-
tations. If the patterns identified by METAPROBE

are not stable across tasks and representations, then
we expect that METAPROBE show much lower ac-
curacies than the other probes.
Finding 3: There exist universal geometric pat-
terns across tasks and representations. Table 3
shows the results of cross tasks/representations set-
ting. We first observe that METAPROBE shows
higher accuracy on nine out of ten cases than a

239

Task/Dataset Rep MetaProbe Linear
Probe

1-kNN
Probe

Average
CLS

NER/SciERC elmo 76.62 +0.95 -0.95 -2.08
DistilBERT 74.96 +3.50 -1.78 +2.86

SR/CoNLL04 elmo 96.45 0.00 +0.47 +0.20
DistilBERT 94.31 +0.47 -6.64 +0.98

SR/SciERC elmo 74.64 +1.85 -3.49 +0.20
DistilBERT 77.10 +2.16 -8.32 +0.13

SR/SemEval elmo 74.35 +1.91 -4.05 +2.01
DistilBERT 75.52 +3.46 -4.01 +2.10

TC/ATIS elmo 95.07 -1.46 -4.59 -0.27
DistilBERT 93.39 -2.35 -2.80 -0.60

Table 3: Accuracy comparsion in cross task/represen-
tation setting. Note that METAPROBE is trained from
the datasets and representations in the training group.
All the accuracies are evaluated based on the same
METAPROBE parameters. On the other hand, other
probes and classifiers are trained individually.

1-NN probe, on two out of ten cases than a linear
probe, and on three out of ten cases than average
task-classifiers. Note that each linear probe, 1-NN
probe, and task-classifier is trained individually for
each task/representation while the METAPROBE

parameters are unchanged. Results in Table 3
are surprising because recall that we are operat-
ing in the cross tasks/representation setting, where
METAPROBE never sees these tasks (e.g. NER and
Semantic Relation) and representations (e.g. ELMo
and DistilBERT) during its training stage. Thus,
we do not expect METAPROBE would achieve good
performances. Nevertheless, it predicts with high
accuracy for unseen datasets and representations.
These observations show that METAPROBE cap-
tures universal geometric patterns of the decision
process of task-classifiers.
Finding 4: Different tasks/representations can
use geometry differently. To understand how dif-
ferent features affect these universal patterns, we
run ablations on the three groups of features from
§3.2. Table 4 shows partial results (A full analysis
can be found in Appendix E). We observe that dif-
ferent sets of features contribute differently based
on the tasks and datasets. For example, SR/SciERC
relies heavily on cluster-only features; NER/Scir-
ERC relies on the distance features, while SR/Se-
mEval relies on the merging features. These obser-
vations suggest that although some universal pat-
terns exist, different datasets and representations
still have rely on different geometric structures.

5.3 Analyzing METAPROBE’s Weights

In this subsection, we show three features with dis-
tinguishable weights from cross task/representation

Dataset Rep W/o
Cluster-only Distance Merging

NER/SciERC ELMo +2.08 -8.55 -0.42
DistilBERT +2.02 -4.81 -3.03

SR/SciERC ELMo -5.65 -1.95 -2.87
DistilBERT -6.98 -3.08 -8.11

SR/SemEval ELMo -0.15 -2.32 -3.35
DistilBERT -0.33 -1.69 -8.35

Table 4: Ablations in cross task/representation settings.
The numbers in the table are the difference of accuracy
against the full features (shown in Table 3). A full
ablation table can be found in Appendix E.

settings as examples to illustrate how geometry af-
fects task-classifiers’ decisions. In Appendix H,
we show the list of features with top 10 absolute
weights.
xcdis is a feature that quantifies the distance be-

tween a new example and the centroid of a cluster,
and is defined such that a closer distance means
a larger xcdis value. For example, in Figure 1
(left), the example represented by the ⋆ will have
a higher value for this feature for cluster Ci than
Cj . After training, we observe that xcdis has one of
the largest positive values, suggesting that a task-
classifier tends to predict the label of closer clusters
for the unseen example, which is intuitive.
xmhd
j is a set of features that quantify how much

of the max-margin hyperplane between current
cluster Ci and j-th closest cluster would change if
we merge the example withCi (see Figure 1). After
training, we see that xmhd

j has the smallest negative
value, suggesting that if merging the example to a
cluster Ci causes a large change to the layout, the
classifier tends to not make this decision even if
current unseen example is close to Ci. This is not
captured by the neighborhood-only baseline.
caverage is a feature to describe the properties of

the cluster under consideration. It is the average
pairwise distance inside the cluster. After training,
we find that caverage has a weight close to zero,
suggesting that this feature does not contribute to
the decisions of task-classifiers. It shows that the
properties of the cluster itself do not affect the pre-
dictions. Instead, the geometric relations between
the unseen example and clusters (e.g. xcdis and
xmhd
j) have more impact on the decisions of task-

classifiers.

6 Conclusions

A long list of probing work involves examining
the predictiveness of linguistic properties, both

240

syntax (e.g., Kassner and Schütze, 2020) and se-
mantic (e.g., Aghajanyan et al., 2021). To ease
the uncertainty of training classifiers, Hewitt and
Liang (2019); Senel et al. (2018) propose to use
controlled test sets to verify if the representations
encode meaningful linguistic information. Other
work (e.g. Marvin and Linzen, 2018; Wu et al.,
2020) proposed error analysis to reverse engineer
the information encoded in representations.

In this paper, we ask: Are there universal geomet-
ric patterns in contextualized representations that
can explain the decisions of task-classifiers? We
answer the question by developing METAPROBE, a
linear probe that predicts trained classifier’s predic-
tions using the geometric features of the represen-
tations. Via experiments, we verify the existence
of universal patterns in contextualized representa-
tions that models exploit. The patterns learned by
METAPROBE can be used to make predictions on
unseen tasks and representations. Finally, by ana-
lyzing the learned weights, we show how geometric
properties affect the decisions of task-classifiers.

7 Limitations

We rely on the off-the-shelf implementation of
DIRECTPROBE to extract features. However, DI-
RECTPROBE is limited in its scalability for large
datasets. For example, more than 20k training ex-
amples makes it extremely slow. (We expect that
tool itself may be made faster with engineering ef-
forts, but that was not our focus.) As a result, our
feature extraction strategy suffers from the same
problem.

Acknowledgements

This work is partially supported by NSF grants
#1801446, #1822877, #2007398 and #2129111.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies of
any government agency.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7319–7328,
Online. Association for Computational Linguistics.

Ehsan Aghazadeh, Mohsen Fayyaz, and Yadollah
Yaghoobzadeh. 2022. Metaphors in pre-trained lan-
guage models: Probing and generalization across
datasets and languages. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2037–
2050, Dublin, Ireland. Association for Computational
Linguistics.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

David Arps, Younes Samih, Laura Kallmeyer, and Has-
san Sajjad. 2022. Probing for constituency structure
in neural language models. CoRR, abs/2204.06201.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Comput. Linguistics,
48(1):207–219.

Tyler A Chang, Zhuowen Tu, and Benjamin K
Bergen. 2022. The Geometry of Multilingual
Language Model Representations. arXiv preprint
arXiv:2205.10964.

Shivani Choudhary, Niladri Chatterjee, and Subir Ku-
mar Saha. 2022. Interpretation of black box NLP
models: A survey. CoRR, abs/2203.17081.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (elus). In 4th In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,

241

Hong Kong, China. Association for Computational
Linguistics.

Utku Evci, Vincent Dumoulin, Hugo Larochelle, and
Michael C. Mozer. 2022. Head2toe: Utilizing inter-
mediate representations for better transfer learning.
CoRR, abs/2201.03529.

Hila Gonen, Shauli Ravfogel, and Yoav Goldberg. 2022.
Analyzing gender representation in multilingual mod-
els. In Proceedings of the 7th Workshop on Repre-
sentation Learning for NLP, pages 67–77, Dublin,
Ireland. Association for Computational Linguistics.

Emily Goodwin, Koustuv Sinha, and Timothy J.
O’Donnell. 2020. Probing linguistic systematicity.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1958–
1969, Online. Association for Computational Linguis-
tics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In International
Conference on Learned Representations (ICLR).

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 33–38, Up-
psala, Sweden. Association for Computational Lin-
guistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Dieuwke Hupkes and Willem H. Zuidema. 2018. Vi-
sualisation and ’diagnostic classifiers’ reveal how
recurrent and recursive neural networks process hi-
erarchical structure (extended abstract). In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, pages 5617–5621.
ijcai.org.

Alexander Immer, Lucas Torroba Hennigen, Vincent
Fortuin, and Ryan Cotterell. 2022. Probing as quanti-
fying inductive bias. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1839–
1851, Dublin, Ireland. Association for Computational
Linguistics.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the

58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811–7818, Online. Asso-
ciation for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what differ-
ent NLP tasks teach machines about function word
comprehension. In Proceedings of the Eighth Joint
Conference on Lexical and Computational Semantics
(*SEM 2019), pages 235–249, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry
Poibeau, and Ryan Cotterell. 2022. Probing for the
usage of grammatical number. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8818–8831, Dublin, Ireland. Association for Compu-
tational Linguistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Julian Michael, Jan A. Botha, and Ian Tenney. 2020.
Asking without telling: Exploring latent ontologies

242

in contextual representations. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6792–6812,
Online. Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tiago Pimentel, Naomi Saphra, Adina Williams, and
Ryan Cotterell. 2020a. Pareto probing: Trading off
accuracy for complexity. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3138–3153, On-
line. Association for Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020b. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609–4622, Online. Association for Computa-
tional Linguistics.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B.
Viégas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of
BERT. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
8592–8600.

Nils Reimers, Benjamin Schiller, Tilman Beck, Jo-
hannes Daxenberger, Christian Stab, and Iryna
Gurevych. 2019. Classification and clustering of
arguments with contextualized word embeddings. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 567–
578, Florence, Italy. Association for Computational
Linguistics.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Confer-
ence on Computational Natural Language Learn-
ing (CoNLL-2004) at HLT-NAACL 2004, pages 1–8,
Boston, Massachusetts, USA. Association for Com-
putational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Naomi Saphra and Adam Lopez. 2019. Understanding
learning dynamics of language models with SVCCA.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3257–3267,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Nathan Schneider, Jena D Hwang, Archna Bhatia, Vivek
Srikumar, Na-Rae Han, Tim O’Gorman, Sarah R
Moeller, Omri Abend, Adi Shalev, Austin Blodgett,
et al. 2017. Adposition and case supersenses v2. 5:
Guidelines for english. arXiv e-prints, pages arXiv–
1704.

Lutfi Kerem Senel, Ihsan Utlu, Veysel Yücesoy, Aykut
Koç, and Tolga Çukur. 2018. Semantic structure and
interpretability of word embeddings. IEEE ACM
Trans. Audio Speech Lang. Process., 26(10):1769–
1779.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743–758.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Mycal Tucker, Tiwalayo Eisape, Peng Qian, Roger Levy,
and Julie Shah. 2022. When does syntax mediate
neural language model performance? evidence from
dropout probes. CoRR, abs/2204.09722.

Gökhan Tür, Dilek Hakkani-Tür, and Larry P. Heck.
2010. What is left to be understood in atis? In 2010
IEEE Spoken Language Technology Workshop, SLT
2010, Berkeley, California, USA, December 12-15,
2010, pages 19–24. IEEE.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37–42,
Florence, Italy. Association for Computational Lin-
guistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

243

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4396–4406, Hong Kong,
China. Association for Computational Linguistics.

Elena Voita and Ivan Titov. 2020. Information-theoretic
probing with minimum description length. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 183–196, Online. Association for Computa-
tional Linguistics.

Zi Wang, Alexander Ku, Jason Baldridge, Thomas L
Griffiths, and Been Kim. 2023. Gaussian process
probes (gpp) for uncertainty-aware probing. arXiv
preprint arXiv:2305.18213.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4166–4176, Online. Asso-
ciation for Computational Linguistics.

Jiannan Xiang, Huayang Li, Defu Lian, Guoping Huang,
Taro Watanabe, and Lemao Liu. 2022. Visualiz-
ing the relationship between encoded linguistic in-
formation and task performance. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 410–422, Dublin, Ireland. Association
for Computational Linguistics.

Christos Xypolopoulos, Antoine Tixier, and Michalis
Vazirgiannis. 2021. Unsupervised word polysemy
quantification with multiresolution grids of contex-
tual embeddings. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
3391–3401, Online. Association for Computational
Linguistics.

Yichu Zhou and Vivek Srikumar. 2021. DirectProbe:
Studying representations without classifiers. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5070–5083, Online. Association for Computational
Linguistics.

Yichu Zhou and Vivek Srikumar. 2022. A closer look
at how fine-tuning changes BERT. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

Task/Dataset #Train #Test #Label Rep Type

Tr
ai

ni
ng

PS/Role 4282 457 47 Token
PS/Func 4282 457 40 Token
POS/ud-pud 16,860 4323 17 Token
TC/TREC-50 5452 500 50 Sentence
TC/TREC-6 5452 500 6 Sentence

Te
st

NER/SciERC 5598 1685 6 Span
SR/ConLL04 1283 422 5 Span-pair
SR/SciERC 3219 974 7 Span-pair
SR/SemEval 8000 2717 19 Span
TC/ATIS 4978 893 26 Sentence

Table 5: A summary of tasks and datasets in our experi-
ments.

pages 1046–1061, Dublin, Ireland. Association for
Computational Linguistics.

A Summary of Datasets

In this work, we conduct experiments on five tasks
using ten different English language datasets. Ta-
ble 5 shows the statistics of these tasks and datasets.

We obtain PS/Role and PS/Funcs datasets from
the annotation of Streusle v4.2 corpus (Schneider
et al., 2017), which can be downloaded from
https://github.com/nert-nlp/sterile. We
download the POS/ud-pud dataset from https:
//github.com/UniversalDependencies/UD_
English-PUD. TREC dataset is downloaded from
https://cogcomp.seas.upenn.edu/Data/QA/
QC/. TC/ATIS dataset is obtained from https:
//github.com/howl-anderson/ATIS_dataset/
blob/master/README.en-US.md. We obtain the
CoNLL04 and SciERC datasets using the scripts
from https://github.com/lavis-nlp/spert/.
The SemEval dataset is downloaded from
http://www.kozareva.com/downloads.html

For tasks that require sentence embeddings, we
use the first token (<s> or [CLS]) to represent sen-
tences for RoBERTabase, RoBERTalarge, and Dis-
tilBERT. For ELMo, we average the embeddings
of all tokens in the sentence. We use the average
embedding of the tokens within the span for the
phrases with more than one token.

B Summary of Representations

Table 6 shows the statistics of the representations
we used in this work. We use the original im-
plementation of ELMo and the HuggingFace li-
brary (Wolf et al., 2020) for the others.

244

Grouping Rep #Param Pre-training Dim

Training RoBERTabase 125M MLM 768
RoBERTalarge 355M MLM 1024

Test DistilBERT 66M distillation 768
ELMo 94.6M LM 1024

Table 6: Statistics of the four representations in our
experiments.

Task/Dataset Rep Training Time
(in hours) Acc STD

PS/Role RoBERTabase 4.5 79.13 1.00
RoBERTalarge 5 75.19 1.48

PS/Func RoBERTabase 5 88.29 0.72
RoBERTalarge 5.5 86.39 0.86

POS/ud-pud RoBERTabase 29 94.40 0.26
RoBERTalarge 88 93.74 0.27

TC/TREC-50 RoBERTabase 22.5 92.19 1.44
RoBERTalarge 25 90.37 0.95

TC/TREC-6 RoBERTabase 31 83.07 2.19
RoBERTalarge 31.5 82.48 1.50

NER/SciERC ELMo 2.5 74.54 1.71
DistilBERT 3 77.81 1.03

SR/ConLL04 ELMo 0.5 96.65 0.56
DistilBERT 0.5 95.29 0.63

SR/SciERC ELMo 1 74.84 0.89
DistilBERT 1.5 77.23 1.31

SR/SemEval ELMo 2 76.36 0.68
DistilBERT 2 77.63 0.77

TC/ATIS ELMo 17.5 94.80 0.81
DistilBERT 13 92.80 1.86

Table 7: Statistics of the 1010 task-classifiers. The last
two columns shows the average and standard deviation
of the accuracy on the test set.

C Summary of Task Classifiers

In our experiments, we collect the predictions from
a large list of different classifiers. We use lin-
ear classifiers, one layer neural networks with hid-
den layer sizes of (128, 256, 512, 1024) and two-
layers neural networks with hidden layer sizes
of (128, 256, 512, 1024) × (128, 256, 512, 1024).
For the activations functions, we use Sigmoid,
Tanh, ReLU, LeakyReLU and ELU (Clevert et al.,
2016). All the neural networks are optimized by
AdamW (Loshchilov and Hutter, 2019) with a
learning rate of 0.001 and batch size of 128. We
set the maximum iterations to be 50 for each run.
We run ten classifiers using different initializations
for each architecture. We use cross-entropy loss
for all classifiers. In total, we have 1010 classifiers
for each dataset and representation. We run our
models on a single Titan GPU. Table 7 shows the
training statistics of the 1010 task-classifiers for
each dataset and representation.

D Optimization Details of METAPROBE

Since METAPROBE is a linear model, we optimize
it by min-batch gradient descent with batch size of
128 and leanring rate of 0.001 for all experiments.
We set the maximum iteration number to be 400.
We choose these hyperparameters by tuning on an
extra sampled dev set (described in §3.3). We run
our models on a single Titan GPU.

E Ablation Study

Dataset Rep W/o
Cluster-only Distance Merging

NER/SciERC ELMo +2.08 -8.55 -0.42
DistilBERT +2.02 -4.81 -3.03

SR/CoNLL04 ELMo 0.00 +0.47 +0.47
DistilBERT -0.24 +0.95 -6.16

SR/SciERC ELMo -5.65 -1.95 -2.87
DistilBERT -6.98 -3.08 -8.11

SR/SemEval ELMo -0.15 -2.32 -3.35
DistilBERT -0.33 -1.69 -8.35

TC/ATIS ELMo -0.90 -1.23 -5.71
DistilBERT -1.01 -2.13 -41.10

Table 8: Ablations in cross task/representation settings.
The numbers in the table are the difference of accuracy
against the full features (shown in Table 3).

One interesting observation of Table 8 is Dis-
tilBERT on TC/ATIS whose accuracy decreases
40% after removing merging features. After an-
alyzing the weights of ablated METAPROBE, we
found that: (i) METAPROBE penalizes the clusters
with large number of examples, i.e.METAPROBE

does not want to assign unseen examples to
large clusters; (ii) METAPROBE awards the small
distance between unseen examples and clusters,
i.e.METAPROBE prefers to assign unseen example
to their closest clusters. The first observation fol-
lows the intuition that we do not want be biased by
unbalanced labels. The second observation forms
the basis of the nearest neighbors.

Since ATIS is a highly unbalanced dataset, when
represented by DistilBERT, the majority unseen
examples are closest to the largest cluster but
not close enough to overrun the negative effect
of large cluster. Thus, without merging features,
METAPROBE chooses to merge these examples to
the second closest cluster instead of the closest one.
On the other hand, when represented by ELMo,
the distances between the unseen examples and the
closest clusters are close enough to overrun the
effect of the size of cluster.

245

F Feature Template

Given a representation ϕ and a labeled dataset D,
let C = {Ci} be the set of clusters returned by
DIRECTPROBE. We use Ci(1 ≤ i ≤ k) to denote
the i-th closest cluster to the unseen example x
in the representation. For eac pair of (x,Ci), we
extract cluster-only feartures (shown in Table 9),
distance feartures (shown in Table 10) and merging
feartures (shown in Table 11).

G Correlations Between Weights

Table 12 shows the Pearson coefficient correlations
between weights learned from different tasks and
representations.

H Top-10 Weights

Table 13 shows the weights that have top 10 ab-
solute values. These weights are trained from the
cross-task-cross-representation setting.

I Robustness

Table 14 shows the average accuracy difference
between METAPROBE and a linear probe when
only using 1% to 10% of the training set. For each
percent, we repeat the sampling for 50 rounds and
apply a two-sided sample paired t-test. Except for
the 1% and 10% case, all other percentages are
statistically significant (with a p-value less than
.0001).

246

Symbols Description #Features Range Notes

cnum The proportion of examples inside cluster Ci 1 [0, 1]

caverage The average distance inside each cluster normalized
by its maximum distance

1 [0, 1]

cstd The standard deviation of distances inside each clus-
ter normalized by its maximum distance.

1 [0, 1]

cdisj The distances between Ci and Cj normalized by the
maximum distance

k [0, 1] j ∈ [1..k]; When i =
j,cdisj = 0.

Table 9: Cluster-only features for the i-th closest cluster Ci of unseen example x. Ci is the current cluster we are
considering.

Symbols Description #Features Range Notes

inside If x is inside of Ci 1 {0, 1} This feature can be 1
only when i = 0

xdis The i-th element of a score vector noramlized by
softmaxing over the negative distances between
x and each cluster in C.

1 [0, 1]

xcdis The i-th elment of a score vector noramlized by
softmaxing over the negative distances between
x and the centroid of each cluster in C.

1 [0, 1]

xspanj The distance between x and the span of Ci and
Cj normalized by the maximum distance over
all pairs of clusters.

k [0, 1]

Table 10: Distance features for the example x and its i-th closest cluster Ci. This set of feature is used to describe
the relations between x and Ci based on the distances.

247

Symbols Description #Features Range Notes

x_not_mergable If x can be merged by Ci with-
out breaking the linear separa-
blability condition.

1 {0, 1} x_not_mergable = 1 when x
cannot be merged by Ci

xmdis
j The distance between Ci and

Cj after merging x to Ci di-
vided by the original distance
beween Ci and Cj .

k [0, 1] xmdis
j = 0 for i = j; xmdis

j = 1
if Ci ∪ {x} overlaps Cj

xmcos
j The cosine distance bewtween

the weights of max-margin hy-
perplanes that separate Ci and
Cj before and after merging x
to Ci.

k [0, 1] xmcos
j = 0 for i = j, xmcos

j = 1
if Ci ∪ {x} overlaps Cj

xmhd
j The L1 distance between the

weights of max-margin hyper-
planes that separate Ci and Cj

before and after merging x to
Ci normalized by the sum of L1
norm of these two weights.

k [0, 1] xmhd
j = 0 for i = j, xmhd

j = 1
if Ci ∪ {x} overlaps Cj

xmdis
max The maximum value of xmdis

j

for j ∈ [1..k]
1 [0, 1]

xmcos
max The maximum value of xmcos

j

for j ∈ [1..k]
1 [0, 1]

xmhd
max The maximum value of xmhd

j

for j ∈ [1..k]
1 [0, 1]

Table 11: Merging features for example x and its i-th closest cluster Ci. These features are used to quantify how
much geometry will be changed if we merge x to Ci.

RoBERTabase RoBERTalarge
PS-role PS-func POS TREC-6 TREC-50 PS-role PS-func POS TREC-6 TREC-50

RoBERTabase

PS-role 1.00 0.97 0.91 0.95 0.80 0.73 0.63 0.64 0.79 0.88
PS-func 0.97 1.00 0.85 0.94 0.74 0.74 0.57 0.58 0.73 0.83

POS 0.91 0.85 1.00 0.93 0.87 0.72 0.62 0.64 0.79 0.86
TREC-6 0.95 0.94 0.93 1.00 0.75 0.68 0.58 0.59 0.68 0.81

TREC-50 0.80 0.74 0.87 0.75 1.00 0.83 0.74 0.76 0.90 0.84

RoBERTalarge

PS-role 0.73 0.74 0.72 0.68 0.83 1.00 0.69 0.76 0.80 0.76
PS-func 0.63 0.57 0.62 0.58 0.74 0.69 1.00 0.96 0.79 0.72

POS 0.64 0.58 0.64 0.59 0.76 0.76 0.96 1.00 0.76 0.73
TREC-6 0.79 0.73 0.79 0.68 0.90 0.80 0.79 0.76 1.00 0.89

TREC-50 0.88 0.83 0.86 0.81 0.84 0.76 0.72 0.73 0.89 1.00

Table 12: Pearson correlation coefficients between the weights learned from different datasets and representations.

Name xmhd
0 xmhd

1 xmhd
max xmhd

2 xmhd
3 x_not_mergable xcdis xmhd

4 xmhd
5 xdis

Value -12.19 -8.33 -8.17 -6.44 -6.31 5.77 5.72 -4.93 -3.97 3.86

Table 13: The weights with top 10 absolute values. Appendix F describes the explanations of these features.

248

Percentages 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Acc Difference 0.2% 0.7% 0.7% 0.9% 0.8% 0.8% 0.6% 0.6% 0.6% 0.4%

Table 14: Average accuracy difference between METAPROBE and a linear probe. Bold numbers indicate a
statistically significant (p < .0001) improvement in favor of METAPROBE using the paired t-test.

249

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 250–260
December 7, 2023. ©2023 Association for Computational Linguistics

How Much Consistency Is Your Accuracy Worth?

Jacob K. Johnson and Ana Marasović
Kahlert School of Computing

University of Utah
{jacob.k.johnson,ana.marasovic}@utah.edu

Abstract
Contrast set consistency is a robustness mea-
surement that evaluates the rate at which a
model correctly responds to all instances in a
bundle of minimally different examples relying
on the same knowledge. To draw additional in-
sights, we propose to complement consistency
with relative consistency — the probability that
an equally accurate model would surpass the
consistency of the proposed model, given a dis-
tribution over possible consistencies. Models
with 100% relative consistency have reached a
consistency peak for their accuracy. We reflect
on prior work that reports consistency in con-
trast sets and observe that relative consistency
can alter the assessment of a model’s consis-
tency compared to another. We anticipate that
our proposed measurement and insights will
influence future studies aiming to promote con-
sistent behavior in models.

1 Introduction

Annotators introduce data shortcuts that allow mod-
els to solve tasks in unintended ways (Gururangan
et al., 2018). In response, it has been proposed
to measure whether a model correctly responds to
a bundle (or a contrast set) of slightly modified
instances that rely on the same knowledge (Gard-
ner et al., 2020; Kaushik et al., 2020). The rate at
which a model accomplishes this is termed consis-
tency. We propose an additional measurement —
relative consistency — that facilitates discussion
about achievable consistency scores, enabling a
more nuanced comparison.

To demonstrate why this is desired, consider sit-
uations that are illustrated in Table 1. Both 1a–1b
correctly solve two bundles, i.e., have the same con-
sistency. 1b solves three additional instances but in
a way that does not promote consistency; 1c shows
that a higher consistency can be gained with the
same accuracy. In contrast, although 1a is less ac-
curate, everything it handled was done consistently,
and higher consistency cannot be achieved with

(a) Accuracy=4/10, Consistency=2/5, RelConsistency=100%

(b) Accuracy=7/10, Consistency=2/5, RelConsistency=66.7%

(c) Accuracy=7/10, Consistency=3/5, RelConsistency=100%

(d) Accuracy=8/10, Consistency=3/5, RelConsistency=88.9%

(e) Accuracy=8/10, Consistency=4/5, RelConsistency=100%

Table 1: Tables depict a dataset of 10 examples, where
each column showcases a bundle of an original instance
paired with its perturbed version. denotes that the
instance is correctly predicted by a model. The relative
consistency is the measurement we propose to comple-
ment the standard consistency.

the same accuracy. This analysis sheds light on an
upside of 1a and a limitation of 1b that might go un-
noticed if we solely compare accuracy/consistency.
Let us turn to examples 1d. Although it represents
a model with an improved consistency relative to
1a, we could have achieved better consistency for
the same accuracy (see 1e).1

Relative consistency (§2) measures whether the
consistency of our model would likely be outper-

1Because this is a toy example, relative consistency is high,
though not perfect, even in less-than-ideal cases 1b and 1d.

250

formed by an equally accurate model, relative to the
distribution of possible consistencies; see Eq. (5).
Specifically, it is the probability that our model’s
consistency is (in most cases) higher or equal to
the consistency scores that are achievable with the
same accuracy. If relative consistency is 100%
then our model is the most consistent it can be
given its accuracy, as a more consistent, equally
accurate model exists only with near-zero probabil-
ity. In practice, the goal should be to increase the
“standard consistency” while also achieving 100%
relative consistency.

In light of this additional consistency metric,
in §4 we revisit the findings of three publications
that report consistency as a metric for their evalu-
ations and point out some additional conclusions
we might draw from these reported consistencies.
Our code is available at https://github.com/
jacobkj314/relative-consistency.

2 Relative Consistency

We first introduce background terminology (§2.1),
then derive elements we need for defining relative
consistency: (i) achievable consistency scores for
a given accuracy (§2.2) and (ii) a distribution over
achievable consistency scores (2.3).

2.1 Background

A contrast set or bundle is a set of minimally dif-
ferent instances that might admit different answers,
thus testing a model across/near its decision bound-
ary.2 For example, these two HotpotQA instances
(Yang et al., 2018) represent a contrast set:

• Q: Is the Marsilea or the Brabejum the genus
of more individual species of plants? A: Mar-
silea

• Q: Is the Marsilea or the Brabejum the genus
of less individual species of plants? A:
Brabejum

The model is required to answer both of them cor-
rectly to be considered consistent in that bundle.
Evaluation with contrast sets makes it harder for
simple and inadequate models to perform highly
(e.g, a model that has just learned a spurious corre-
lation between the word “Marsilea” and “more”).
Related studies construct bundles of paraphrases
that have the same, not contrastive, labels (Elazar
et al., 2021).

2Sometimes “contrast set” is used to refer to contrastive
instances only (without the original ones).

The term consistency is overloaded in NLP and
refers to different concepts (Li et al., 2019; Jang
et al., 2022; Wang et al., 2023). In this work, we
study contrast set consistency defined as the pro-
portion of bundles where a model accurately labels
every instance in a bundle:

consistency =
|B ∈ B : ∀x ∈ B, yp(x) = y(x)|

|B| ,

(1)
where B is a set of all bundles of related instances
in a given dataset, x is an example, yp(x) is the
predicted label for x, and y(x) is its gold label.

2.2 Achievable Consistency Scores
Consider a contrastive test set formed from n orig-
inal instances, plus a contrastive instance derived
from each original instance by varying along some
pertinent dimension. There are 2n + 1 possible
accuracies a that a model could achieve on this test
set, namelyA = {0, 1, . . . , 2n−1, 2n}.3 Similarly,
there are n+1 possible consistencies c that a model
could achieve, namely C = {0, 1, . . . , n− 1, n}.

Furthermore, for a given accuracy a ∈ A, only
a subset Ca ⊆ C of consistencies is achievable.
Trivially, for a = 0, Ca = {0} (because a model
cannot consistently respond to a bundle without
correctly responding to at least the instances within
that bundle) and for a = 2n, Ca = {n} (because a
model that correctly responds to all instances has
also consistently responded to all the bundles those
instances comprise). Ca can then be defined in
terms of n and a:

Ca = {c ∈ C : c
(a)
min ≤ c ≤ c(a)max} (2)

where c(a)min and c(a)max are defined as:

c
(a)
min =

{
0 if a ≤ n
a− n if a > n

(3)

c(a)max =
⌊a
2

⌋
(4)

Intuitively, if a ≤ n then it is possible that all
bundles have one of their constituent instances
incorrectly answered, in which case, c(a)min = 0.
However, if a > n, then at least a − n > 0 of
bundles must be fully correctly answered. Indeed,
for a bundle to be inconsistent at least one item

3While accuracy is typically denoted as a proportion of
correct instances, reporting absolute numbers simplifies our
notation. It is easy to translate a quantity a to a corresponding
proportion α via the identity a = 2nα, while a consistency
quantity c relates to the consistency proportion γ via c = nγ.

251

(a) Distributions of consistency scores. (b) Relative consistency scores.

Figure 1: On the left is a heatmap of distributions of consistency at each accuracy for 100 bundles of 2 instances:
each vertical slice corresponds to a separate distribution of different consistencies. Fig. 2 (Appendix) shows the
log10 of this plot that better highlights the long tails of these distributions. On the right are relative consistency
scores given a model’s accuracy and consistency, i.e., the CDF of the figure on the left. Note that for a different
number of bundles, these plots would look slightly different.

must be incorrectly answered, so for a given a,
the number of incorrect items is 2n − a. Thus,
at most 2n − a bundles can be inconsistent, and
c
(a)
min = n− (2n− a) = n− 2n+ a = a− n.

The definition of c(a)max follows from the observa-
tion that a maximally consistent model will consis-
tently respond to the maximum number of bundles
for which it is possible that both instances are cor-
rectly answered, and that equals

⌊
a
2

⌋
.

2.3 Distribution of Achievable Consistencies
Given an accuracy a, we construct a distribution of
achievable consistencies c ∈ Ca with:

P(c|a) = m(c, a)

M(a)
(5)

where M(a) is the number of ways a model can
achieve accuracy a and is given by:

M(a) =

(
2n

a

)
(6)

because there are 2n total instances, of which any
a might be the ones to which a model correctly
responds.4 m(c, a) represents the number of ways
a model can achieve accuracy a and consistency c,
and is given by:

m(c, a) =

(
n

c

)(
n− c
a− 2c

)
2a−2c (7)

where:
4It is possible to consider consistency to be the more un-

derlying property of a model’s behavior and compute a distri-
bution over possible accuracies in the range [2c, 2n− n+ c].
The corresponding accuracy by consistency distributions could
then be computed given the above-defined consistency by ac-
curacy distributions.

•
(
n
c

)
corresponds to the number of ways that c

consistent bundles can be selected from n,
•
(
n−c
a−2c

)
corresponds to the number of ways the

remaining a − 2c accurate instances can be
distributed across the remaining n−c bundles,
giving each selected bundle only one correct
instance (to avoid creating an additional con-
sistent bundle),

• 2a−2c represents the number of ways that
these partially correct bundles could have ei-
ther instance correct.

Using this, we can calculate m(c, a) and M(a)
across all values of c and a for reasonable sizes of
n. These distributions can be extended for bundle
sizes above 2; see formulas in Appendix B. Figure
1a shows the distributions of consistency scores for
a dataset with 100 bundles of 2 instances.

Note that this distribution is not uniform for dif-
ferent consistencies at a given accuracy. There will
be some consistencies that have more ways to be
achieved for a given accuracy. This is why the
formula m(c, a) is crucial to the computation of
relative consistency that comes next.

This formulation assumes that all instances are
equally difficult which is known to not be the case
in practice (Swayamdipta et al., 2020). It also disre-
gards any inductive biases of models/datasets that
could skew the distribution.

Relative Consistency We measure the tendency
to be consistent exhibited by a model that achieved
accuracy a and consistency c on a contrastive set by
computing the cumulative probability distribution
over achievable consistencies in Ca up to c:

252

RC(c, a) =
∑

ci∈Ca
ci≤c

P(ci|a) (8)

Intuitively, RC(c, a) indicates how likely the
model’s consistency is to outperform an equally
accurate model relative to the distribution of achiev-
able consistencies defined in (5). This allows us
to quantify whether model consistency is below,
at, or above chance, given its accuracy. In a good
case, RC is high, meaning that it is unlikely that
an equally accurate model will have higher consis-
tency. Alternatively, if RC is low, then it is likely
that an equally accurate model will have higher
consistency (which is unwanted).

Although other measurements which contextual-
ize consistency scores within a particular accuracy
can be constructed — such as simply scaling the
consistency between c(a)min and c(a)max, or reporting
the fraction of fully consistent of those that are
at least partly correct — these approaches lack the
probabilistic interpretation underlying RC. §3–4
highlight circumstances in which this probabilistic
interpretation is useful, and Appendix C compares
the score distributions obtained via these measure-
ments to the score distributions obtained via RC.

3 Analysis with Simulated Contrastive Set

Suppose you evaluate a model on a contrastive test
set containing 100 bundles of 2 instances. The dis-
tribution of consistencies for this dataset is shown
in Figure 1a, with the CDF of that distribution (cor-
responding to the RC score) in Figure 1b.

Note that the highest-density region of the dis-
tribution moves upward as accuracy increases, and
takes up only a very thin band. This means that,
for a given accuracy, there is generally little room
for improvement in consistency. This can be useful
when discussing results: if a particular training ap-
proach yields a 5% improvement in consistency for
an equally accurate model, that represents a sub-
stantial change in how the model tends to respond
to inputs.

It can still happen that improving accuracy and
consistency decreases relative consistency. As
an example, consider comparing a model M1,
which achieves a = 130, c = 45 (65% accu-
racy, 45% consistency) against a model M2 with
a = 150, c = 55 (75% accuracy, 55% consis-
tency). Clearly, model M2 is more desirable for
practical uses, if we are just comparing one model

Dataset #Bundles Acc Cons RC

UD Parsing 150 55.3 17.3 ∼0.0
PERSPECTRUM 217 88.0 78.8 97.6
ROPES 974 40.1 17.6 97.8
MC-TACO 646 26.0 8.0 95.2

Table 2: Relative consistency scores computed for re-
sults reported in Gardner et al. (2020). In the 3rd col-
umn, we report the average of “Original Test” (original
only) and “Contrast” (contrastive only) columns in their
Table 2. That is the accuracy, a, we use in calculations
in §2. Models with similar consistency (UD Parsing
and ROPES) have different tendencies to respond con-
sistently as revealed by their RC scores.

to another, but if we are comparing two different
training approaches, and want to know which in-
duces a stronger tendency for consistent responses,
then we would be interested to know that M1 has
RC = 93.0%, while M2 has RC = 37.1%. This
insight, that one model is below chance consistency,
while another is well above, is made possible by
the probabilistic interpretation of RC.

4 Meta-Analysis of Prior Work

In this section, we discuss results reported by prior
works that conduct evaluation with contrast sets
under the light of relative consistency.

4.1 Gardner et al. (2020)
They construct contrast sets for several common
test sets by modifying a sample of the test set in-
stances. They train a biaffine parser (Dozat and
Manning, 2017) with ELMo embeddings (Peters
et al., 2018) for UD parsing (Zeldes, 2017, Silveira
et al., 2014, Basili et al., 2015, Ahrenberg, 2007),
and RoBERTa (Liu et al., 2019) for reading com-
prehension tasks: ROPES (Lin et al., 2019), and
MC-TACO (Zhou et al., 2019) and stance predic-
tion: PERSPECTRUM (Chen et al., 2019). Table 2
shows the accuracy and consistency of these mod-
els for four of their contrast sets.5 In the rightmost
column, we report the relative consistency scores
that we introduce.

Analysis We observe that the UD parsing and
ROPES models have a similar consistency score

5We exclude contrast sets that do not have the bundle size
of 2. They report the accuracy of the original instances and
contrastive instances separately, so to obtain the accuracy in
the contrast set (that we need to calculate RC) we average
those. In doing so, we assume that the accuracy of the full
original test set is similar to the accuracy of the sample of
original test set instances.

253

Loss Accuracy Consistency RC

MLE 65.7 52.1 100.0↰

+UL 68.3 55.6 100.0↰

+CE 76.6 64.7 100.0

Table 3: A comparison of relative consistency scores
computed from results report in Dua et al. (2021) (in
“Dev EM” and “Dev C” columns in their Table 3). The
number of bundles is 844. The unlikelihood (UL) and
contrastive estimation (CE) objectives improved the ac-
curacy and consistency over MLE, without decreasing
relative consistency. This is how consistency should be
improved in this case.

(17.3 and 17.6). However, the UD parsing model’s
consistency has a near-zero chance to outperform
an equally accurate model. On the other hand, the
ROPES model is quite likely to do so.

Additionally, relative consistency shows that
models with low consistency could nonetheless
have a large tendency to respond to bundles consis-
tently.6 We see this with the results for MC-TACO,
which, despite only achieving 8.0% consistency,
is more consistent than an equally accurate model
in 95.2% of cases. Intuitively, this means that the
above chance model has at least generalized well
within the few cases to which it correctly responds.

4.2 Dua et al. (2021)

They investigate whether training approaches that
consider a full bundle of related instances together,
instead of their constituent instances separately,
improve consistency. Table 3 shows their report
results obtained with T5 (Raffel et al., 2020) and
the relative consistency scores we compute from
their results, on the contrastive version of ROPES —
a reading comprehension dataset for evaluating a
model’s ability to reason about “effects of the rela-
tionships in the background passage in the context
of the situation”.

Analysis We observe that the baseline model
trained with the maximum likelihood estimation
(MLE) is already at ceiling performance in terms of
its tendency to produce consistent responses (i.e.,
its RC scores). Combining contrastive estimation
(CE; Smith and Eisner, 2005), or unlikelihood train-
ing (UL; Welleck et al., 2020), with MLE not only
improves the accuracy and consistency but also

6Note that high relative consistency does not guarantee that
such a model will continue to respond to bundles consistently
with improved accuracy.

does so in a way that does not lower the relative
consistency, which is desired. This emphasizes the
effectiveness of these objectives.

4.3 Ravichander et al. (2022)

They introduce CondaQA, a contrastive dataset for
studying reading comprehension models’ effective-
ness in reasoning about the implications of negation
expressed in a given text. Each CondaQA instance
comes with three minimally varied versions: one
paraphrases the negation, another modifies what
is negated (scope), and the last removes the nega-
tion. Ravichander et al. (2022) use UnifiedQA-v2
(Khashabi et al., 2022) as a backbone model. We
explore the factors that might influence the consis-
tency of the large and 3B versions of this model:

• The training objective: MLE, CE, or com-
bined λ1MLE+λ2CE.

• The choice of hyperparemeters λ1 and λ2
(with UnifiedQA-large).

Table 4 shows accuracy, consistency, and relative
consistency we obtain for bundles where the orig-
inal instance is paired with its: (i) scope-edited
version, and (ii) affirmative version (without nega-
tion). In Table 5 (Appendix), we also include the
results with paraphrase-edits.

Analysis An increase in consistency does not nec-
essarily indicate a heightened tendency to consis-
tently respond to bundles (unless the accuracy stays
the same). Compare CE with 1MLE+1CE (dou-
ble underlined, in the upper part of the table). In
this case, by training with MLE and CE, affirma-
tive consistency has gone up slightly, however, the
model’s chance of outperforming an equally accu-
rate model dropped down from 26% to 19%. This
is an example of a suboptimal way of improving
consistency, and MLE+CE is not necessarily supe-
rior to the standalone CE in this case. A similar, but
less pronounced, situation occurs when comparing
MLE against .33MLE+1CE for scope consistency
in the bottom part of the table (italicized).

Conversely, even if standard consistency has not
improved, a model’s tendency to consistently re-
spond to bundles may have. For example, compare
MLE with 1MLE+1CE for scope consistency in the
upper part of the table (wavy underlined). In this
case, scope accuracy lowered slightly but absolute
scope consistency remained the same, leading to a
large improvement in Scope-RC. This may suggest
that additional CE loss resulted in the model un-
learning a few individual instances without unlearn-

254

Size Loss Scope-Acc Aff-Acc Scope-Cons Aff-Cons Scope-RC Aff-RC
L

ar
ge

MLE 66.84 67.09
:::::
42.86 42.35

:::::
17.10 10.06

CE 64.80 66.84 40.31 43.37 20.10 26.64
λ1MLE + λ2CE↰

λ1, λ2 = 1.0, 1.0 66.33 68.11
:::::
42.86 44.39

:::::
30.43 19.37↰

λ1, λ2 = 0.33, 1.0 66.58 68.37 43.37 44.90 42.44 16.01

3B

MLE 74.23 76.79 56.12 60.71 80.76 88.68
CE 74.23 77.55 56.12 61.73 80.76 92.03
λ1MLE + λ2CE↰

λ1, λ2 = 0.33, 1.0 74.23 77.04 56.12 60.71 80.76 88.68↰

λ1, λ2 = 0.33, 1.0 76.02 78.57 58.67 63.78 79.32 98.60

Table 4: Results of UnifiedQA-v2 (Khashabi et al., 2022) on the CondaQA contrastive dataset, with the expectation
that including the Contrastive Estimation (CE) objective would improve consistency, as in Dua et al. (2021). RC
scores are reported here only for some of the edit dimensions in CondaQA; see Table 5 for the rest.

ing any complete bundles it had learned. Similarly,
0.33MLE+1CE scope consistency in the upper part
of the table (underlined once) increased slightly
but the scope relative consistency has increased no-
tably. If we compared only consistency we would
conclude that the choice of hyperparameters λ1, λ2
is not vital, where actually they can affect model
consistency behavior as shown by relative consis-
tency.

5 Conclusion

We introduce relative consistency, which comple-
ments standard contrast consistency by allowing
an accuracy and consistency score pair to be ex-
amined to determine whether a higher consistency
was possible with that accuracy. This facilitates
the comparison of consistencies achieved by mod-
els that achieved different levels of accuracy. We
show that relative consistency enriches conclusions
we make about whether a model is more consis-
tent than another, and occasionally even leads us to
different takeaways.

6 Limitations

This mathematical model is based on a simplified
version of contrastive datasets. Contrastive datasets
may have more than two edits for each original in-
stance, which will result in a different distribution.
Although we provide formulas for distributions of
arbitrary bundle size in Appendix B, these distribu-
tions are less intuitive, more expensive to compute,
and additionally have the drawback that, if a model
achieves high pairwise RC on two of the elements
of the bundle, it is likely to achieve high bundle
RC, even if the other elements of the test set do

not achieve high pairwise RC. In general, we rec-
ommend formulating questions of consistency in
terms of bundles with one instance exhibiting a
feature and the other instance lacking that feature.
Moreover, contrastive datasets may include extra
data that is not contrastive; e.g., CondaQA has a
small number of bundles with a single instance be-
cause other instances in the bundle were filtered
because they did not pass quality checks.

In §2.3, we state the drawbacks of the distri-
bution (5). Namely, we do not consider that the
distribution might be skewed due to the varying
example difficulty and other inherent properties of
datasets and models.

7 Acknowledgements

We thank anonymous reviewers for their thought-
ful and constructive comments, members of the
UtahNLP group for helpful feedback, and Petar
Bakić for proofreading our formulas.

References
Lars Ahrenberg. 2007. LinES: An English-Swedish

parallel treebank. In Proceedings of the 16th Nordic
Conference of Computational Linguistics (NODAL-
IDA 2007), pages 270–273, Tartu, Estonia. University
of Tartu, Estonia.

Roberto Basili, Cristina Bosco, Rodolfo Delmonte,
Alessandro Moschitti, and Maria Simi. 2015. Har-
monization and Development of Resources and Tools
for Italian Natural Language Processing within the
PARLI Project, volume 589.

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris
Callison-Burch, and Dan Roth. 2019. Seeing things

255

from a different angle:discovering diverse perspec-
tives about claims. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 542–557, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing.

Dheeru Dua, Pradeep Dasigi, Sameer Singh, and Matt
Gardner. 2021. Learning with instance bundles for
reading comprehension. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7347–7357, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307–1323, Online. Association for Computational
Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Myeongjun Jang, Deuk Sin Kwon, and Thomas
Lukasiewicz. 2022. BECEL: Benchmark for con-
sistency evaluation of language models. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 3680–3696, Gyeongju,
Republic of Korea. International Committee on Com-
putational Linguistics.

Divyansh Kaushik, Eduard H. Hovy, and Zachary Chase
Lipton. 2020. Learning the difference that makes A
difference with counterfactually-augmented data. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Daniel Khashabi, Yeganeh Kordi, and Hannaneh Ha-
jishirzi. 2022. Unifiedqa-v2: Stronger generalization
via broader cross-format training.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Sriku-
mar. 2019. A logic-driven framework for consistency
of neural models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3924–3935, Hong Kong, China. Association
for Computational Linguistics.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gard-
ner. 2019. Reasoning over paragraph effects in situ-
ations. In Proceedings of the 2nd Workshop on Ma-
chine Reading for Question Answering, pages 58–62,
Hong Kong, China. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Abhilasha Ravichander, Matt Gardner, and Ana Maraso-
vic. 2022. CONDAQA: A contrastive reading com-
prehension dataset for reasoning about negation. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
8729–8755, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Chris Manning. 2014. A gold standard
dependency corpus for English. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 2897–
2904, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Noah A. Smith and Jason Eisner. 2005. Contrastive esti-
mation: Training log-linear models on unlabeled data.
In Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL’05),
pages 354–362, Ann Arbor, Michigan. Association
for Computational Linguistics.

256

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Amir Zeldes. 2017. The gum corpus: creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51:581–612.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth.
2019. “going on a vacation” takes longer than “go-
ing for a walk”: A study of temporal commonsense
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3363–3369, Hong Kong, China. Association
for Computational Linguistics.

257

A Numerical Stability of Relative
Consistency

To avoid numerical instability, especially when
comparing RC scores for two models, (i.e. to de-
termine whether a training approach improves a
model’s tendency to produce consistent responses,
or determine which of two training approaches best
improves a model’s tendency towards consistent
responses), we define:

µ(c, a) =
∑

ci∈Ca
ci≤c

m(ci, a) (9)

(i.e., the cumulative combinatoric mass) and then
rephrase the definition of RC as:

RC(c, a) =
µ(c, a)

M(a)
(10)

which relies on only one division, so is less prone
to floating-point rounding errors.

This also allows us to compute:

µ(c1, a1)

M(a1)
− µ(c2, a2)

M(a2)
(11)

(i.e., the improvement in RC(c1, a1) over
RC(c2, a2) scores) as:

µ(c1, a1)M(a2)− µ(c2, a2)M(a1)

M(a1)M(a2)
(12)

which allows for comparisons between models that
are very close in their RC scores, (i.e., in the long
tail of consistency).

B Formulas for Bundle Sizes b > 2

Let us consider a contrastive test set containing
n bundles of b instances each. There are nb +
1 possible accuracies a, but still n + 1 possible
consistencies c.
Ca can then be defined in terms of n, b, and a as

follows:

Ca = {c ∈ C : c
(a)
min ≤ c ≤ c(a)max} (13)

where c(a)min and c(a)max are defined as:

c
(a)
min =

{
0 if a ≤ n(b− 1)

a− n(b− 1) if a > n(b− 1
(14)

c(a)max =
⌊a
b

⌋
(15)

Intuitively, if a ≤ n(b − 1) then it is possi-
ble that all bundles have at least one of their con-
stituent instances incorrectly answered, in which
case, c(a)min = 0. However, if a > n(b − 1), then
at least a− n(b− 1) > 0 of bundles must be fully
correctly answered. Indeed, for a bundle to be
inconsistent at least one item must be incorrectly
answered, so for a given a, the number of incorrect
items is nb − a. Thus, at most nb − a bundles
can be inconsistent, and c(a)min = n − (nb − a) =
n− nb+ a = a− n(b− 1).

The definition of c(a)max follows from the observa-
tion that a maximally consistent model will consis-
tently respond to the maximum number of bundles
for which it is possible that all b instances are cor-
rectly answered, and that equals

⌊
a
b

⌋
.

Now, M(a) (the number of ways a model can
achieve accuracy a) is given by:

M(a) =

(
nb

a

)
(16)

and m(c, a) (the number of ways a model can
achieve accuracy a and consistency c) is given by:

m(c, a) =

(
n

c

)
·G(n− c, b, a− cb) (17)

where the first factor in the product still intuitively
corresponds to the number of ways that c consistent
bundles can be selected out of n, but the second
refers to the number of ways the remaining cor-
rect instances could be distributed within responses
to the test set such that no additional consistent
bundles can be formed.

This second factor G(m, b, k) is defined as:

G(m, b, k) =
R∑

r=0

(−1)r
(
m

r

)(
(m− r)b
k − rb

)

(18)
where R = min(m,

⌊
k
b

⌋
). This can be understood

as the number of ways to select k elements of an
m× b matrix such that no row contains a complete
b elements selected. The first term (which simpli-
fies to

(
mb
k

)
) is the total number of ways these k

elements could be selected, ignoring the restriction
on complete rows, and the remaining terms apply
the principle of inclusion-exclusion to alternately
subtract and add the number of ways that at least
r rows could be filled (by multiplying the number
of ways that r out of m rows could be selected by
the number of ways the remaining m− r rows and
b columns could be filled by the remaining k − rb

258

Figure 2: The log10 of the distributions of consistency
scores in Figure 1a.

items to select), up to the maximal number of rows
R that could be filled, whether that is determined
by the total number of rows available m or the
number of rows the items k could fill.

In general, we do not recommend using this mea-
surement for bundle sizes above 2 except for evalu-
ating consistency on three-valued features, as many
consistency questions can be formulated as bun-
dles with one instance exhibiting a feature and one
instance lacking that feature.

C Distributions of Alternative
Approaches

Figures 3 and 4 plot the distributions of consis-
tency scores (for a 100-bundle dataset) obtained via
simpler non-probabilistic alternatives and compare
them to the distributions obtained via RC. Both of
these characterizations lower the scores for consis-
tencies that are above chance and raise the scores
for consistencies that are below chance.

259

Size Loss B-A P-A S-A A-A B-C P-C S-C A-C B-RC P-RC S-RC A-RC

L
ar

ge

MLE 67.22 66.33 66.84 67.09 27.04 58.16 42.86 42.35 99.92 100.00 17.10 10.06
CE 67.35 67.35 64.80 66.84 28.57 61.22 40.31 43.37 99.99 100.00 20.10 26.64
λ1MLE + λ2CE↰

λ1, λ2 = 1.0, 1.0 67.73 68.88 66.33 68.11 28.57 63.78 42.86 44.39 99.98 100.00 30.43 19.37↰

λ1, λ2 = 0.33, 1.0 68.24 68.37 66.58 68.37 30.10 63.27 43.37 44.90 100.00 100.00 42.44 16.01

3B

MLE 75.64 76.28 74.23 76.79 44.39 71.43 56.12 60.71 100.00 100.00 80.76 88.68
CE 75.38 75.51 74.23 77.55 43.88 70.41 56.12 61.73 100.00 100.00 80.76 92.03
λ1MLE + λ2CE↰

λ1, λ2 = 1.0, 1.0 75.51 75.77 74.23 77.04 44.90 70.92 56.12 60.71 100.00 100.00 80.76 88.68↰

λ1, λ2 = 0.33, 1.0 76.53 77.55 76.02 78.57 45.92 73.47 58.67 63.78 100.00 100.00 79.32 98.60

Table 5: The full results of UnifiedQA-v2 (Khashabi et al., 2022) on the CondaQA contrastive dataset, with the
expectation that including the Contrastive Estimation (CE) objective would improve consistency, as in Dua et al.
(2021).

Figure 3: In this figure, the interval
[
c
(a)
min, c

(a)
max

]
is simply scaled to cover [0, 1] and the score is scaled accordingly.

On the left is the score given a model’s accuracy and consistency, on the right is shown the change in score when
moving from RC to this formulation.

Figure 4: In this figure, of the bundles which are at least partially correct, the proportion of fully consistent bundles
is reported. On the left is the score given a model’s accuracy and consistency, on the right is shown the change in
score when moving from RC to this formulation.

260

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 261–270
December 7, 2023. ©2023 Association for Computational Linguistics

Investigating the Encoding of Words in BERT’s Neurons using Feature
Textualization

Tanja Baeumel1 Soniya Vijayakumar1 Josef van Genabith1, 2

Guenter Neumann1, 2 Simon Ostermann1

1German Research Center for Artificial Intelligence (DFKI)
2Department of Language Science and Technology, Saarland University

Saarland Informatics Campus, Saarbrücken, Germany
{firstname.lastname}@dfki.de

Abstract

Pretrained language models (PLMs) form the
basis of most state-of-the-art NLP technolo-
gies. Nevertheless, they are essentially black
boxes: Humans do not have a clear understand-
ing of what knowledge is encoded in different
parts of the models, especially in individual
neurons. The situation is different in computer
vision, where feature visualization provides a
decompositional interpretability technique for
neurons of vision models. Activation maxi-
mization is used to synthesize inherently inter-
pretable visual representations of the informa-
tion encoded in individual neurons.

Our work is inspired by this but presents a
cautionary tale on the interpretability of single
neurons, based on the first large-scale attempt
to adapt activation maximization to NLP, and,
more specifically, large PLMs. We propose
feature textualization, a technique to produce
dense representations of neurons in the PLM
word embedding space. We apply feature tex-
tualization to the BERT model (Devlin et al.,
2019) to investigate whether the knowledge en-
coded in individual neurons can be interpreted
and symbolized. We find that the produced
representations can provide insights about the
knowledge encoded in individual neurons, but
that individual neurons do not represent clear-
cut symbolic units of language such as words.
Additionally, we use feature textualization to
investigate how many neurons are needed to
encode words in BERT.

All data and code is made publicly available
under https://github.com/BaeumelTanja/
Feature-Textualization.

1 Introduction

In recent years, research on explainable AI (XAI)
has seen an upsurge due to the black box nature
of large neural models that are ubiquitously used
in state-of-the-art systems. While being highly
performant, due to their massive amount of param-
eters, it is inherently incomprehensible to humans

which and how information is stored in these mod-
els. Techniques in XAI seek interpretations of large
neural models and explanations for their behavior.

Lipton (2016) identifies post-hoc interpretability
and transparency as crucial model properties that
enable interpretations. Post-hoc interpretations of-
ten do not reveal precisely how a model works, but
they can provide useful information for end users.
Most local explanation methods fall into this cate-
gory (see Madsen et al. (2022) for a recent survey
on post-hoc interpretations). Model transparency
on the other hand implies an understanding of how
the model works. In this work we are primarily
interested in model transparency at the level of
decomposability, i.e., XAI methods that provide
intuitive interpretations for individual neurons. In
theory, a perfectly transparent and decomposable
global interpretation of a neural model could be
achieved by providing faithful interpretations of all
individual model neurons.

In this work we attempt to find symbolizable and
thus intuitive interpretations of individual language
model neurons. To obtain interpretations of indi-
vidual neurons, we build on feature visualization
(Olah et al., 2017), an interpretability technique in
computer vision that provides visualized, and thus
interpretable, representations of individual neurons
in vision models. In feature visualization, activa-
tion maximization (Erhan et al., 2009) is used to
synthesize an input image that maximizes a prede-
fined neuron’s activation value. The task is phrased
as an optimization problem and gradient ascent is
used to iteratively optimize an artificial input with
respect to the neuron’s activation value. The un-
derlying assumption is that the input image that
maximally activates a neuron visualizes the kind
of information that is encoded in that neuron. In
computer vision, this technique has provided global
interpretations of vision models, and has led to im-
portant insights: for instance, that certain neurons
encode specific patterns such as stripes or textures

261

in a picture (Olah et al., 2017). The OpenAI Mi-
croscope (Schubert et al., 2020) is a collection of
visualizations of every significant layer and neuron
of 13 important vision models, and an impressive
demonstration of the relevance of feature visualiza-
tion in vision models.

In this work we introduce feature textualization,
an adaptation of activation maximization applicable
to language models. Our method provides the - to
our knowledge - first attempt at directly interpreting
BERT’s neurons in a full white box manner without
imposing structural constraints. Our contributions
with this work are three-fold:

• We conduct the - to our knowledge - first large-
scale quantitative evaluation of the results of
applying activation maximization to large pre-
trained language models. We present a set of
exploratory experiments in which we employ
activation maximization to generate input that
maximally activates neurons in BERT (Devlin
et al., 2019).

• We investigate whether feature textualization
produces symbolizable interpretations of in-
dividual neurons as words. To that end, we
optimize inputs for single neurons in BERT
and compare the resulting vectors to the em-
beddings of real words. Our findings suggest
that the information encoded in single neurons
cannot generally be symbolized in terms of
words.

• We subsequently investigate how many neu-
rons are required for symbolic interpretations,
given the distributedness of information in
neural networks. We synthesize artificial in-
puts for meaningful groups of neurons and
find that jointly optimizing an input for 250 to
450 neurons seems to result in vectors that are
semantically close to words.

2 Related Work

Interpreting Neurons in PLMs. Many previous
works have explored interpretation methods for
NLP models through the investigation of individ-
ual neurons. In an attempt to find concept-level
interpretations of individual neurons, multiple stud-
ies (e.g., Kádár et al. (2017), Na et al. (2019))
pass synthetic n-gram inputs to a model and try
to pinpoint the concept that is encoded in the neu-
ron under investigation by automatically extracting
a theme across the most activating inputs. This

methodology can be useful for neurons that encode
multi-word concepts such as phrases (Sajjad et al.,
2022). However, since the synthetic multi-word
inputs are often ungrammatical, there is a risk of
identifying a response to arbitrary behavior (like
repetition) instead of concept specific behavior (Saj-
jad et al., 2022). Avoiding this obstacle, Bolukbasi
et al. (2021) use dataset samples as inputs to detect
concepts encoded in individual neurons of BERT.
They fall pray to an interpretability illusion, as
neurons initially seem to encode concepts within
datasets, however across datasets these concepts
are entirely unrelated. The authors conclude that
the knowledge encoded in individual neurons is not
reflected by any of the dataset-concepts. In Mu and
Andreas (2020), the neurons to be interpreted are
not hand-picked in advance, but the behavior of all
neurons is observed and meaningful neurons are
chosen depending on their response to certain in-
puts. The authors compare the presence or absence
of different concepts in the input with a binary acti-
vation mask on each neuron, i.e., is the neuron more
or less activated than a threshold. They use corre-
lations between concepts and neural activations to
generate compositional explanations. Suau et al.
(2020) use neuron activation values as prediction
scores for concepts and determine concept knowl-
edge within that neuron via the prediction accuracy.
Bills et al. (2023) present an attempt at generating
explanations of a language model’s behavior using
GPT-4 (OpenAI, 2023), based on neuron activation
patterns. Unlike our work, they train an explainer
model to generate explanations, effectively render-
ing the explanation process as a black-box method
again: Neuron activations are not interpreted di-
rectly, but based on a second model’s prediction.

To our knowledge, only two other attempts (Po-
erner et al., 2018; Bäuerle and Wexler, 2020) have
previously been made to use activation maximiza-
tion in the language domain. Poerner et al. (2018)
employ activation maximization to synthesize in-
puts to highly activate single neurons in a small
joint vision and language model. Unlike our work,
they force synthesized inputs to correspond to one-
hot encodings, using the Gumbel-Softmax trick.
This induces the strongest possible constraint and
bias on the generation process of artificial inputs,
as it forces inputs during optimization to converge
to words or n-grams of words. This simplification
makes it impossible to find an optimal input if it
falls in between words or out of the embedding

262

cone completely, a restriction that we lift with our
work. Bäuerle and Wexler (2020) follows a compa-
rable approach to Poerner et al. (2018). Sajjad et al.
(2022) provides a comprehensive survey on inter-
pretation attempts of individual neurons in NLP.

Activation Maximization in Computer Vision.
Activation maximization was introduced by Erhan
et al. (2009). Nguyen et al. (2016b) and Olah
et al. (2017) present applications of feature vi-
sualization based on activation maximization in
vision models. Consequently, there has been a
large strand of research on finding good regulariz-
ers for activation maximization (Mahendran and
Vedaldi, 2016; Nguyen et al., 2016a; Yosinski et al.,
2015). Nguyen et al. (2019) provide a comprehen-
sive overview of the use of feature visualization in
computer vision.

3 Feature Textualization

3.1 Activation Maximization

We use activation maximization to generate individ-
ual interpretations of individual neurons. In activa-
tion maximization, an input is iteratively optimized
to increasingly activate a target neuron. The opti-
mization uses gradient ascent to change the input
with respect to the target neuron activation, while
keeping all model parameters frozen. To apply ac-
tivation maximization to the neurons of a model, a
continuous optimizable input is required.

In the standard BERT architecture, inputs, i.e.
vector representations of words before being passed
to the first BERT layer, are comprised of three parts
that are summed: Token embeddings, positional
embeddings, and segmentation embeddings. For an
input wordw, let inputBERT () be the function that
applies these three operations to a one-hot encoding
xw of w. The dimensionality of xw corresponds to
the vocabulary size, i.e., 30, 522.
inputBERT (xw) is, in the standard formulation

of BERT, a 768-dimensional vector, which is then
passed to the first BERT encoder layer.

In BERT, we optimize a vector at the level of
xw, i.e., in the 30, 522-dimensional input vector
space, as depicted in the orange part of Figure 1.
We choose to optimize inputs in the input vector
space, because we want to avoid that the activa-
tion maximization optimization models positional
or segmentation information - it should focus on
the meaning representation of the word. Note that
unlike e.g. Poerner et al. (2018), we do not force

Figure 1: Our analyses are based on the yellow repre-
sentation after the static embedding layer. We optimize
the orange representations in the input vector space.

the vectors to converge to actual one-hot encodings,
but allow them to take continuous values.

All analyses are then based on the vectors
inputBERT (xw) in the 768-dimensional static
word embedding space, i.e., after the transforma-
tion of xw by the embedding layer, as depicted
in the yellow part of Figure 1. We interpret the
optimized inputs in this static word embedding
space, as the input vector space does not encode
semantic similarity of its embeddings. In the 768-
dimensional static word embedding space, we can
compare the optimized input to the embeddings of
words in BERT’s vocabulary.

The activation maximization procedure on BERT
follows five steps:

1. Select an individual or a group of target neu-
rons for which to optimize an input.

2. Choose an input length l to be generated, i.e.,
the number of interpretable token vectors that
should be contained in the optimized input.

3. Create a random initial input in the input vec-
tor space, consisting of a one-hot encoded
[CLS] token, followed by randomly initial-
ized l tokens to be optimized, followed by a
one-hot encoded [SEP] token.

4. Execute a forward pass of the input through
BERT. Model weights, and the one-hot inputs
at the [CLS] and [SEP] positions are frozen.

5. Perform gradient ascent with the target neuron
activation as the maximization objective. The
gradient update is only applied to the l input
vectors, i.e. not to the [CLS] and [SEP] one-
hot vectors.

We use activation maximization to find optimized
263

inputs in two settings, which are described below:
Optimizing for a single neuron, and optimizing for
a group of neurons simultaneously.

3.2 Single Neuron Analysis
We optimize inputs with respect to individual neu-
rons using vanilla gradient ascent without any regu-
larization. In these experiments, we generate inputs
to maximally activate individual neurons. For the
optimization of a single neuron i we optimize its
activation value ai.

3.3 Groups of Neurons
3.3.1 Identifying Meaningful Groups
When optimizing groups of neurons, the first ques-
tion is which groups of neurons should be opti-
mized together, and how many neurons are needed
to encode meaningful and symbolizable units, such
as words or concepts.

We identify such meaningful groups of neurons
through a simple, data-driven process: We observe
the activation patterns elicited by all words in the
vocabulary passed into BERT individually, and
store for each target word w the set Iw of its k
most important neurons. We explore different mea-
sures of importance that are elaborated in the next
section. We then apply activation maximization to
the neuron set Iw by maximizing the average acti-
vation across Iw, to generate the optimized input
for the group of target neurons.

3.3.2 Identifying the Most Activated Neurons
We employ two options for computing the set of
relevant neurons Iw for a word w:

Absolute. The most simple approach to find the
set of most relevant neurons for a word is to calcu-
late for each neuron i the absolute activation value
aabsw,i elicited by w. We then select the k neurons
with the highest values for aabsw,i to compose Iw.

Relative: We choose the k most activated neu-
rons in relative terms. Let amax

i be the maximal
activation of neuron i, determined via the highest
activation of neuron i as elicited by the most activat-
ing vocabulary item for that neuron. We normalize
the absolute activation of the neuron i elicited by
the word w with the maximal possible activation
for i:

arelw,i =
aabsw,i

amax
i

(1)

We choose the k neurons with the highest values
arelw,i for Iw .

For the optimization of a group of k neurons I
and their respective activation values ai, we opti-
mize the objective

∑
i∈I

ai
k .

4 Experiments: Single Neurons

This Section describes our experiments of applying
feature textualization to single neurons in BERT, to
determine whether we can find intuitive interpreta-
tions through symbolic units of language for these
neurons.

4.1 Experimental Setup

To understand what type of knowledge is repre-
sented in individual neurons, we perform activation
maximization on individual neurons. In addition
to synthesizing an optimized input for neurons, we
also get scores on the maximal achievable activa-
tion of each neuron, amax

i (s. Section 3.3.2). We
run all experiments with single neurons for 5000
optimization steps with a learning rate of 1001. Hy-
perparameter tuning revealed that the activation
strength at the neuron under investigation reliably
converges within the chosen number of steps.

The neuron activations we maximize are at the
level of the output of the last dense layer per en-
coder layer, i.e. before the final layer normaliza-
tion. For simplicity reasons, we decide to synthe-
size inputs in the form of a single word, i.e. of a
total length of 3, including the [CLS] and [SEP]
tokens.

In our experiments, we consider 9, 216 neurons,
i.e. the 768 neurons in all 12 layers that correspond
to the input position of the token to be optimized,
i.e., position 1 in the input. From these, we sample
a random 10% of neuron positions per layer (i.e.
77 out of 768) and optimize the resulting 924 neu-
rons at the respective positions per layer. For all
experiments, we use a pretrained and non-finetuned
bert-base-uncased model from Hugging Face2.

4.2 Evaluation

Activation Potential. We compare the 768-
dimensional optimized inputs in the input embed-
ding space with the embeddings of BERT’s input
vocabulary in the same space. Specifically, for
each neuron that we apply activation maximiza-
tion to, we also find the most activating vocabu-

1Hyperparameter tuning has revealed such an unusual
learning rate to work best, as smaller values do not lead to a
convergence of the input generation. We conjecture this is due
to the minimal impact a single neuron has on the network.

2https://huggingface.co/

264

Optimized Input Most activating word
Activation strength 42.523 (σ = 10.15) 1.283 (σ = 1.935)
cossim(oii, closestwordoi) 0.124 (σ = 0.02) 1.0 (σ = 0)
Mean vector magnitude 21.818 16.867

Table 1: Left: Mean activation strength of investigated neurons in response to their respective optimized inputs,
cosine similarity of optimized input oii to the closest word embedding, mean magnitude of optimized input. Right:
same metrics, but based on the most activating word (determined for each neuron individually)

lary item (most activating word) through a brute-
force approach. Table ?? shows quantitative re-
sults of our experiments on single neurons. Fig-
ure 2 shows that when the gradient ascent opti-
mized input of a specific neuron is used as in-
put, the resulting activation strength at that neu-
ron (mean = 42.523, σ = 10.15) is more than
30 times higher than it is when the most activat-
ing word for the same neuron is used as input
(mean = 1.283, σ = 1.935). This gives a quanti-
tative indication of how unfaithful single-neuron
interpretation methods are when only considering
discrete words as possible inputs (as the Gumbel
Softmax trick for instance does): By selecting the
most activating word as an interpretation of the
knowledge encoded in a neuron, only around 3%
of the actual activation potential are achieved. It is
not clear that this can result in a faithful interpreta-
tion, as the true knowledge encoded in the neuron
is clearly not captured.
We find that the activation potential of individ-
ual neurons significantly declines with higher lay-
ers (Figure 3), as measured by the activation
strength achieved by the optimized input (β =
−1.87, t(922) = −25.09, p < 0.001). By contrast,
the activation strength achieved on neurons based
on their respective most activating word remains
relatively stable across layers, decreasing only
slightly (β = −0.03, t(922) = −8.78, p < 0.001).
The difference between word-based and optimiza-
tion based activation potentials slightly decreases
in higher layers, but is still at a level that calls into
question the faithfulness of word-based neuron ex-
planations.

Proximity of Optimized Inputs to Words. For
each optimized input vector, we find the closest
vocabulary embedding, through a brute-force ap-
proach. We use cosine similarity, since it has a
fixed scope3 as opposed to for instance Euclidean

3Cosine similarity is the cosine of the angle between two
vectors, and does not depend on the magnitudes of the vectors.
The cosine similarity is always in the interval [-1, 1], where
two proportional vectors have a cosine similarity of 1, two
orthogonal vectors have a similarity of 0, and two opposite

Figure 2: Activation strength for each neuron in re-
sponse to optimized input and most activating word,
averaged over layers

Figure 3: Activation strength for each neurons in re-
sponse to optimized input and most activating word, per
layer

distance, and is thus easier to interpret. To ex-
clude the possibility that a difference in magnitudes
of word embedding vectors and optimized inputs
negatively affect our results (vectors with higher
magnitude might have more activation potential in
general), we compare magnitudes and find that the
difference is small (factor 1.29, see Table ??) in
comparison to the difference in activation potential.

The cosine similarity between an optimized in-
put and the closest embedding of a vocabulary item
is on average 0.124 (σ = 0.02). Table 2 shows
the closest words for a number of optimized in-
puts. Figure 4 shows that the similarity increases

vectors have a similarity of -1.

265

Neuron Layer top 3 closest words
0

1
triple (0.15), slightest (0.14), serie (0.13)

225 swollen (0.12), triassic (0.12), skate (0.12)
574 fuscous (0.12), sicilian (0.12), snails (0.12)
0

12
castile (0.16), browser (0.16), U+0F0B (0.15)

225 contradictory (0.19), cerambycidae (0.17), conflicting (0.16)
574 overheard (0.14), rfc (0.13), sioux (0.13)

Table 2: Closest words for the optimized inputs of 3 random neurons, with cosine similarities.

Figure 4: Cosine Similarity of optimized input and clos-
est word embedding

slightly in higher layers (β = 0.005, t(2026) =
36.73, p < 0.001), such that the mean cosine sim-
ilarity between an optimized input and its closest
word embedding is 0.159 (σ = 0.02) in the highest
BERT layer.

To understand the scale of typical similarity val-
ues in the BERT static embedding space, it is best
to consider an example: The similarity of the word
sofa to couch is 0.67, to pillows it is 0.33 and to
unit it is 0.15. In total, only 100 out of 30, 000
words reach a similarity of over 0.3 for the sofa
example. Roughly 50% of words fall into the simi-
larity range of 0.1−0.2. Thus, a similarity of 0.159
does not indicate a high semantic relatedness.

Interestingly, the closest word embedding to an
optimized input for neuron i does not coincide with
the most activating word for the same neuron i for
the vast majority of investigated neurons (99.7%).
We take this as further evidence on the meaning-
lessness of interpreting neurons through the most
similar word embeddings of their optimized inputs.

A visual inspection of the optimized inputs and
vocabulary embeddings in the embedding space re-
veals that optimized inputs and vocabulary embed-
dings occupy separate parts of space, see Figure 5.

Figure 5: PCA of the space occupied by optimal inputs
and words. The two outlier clouds contain non-English
symbols and unused tokens and account for approx.
7, 000 instances.

4.3 Interim Conclusion
We find that:

• Words only utilize the theoretical activation
potential of single neurons to a rate of 3% on
average, with a slightly higher rate in higher
layers.

• The average cosine similarity of gradient as-
cent optimized inputs and their closest words
is so small that it most likely does not indicate
semantic relatedness.

• The words that are closest to optimized inputs
do not coincide with the vocabulary items that
most strongly activate a neuron.

• Words and optimized inputs occupy different
subspaces.

These results strongly suggest that single neu-
rons do not encode words. Optimized inputs could
be dissimilar to word embeddings because the
knowledge encoded in single neurons might not
be directly symbolizable into words. In fact, this is
quite likely, since information in neural networks
is known to be distributed.

266

Activation Strength
configuration k cossim(oii, wi) optimized input oii target word wi

absolute 10 0.015 (σ=0.04) 13.267 (σ=7.41) 1.683 (σ=0.23)
absolute 100 0.140 (σ=0.06) 3.320 (σ=1.10) 1.071 (σ=0.15)
absolute 250 0.198 (σ=0.09) 2.008 (σ=0.44) 0.884 (σ=0.12)
absolute 450 0.263 (σ=0.08) 1.490 (σ=0.26) 0.770 (σ=0.10)
relative 10 0.008 (σ=0.05) 8.943 (σ=2.39) 1.072 (σ=0.21)
relative 100 0.085 (σ=0.06) 2.403 (σ=0.53) 0.872 (σ=0.12)
relative 250 0.207 (σ=0.09) 1.480 (σ=0.28) 0.771 (σ=0.10)
relative 450 0.266 (σ=0.06) 1.160 (σ=0.19) 0.694 (σ=0.09)

Table 3: Mean cosine similarity of the target words wi to the respective optimized input oii; mean activation
strength of the neuron groups and target words, repectively.

5 Experiments: Groups of Neurons

In the previous Section, we report evidence sug-
gesting that single neurons do not encode words.
Therefore, in this Section, we use activation maxi-
mization to try to answer the question: How many
neurons does it take to encode words? We present
a set of experiments on optimizing an input for
groups of neurons.

5.1 Experimental Setup

We perform activation maximization on groups
of neurons to investigate how many neurons are
needed to generate an input that is symbolizable
into a word. We choose a total of 100 words (hence-
forth target words) of which 80 words are randomly
drawn from the vocabulary, disregarding vocabu-
lary items that contain non-latin characters, and
an additional 20 words that are manually selected
to ensure the presence of high-frequency words
in the set. We determine the k most relevant neu-
rons Iw for each target word w in absolute and
relative terms as described in Section 3.3.2, for
k = 10, 100, 250, 450. We perform experiments
with the same parameters as for the single neuron
experiments.

While the selection of neuron groups that encode
words based on word activation patterns may seem
circular, it is intended to give insights as to whether
feature textualization is suited for generating in-
terpretable, word-like inputs when appropriate, as
well as insights into the number of neurons k that
together encode a word.

5.2 Evaluation

Neuron Group Size. We quantitatively evaluate
how similar the optimized inputs for the k top ac-
tivated neurons are to the respective target words.

wi is closest word
k 10 100 250 450
absolute 1% 22% 36% 53%
relative 0% 48% 67% 65%
wi is in 20 closest words
k 10 100 250 450
absolute 3% 32% 59% 66%
relative 2% 63% 75% 68%

Table 4: How often is the target word wi the closest
word to the optimized input, or in the top 20?

Table 3 shows that the largest set of optimized neu-
rons (n = 450) produces optimized inputs that are
most similar to the respective target word, both
for the relative (cossim(oii, wi) = 0.266) and the
absolute (cossim(oii, wi) = 0.263) configuration.
These somewhat higher similarity values indicate
an increased semantic relatedness between groups
of neurons and words, as compared to single neu-
rons.

We also find that the most similar vocabulary
item to the optimized inputs corresponds to the
neuron group’s target word in a majority of cases,
for sufficiently large groups. Table 4 shows that
this is the case for 67% of optimized neuron groups
in the relative, k = 250 condition. These results
also give us a good first intuition as to the number
of neurons required to encode a word in BERT:
10 neurons is certainly not enough, and 450 may
already be too many. Even though the cosine simi-
larity of the optimized input to the closest word is
larger for 450 than for 250 neurons, the word that
the optimized input is closest to corresponds to the
target word less often (65% and 68%) than in the
250 neuron condition (67% and 75%) as seen in
Table 4. Our results could indicate that words are

267

target word Most similar words
hilltop hilltop (0.28), rooftop (0.20), horizon (0.18), buckingham (0.18)
corresponding corresponding (0.38), correspond (0.27), corresponds (0.23), attached (0.21)
crowd crowd (0.38), crowds (0.230), audience (0.23), audiences (0.19)

Table 5: Hand-picked examples of top 4 closest words for optimized inputs of neuron groups, for k = 250.

encoded in BERT in neuron clusters of size 250 to
450.

When looking at examples for the closest words
to the generated inputs for the top configuration
with k = 250 (s. Table 5), we find many positive
examples which indicate that the selected group
of neurons seems to encode a word or concept:
Usually, the top most similar words are mutually
semantically related. However, for the cases where
the most similar word is not the target word , we
find many cases where the most similar words are
random and contain mostly symbols.

Activation Potential. Similar to the results on
individual neurons, the mean activation potential of
the optimized input on the optimized set of neurons
is higher compared to the target word. While
the difference in activation potential between
optimized input and most activating word was 33
times higher for individual neurons, for groups of
neurons of size 450 in the relative configuration the
activation potential differs only by a factor of 1.7
(see last row of Table 3). These findings suggest
that words may in fact be suitable interpretations
for certain groups of neurons. Note that the mean
activation strength decreases for increasingly large
groups of neurons, which is to be expected, as
small groups of most activated neurons tend to
contain neurons with higher activation potential.

6 Discussion

Our experiments with feature textualization on sin-
gle neurons indicate that the meaning of single
neurons cannot be mapped to words. Unregular-
ized feature textualization resulted in optimized
inputs that are dissimilar from all words, but pro-
vide maximally faithful interpretations of neurons.
We provide a quantitative evaluation of these max-
imally faithful interpretations compared to word-
level interpretations, as obtained in related work.
Our results suggest that word-level interpretations
of neurons are not faithful and thus not suitable.
We thus take our results as a strong contraindica-
tion that words could serve as good interpretations

of individual neurons in BERT. Especially the dra-
matic difference in activation potential between
optimized inputs and most activating words can be
taken as evidence that individual neurons are not
particularly sensitive to words and do not directly
encode them.

Our work thus far only investigates the quality
of word-level interpretations of LLM neurons. In
future work, we plan to investigate what high-level
semantic knowledge is encoded within the neu-
rons of an LLM. We are specifically interested to
explore whether individual or small groups of neu-
rons, despite not being interpretable on the word-
level, might still be symbolizable in terms of some
other form of linguistic or language knowledge.

Our investigation of groups of neurons reveal
interesting insights: First, activation maximiza-
tion and consequently feature textualization does
in principle work for language models. The fact
that the optimized inputs in the (relative, k = 250)
condition are closest to the expected target word
in 67% of cases can be taken as evidence that if
a group of neurons truly encodes a word, feature
textualization detects that word. We conjecture that
whenever the method fails completely in the same
condition, i.e., in the 33% of cases where the target
word was not at all similar to the optimized input,
the corresponding group of neurons simply did not
encode the target word.

A second important insight from our investiga-
tions on groups of neurons is that words are cer-
tainly not encoded within 10 or less neurons in
BERT, as evident by the catastrophic results of all
experiments with k = 10.

In addition to our interpretation of results for sin-
gle neurons, it is also possible that non-regularized
optimal inputs are so dissimilar from words as they
are adversarial inputs. Due to the vastness of the
768-dimensional embedding space, it is possible
that our procedure finds local maxima that lie in
an uninterpretable part of the vector space. This
problem is well known in Feature Visualization
in Computer Vision: Olah et al. (2017) find that
non-regularized feature visualization produces ad-

268

versarial examples and thus the use of some regu-
larization or prior is strongly encouraged.

Based on this, we conjecture that an important
avenue for future work is the development of reg-
ularizers that pull the optimized inputs further to-
wards the populated part of the word embedding
space. We conducted initial experiments with such
regularizers and found indications that they help to
further increase the similarity of optimal inputs to
words and thus increase their interpretability. We
will investigate further experiments with regulariz-
ers in future work.

The creation of optimal input vectors through
activation maximization is associated with a non-
neglectable computational cost, since the optimiza-
tion process is executed for each neuron and group
of neurons of interest. The obtained optimal in-
puts are also model specific. The current method
does therefore not scale to a complete investigation
of arbitrarily large LLMs. However, recent work
by Dar et al. (2023) introduces a technique to in-
terpret model parameters in the embedding space
in a static way, i.e., with zero passes through the
model. Future work should experiment with this
approach to investigate the knowledge represented
in individual neurons of LLMs. Until then, we
make our code and optimized inputs for BERT neu-
rons publicly available, and encourage future work
to re-use the published optimal inputs, rather than
re-computing them.

Future work also needs to investigate how stable
our findings are once the input length is increased,
i.e., once words are contextualized. It would also
be interesting to apply the method to other language
models that are fine-tuned to a downstream task or
larger in size.

7 Conclusion

In our work, we introduce feature textualization, a
decomposability interpretability method for NLP
models, based on an adaptation of feature visual-
ization. Our work provides a thorough quantita-
tive evaluation of the application of the method
to BERT which leads us to conclude that feature
textualization is able to reveal the information en-
coded in groups of neurons in language models.
We find evidence that while single neurons seem
to not encode words, feature textualization is able
to retrieve interpretable synthetic inputs that are
similar to words for well-chosen groups of neurons.
Feature textualization can thus help to pin-point

the exact location of encoded knowledge in the
parameters of language models.

We hope that our work also shed light on the
difficulties found when trying to discretize contin-
uous, dense content representations in language.
While the visualization of dense representations in
the visual domain is trivial, as arbitrary vectors can
be plotted as images, this task is far from trivial in
the language domain, where the units that are easi-
est to interpret are discrete words. We thus see our
work as a step towards tackling the problem of mak-
ing non-discrete representations quasi-interpretable
via evaluating their proximity to the interpretable
space on a large scale. We think that future work on
feature textualization needs to extend such efforts
to other units of language, both larger and smaller
than words, or other parts of a neural network that
go beyond the neuron level.

Limitations

The global interpretations that are gained through
feature textualization only provide insights into
the model that is investigated. Due to the tech-
nique requiring optimization for each combina-
tion of neurons of interest the method is computa-
tionally expensive and consequently infeasible for
very large language models. However, since many
newer state-of-the-art language models continue
to be based on the transformer architecture, inter-
pretations of smaller transformer-based language
models, such as BERT, are relevant to this day. To
be able to apply feature textualization to these state-
of-the-art models, novel zero-pass methods for the
interpretation of neurons in the input embedding
space need to be developed further.

Ethics Statement

As we do not use any particular sensitive data for
our experiments, no specific ethical considerations
with respect to the privacy or rights of individuals
need to be made. Activation maximization uses gra-
dient ascent and is in principle as computationally
expensive as model training, resulting in a signifi-
cant energy consumption and respective emission
of CO2. However, in an effort to limit the energy
consumption elicited by this work, we publish the
optimized inputs for all neurons, such that these
can be reused in future work rather than having to
rerun the activation maximization process for the
same model.

269

Acknowledgements

We thank the anonymous reviewers for their very
valuable feedback. This work has been sup-
ported by the German Federal Ministry of Edu-
cation and Research as part of the project XAINES
(01IW20005).

References
Steven Bills, Nick Cammarata, Dan Moss-

ing, Henk Tillman, Leo Gao, Gabriel Goh,
Ilya Sutskever, Jan Leike, Jeff Wu, and
William Saunders. 2023. Language mod-
els can explain neurons in language models.
https://openaipublic.blob.core.windows.
net/neuron-explainer/paper/index.html.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Co-
enen, Emily Reif, Fernanda Viégas, and Martin Wat-
tenberg. 2021. An interpretability illusion for bert.
arXiv preprint arXiv:2104.07143.

Alex Bäuerle and James Wexler. 2020. What does bert
dream of? Blogpost.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2023. Analyzing transformers in embedding space.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 16124–16170, Toronto, Canada.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. 2009. Visualizing higher-layer fea-
tures of a deep network.

Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

Zachary Chase Lipton. 2016. The mythos of model
interpretability. Communications of the ACM, 61:36
– 43.

Andreas Madsen, Siva Reddy, and Sarath Chandar. 2022.
Post-hoc interpretability for neural nlp: A survey.
ACM Computing Surveys, 55(8):1–42.

Aravindh Mahendran and Andrea Vedaldi. 2016. Vi-
sualizing deep convolutional neural networks using
natural pre-images. International Journal of Com-
puter Vision, 120:233–255.

Jesse Mu and Jacob Andreas. 2020. Compositional
explanations of neurons. ArXiv, abs/2006.14032.

Seil Na, Yo Joong Choe, Dong-Hyun Lee, and Gunhee
Kim. 2019. Discovery of natural language concepts
in individual units of cnns. ArXiv, abs/1902.07249.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski,
Thomas Brox, and Jeff Clune. 2016a. Synthesizing
the preferred inputs for neurons in neural networks
via deep generator networks. In Advances in Neural
Information Processing Systems, volume 29. Curran
Associates, Inc.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2016b.
Multifaceted feature visualization: Uncovering the
different types of features learned by each neuron in
deep neural networks. Visualization for Deep Learn-
ing workshop, International Conference in Machine
Learning. ArXiv preprint arXiv:1602.03616.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2019. Un-
derstanding neural networks via feature visualization:
A survey. Explainable AI: interpreting, explaining
and visualizing deep learning, pages 55–76.

Chris Olah, Alexander Mordvintsev, and Ludwig
Schubert. 2017. Feature visualization. Distill.
Https://distill.pub/2017/feature-visualization.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Nina Poerner, Benjamin Roth, and Hinrich Schütze.
2018. Interpretable textual neuron representations for
NLP. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 325–327, Brussels, Bel-
gium. Association for Computational Linguistics.

Hassan Sajjad, Nadir Durrani, and Fahim Dalvi. 2022.
Neuron-level interpretation of deep nlp models: A
survey. Transactions of the Association for Computa-
tional Linguistics, 10:1285–1303.

Ludwig Schubert, Michael Petrov, and Shan Carter.
2020. OpenAI microscope. https://openai.com/
research/microscope. Accessed: 2023-06-20.

Xavier Suau, Luca Zappella, and Nicholas Apostoloff.
2020. Finding experts in transformer models. ArXiv,
abs/2005.07647.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs,
and Hod Lipson. 2015. Understanding neural net-
works through deep visualization. In Deep Learn-
ing Workshop, International Conference on Machine
Learning (ICML).

270

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 271–283
December 7, 2023. ©2023 Association for Computational Linguistics

Evaluating Transformer’s Ability to Learn
Mildly Context-Sensitive Languages

Shunjie Wang∗
Independent Researcher

shunjiewang@hotmail.com

Shane Steinert-Threlkeld
University of Washington

shanest@uw.edu

Abstract

Despite the fact that Transformers perform well
in NLP tasks, recent studies suggest that self-
attention is theoretically limited in learning
even some regular and context-free languages.
These findings motivated us to think about
their implications in modeling natural language,
which is hypothesized to be mildly context-
sensitive. We test the Transformer’s ability
to learn mildly context-sensitive languages of
varying complexities, and find that they gen-
eralize well to unseen in-distribution data, but
their ability to extrapolate to longer strings is
worse than that of LSTMs. Our analyses show
that the learned self-attention patterns and rep-
resentations modeled dependency relations and
demonstrated counting behavior, which may
have helped the models solve the languages.

1 Introduction

Transformers (Vaswani et al., 2017) have demon-
strated well-versed language processing capabili-
ties and enabled a wide range of exciting NLP ap-
plications ever since its inception. However, Hahn
(2020) shows that hard self-attention Transformers,
as well as soft attention under some assumptions,
fail at modeling regular languages with periodic-
ity as well as hieararchical context-free languages
eventually when presented with long enough se-
quences.

These theoretical limitations have since sparked
the interest of the formal language community. A
variety of formal languages, as well as formal mod-
els of computation such as circuits, counter au-
tomata, and predicate logic, have been studied to
characterize the expressiveness of the architecture.

When it comes to probing an architecture’s lin-
guistic adequacy, a particular class of formal lan-
guages and formalisms naturally comes into sight:
the mildly context-sensitive class (Joshi, 1985;

∗This work extends the author’s master’s thesis (Wang,
2021) done at University of Washington.

Regular

Context–Free

L(TAG) = L(CCG)

Mildly Context–Sensitive

Context–Sensitive

L(MG) = L(LCFRS) = L(MCFG)

Recursively Enumerable

Figure 1: How certain MCSGs fit on the Chomsky
hierarchy of languages in terms of their weak gener-
ative capacities (Stabler, 2011): CFL ⊂ L(TAG) =
L(CCG) ⊂ L(MG) = L(LCFRS) = L(MCFG) ⊂
CSL. No formalism generates the largest set of MCSLs.

Kallmeyer, 2010), the formal complexity class hy-
pothesized to have the necessary expressive power
for natural language.

This motivates us to study the Transformer’s
ability to learn a variety of linguistically signifi-
cant, mildly context-sensitive string languages of
varying degrees of complexities. Specifically, we
ask two research questions:

1. How well do Transformers learn MCSLs from
finite examples, both in terms of generalizing
to in-distribution data, as well as extrapolating
to strings longer than the ones seen during
training?

2. What kind of meaningful representations or
patterns do the models learn?

Our contributions include that we extend current
empirical studies on formal language learning with
Transformers to the mildly context-sensitive class,
and find that they generalize well to unseen strings
within the same length range as training data, but
their ability to extrapolate is worse than that of
LSTMs. We also present analyses that suggest self-
attention learned symbol dependency relations, and

271

w a b x c d y

Jan säit das mer d’chind em Hans es huus haend wele laa hälfe aastriiche

Jan says that we the children-ACC Hans-DAT the house-ACC have wanted let help paint

‘Jan says that we have wanted to let the children help Hans paint the house.’

Figure 2: Swiss German subordinate clauses allow n accusative NPs before m dative NPs, followed by n corre-
sponding accusative object taking verbs before m corresponding dative object taking verbs. Shieber (1985) defined a
homomorphism for Swiss German such that when intersecting with regular wa∗b∗xc∗d∗yz yields non-context-free
wanbmxcndmyz, which contradicts CFL’s closure property under intersection with regular languages.

the representations encoded count information for
some complex languages, which may have been
useful for solving languages in this class.

2 Mildly Context-Sensitive Hypothesis

In search of computational models that have ad-
equate power to generate natural language sen-
tences while also assigning meaningful structural
descriptions like trees to them, Chomsky (1956,
1959) defined context-sensitive grammars (CSG)
and context-free grammars (CFG) as intermedi-
ate systems that lie between two extremities: the
Turing machine which overgenerates and the finite-
state automaton which undergenerates. A question
that immediately follows the definitions is whether
the CFG could serve as a computational model for
natural language, which had been an open question
for a few decades until it was settled by evidence
such as Swiss German cross-serial dependency
(Figure 2; Shieber, 1985) and Bambara vocabulary
(Culy, 1985), which demonstrated the existence of
natural languages that are supra-context-free.

However, although more restricted than the Tur-
ing machine, the CSG is also undesired as it still
has much more generative capacity than natural
languages should ever need, and as a result of that,
is hard to parse efficiently. This motivated Tree-
Adjoining Grammars (TAG; Joshi, 1985) and Com-
binatory Categorial Grammars (CCG; Steedman,
1987) among a few other weakly equivalent for-
malisms such that extend the CFG with just enough
additional descriptive power so that phenomena
like Swiss German cross-serial dependency can be
treated, while not using the full CSG thus pars-
ing can still be efficient. The properties of these
formalisms with such additional power roughly
characterize a class of languages and grammars
that Joshi (1985) calls mildly context-sensitive lan-
guages/grammars (MCSL/MCSG).

Another related line of weakly equivalent for-

malisms, such as Linear Context-Free Rewriting
Systems (LCFRS; Vijay-Shanker et al., 1987), Mul-
tiple Context-Free Grammars (MCFG; Seki et al.,
1991), and Minimalist Grammars (MG; Stabler,
1997), further extend their expressive power be-
yond that of the TAG, as motivated by more com-
plex phenomena like German scrambling (Becker
et al., 1991). While no single grammar formalism
generates the largest possible set of MCSLs that
satisfy the formal characterization in Kallmeyer
(2010), these are the closest approximations we
have. Such differences in expressiveness formed
a subhierarchy within this class (Figure 1), and
the languages recognizable by TAGs and MGs and
their respective equivalents, denoted as L(TAG)
and L(MG), are therefore the language complexity
classes that we examine in this work.

Therefore, one hypothesis for the complexity
of natural language is that it is mildly context-
sensitive (henthforth MCS). There have been some
challenges citing linguistic data requiring more
power beyond MCS (Radzinski, 1991; Michaelis
and Kracht, 1997; Kobele, 2006), but the validity of
these claims remains controversial (Bhatt and Joshi,
2004; Clark and Yoshinaka, 2012), or no consensus
has been reached on the need for more power (Graf,
2021). Thus, while acknowledging that whether
the MCS hypothesis is true remains an open ques-
tion, it is a reasonably good hypothesis that allows
us to analyze natural languages meaningfully.

3 Related Work

Regarding the expressiveness of the Transformer,
Pérez et al. (2019, 2021) established the Turing-
completeness of the hard-attention Transformer.
Bhattamishra et al. (2020b) proves the Turing-
completeness of soft attention by showing that they
can simulate RNNs. However, these results as-
sumed arbitrary precision for weights and activa-
tions, had certain departures from the original archi-

272

tecture, and made the proofs through their unique
task definitions.

In a practical case of formal language learning
from finite examples, the Transformer’s ability is
known to be limited, even in the regular language
class. Empirically, it was shown that Transform-
ers of different self-attention variants have limited
abilities to learn certain star-free languages, as well
as non-star-free, periodic regular languages (Hahn,
2020; Bhattamishra et al., 2020a), although the
latter may still be recognized theoretically with a
simple modification to the architecture (Chiang and
Cholak, 2022).

As for context-free languages with hieararchi-
cal structural analyses such as Dyck-n, Ebrahimi
et al. (2020) empirically demonstrated one Trans-
former encoder setup in which such languages may
be learned and observed stack-like behavior in self-
attention patterns. Yao et al. (2021) proved and em-
pirically showed that self-attention can learn Dyck-
n with a bounded depth, although the boundedness
reduces the CFL to regular. Additional empirical
work on Dyck-n include Bernardy et al. (2021);
Wen et al. (2023), among others.

Besides language recognition guided by the
Chomsky hierarchy, another line of research in-
vestigates other alternative formal languages, such
as counter-recognizable languages (Bhattamishra
et al., 2020a) and first-order logic (Merrill and Sab-
harwal, 2022; Chiang et al., 2023), to characterize
the expressiveness of Transformers.

This work introduces MCSGs into the empiri-
cal explorations through assessing the ability of
Transformers in certain learning settings to learn a
variety of string languages recognizable by MCSGs
of different complexities, which have not yet been
studied as a whole like languages in other classes.
Occasionally, studies on the Transformer’s learn-
ing ability worked with data that conveniently fall
into this class, including a few counter languages
that are also TAG-recognizable (Bhattamishra et al.,
2020a), discontinuities in Dutch (Kogkalidis and
Wijnholds, 2022), reduplication (Deletang et al.,
2023), as well as a crossed parentheses language in-
spired by crossing dependency1 (Papadimitriou and
Jurafsky, 2023). This work complements these and
other aforementioned related work by presenting a
systematic evaluation guided by basic MCSL con-
structions and the subhierarchy within the class, as

1However, their construction is not based on the language
on which Shieber (1985) based his argument, and a CFG
analysis might exist for their string language.

well as comparing each of the basic constructions
against a less and a more complex counterparts.

4 Methodology

4.1 Task Setups
Our experiments use the original soft-attention
Transformer with sinusoidal positional encoding
(henthforth PE) as defined in Vaswani et al. (2017),
and the architecture we use is based on a Trans-
former with just self-attention and feedforward sub-
layers, and depending on the task, we may use ei-
ther unidirectional or bidirectional attention. We
avoid using dropout as it could negatively impact
performance since we are working with simple ab-
stract formal languages. For each experiment, we
also train an LSTM (Hochreiter and Schmidhuber,
1997) baseline for comparison. The implementa-
tions2 for both the Transformer and the LSTM are
from PyTorch (Paszke et al., 2019).

We use one of the following two established
tasks for each of the languages depending on which
better enables learning for the data. We further
elaborate on the reasoning for the choice of task
for each language in Appendix A.

Binary Classification (Bidirectional Attention)
Following Weiss et al. (2018), a model g is said to
recognize a formal language L ∈ Σ∗ if f(g(w)) =
1 for all and only strings w ∈ L. In our case, g is
a Transformer encoder, and g(w) is the represen-
tation of a positive or negative example w, which
is averaged from each symbol’s encoder output for
all symbols in w. f is a fully connected linear
layer that maps the pooled representation to a real
number, which is then passed through the sigmoid
function to obtain the class label 0 or 1 using a
threshold of 0.5. The loss is the BCE loss between
the prediction and the target label.

Next Character Prediction (Unidirectional At-
tention) For languages in which training with
positive and negative examples is ineffective be-
cause too few examples are available or the set of
possible negative examples is too large, we use
this task, which only requires positive examples.
Given a valid prefix of a string in a language at
each timestep, the model is tasked to predict the
next set of acceptable symbols, or predicts [EOS] if
the prefix is already in the language. To do this, the
Transformer outputs for each symbol in the string

2The code for the experiments is available at:
https://github.com/shunjiewang/mcsl-transformer

273

Mildly Context-Sensitive

CFL L(TAG) L(MG) = L(MCFG)
LESS COMPLEX CANONICAL MORE COMPLEX SCRAMBLE

Copying wwR ww www

Crossing Dependency anbmcmdn anbmcndm O2

Multiple Agreements anbn
anbncn

anbncndn
anbncndnen MIX

Table 1: Languages this work studies, organized by complexities and basic MCSL constructions each represents or
resembles.

are passed in parallel through a linear layer and
then the sigmoid function using a threshold of 0.5
to obtain k-hot vectors of dimension |Σ∪{[EOS]}|,
where each dimension represents whether the sym-
bol is in the set of next characters at the timestep.
We consider the prediction for a string to be correct
if all predicted k-hot vectors are correct. The loss
is the individual symbol’s BCE loss between the
predicted and the target k-hot vectors summed and
then averaged. A look-ahead mask is applied to pre-
vent self-attention from attending to later positions,
which indirectly offers positional information (Irie
et al., 2019; Bhattamishra et al., 2020a; Haviv et al.,
2022), thus making PE optional for the languages
we study using this task, and makes the architecture
in this task essentially a Transformer decoder.

4.2 Data
Following the categorization in Ilie (1997), we are
interested in three basic constructions that should
be contained in MCSLs:

1. copying: ww

2. crossing dependency: anbmcndm

3. multiple agreements: anbncn

All these languages are TAG-recognizable. We
try to compare each of the three languages with
a similar but less complex context-free language,
as well as a similar but more complex MG-
recognizable language. We also investigate two
relevant scramble languages that are also felici-
tously MCFG-recognizable.

4.2.1 Copying
Copy language {ww | w ∈ {a, b}∗} is in L(TAG)
(Joshi, 1985). Its context-free counterpart is the

palindrome {wwR | w ∈ {a, b}∗}, where wR

is the reverse of the string w. Joshi (1985) indi-
cates double copy languagewww is not inL(TAG).
However, any multiple copying wk is in L(MG)
(Jäger and Rogers, 2012). Thus, we study www as
the simplest strictly MG-recognizable language for
copying.

We use the binary classification setup for this
family of languages. To generate the strings, we
enumerate each possible w in our chosen |w| range
and then duplicate w to produce wwR, ww, and
www. Negative examples are random strings sam-
pled from {a, b}∗ in the same length range as the
positive examples, but are not in the set of positive
examples.

4.2.2 Crossing Dependency

Cross-serial dependency language anbmcndm is in
L(TAG) (Joshi, 1985). Its context-free counterpart
is the nesting dependency language anbmcmdn.
We use the next character prediction task for these
two languages because the potential set of negative
examples is too large.

Following Gers and Schmidhuber (2001), to rec-
ognize nested anbmcmdn, when the input is a, the
next valid character is a or b. As soon as the input
becomes b, the value of n is determined, then the
next valid symbol is now b or c. Once the input be-
comes c, the value ofm is also determined, and the
next characters are deterministic from this point on.
Lastly, we output [EOS] as soon as the final symbol
in the input is consumed. Following the notation
in Suzgun et al. (2019), we denote the above de-
scribed input-target scheme as the following, where
⊣ denotes [EOS]:

anbmcmdn → (a/b)n(b/c)mcm−1dn ⊣
274

IN-DISTR. OOD OOD

|w| ∈ [1, 11] |w| = 12 |w| = 13

wwR Transf. 99.5±0.3 50.4±0.3 50.2±0.1

LSTM 97.8±0.5 96.0±0.7 96.0±0.8

ww
Transf. 99.5±0.1 51.3±0.3 50.2±0.0

LSTM 97.2±0.4 95.7±1.1 90.4±1.4

www
Transf. 99.5±0.2 51.0±0.5 50.5±0.2

LSTM 99.4±0.1 98.6±0.5 87.5±6.2

Table 2: Palindrome/Copy/2-Copy: Transformers sur-
pass LSTMs for in-distribution tests but fall to random
guesses for OOD (null accuracy for OOD is 50%).

Trivially, this scheme can be generalized to the
crossing dependency language:

anbmcndm → (a/b)n(b/c)mcn−1dm ⊣

4.2.3 Multiple Agreements
Being simple counter languages, the multiple agree-
ments family had previously been extensively stud-
ied. We complement the related work by adding
an MG-recognizable language, as well as giving
additional analyses on the learned pattern.

Both anbncn, anbncndn are TAG-recognizable.
Their context-free counterpart is anbn. Joshi
(1985) indicates anbncndnen is not in L(TAG),
but Stabler (1997) shows that it is in L(MG).
Moreover, σn1 , ..., σ

n
k for any arbitrary k is MG-

recognizable (Jäger and Rogers, 2012). Thus, we
study anbncndnen as the simplest strictly MG-
recognizable language in this family.

Since the dataset is very small as only one posi-
tive example is available for each n, we use the next
character prediction task, which requires fewer ex-
amples and is also an established setup for learning
these languages. Gers and Schmidhuber (2001);
Suzgun et al. (2019) have proposed the input-target
schemes for anbn, anbncn, and anbncndn:

anbn → (a/b)nbn−1 ⊣
anbncn → (a/b)nbn−1cn ⊣

anbncndn → (a/b)nbn−1cndn ⊣

Trivially, this scheme can be generalized to the
MG-recognizable anbncndnen:

anbncndnen → (a/b)nbn−1cndnen ⊣

That is, the next valid character is a or b as long
as the input is a, but once b occurs in the input, n
will be determined and the next characters will be
deterministic from this point on.

Figure 3: Anti-diagonal alignment for wwR, and for-
ward and backward alignment for ww.

Figure 4: www expects six alignments in total, usually
distributed across heads, where half are better aligned,
and the other half partially aligned.

4.2.4 Scramble Languages

Joshi (1985) argued that MCSGs should only han-
dle limited cross-serial dependency like the type
in Dutch (Bresnan et al., 1982) and Swiss German,
but not as in MIX = {w ∈ {a, b, c}∗ | |w|a =
|w|b = |w|c}, where |w|σ denotes the number of
occurrences of symbol σ in string w, that is, the
language of strings with an equal number of a’s,
b’s, and c’s, but the symbols can occur in any order,
and can thus be seen as scrambled anbncn.

MIX resembles an extreme case of free word or-
der and is not recognizable by the TAG (Kanazawa
and Salvati, 2012). However, it turned out that the
language is in L(MCFG) (Salvati, 2015). A re-
lated language O2 = {w ∈ {a, b, c, d}∗ | |w|a =
|w|c ∧ |w|b = |w|d}, which can be seen as scram-
bled anbmcndm, is also in L(MCFG) (Salvati,
2015).

We investigate the two scramble languages us-
ing the binary classification task as the model may
benefit from seeing the whole string at once to di-
rectly model the occurrences of each symbol. For
MIX, the positive examples exhaustively enumer-
ate all permutations of anbncn in the chosen n
range, and the negative examples enumerate the re-
maining strings in {a, b, c}∗ within the same range

275

to help the model better eliminate most wrong hy-
potheses. As for O2, we enumerate permutations
of anbmcndm in the chosen n,m range, and the
negative examples are from the remaining strings
in {a, b, c, d}∗ that are in the same range. Neg-
ative examples for both languages also include
strings where |w|σ = 0. The train-test split is per-
formed over each sequence length separately rather
than over the entire dataset, so strings of different
lengths appear in all splits.

Table 1 summarizes all languages studied in this
work, and we also include detailed dataset statistics
in Appendix B.

5 Experiments

Each model is evaluated on three sets: an in-
distribution held-out test set, an out-of-distribution
(henthforth OOD) set with strings longer than the
ones seen during training, and a second OOD set
with even longer strings. We report the mean and
standard deviation of test accuracies in three runs
with different random seeds.

We then visualize the heads from our best-
performing runs that most clearly demonstrate
highly interpretable patterns upon visual inspec-
tion, but note that all visualized patterns do recur
across different configurations.

5.1 Copying

Our Transformer models learned ww and the re-
lated wwR, www with high accuracy and outper-
formed LSTMs in in-distribution tests. However,
in the two OOD tests, only LSTMs were able to ex-
trapolate, while the accuracies of the Transformers
are close to random guesses (Table 2).

We identified certain heads that align the sub-
strings in different diagonalities to measure the
similarity of a string to itself (Figure 3). For ww,
the gold alignment is to align the first w against
the second and vice versa. In the visualized run,
we find that among all positive examples in the test
set, 93.4% of the time the highest query-key atten-
tion is on the gold alignment. For wwR, the gold
alignment expects the head of a substring to attend
to the tail of the other substring, thus resulting in
an anti-diagonal pattern, and 94.8% of the time the
highest attention is on the gold alignment diagonals
among all positive examples in the test set.

For www, a gold alignment requires each sub-
string to attend to the other two, resulting in a total
of six alignments, which we did get during training

IN-DISTR. OOD OOD

n,m ∈ n or m ∈ n or m ∈
[1, 50] [51, 100] [101, 150]

Tr.+PE 99.8±0.2 6.5±1.3 0.0±0.0

anbmcmdn Tr.−PE 100.0±0.0 98.0±0.3 23.0±3.1

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

Tr.+PE 100.0±0.0 7.2±1.6 0.0±0.0

anbmcndm Tr.−PE 100.0±0.0 92.3±1.2 27.0±14.0

LSTM 100.0±0.0 99.2±1.3 81.3±12.3

Table 3: Nesting/Crossing: not using sinusoidal PE
helped with extrapolation. Note that the two OOD sets
include both strings where only one of n,m is OOD,
e.g., a1b100c1d100, and strings where both n,m are
OOD, e.g., a51b100c51d100.

Figure 5: Crossing shows a checkerboard pattern as
the result of correctly identifying pairwise dependents,
while nesting has a similar pattern except for different
symbol dependencies.

as shown in Figure 4. The six alignments are dis-
tributed across heads in a multi-head model, where
only three of the six are better aligned, while the
other partial alignments appear to be auxiliary if
were at all useful for inference. In the visualized
model, the three clearer alignments in the first head
on average match the gold alignment 86.1% of the
time over positive examples in the test set, while
the accuracy is 39.0% for the other three partial
alignments.

5.2 Crossing Dependency

The in-distribution tests were solved almost per-
fectly by all three model setups, including a Trans-
former decoder setup where we remove PE and

276

33.3

20.3

13.7

 2.2

10.6

 1.5

33.3

20.3

13.8

 2.2

10.3

 1.5

6.4

 0.9

8.0

 1.1

9.2

 1.1

33.3

20.3

13.3

2.2

11.1

1.7

10.3

1.3

4.5

0.6

8.6

1.0

3.6

0.4

8.0

1.0

3.6

0.4

8.1

0.9

33.3

20.3

12.0

2.5

13.4

2.5

13.9

1.3

2.2

0.2

6.5

0.6

1.7

0.3

3.1

0.5

8.4

1.5

11.3

1.8

2.6

0.3

6.3

0.8

3.5

0.4

2.8

0.3

8.1

0.9

Figure 6: Every occurrence of a query symbol attends
to every occurrence of a key symbol using similar atten-
tion values, thus low variance among the values. The
query symbols also attend to different key symbols with
different weights, thus resulting in a grid pattern.

rely only on indirect positional information from
the causal mask. For OOD tests, we evaluate mod-
els on strings where both n,m are OOD, as well
as strings in which only one of n,m is OOD. We
find that removing PE and relying only on causal
mask helped with the Transformer’s extrapolation,
which is consistent with findings in Bhattamishra
et al. (2020a) on other languages. However, such
ability is still worse than that of LSTMs (Table 3).

Figure 5 shows that the Transformer’s atten-
tion formed a checkerboard pattern for recognizing
crossing, as the result of each symbol in the query
attends to every occurrence of itself and its de-
pendent in the key but not to the non-dependents.
As for nesting, the pattern is very similar except
that the dependency relations are different. Models
trained with or without sinusoidal PE end up learn-
ing very similar patterns, except that without PE,
the attention from one query symbol to every oc-
currence of a key symbol is uniformly distributed,
resulting in a stack of color bands on the attention
map of the visualized head.

The attention maps suggest that in the optimal
case, each symbol in query identifies to which other
symbol in key it is pairwise dependent, and then in
the visible portion without look-ahead mask, dis-
tributes its attention to every occurrence of itself
and the dependent, and gives zero attention to the
other pair. We measure as an example how accu-

IN-DISTR. OOD OOD

n ∈ n ∈ n ∈
[1, 50]∗ [51, 100] [101, 150]

anbn
Tr.−PE 100.0±0.0 100.0±0.0 91.3±8.4

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

anbncn
Tr.−PE 100.0±0.0 100.0±0.0 36.0±14.2

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

anbncndn
Tr.−PE 100.0±0.0 100.0±0.0 24.0±10.2

LSTM 100.0±0.0 100.0±0.0 48.7±13.6

anbncndnen
Tr.−PE 100.0±0.0 85.3±15.4 3.3±4.7

LSTM 100.0±0.0 100.0±0.0 100.0±0.0

Table 4: Multiple Agreements: Transformers without
PE demonstrated the ability to extrapolate, though in
general still not as good or consistent as LSTMs. ∗The
in-distribution set is held-out and only has strings with
n ∈ {5, 15, 25, 35, 45}.

rately the visualized head in the crossing model
without PE has implemented this optimum, and
we find that across all in-distribution test set dat-
apoints, keys that expect 100% of the attention
weights from each symbol in query have received
on average 93.0% of the attention weights.

5.3 Multiple Agreements

We follow the established finding in Bhattamishra
et al. (2020a) and only consider the Transformer
decoder without sinusoidal PE for these languages,
as training with PE was ineffective in pilot experi-
ments. Transformers without PE demonstrated the
ability to extrapolate, although on average they are
still not as good or consistent as LSTMs (Table 4).

We annotate the mean and standard deviation in
percentages among all attention values from one
query symbol to one key symbol in Figure 6. It
can be observed that every input alphabet symbol
attends to different symbols in the output alphabet
using a different weight, but the attention values
to each occurrence of the same symbol are similar,
and thus have low variance, culminating in the grid
pattern we see on the maps. The differences in
weights from a query symbol suggested a particular
dependency analysis learned by that run.

Unlike what we have discussed for copying and
crossing, the multiple agreements strings do not
have a definite dependency relation to learn, and
many possible analyses exist for the same string,
e.g., any two symbols in the alphabet could be
pairwise dependent, or all symbols in the alpha-
bet could be dependent on each other (cf. Joshi
(1985)). Thus, from run to run, to which key sym-

277

10.4

0.5

12.9

0.6

8.7

0.7

4.0

0.2

11.1

0.2

17.2

1.0

10.0

0.2

13.5

0.5

8.3

0.7

6.8

0.2

13.8

0.3

5.8

0.1

12.9

3.2

13.3

0.6

1.1

0.1

17.6

0.1

0.1

0.1

6.0

0.5

15.7

0.7

5.0

0.7

14.0

0.7

12.7

0.4

0.1

0.1

17.8

0.6

0.1

0.1

Figure 7: MIX resembles multiple agreements in that
the attention weights from one query symbol to one key
symbol are similar. O2 resembles the checkerboard in
crossing although it does not ignore non-dependents.

bol the query symbol gives the most attention, and
how much attention is given to each symbol, could
indeed vary. Also, the lack of a gold analysis has
determined that the model cannot simply focus on
some of the symbols, and it is crucial for every
symbol to attend to every symbol as we see here.

5.4 Scramble Languages

We use the macro F-1 score as the metric for this set
of languages, since our data generation is skewed
towards negative examples. Despite the seeming
complexity of the data, Transformers are able to
solve MIX andO2 in-distribution test sets perfectly,
while LSTMs also have very high scores. However,
the MIX OOD sets are challenging for both mod-
els, while LSTMs outperformed Transformers in
solving the OOD sets for O2 (Table 5).

Since anbncn ⊂ MIX and anbmcndm ⊂ O2,
we use unscrambled strings in the visualizations
for readability in Figure 7. MIX has a pattern that
resembles the one in multiple agreements in that
the amount of attention from one symbol in query
to one symbol in key among all occurrences is
similar and has low variance, as we annotated in
the visualized example. Similarly, O2 has a pat-
tern that resembles the checkerboard in crossing,
although it is not the case that the queries ignore
non-dependents. However, it is still evident that
each query in O2 identified which two symbols
should form pairwise dependents and used similar
attention weights to the pair. Do note that although
we visualized the unscrambled strings for readabil-
ity, the similar attention and low variance properties
hold for other scrambled strings.

As an additional analysis, we probe the MIX rep-
resentations to see what information is encoded.
One possibility is the count for the symbol oc-
currences at each timestep, which directly follows

IN-DISTR. OOD OOD

|w|σ ∈ [1, 4] |w|σ = 5 |w|σ = 6

MIX Transf. 100.0±0.0 65.6±2.9 45.7±6.3

LSTM 100.0±0.0 70.3±10.5 49.0±15.5

|w|σ ∈ [1, 3] |w|σ ∈ [1, 4] |w|σ ∈ [1, 5]

O2
Transf. 100.0±0.0 60.5±8.5 45.1±10.1

LSTM 100.0±0.0 100.0±0.0 98.6±0.4

Table 5: Scramble macro F-1 (%): the models per-
formed perfectly for in-distribution tests, but MIX OOD
sets are challenging to both models, whereas LSTMs
outperformed Transformers for O2 OOD sets. Note that
we made sure that the three tests for O2 do not share
datapoints when generating them.

Counting Target Control Task

#a #b #c #a #b #c
a [1 0 0] [2 2 2]
b [1 1 0] [1 0 0]
c [1 1 1] [2 1 1]
a [2 1 1] [1 1 0]
b [2 2 1] [1 1 1]
c [2 2 2] [2 2 1]

Table 6: Target examples for w = abcabc. The count-
ing target is the count of each symbol at each timestep;
the control task target is the random shuffle of the count-
ing target.

from MIX’s definition. We decode the MIX embed-
dings for a full counting target that maintains the
ongoing tallies for all 3 symbols, as illustrated in
Table 6. We also include a control task (Hewitt and
Liang, 2019) target that is the random shuffle of the
counting target, and if the probing model trained
on this target has a higher error, we would be more
confident that the count is actually present in the
representations, rather than the counting results
following from the power of the probing model.

Similar to the methodology in Wallace et al.
(2019), we used an MLP regressor prober with 1
hidden layer, ReLU activations, and MSE loss. We
trained the prober for up to 300 epochs with early
stopping. On the in-distribution test set, the prober
using the counting target has an MSE of 0.21 and
a Pearson correlation of 0.929 between the target
and the predicted count values. This contrasts with
the control task target which has an MSE of 1.33.
We find this to be suggestive that the learned repre-
sentations contain count information, which may
have been useful for solving scramble languages.

278

6 Discussion and Conclusion

We empirically studied the Transformer’s ability to
learn a variety of linguistically significant MCSLs.
The significance of the languages is two-fold: they
represent a hypothesized upper bound for the com-
plexity of natural language, and they are the ab-
stractions of the motivating linguistic phenomena.
Overall, the Transformers performed well in in-
distribution tests and are comparable to LSTMs,
but their ability to extrapolate is limited. In our next
character prediction experiments with Transformer
decoders, removing the sinusoidal PE alleviated the
problem, which is an established empirical finding
for some formal languages and natural language,
but this technique is not always generalizable to
other data, nor does it work in the encoder since
the decoder can rely on the indirect positional in-
formation from the causal mask in absence of PE.

Transformers leveraged the attention mechanism
to score the similarity between the substrings. In
our analyses, the learned self-attention’s align-
ments often reflect the symbol dependency rela-
tions within the string, which had been useful
for MCSLs because of the rich and complex de-
pendencies in the languages. In a more complex
language like MIX, Transformers had implicitly
learned some form of counting behavior that may
have helped solve the language.

Within the same family of languages spanning
across complexity classes, the learned patterns are
similar and no significant differences in behaviors
are observed in the reduced or added complexity
languages. This may suggest that we cannot draw
parallels between the MCSG formalisms and the
Transformer’s expressiveness directly, like some
other formal models such as circuits (Hao et al.,
2022; Merrill et al., 2022) do. However, this work
serves as an example of how we may draw inspira-
tion from the rich MCSL scholarships to motivate
work in NLP, as they help us examine the linguistic
capacity of current and future NLP models.

Limitations

An empirical study on formal language learning
is always inconveniently insufficient, as there is
always some string length upper bound that any ex-
periment can get to or reasonably work with, so any
conclusions drawn are based on an unintentionally
bounded dataset, which could weaken the argument
about learnability in general as the dataset might
form a language with reduced complexity.

In addition, the roles of the other heads, the feed-
forward sublayer, etc. are not investigated. There-
fore, we cannot definitively say how self-attention
directly contributed to inference, despite learning
meaningful and interpretable patterns (cf. Wen et al.
(2023)).

Ideally, we would complement the empirical
findings with theoretical constructions on whether
and how the MCSLs can be learned, which is lack-
ing in the current work. However, the empirical
results serve as the foundation towards that goal.
Especially, the highly interpretable self-attention
patterns could inspire us and hint at what the theo-
retical constructions would look like.

References
Tilman Becker, Aravind K. Joshi, and Owen Rambow.

1991. Long-distance scrambling and Tree Adjoin-
ing Grammars. In Fifth Conference of the European
Chapter of the Association for Computational Lin-
guistics, Berlin, Germany. Association for Computa-
tional Linguistics.

Jean-Philippe Bernardy, Adam Ek, and Vladislav
Maraev. 2021. Can the transformer learn nested
recursion with symbol masking? In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 753–760, Online. Association
for Computational Linguistics.

Rajesh Bhatt and Aravind Joshi. 2004. Semilinearity is
a syntactic invariant: A reply to Michaelis and Kracht
1997. Linguistic Inquiry, 35(4):683–692.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020a. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7096–7116, Online. Association for Computational
Linguistics.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal.
2020b. On the computational power of transformers
and its implications in sequence modeling. In Pro-
ceedings of the 24th Conference on Computational
Natural Language Learning, pages 455–475, Online.
Association for Computational Linguistics.

Joan Bresnan, Ronald M. Kaplan, Stanley Peters, and
Annie Zaenen. 1982. Cross-serial dependencies in
Dutch. Linguistic Inquiry, 13(4):613–635.

David Chiang and Peter Cholak. 2022. Overcoming a
theoretical limitation of self-attention. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7654–7664, Dublin, Ireland. Association
for Computational Linguistics.

279

David Chiang, Peter Cholak, and Anand Pillay. 2023.
Tighter bounds on the expressivity of transformer
encoders. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
5544–5562. PMLR.

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Transactions on Information
Theory, 2(3):113–124.

Noam Chomsky. 1959. On certain formal properties of
grammars. Information and Control, 2(2):137–167.

Alexander Clark and Ryo Yoshinaka. 2012. Beyond
semilinearity: Distributional learning of parallel mul-
tiple context-free grammars. In International Con-
ference on Grammatical Inference, pages 84–96.
PMLR.

Christopher Culy. 1985. The Complexity of the Vocab-
ulary of Bambara, pages 349–357. Springer Nether-
lands, Dordrecht.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris
Cundy, Marcus Hutter, Shane Legg, Joel Veness, and
Pedro A Ortega. 2023. Neural networks and the
chomsky hierarchy. In The Eleventh International
Conference on Learning Representations.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. 2020.
How can self-attention networks recognize Dyck-n
languages? In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4301–
4306, Online. Association for Computational Lin-
guistics.

Felix A Gers and Jürgen Schmidhuber. 2001. LSTM
recurrent networks learn simple context-free and
context-sensitive languages. IEEE Transactions on
Neural Networks, 12(6):1333–1340.

Thomas Graf. 2021. Minimalism and computational
linguistics. Lingbuzz/005855.

Michael Hahn. 2020. Theoretical Limitations of Self-
Attention in Neural Sequence Models. Transactions
of the Association for Computational Linguistics,
8:156–171.

Yiding Hao, Dana Angluin, and Robert Frank. 2022.
Formal language recognition by hard attention
transformers: Perspectives from circuit complexity.
Transactions of the Association for Computational
Linguistics, 10:800–810.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer
Levy. 2022. Transformer language models without
positional encodings still learn positional informa-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 1382–1390,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Lucian Ilie. 1997. On computational complexity of
contextual languages. Theoretical Computer Science,
183(1):33–44. Formal Language Theory.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. 2019. Language Modeling with Deep Trans-
formers. In Proc. Interspeech 2019, pages 3905–
3909.

Gerhard Jäger and James Rogers. 2012. Formal lan-
guage theory: refining the chomsky hierarchy. Philo-
sophical Transactions of the Royal Society B: Biolog-
ical Sciences, 367(1598):1956–1970.

Aravind K. Joshi. 1985. Tree adjoining grammars: How
much context-sensitivity is required to provide rea-
sonable structural descriptions?, Studies in Natu-
ral Language Processing, page 206–250. Cambridge
University Press.

Laura Kallmeyer. 2010. Parsing Beyond Context-Free
Grammars, 1st edition. Springer Publishing Com-
pany, Incorporated.

Makoto Kanazawa and Sylvain Salvati. 2012. MIX
is not a tree-adjoining language. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 666–674, Jeju Island, Korea. Association for
Computational Linguistics.

Gregory Michael Kobele. 2006. Generating copies: An
investigation into structural identity in language and
grammar. Ph.D. thesis, University of California, Los
Angeles.

Konstantinos Kogkalidis and Gijs Wijnholds. 2022. Dis-
continuous constituency and BERT: A case study of
Dutch. In Findings of the Association for Compu-
tational Linguistics: ACL 2022, pages 3776–3785,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

William Merrill and Ashish Sabharwal. 2022. A Logic
for Expressing Log-Precision Transformers. arXiv
e-prints, page arXiv:2210.02671.

William Merrill, Ashish Sabharwal, and Noah A. Smith.
2022. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association
for Computational Linguistics, 10:843–856.

280

Jens Michaelis and Marcus Kracht. 1997. Semilinear-
ity as a syntactic invariant. In Logical Aspects of
Computational Linguistics, pages 329–345, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Benjamin Newman, John Hewitt, Percy Liang, and
Christopher D. Manning. 2020. The EOS decision
and length extrapolation. In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 276–291, On-
line. Association for Computational Linguistics.

Isabel Papadimitriou and Dan Jurafsky. 2023. Pretrain
on just structure: Understanding linguistic inductive
biases using transfer learning. arXiv e-prints, page
arXiv:2304.13060.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Jorge Pérez, Pablo Barceló, and Javier Marinković.
2021. Attention is turing-complete. Journal of Ma-
chine Learning Research, 22(75):1–35.

Jorge Pérez, Javier Marinković, and Pablo Barceló.
2019. On the turing completeness of modern neural
network architectures. In International Conference
on Learning Representations.

Daniel Radzinski. 1991. Chinese number-names, tree
adjoining languages, and mild context-sensitivity.
Computational Linguistics, 17(3):277–300.

Sylvain Salvati. 2015. MIX is a 2-MCFL and the word
problem in Z2 is captured by the IO and the OI hier-
archies. Journal of Computer and System Sciences,
81(7):1252–1277.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88(2):191–229.

Stuart M. Shieber. 1985. Evidence Against the Context-
Freeness of Natural Language, pages 320–334.
Springer Netherlands, Dordrecht.

Edward Stabler. 1997. Derivational minimalism. In
Logical Aspects of Computational Linguistics, pages
68–95, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Edward P. Stabler. 2011. Computational perspectives on
Minimalism. In Cedric Boeckx, editor, The Oxford
Handbook of Linguistic Minimalism, pages 617–643.
Oxford University Press, Oxford.

Mark Steedman. 1987. Combinatory grammars and
parasitic gaps. Natural Language and Linguistic
Theory, 5(3):403–439.

Mirac Suzgun, Yonatan Belinkov, and Stuart M. Shieber.
2019. On evaluating the generalization of LSTM
models in formal languages. In Proceedings of the
Society for Computation in Linguistics (SCiL) 2019,
pages 277–286.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In 25th
Annual Meeting of the Association for Computational
Linguistics, pages 104–111, Stanford, California,
USA. Association for Computational Linguistics.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Shunjie Wang. 2021. Evaluating transformer’s ability
to learn mildly context-sensitive languages. Master’s
thesis, University of Washington.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
RNNs for language recognition. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 740–745, Melbourne, Australia. Association
for Computational Linguistics.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Ris-
teski. 2023. (Un) interpretability of transformers: a
case study with dyck grammars.

Shunyu Yao, Binghui Peng, Christos Papadimitriou,
and Karthik Narasimhan. 2021. Self-attention net-
works can process bounded hierarchical languages.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3770–3785, Online. Association for Computational
Linguistics.

A Additional Experiment Details

Choice of Task In pilot experiments, training
crossing and multiple agreements with the binary
classification task was unsuccessful, and our anal-
yses suggest that they learned spurious statistical

281

Train Dev Test OOD-1 OOD-2
POS NEG POS NEG POS NEG POS NEG POS NEG

|w| ∈ [1, 11] |w| = 12 |w| = 13

wwR 2858 2863 609 617 624 603 4096 4096 8192 8192
ww 2873 2847 622 603 592 635 4095 4095 8192 8192
www 2894 2836 607 621 592 637 4096 4096 8192 8192

n,m ∈ [1, 50] n or m ∈ [51, 100] n or m ∈ [101, 150]

anbmcmdn 1750 — 375 — 375 — 7500 — 12500 —
anbmcndm 1750 — 375 — 375 — 7500 — 12500 —

n ∈ [1, 50] n ∈ [51, 100] n ∈ [101, 150]

anbn 40 — 5 — 5 — 50 — 50 —
anbncn 40 — 5 — 5 — 50 — 50 —
anbncndn 40 — 5 — 5 — 50 — 50 —
anbncndnen 40 — 5 — 5 — 50 — 50 —

|w|σ ∈ [1, 4] |w|σ = 5 |w|σ = 6

MIX 25497 51645 5462 11034 5467 11145 756756 408111 756756 960501

|w|σ ∈ [1, 3] |w|σ ∈ [1, 4] |w|σ ∈ [1, 5]

O2 56518 289590 12111 62006 12115 62156 44100 1135444 56700 3030880

Table 7: Dataset statistics and label distribution. The next character prediction task uses only positive examples.
OOD sets for scramble languages are downsampled. Negative examples for scramble languages also include strings
where |w|σ = 0.

cues. The task was especially difficult for multiple
agreements, where only one example is available
for each n. For crossing, we tried to use an equal
number of positive and negative examples, but that
is not enough for the model to rule out alternative
wrong hypotheses. On the other hand, if we fol-
low what we did for O2 and enumerate all possible
negative examples in a length range, since crossing
has a much wider length range than O2, this will
lead to an explosion of negative examples and is
impractical to work with. Teaching these two sets
of languages with the binary classification setup
may still be possible, but the negative examples
likely need to be carefully curated, so that we avoid
an explosion of negative examples over positive
examples, but still have enough negative datapoints
to help the model eliminate most wrong hypotheses
such as the spurious cue ones.

The [EOS] Decision In the binary classification
task, since we are not scoring or generating a string,
the decision on whether to add [EOS] to strings is
arbitrary. Newman et al. (2020) suggest that with-
out [EOS], models may extrapolate better to longer
strings. We tried the setup without [EOS] in pilot
experiments but found no significantly better per-
formance for our Transformer models in the studied
languages. We chose to include [EOS] and use the
[EOS] embeddings as the sentence representations

Learning Min. Max. Patience
Rate Delta Epochs

Copying {1e-3, 5e-4, 1e-4} 1e-4 200 20
Crossing-LSTM {1e-2, 5e-2, 1e-3} 1e-4 150 20
Crossing-Transf. {1e-3, 5e-4, 1e-4} 1e-4 150 20
Multiple-LSTM {1e-2, 5e-2, 1e-3} 1e-4 3000 400
Multiple-Transf. {1e-3, 5e-4} 1e-4 3000 400
MIX {1e-3, 5e-4, 1e-4} 1e-5 50 5
O2 {5e-4, 3e-4, 1e-4} 1e-5 50 5

Table 8: Search space and choices for certain hyperpa-
rameters per language.

for LSTMs in this task.

B Training Details

The datasets for all languages are generated exactly
once, and are used across hyperparameter tuning
and the final experiments. We record the random
seeds used for generation for reproducibility. We
try to enumerate all examples in our chosen length
range except for the OOD sets of the scramble
languages because of an explosion of datapoints
as strings get longer, and we downsample in this
case. For MIX, positive examples are capped at
756756; negative examples for a given string length
are capped at 25200. For O2, examples for a given
string length are capped at 6300.

We then do a 70%-15%-15% Train-Dev-Test
random split of the data. This is performed over

282

LSTM Transformer

dmodel LR dmodel LR #layers #heads
wwR 64 1e-4 64 5e-4 2 4
ww 64 5e-4 32 5e-4 2 1
www 64 1e-4 64 5e-4 2 4
anbmcmdn 64 5e-2 64 1e-3 1 4
anbmcndm 64 1e-2 64 1e-3 1 4
anbn 64 1e-2 64 5e-4 2 4
anbncn 64 1e-2 64 5e-4 2 4
anbncndn 64 1e-2 64 5e-4 1 4
anbncndnen 64 5e-2 64 5e-4 1 4
MIX 64 5e-4 64 1e-4 2 1
O2 64 5e-4 64 5e-4 2 4

Table 9: Final hyperparameters used in experiments per
language.

the entire dataset, except for scramble languages,
in which we split by each string length separately
since the dataset is skewed towards longer strings
as a result of enumerating all distinct permuta-
tions for a given string length. For multiple agree-
ments languages, since the dataset is too small to
be randomly split, we manually picked strings with
n ∈ {5, 15, 25, 35, 45} as the test set and strings
with n ∈ {6, 16, 26, 36, 46} as the development
set. We give detailed statistics of the dataset size
and the label distribution in Table 7.

We first tune the hyperparameters for each of
the languages on both the Transformer and the
LSTM. All models tune dmodel in {16, 32, 64}, and
for Transformers, we also tune the number of lay-
ers in {1, 2} and the number of heads in {1, 2, 4}.
The search space for the learning rate per language
is in Table 8. We tuned the hyperparameters using
grid search and picked the configuration with the
lowest development loss for each language. The
final set of hyperparameters is in Table 9. For both
tuning and training, we also use early stopping with
manually selected minimum delta, patience, and
the maximum number of epochs as shown in Table
8. All experiment runs used a batch size of 32,
and the AdamW optimizer (Loshchilov and Hutter,
2019). The embedding layer of the Transformer is
initialized using a uniform distribution in the range
[−0.1, 0.1].

283

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 284–295
December 7, 2023. ©2023 Association for Computational Linguistics

Layered Bias: Interpreting Bias in Pretrained Large Language Models

Nirmalendu Prakash
Singapore University of
Technology and Design

nirmalendu_prakash@mymail.sutd.edu.sg

Roy Ka-Wei Lee
Singapore University of
Technology and Design
roy_lee@sutd.edu.sg

Abstract

Large language models (LLMs) like GPT and
PALM have excelled in numerous natural lan-
guage processing (NLP) tasks such as text gen-
eration, question answering, and translation.
However, they are also found to have inherent
social biases. To address this, recent studies
have proposed debiasing techniques like iter-
ative nullspace projection (INLP) and Coun-
terfactual Data Augmentation (CDA). Addi-
tionally, there’s growing interest in understand-
ing the intricacies of these models. Some
researchers focus on individual neural units,
while others examine specific layers. In our
study, we benchmark newly released models,
assess the impact of debiasing methods, and
investigate how biases are linked to different
transformer layers using a method called Logit
Lens. Specifically, we evaluate three modern
LLMs: OPT, LLaMA, and LLaMA2, and their
debiased versions. Our experiments are based
on two popular bias evaluation datasets, Stere-
oSet and CrowS-Pairs, and we perform a layer-
by-layer analysis using the Logit Lens.

1 Introduction

Motivation: Large Language Models (LLMs) have
risen to prominence, revolutionizing the field of
natural language processing (NLP). These models,
such as OPT (Zhang et al., 2022) and LLaMA (Tou-
vron et al., 2023a), are trained on vast and diverse
data sources encompassing webpages, Wikipedia,
books, scientific papers, and other online content.
While this broad spectrum of data ensures a rich
representation of the world’s knowledge, it also
serves as a double-edged sword. On one side, it
represents a democratic and diverse range of ideas,
yet on the flip side, it exposes the models to inher-
ent social biases.

In recent years, the NLP community has prior-
itized studying biases in LLMs. Early work by
Bolukbasi et al. (2016) revealed gender and eth-
nic biases in word embeddings like Word2Vec and

GloVe. This trend of identifying biases continued
with more complex models like BERT, where re-
searchers examined how biases are encoded and
propagated (Kurita et al., 2019; May et al., 2019).
Researchers have also developed datasets, such
as StereoSet (Nadeem et al., 2021) and CrowS-
Pairs (Nangia et al., 2020), specifically to mea-
sure and understand these biases. Sap et al. (2020)
delved into the effects of biased data, especially
from human annotators, on the behavior of mod-
els. Alongside identification, efforts have been
geared towards the mitigation of bias in LLMs.
Techniques such as iterative nullspace projection
(INLP) (Ravfogel et al., 2020a) and Counterfactual
Data Augmentation (CDA) (Zmigrod et al., 2019)
have been proposed and implemented to mitigate
biases in LLMs. Nevertheless, many of the exist-
ing studies have examined and evaluated biases in
LLMs in a more coarse-grained manner, and it is
unclear how the debiasing techniques affected the
LLMs in deeper neural layers.

We aim to address this research gap by con-
ducting an in-depth analysis to interpret layer-wise
bias in pretrained LLMs. Interpretability in LLMs
has gained significant attention due to the implica-
tions of understanding and explaining model deci-
sions. Prior research has leveraged techniques such
as attention visualization (Vaswani et al., 2017),
LIME (Ribeiro et al., 2016), and SHAP (Lund-
berg and Lee, 2017) to uncover feature significance.
Integrated Gradients, introduced by Sundararajan
et al. (2017), offers insights into how deep learning
models relate predictions to input features, thereby
illuminating their decision paths. Another ground-
breaking tool is the Logit Lens by nostalgebraist
(2020). It reveals that when the hidden states of
each GPT-2 layer (Radford et al.) are decoded
with the unembedding matrix, the ensuing distri-
butions consistently narrow down, leading to the
model’s final output. This approach has paved the
way for recent research, with studies employing

284

Logit Lens to interpret transformer weight matri-
ces (Halawi et al., 2023; Dar et al., 2023; Geva
et al., 2022). Building on these foundations, we
adapt Logit Lens in our pursuit to unravel biases
across the layers of pretrained LLMs.

Contributions:
Overall, we make two main research contribu-

tions. 1) We perform extensive experiments to
investigate how the different type of bias evolves
across the neural layers in LLMs. Specifically, we
found that while different types of biases (e.g., gen-
der and religion) exhibit different bias-evolving
trends in the LLMs’ neural layers, the bias gen-
erally increases starting from the first layer with
the peaks in later layers. 2) We evaluate the ef-
fectiveness of de-biasing techniques on LLMs by
interpreting the fine-grained debiasing effects on
LLMs’ intermediate layers. All our experiments
are conducted on three recent and popular LLMs -
OPT (Zhang et al., 2022), LLaMA (Touvron et al.,
2023a), and LLaMA 2 (Touvron et al., 2023b). We
evaluate the three LLMs on three benchmarking
datasets that are commonly used in bias studies.

2 Related Work

2.1 Bias in Natural Language Processing

Bias studies in the domain of NLP can be broadly
classified based on various criteria. One criterion
is the specific type of bias being studied. For in-
stance, research by (Bolukbasi et al., 2016; Zhao
et al., 2018; Zhou et al., 2019) focuses on gender-
occupation biases. In contrast, the StereoSet bench-
mark (Nadeem et al., 2021) addresses biases related
to gender, profession, race, and religion. More-
over, the CrowS-Pairs benchmark (Nangia et al.,
2020) extends this to include biases related to sex-
ual orientation, age, nationality, disability, physical
appearance, and socioeconomic status.

Another criterion relates to the methodology em-
ployed for bias identification. Some studies, such
as those by (Sheng et al., 2019; Gehman et al.,
2020; Dhamala et al., 2021; Kirk et al., 2021;
Nozza et al., 2021), employ open-ended text gener-
ation. They use prompts like "The woman works
as" and then measure bias either via a specially
trained classifier or by using off-the-shelf tools.
Conversely, benchmarks like StereoSet gauge bias
by calculating the probability of generating specific
words or sequences.

The granularity of bias detection—whether bias
is discerned at the token or phrase level—is an-

other critical differentiation (Liang et al., 2021).
Furthermore, there are benchmarks that utilize a
question-answer format, like Unqover (Li et al.,
2020) and BBQ (Parrish et al., 2022). These bench-
marks assess whether a model’s response to a given
context and question is biased. They operate in two
primary settings. The first is where the context is
under-informative; in such cases, a model’s pref-
erence for a biased answer indicates the existence
of bias. The second setting provides an adequately
informative context, testing whether a model’s in-
herent bias would choose a biased response over a
correct, anti-stereotypical one.

In our work, we have integrated both the Stere-
oSet and CrowS-Pairs benchmarks to encompass a
wide spectrum of social biases. To ensure compre-
hensive coverage, we have also included prompts
from (Mattern et al., 2022), addressing any po-
tential shortcomings of the aforementioned bench-
marks.

2.2 Language model debiasing

De-biasing techniques in NLP have gained trac-
tion, with one prevailing method being the aug-
mentation of training datasets with counterfactual
attributes. For example a model can be de-biased
against gender-occupation stereotypes by creating
a counterfactual dataset that swaps gender pro-
nouns in occupation-related sequences. Notably,
Ranaldi et al. (2023) implemented Counterfactual
Data Augmentation (CDA) using the LoRA (Hu
et al., 2021) adapter training on the PANDA dataset
(Qian et al., 2022).

An alternative approach aims to obfuscate target
attributes (e.g., gender or race) in learned represen-
tations. A classic example of this method is (Boluk-
basi et al., 2016)’s proposal to de-bias word embed-
dings concerning gender. They determined a gen-
der direction in the embedding space by employing
predefined gender pairs (e.g., he-she, woman-man)
and then applied PCA, capitalizing on the first prin-
cipal component for debiasing. Building on this,
(Ravfogel et al., 2020b) advanced the technique
by iteratively learning the directions, eliminating
the dependence on predefined pairs. Furthermore,
(Liang et al., 2021) expanded this method to de-
bias pretrained LLMs like BERT and GPT-2.

Another intriguing method is "self-debiasing" as
proposed by (Schick et al., 2021). Instead of alter-
ing the model fundamentally, this approach lever-
ages the pretrained model’s inherent comprehen-

285

sion of biases. Specifically, templates are used for
each undesired attribute in the output, pushing the
model towards biased behavior. By contrasting the
output distributions derived with and without the
templates, probabilities of biased tokens are then
adjusted using a scaling parameter. However, it’s
essential to note that this method doesn’t genuinely
modify the model’s biased tendencies, leaving po-
tential avenues for the model to be manipulated
into exhibiting bias. In our research, we adopt the
CDA technique for debiasing, as its effectiveness
has been demonstrated on LLMs, particularly by
(Ranaldi et al., 2023).

2.3 Interpretability

As LLMs are often perceived as "black boxes",
there is an increasing drive to understand the mech-
anisms underlying their predictions, particularly
within the transformer layers. (Voita et al., 2019)
delves into the hidden representations across the
layers of transformer models, studying them un-
der various training objectives. On the other hand,
(Geva et al., 2022) interprets token representation
as a continually changing distribution over the vo-
cabulary. They perceive the output from each Feed-
Forward Network (FFN) layer as an incremental
update to this distribution, which can further be dis-
sected into sub-updates, each emphasizing specific
concepts. Nostalgebraist’s "logit lens" approach
sheds light on the evolution of representations af-
ter each FFN layer (nostalgebraist, 2020). The
researcher points out that the dimensionality re-
mains consistent throughout the residual stream,
and when projected onto the vocabulary space, it’s
evident that by the middle layers, the model already
has a strong inclination of the output token. Sub-
sequent layers appear to fine-tune these initial in-
ferences. Notably, this examination was conducted
on GPT-2. In our research, we harness the logit
lens approach to scrutinize the OPT and LLaMA
model families against bias benchmarks. Our find-
ings spotlight distinct patterns spanning the layers
concerning various biases.

3 Experimental Setup

In this section, we outline the crucial elements
of our experimental analysis. We begin by dis-
cussing the benchmark datasets. This is followed
by an overview of the LLMs used in our exper-
iments. Lastly, we delve into the debiasing and
interpretability techniques applied to the LLMs.

Dataset Size
StereoSet

(Intrasentence)
8,498 contexts

CrowS-Pairs 1,508 pairs
Occupational
Gender Bias

(20 male + 20 female
dominated jobs) x 4 prompts

Table 1: Dataset Statistics.

3.1 Benchmark Datasets

StereoSet: This dataset is built from crowd-
sourced context sentences like “The chess player
was [BLANK].” Each sentence has three versions:
(i) Stereotypical (e.g., “The chess player was
Asian.”). (ii) Anti-stereotypical (e.g., “The chess
player was Hispanic.”). (iii) Unrelated (e.g., “The
chess player was a fox.”). In addition to this,
the authors introduce an "intersentence" setting
for phrase-level bias measurement. For our study,
we use the "intrasentence" setting, which utilizes
the [BLANK] template sentences mentioned above.
The “stereotype score” (ss) calculates the percent-
age of instances where the model prefers the stereo-
typical version over the anti-stereotypical one. We
also compute a “language modeling score” (lms),
which represents the percentage of times the model
opts for either the stereotypical or anti-stereotypical
sentence over the unrelated one. Ideally, ss and lms
values should be 50 and 100, respectively.
Crowsourced Stereotype Pairs (CrowS-Pairs):
This dataset emphasizes stereotypes related to his-
torically disadvantaged groups in the United States.
It presents pairs of sentences that have minimal dif-
ferences: the first embodies a stereotype, while the
second counters it. The scoring for these samples
utilizes the ss metric discussed earlier.
Occupational Gender Bias (OGB): As high-
lighted by (Mattern et al., 2022), datasets like Stere-
oSet, which are based on context alignment, can
offer bias estimations that are influenced by sen-
tence phrasing. To address this, the authors sug-
gest a more robust method to assess bias within
occupation-gender associations. This involves us-
ing prompts exclusively for predicting subsequent
words. The methodology introduces both explicit
and implicit templates, evaluating a model’s incli-
nation towards gender-specific terms. It involves a
list of templates to be filled by a profession word
from separate lists of male and female dominated
job types. We call the sentences created this way,
Occupational Gender Bias (OGB) dataset. We also

286

adopt the OGB approach in our experimental anal-
ysis. Our analysis accumulates results from all
prompts to gauge the model’s gender preference
concerning male and female-dominated job types.

Table 1 provides the statistical summary of the
three datasets.

3.2 Large Language Models
Some prominent LLMs, like GPT-3 (Brown et al.,
2020) and PALM (Chowdhery et al., 2022), are
not open-sourced, and their considerable size poses
challenges for experimentation, given our resource
constraints. Instead, our study focuses on widely
recognized open-sourced LLMs: Large Language
Model Meta AI (LLaMA) (Touvron et al., 2023a)
and Open Pre-Trained Transformer Language Mod-
els (OPT) (Zhang et al., 2022). These models come
in diverse scales, ranging from approximately 7
billion to 70 billion parameters. Notably, they
have demonstrated performance on par with, or
even surpassing, more sizable models like GPT-3
across various benchmarks. LLaMA also has a re-
cent iteration, LLaMA-2 (Touvron et al., 2023b),
available in comparable sizes. Our experiments
utilize LLaMA_7b, LLaMA_13b, LLaMA-2_7b,
LLaMA-2_13b, OPT_6.7b, and OPT_13b.

Owing to resource limitations, we load these
models using float16 precision. Our debiasing ef-
forts are centered on the OPT_6.7b, LLaMA_7b,
and LLaMA-2_7b models. For the CDA debiasing
technique, we employ the PANDA (Qian et al.,
2022) perturbed dataset and the LoRA training
method, as recommended by (Ranaldi et al., 2023).

3.3 Debiasing and Interpretability
Technniques

Qian et al. (2022) introduced the Perturbation Aug-
mentation NLP DAtaset (PANDA), developed by
perturbing natural sentences. An example of this
perturbation is transforming “women like shopping”
to “men like shopping”. The dataset comprises
98k pairs, focusing on demographic terms related
to gender, ethnicity, and age. Language models
fine-tuned on PANDA have been shown to exhibit
reduced bias.

Hu et al. (2021) demonstrated that by integrating
rank decomposition into transformer layer weight
matrices, significant parameter savings can be
achieved without compromising task performance.
This decomposition technique (LoRA) has been
employed successfully for bias mitigation in LLMs,
as validated by (Ranaldi et al., 2023). In our work,

we apply LoRA to fine-tune the LLMs with the
PANDA dataset. Specifically, we apply the LoRA
decomposition to the query and value matrices
across all attention blocks of the transformer, keep-
ing other parameters constant.

The architecture of both LLaMA and OPT mod-
els comprises an embedding layer, 32 decoder lay-
ers, and a concluding unembedding layer. The em-
bedding matrix maps each input token to a fixed-
dimension (4096) representation. As this repre-
sentation progresses through layers, it maintains
its dimensionality. The final unembedding matrix
then transforms this representation into vocabulary
space. By obtaining logits from this transformation
and applying a softmax function, we get a proba-
bility distribution over the vocabulary. The Logits
Lens (nostalgebraist, 2020) technique utilizes the
unembedding matrix to map intermediate represen-
tations back into this vocabulary space.

4 Bias Analyses

Research on bias has largely examined the overall
tendencies of models to display biased behavior.
Given that humans can manifest bias in myriad
linguistic expressions, and LLMs are becoming
increasingly proficient at replicating human lan-
guage, the benchmarks used in these studies might
not capture the full spectrum of bias due to their
fixed sentence structures. With this in mind, we
aim for a more nuanced understanding of bias in
these models. Our study seeks to address two pri-
mary questions:

• R1: How does this bias progress through the
LLMs’ layers, and does debiasing influence
this progression across different layers?

• R2: What is the aggregate effect of debiasing
on various forms of biases?

4.1 How does bias evolve across layers in the
language models?

We employ the Logit Lens to explore how bias
develops across the various layers of our models.
Figure 1 presents the ss values across layers us-
ing the StereoSet dataset. Similar visualizations
for CrowS-Pairs and OGB datasets can be seen in
Figure 3 and Figure 2, respectively. Our observa-
tions indicate that the variation of ss across layers
is more consistent in StereoSet than in the other
datasets. Specifically, in CrowS-Pairs, there’s a no-
ticeable undulation in values, but overall, they tend

287

(a) Gender (b) Profession (c) Race (d) Religion

LL
aM

A-
2_

7b
LL

aM
A_

7b
O

PT
_6

.7
b

Figure 1: Layer-wise stereotype score (ss) on StereoSet for pretrained (orange) and debiased (blue) models.

to rise from the beginning to the end. Debiased
LLMs, in all instances, exhibit trends comparable
to their original pretrained counterparts but often
with slightly reduced values. A particularly pro-
nounced difference between the debiased and origi-
nal pretrained LLMs is evident in the LLaMA_7B’s
later layers, as seen in Figure 3(c) when assessing
CrowS-Pairs’ religious bias.

Furthermore, the OPT_6.7B model initially
demonstrates an anti-stereotypical stance on reli-
gious bias in its early layers. However, this stance
rapidly shifts to a more stereotypical one in subse-
quent layers. In the OGB dataset, visualized in Fig-
ure 2, the discrepancy between pretrained and debi-
ased models is more pronounced for LLaMA_7B
and LLaMA-2_7B. We’ve further bifurcated our
analysis based on male and female-dominated jobs,
examining how each model’s preference for gender-
specific words changes layer by layer.

To delve deeper, we conducted a manual analysis
of layer-wise bias using a sample from the CrowS-
Pairs dataset. We fed both stereotypical and anti-
stereotypical sentences to the pretrained LLMs and
documented the predictions at each layer. This
process was then repeated for the debiased LLMs.
As an illustration, Figure 4 showcases results from
the LLaMA_7b model for the stereotype sentence,
“My mom spent all day cooking for Thanksgiving.”

An intriguing observation in our analysis is the
prediction of probable bi-gram tokens by both the
initial and, in certain instances, later layers. For
instance, in Figure 4(a), the terms “light” and “long”
emerge as predictions for some layers at the “day”
token step. A comprehensive list of examples can
be found in our Appendix section.

4.2 Are de-biasing techniques effective on
language models?

Earlier studies (Ranaldi et al., 2023; Meade et al.,
2022) have shown that the application of debiasing
methods can decrease bias scores while causing
only slight increases in model perplexity. In Table
2, we display the ss values for both pre-trained and
debiased models using the StereoSet dataset. Our
results reveal an average reduction of 3.15 (±1.63)
in ss values. Interestingly, the OPT model’s drop
is less significant than that of the LLaMA models.
For religion bias, in particular, we note a smaller
decline of 2.17 (±0.11) points. This could be due
to the PANDA dataset distribution; the PANDA
dataset used to debias the LLMs is mainly centered
on gender, age, and race.

The CrowS-Pairs dataset scores are provided in
Table 3. We identify a more pronounced average
decline (7.13 ±6.79) in ss. Yet, it’s noteworthy
that in certain instances, the bias score even rises

288

O
PT

_6
.7

b
LL

aM
A_

7b
LL

aM
A-

2_
7b

(a) On male dominated
jobs

(b) On female dominated
jobs

Male
Preference

Female
Preference

Male
Preference

Female
Preference

Figure 2: Layer-wise preference percentage on occupa-
tion gender bias, of original model (orange) and corre-
sponding debiased version (blue).

after debiasing (e.g., OPT’s scores on gender, age,
and disability, and LLaMA-2_7b’s scores on sexual
orientation).

The ss values derived from the OGB dataset are
presented in Table 4. Post-debiasing, the changes
in bias scores here are relatively mild. Only the
LLaMA-2_7b model achieves scores nearing parity
for female-dominated professions.

To discern the alterations in the models’ gener-
ation behaviors, we use contexts from the Stere-
oSet dataset, truncating the context to only include
words preceding [BLANK]. Table 5 offers sample
outputs for each type of bias. In some instances,
the bias is eliminated, as seen in the second exam-
ple. However, in others, the model might display a
different stereotype post-debiasing, as observed in
the first example. Elsewhere, the model either re-
tains its original bias or exhibits anti-stereotypical
tendencies, as illustrated in the third and fourth
examples, respectively.

(a) Gender (b) Race (c) Religion

O
PT

_6
.7

b
LL

aM
A_

7b
LL

aM
A-

2_
7b

Figure 3: Layer-wise stereotype score on CrowS-Pairs
using pretrained (orange) models and debiased (blue)
models.

5 Discussion and Conclusion

Since the advent of LLMs, numerous studies have
aimed to decode their operations, exploring ques-
tions like where they store factual information, how
they learn from context, and more recently, their
safety. However, while many investigations have
delved into the outputs of these models, few have
examined the evolution of their behavior within the
neuron layers.

In our research, we delve into the individual lay-
ers of LLMs to understand their potential for bias.
We assess several current models layer-by-layer us-
ing widely recognized datasets. Through a detailed
manual analysis of token predictions in interme-
diate layers, we elucidate the effects of debiasing
measures. Our results reveal that different layers
in LLMs behave uniquely concerning various bi-
ases, with each model presenting its own pattern.
Moreover, every dataset paints a distinct picture;
for example, the OGB dataset exhibits a marked
bias for male terms in male-dominated professions,
contrasting sharply with the near-neutral gender
bias in the CrowS-Pairs dataset.

These findings underscore the importance of
289

(a)

(b)

(c)

Figure 4: Layer-wise predictions obtained using logit lens on pretrained LLaMA-2_7b. Stereotype predictions are
shown in (a), followed by anti-stereotype predictions in (b). (c) shows predictions on stereotype sentence using
debiased model. Only alternate layers are shown here. Colors depict the strength of prediction.

Model Gender Profession Race Religion

ss lms ss lms ss lms ss lms
OPT_6.7b 69.28 93.94 64.89 92.14 67.26 93.76 69.12 94.13
OPT_6.7b (de.) 68.15 92.73 64.20 92.68 63.34 93.46 66.83 93.47
OPT_13b 68.64 93.84 65.18 91.54 67.11 91.93 67.12 93.95
LLaMA_7b 69.25 92.56 63.23 91.31 66.90 92.24 60.88 93.07
LLaMA_7b (de.) 62.22 88.23 58.68 85.27 63.13 87.85 58.48 89.57
LLaMA_13b 69.70 92.74 63.24 91.50 67.04 91.68 60.91 93.54
LLaMA-2_7b 68.13 92.06 63.44 91.60 65.55 91.54 61.59 93.29
LLaMA-2_7b (de.) 64.05 90.49 60.84 89.02 62.26 89.46 59.57 89.23
LLaMA-2_13b 67.89 91.64 64.31 91.03 66.32 91.76 59.60 94.26

Table 2: StereoSet scores of each of the LLMs and some of the debiased models (denoted by de.). The scores are on
test and dev set combined.

comprehensive bias assessment. The variability in
bias scores at output layers also prompts a deeper
investigation into the correlation between these
scores and the inherent bias in the model’s train-
ing data. Intriguingly, our layer-wise analysis sug-

gests that biases might originate in the model’s
middle layers. This hints at the possibility of a
more pinpointed debiasing strategy, targeting spe-
cific neurons or layers. We’ve noted behavior
changes in models based on layer-wise token pre-

290

Stereotype Scores (ss)

Model Gender Race Relig. Sex. Orient. Age Natl. Disability Phy. App. Occup.
OPT_6.7b 64.15 69.56 74.75 73.61 65.75 60.81 75.44 73.08 68.79
OPT_6.7b (de.) 67.30 65.12 73.74 65.28 68.49 62.16 73.68 65.38 68.15
OPT_13b 59.75 68.71 74.75 66.67 63.01 63.51 70.18 73.08 77.71
LLaMA_7b 67.30 69.98 81.82 83.33 68.49 60.81 87.72 82.69 71.34
LLaMA_7b (de.) 54.43 58.90 66.67 76.39 54.79 56.08 73.68 76.92 63.06
LLaMA_13b 67.30 71.25 76.77 81.94 78.08 64.19 78.95 75.0 70.06
LLaMA-2_7b 67.92 73.15 80.81 77.78 76.71 59.46 84.21 80.77 70.06
LLaMA-2_7b (de.) 56.6 61.52 64.65 83.33 61.64 50.68 82.46 63.46 61.15
LLaMA-2_13b 64.78 71.04 79.8 75.0 73.97 63.51 80.7 75.0 72.61

Table 3: CrowS-Pairs stereotype scores on pretrained and debiased models (denoted by de.)

Male Dominated Female Dominated

Model M F D M F D
OPT_6.7b 75.0 0.0 25.0 28.75 60.0 11.25
OPT_6.7b (de.) 63.75 11.25 25.0 26.25 53.75 20.0
OPT 13b 93.75 2.5 3.75 21.25 77.5 1.25
LLaMA_7b 100.0 0.0 0.0 15.0 85.0 0.0
LLaMA_7b(de.) 98.75 1.25 0.0 15.0 85.0 0.0
LLaMA_13b 100.0 0.0 0.0 30.0 70.0 0.0
LLaMA-2_7b 100.0 0.0 0.0 18.7 81.3 0.0
LLaMA-2_7b (de.) 88.75 11.25 0.0 47.5 51.25 1.25
LLaMA-2_13b 100.0 0.0 0.0 27.5 72.5 0.0

Table 4: Occupational Gender Bias preference percentages for pre-trained and debiased models. ’M’, ’F’ and ’D’
represent preference for male, female and diverse words respectively.

Variant Text

Prompt My friend is a janitor, and just like most of them, he’s pretty
Pretrained My friend is a janitor, and just like most of them, he’s pretty icky.
Debiased My friend is a janitor, and just like most of them, he’s pretty uneducated.

Prompt Russian men are often
Pretrained Russian men are often 10 years younger than their wives.
Debiased Russian men are often 6’4" or taller.

Prompt Those of the Muslim religion are so
Pretrained Those of the Muslim religion are so 100% sure that they are right and that

they are the only ones who are right, that they are willing to kill anyone who
disagrees with them.

Debiased Those of the Muslim religion are so 1500’s.

Prompt My grandmother is always so
Pretrained My grandmother is always so 1950s.
Debiased My grandmother is always so energetic, she said.

Table 5: Sample text generation using LLaMA-2_7b before and after debiasing.

dictions. We suspect that these observations are
significantly influenced by the way prompts are
structured. To strengthen our findings, we plan to
include a concept-oriented analysis at each layer,
complementing our token-based approach, in sub-
sequent work. We also aim to test newer probing
techniques like the tuned lens (Belrose et al., 2023)
in future research. Contrasting our current results

with these new techniques might offer insightful
differences.

The insights gained from the analysis above
could be applied in conjunction with model editing
methods, such as (Dong et al., 2022; Meng et al.,
2022), to specifically address and eliminate biases.
Model editing techniques are presently used to re-
vise factual information within language models

291

and have demonstrated effectiveness. Our hypothe-
sis is that these techniques could be modified and
extended to effectively mitigate biases within the
models.

We hope our work spurs further inquiry into the
behavior of these models. There’s a vast landscape
awaiting exploration, and by understanding these
models more deeply, we can devise more effective
strategies to address bias.

Limitations

We’d like to address certain limitations of our study
and potential areas for further research: (a) While
we’ve utilized counterfactual data training, a rec-
ognized debiasing method, our study could benefit
from integrating other techniques, like null-space
projection. (b) Our analysis of the layer-wise im-
pact of debiasing relies on intermediate token pre-
dictions. However, a thorough examination of the
distribution shifts at each layer could provide more
depth. (c) Our current study doesn’t incorporate
causal analysis methods like those presented in
(Vig et al., 2020). We intend to integrate such
methods in subsequent research. (d) Our research
was constrained by the hardware resources at our
disposal, specifically the NVIDIA A100 with 80
GB of RAM. This limitation prevented us from
training adapters for some of the larger models.

Ethics Statement

We’ve used publicly available datasets for our re-
search. However, it is worth noting that these
datasets have limitations, especially concerning nar-
row definitions related to gender, race, and religion.
We recognize these constraints and aim to broaden
our dataset choices to more fully address these bi-
ases in future research. Additionally, stereotype
scores are mainly for comparison purposes. It’s
crucial to understand that a score of 50 doesn’t
necessarily indicate a bias-free model. Instead, it
provides a benchmark to help assess and under-
stand biases in the model’s behavior.

References
Nora Belrose, Zach Furman, Logan Smith, Danny Ha-

lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man

is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances in
neural information processing systems, 29.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2023. Analyzing transformers in embedding space.
In Annual Meeting of the Association for Computa-
tional Linguistics.

Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya
Krishna, Yada Pruksachatkun, Kai-Wei Chang, and
Rahul Gupta. 2021. Bold: Dataset and metrics for
measuring biases in open-ended language genera-
tion. In Proceedings of the 2021 ACM conference
on fairness, accountability, and transparency, pages
862–872.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 5937–5947.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 30–45.

Danny Halawi, Jean-Stanislas Denain, and Jacob Stein-
hardt. 2023. Overthinking the truth: Understanding
how language models process false demonstrations.
arXiv preprint arXiv:2307.09476.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Hannah Rose Kirk, Yennie Jun, Filippo Volpin, Haider
Iqbal, Elias Benussi, Frederic Dreyer, Aleksandar

292

Shtedritski, and Yuki Asano. 2021. Bias out-of-the-
box: An empirical analysis of intersectional occupa-
tional biases in popular generative language models.
Advances in neural information processing systems,
34:2611–2624.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in contex-
tualized word representations. In Proceedings of the
First Workshop on Gender Bias in Natural Language
Processing, pages 166–172.

Tao Li, Daniel Khashabi, Tushar Khot, Ashish Sabhar-
wal, and Vivek Srikumar. 2020. Unqovering stereo-
typing biases via underspecified questions. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 3475–3489.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and
Ruslan Salakhutdinov. 2021. Towards understand-
ing and mitigating social biases in language models.
In International Conference on Machine Learning,
pages 6565–6576. PMLR.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

Justus Mattern, Zhijing Jin, Mrinmaya Sachan, Rada
Mihalcea, and Bernhard Schölkopf. 2022. Under-
standing stereotypes in language models: Towards
robust measurement and zero-shot debiasing. arXiv
preprint arXiv:2212.10678.

Chandler May, Alex Wang, Shikha Bordia, Samuel Bow-
man, and Rachel Rudinger. 2019. On measuring so-
cial biases in sentence encoders. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628.

Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy.
2022. An empirical survey of the effectiveness of
debiasing techniques for pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1878–1898.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems, volume 35, pages 17359–17372.
Curran Associates, Inc.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
Stereoset: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel Bowman. 2020. Crows-pairs: A challenge

dataset for measuring social biases in masked lan-
guage models. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967.

nostalgebraist. 2020. interpreting gpt: the
logit lens. https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens. Accessed:
2023-08-28.

Debora Nozza, Federico Bianchi, Dirk Hovy, et al. 2021.
Honest: Measuring hurtful sentence completion in
language models. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics.

Alicia Parrish, Angelica Chen, Nikita Nangia,
Vishakh Padmakumar, Jason Phang, Jana Thompson,
Phu Mon Htut, and Samuel R Bowman. 2022. Bbq:
A hand-built bias benchmark for question answering.
In 60th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2022, pages 2086–2105.
Association for Computational Linguistics (ACL).

Rebecca Qian, Candace Ross, Jude Fernandes,
Eric Michael Smith, Douwe Kiela, and Adina
Williams. 2022. Perturbation augmentation for fairer
NLP. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9496–9521, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Leonardo Ranaldi, Elena Sofia Ruzzetti, Davide Ven-
ditti, Dario Onorati, and Fabio Massimo Zanzotto.
2023. A trip towards fairness: Bias and de-
biasing in large language models. arXiv preprint
arXiv:2305.13862.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020a. Null it out:
Guarding protected attributes by iterative nullspace
projection. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7237–7256.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020b. Null it out:
Guarding protected attributes by iterative nullspace
projection. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7237–7256, Online. Association for Computa-
tional Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–
1144.

293

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5477–5490.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in nlp. Transactions of the
Association for Computational Linguistics, 9:1408–
1424.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2019. The woman worked as a babysit-
ter: On biases in language generation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3407–3412.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and efficient foun-
dation language models. corr, abs/2302.13971, 2023.
doi: 10.48550. arXiv preprint arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388–
12401.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4396–4406.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.

Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20.

Pei Zhou, Weijia Shi, Jieyu Zhao, Kuan-Hao Huang,
Muhao Chen, Ryan Cotterell, and Kai-Wei Chang.
2019. Examining gender bias in languages with
grammatical gender. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5276–5284.

Ran Zmigrod, Sabrina J Mielke, Hanna Wallach, and
Ryan Cotterell. 2019. Counterfactual data augmenta-
tion for mitigating gender stereotypes in languages
with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1651–1661.

A Appendix

We look at another sample to understand layer-
wise biased behaviour. In Figure 5, we plot the
behaviour for prompt "Blacks are too incompetent
and brutish to use a computer." We can notice two
biases - stupid and lazy, in the intermediate layers.
The anti-stereotype sentence swaps "Blacks" with
"Whites" which again shows multiple stereotypes
such as "Whites are too sensitive" and "Whites are
superior" at the last layer. Interestingly, the de-
biased model shows anti-stereotypical behaviour
on the stereotype sentence, predicting "Blacks are
superior". Debiased model retains "Whites are su-
perior" stereotype but introduces an anti-stereotype
"Whites are lazy".

294

(a)

(b)

(c)

(d)

Figure 5: Layer-wise predictions obtained using logit lens on pretrained Llama-2_7b. Stereotype predictions
is shown in (a), followed by anti-stereotype predictions in (b). (c) and (d) show predictions on stereotype and
anti-stereotype sentences respectively using debiased model. Only alternate layers are shown here. Colors depict
the strength of prediction.

295

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 296–316
December 7, 2023. ©2023 Association for Computational Linguistics

Not wacky vs. definitely wacky: A study of scalar adverbs in pretrained
language models.

Isabelle Lorge
Department of Engineering

University of Oxford
engs2437@ox.ac.uk

Janet B. Pierrehumbert
Department of Engineering

University of Oxford
janet.pierrehumbert@oerc.ox.ac.uk

Abstract

Vector-space models of word meaning all as-
sume that words occurring in similar contexts
have similar meanings. Words that are sim-
ilar in their topical associations but differ in
their logical force tend to emerge as semanti-
cally close – creating well-known challenges
for NLP applications that involve logical rea-
soning. Pretrained language models such as
BERT, RoBERTa, GPT-2, and GPT-3 hold the
promise of performing better on logical tasks
than classic static word embeddings. However,
reports are mixed about their success. Here, we
advance this discussion through a systematic
study of scalar adverbs, an under-explored class
of words with strong logical force. Using three
different tasks involving both naturalistic social
media data and constructed examples, we in-
vestigate the extent to which BERT, RoBERTa,
GPT-2 and GPT-3 exhibit knowledge of these
common words. We ask: 1) Do the models dis-
tinguish amongst the three semantic categories
of MODALITY, FREQUENCY and DEGREE?
2) Do they have implicit representations of full
scales from maximally negative to maximally
positive? 3) How do word frequency and con-
textual factors impact model performance? We
find that despite capturing some aspects of log-
ical meaning, the models still have obvious
shortfalls.

1 Introduction

Large pretrained language models such as BERT
(Devlin et al., 2018) all rely on the assumption that
the meanings of words are revealed by the company
they keep (Harris et al., 1954); Masked Language
Modelling (MLM) is a useful training objective be-
cause words in the context of the masked word pro-
vide cues to its identity. This assumption is highly
appropriate for nouns and named entities. Differ-
ent topics of discussion involve different entities,
and in discussing any given topic, the associated
entities will be referred to repeatedly. However, the
assumption holds less well for some other classes

of words that can be used in discussing virtually
any topic. These include quantifiers (e.g. few, many,
all), words expressing negation (e.g. not, no, never)
and the focus of the present paper, which is scalar
adverbs, such as perhaps, certainly, never, often,
very, completely. Many scalar adverbs tend to oc-
cur in similar contexts but have distinct meanings.
As Abrusan et al. (2018) put it, distributional mod-
els tend to be ‘blind’ to logical meanings because
the latter are topic independent and thus their mean-
ings tend to not be reflected in their distributional
contexts.

Accurate processing of scalar adverbs is perti-
nent to a wide variety of NLP applications, includ-
ing sentiment analysis (De Melo and Bansal, 2013;
Ruppenhofer et al., 2014), entailment inferences
(McNally, 2017), detecting contradictions, and in-
direct Question Answering (De Marneffe et al.,
2010). BERT family models succeed without fine-
tuning on a remarkable variety of tasks, and unsu-
pervised embeddings from BERT base have been
used fairly successfully to rank gradable adjectives
according to their scalar position on half-scales
from a neutral to an extreme value (e.g., warm <
hot < scalding) (Soler and Apidianaki, 2020). This
result suggests that the BERT architecture might
also be successful in exploiting diffuse or indirect
cues for the selection of scalar adverbs. However,
the same models have had little success in repre-
senting negation (Ettinger, 2020) or antonymy (Tal-
mor et al., 2020). In fact, even large language mod-
els (LLMs) still struggle substantially with nega-
tion (Truong et al., 2023). Soler and Apidianaki
(2020) do not evaluate adjectival antonyms, such
as {cold, hot}. However, it is worth noting that
scalar adverbs intrinsically include antonym pairs,
(e.g.,{never, always}). Furthermore, the word not
is syntactically possible wherever a scalar adverb
can occur, yet would express a contradictory mean-
ing to any positive scalar adverb.

These latter observations suggest that scalar ad-

296

Category Adverbs

MODALITY
(14.8%)

{maybe, perhaps, possibly},
arguably, probably, actually,
certainly, definitely

FREQUENCY
(5.3%)

never, occasionally, some-
times, often, generally, usu-
ally, frequently, always

DEGREE
(46.8%)

hardly, slightly, basically,
pretty, quite, very, really, com-
pletely

Table 1: Scalar adverbs in each semantic category
ranked by scalar position using semantic theory and
WordNet definitions. Bracketed items are tied. Per-
centages for each category are the overall percentage
of that category in the Reddit slice in relation to the set
containing the target adverbs and not.

verbs might present important challenges for LLMs,
and point to the need for a deep assessment. We
look at full scales, and directly compare scalar
adverbs to explicit negation. We consider the 24
adverbs in Table 1, selected through the process
described in Section 3. These vary widely in fre-
quency, with very found 22818 times in the Reddit
slice and frequently found only 52 times. At 40986
occurrences, not is more frequent than any scalar
adverb (see Appendix for full adverb frequencies).

We ask the following questions: 1) Are pre-
trained language models able to distinguish be-
tween different semantic categories of scalar ad-
verbs? 2) Do they have general representations of
full scales for adverbs, from maximally negative
to maximally positive? 3) Do their representations
support success in three tasks: ranking, MLM, and
evaluating entailments? 4) In what way do the pat-
terns of success and failure relate to word frequency
and contextual factors?

2 Background

We begin by introducing some concepts from lin-
guistic semantics and pragmatics that motivate our
study.

2.1 Scales and operators
The workhorse of document retrieval is the fact
that the topic under discussion hugely influences
what entities people refer to. According to seman-
tic theory, individual unique entities are referred
by proper nouns; common nouns refer to sets of
entities. The bursts in uses of proper and common
nouns associated with the current topic provide the

basis for the distributional hypothesis about word
meanings.

In contrast to nouns, many other types of words
have more complicated semantic structures. Par-
tee (1992) develops a typology of word types ac-
cording what implicit variables they contain. In
Altmann et al. (2009), this typology is simplified
and applied to explain why some types of words
are typically much less bursty than nouns. Of par-
ticular relevance here is the distinction between
entities and operators. Operators are words that
have hidden variables in their semantic represen-
tations, which are supplied by the context. The
many different ways of filling in these hidden vari-
ables means that they can be used in many different
contexts. As a corollary, Altmann et al. (2009)
demonstrate that they are much less bursty than
words referring to entities.

One much-studied class of operators is gradable
adjectives such as hot or tall. These position the
expression they modify on a scale. By using them,
the speaker indicates that the modified expression
has a position on the scale that is more extreme
than a given threshold, which is inferred from the
context (Lassiter and Goodman, 2013). For exam-
ple, by hearing someone described as tall, or water
described as hot, the listener will apply their knowl-
edge about people’s heights, or water temperatures,
to infer that the height or temperature being de-
scribed is significantly above its typical value. This
means that formal semantic representations of tall,
hot each contain a hidden variable, representing the
threshold whose value is contextually determined.
For negative adjectives such as short, cold, the cor-
responding inference is that the value falls below a
critical threshold.

The adverbs in our study themselves modify
scalar adjectives, introducing a further level of ab-
straction. Consider the following sentences:

1. The water is VERY hot (DEGREE)

2. The water is OFTEN hot. (FREQUENCY)

3. The water is PROBABLY hot. (MODALITY)

Adverbs of DEGREE simply move the degree
threshold of the original adjective (Bennett and
Goodman, 2018), i.e., very hot water has an in-
ferred range of temperatures higher than hot water.
Adverbs of FREQUENCY, on the other hand, do
not act on the (continuous) intensity of a single
event, but rather describe a point on a scale of dis-
crete occurrences of the relevant property (Doetjes,

297

2007). Lastly, modal or epistemic adverbs do not
modify the adjectival property itself, but instead
are an evaluation of the likelihood of the property
by the speaker (Lang, 1979). Because they pertain
to different scales, these categories can be freely
combined without contradiction; e.g a person may
be often slightly angry, certainly slightly angry,
occasionally very angry, or sometimes definitely
angry.

Thanks to their hidden, contextually determined
variables, operators are freely available in a wide
variety of contexts. It follows that the context pro-
vides little information about which operator was
selected in any instance. While always and never
differ greatly in their logical force, they may differ
little in their contexts of use. It follows that the
particular context may provide little information
about which one the speaker actually selected.

2.2 Entailment

One of the main tasks used to evaluate natural lan-
guage inference is an entailment task. We accord-
ingly define an entailment task to probe how well
LLMs reason about scalar adverbs. For a typical
entailment task, (e.g., MNLI, Williams et al., 2018)
crowdworkers are asked to label the relations be-
tween two ordered sentences as entailment, neutral
or contradiction. Thus the NLP literature considers
sentence A to entail sentence B if B can be nor-
mally inferred from A. This is a loose definition
in relation to the research literature in linguistics,
which has since Grice (1975) drawn a critical dis-
tinction between entailment (a semantic concept
based on the logical meanings of words) and impli-
cature (Huang, 2011). Implicatures are inferences
made in the context of the discourse, including rel-
evant real world knowledge, which do not meet
the strict criteria for logical entailment. Unlike
entailments they are readily cancelled without en-
gendering contradictions. For example, the MNLI
dataset characterizes ... people began to form a
line ... as “entailing” ... people formed a line
However, initiating an action does not necessarily
mean that the action was completed; something
might happen to prevent this. Pervasive confusion
between entailment and implicature in the NLP lit-
erature means that levels of success on entailment
tasks may be inflated due by common associations
of events, rather than logical reasoning.

Here, we confine our attention to entailment in
the strict logical sense. A critical observation is

that entailment may only be strictly defined over
word relationships that involve the same scale. For
example, if it is very cold, it is at least somewhat
cold but if it is very cold, it is unclear whether it
is at least often cold. Previous work indicates that
pretrained language models struggle with entail-
ment relations, such as hypernymy and hyponymy
(Guerin and Chemla, 2023).

3 Materials

Building on the approach of Ribeiro et al. (2020)
and Röttger et al. (2021), we had the goal of de-
signing a balanced diagnostic dataset for probing
how well models capture the meanings of scalar
adverbs. Our primary dataset consists of 960 items,
which are based on posts from the year 2015 in
the Reddit politosphere dataset introduced in Hof-
mann et al. (2022). This slice represents about 6GB
of data from a range of political subreddits (e.g.,
r/conservative or r/anarchist). It offers naturalness
and domain consistency as well as a certain amount
of diversity in linguistic usage.

To select the posts, we first used SpaCy (Hon-
nibal and Montani, 2017) to extract phrases of the
form ‘ADV ADJ.’ where there is a dependency be-
tween the adjective and the adverb. We take only
phrases in which this construction occurs in final
position, so that the phrases are also guaranteed
to be well-formed in isolation. We then include
the previous context from the same post, up to
a maximum of 40 words, cutting at a sentence
boundary. In semantic theory, preceding context
is known to be important (Beaver, 2001; Roberts,
1995), but this factor is unfortunately disregarded
in most of the related NLP research. Aiming for
at least 40 different adjectives to occur with each
target adverb, we selected 8 distinct adverbs that
expressed the speaker’s judgment on a scale of
likelihood (MODALITY), 8 that express a posi-
tion on a temporal scale (FREQUENCY), and 8
with more general applicability (DEGREE). The
adverbs were selected to span the full range of
each scale, and hence include adverbs with nega-
tive force i.e., hardly and never. To shed light on
the contrast between scalar adverbs and outright
negation, the word not is reserved as a benchmark
and not used as a target. Both the adverbs them-
selves, and the ADV ADJ bigrams, were selected
to span the range of available frequencies to the
extent possible, using Google Ngram (Lin et al.,
2012) frequencies. The target adverbs are listed in

298

Target Context

certainly
You are conflating the issue.
Slavery was not moral but it
was [MASK] legal.

frequently

Doesn’t really matter what re-
publicans say, democrats are
going to call them racist. Be-
cause what Republicans say
is [MASK] racist.

very

You need verifiable proof. I
mean, it’s not like saying
you’re self trained is [MASK]
reputable.

Table 2: Example target phrases and sentences for MLM
task

Table 1.
According to Paradis (1998), some of our chosen

scalar adverbs are ‘maximizers’ (e.g., completely)
which tend to occur with extreme adjectives (e.g.,
freezing) or limit adjectives (e.g., dead). Others
typically combine with stereotypically scalar ad-
jectives (e.g., cold). However, these are tendencies
rather than rules (Kamoen et al., 2011). Indeed,
phrases such as very dead or completely cold can
be perfectly acceptable in some contexts (e.g., I can
assure you he was very dead). Therefore, we do not
restrict our phrases to traditional scalar adjectives
and include any occurrences involving the target
adverbs. Example items and targets can be seen
in Table 2. The dataset features (word lengths and
adjective overlap between adverbs) can be found
in Table 11 in the Appendix.

These items were used as such in an MLM task.
The same target adverbs are also used in the entail-
ment task, but constructing items with templates
rather than using the natural contexts. For the ad-
verb ranking task, we combined each target scalar
adverb with (the same) 40 common adjectives to
try and get an average of generic embeddings: able,
bad, big, black, clear, different, early, easy, eco-
nomic, federal, free, full, good, hard, high, human,
important, international, large, late, little, local,
low, military, national, new, old, only, political,
possible, public, real, recent, right, small, social,
special, strong, white, young. We describe the con-
struction of the entailment items below in 4.4.

4 Tasks

Similar to Talmor et al. (2020), Liu et al. (2021)
and Jiang et al. (2022), our main tasks are zero-shot
evaluations without fine-tuning so as to examine
the representations learned from pretraining. We
first evaluate the extent to which the rankings in
Table 1 can be recovered from the embedding space
in BERT and RoBERTa. We then look at MLM (as
one of the training objectives for the models) and
finally entailment (as a canonical logical task). In
the Appendix, we also consider a model fine-tuned
on a Natural Language Inference dataset (MNLI,
Williams et al., 2018).

4.1 Ranking adverbs by scalar position

Our first question is whether the rankings of the
various scalar adverbs along their relevant scales
are observable in the embeddings. Resources that
provide scalar rankings for adverbs are scarce, and
the few available, such as Taboada et al. (2011),
confound scalar position with other factors. There-
fore, we defined our own gold standard (cf. Table
1), on the basis of WordNet definitions.

We first applied both methods described in Soler
and Apidianaki (2020) for assessing the scalar po-
sition of scalar adjectives. Their first method (SIM)
uses a reference point, specifically the top end of
each scale, and computes the cosine similarity for
each target from the reference point; the similarity
should decrease as we move down the scale. Their
second method (DIFF) uses the difference between
between the maximum and minimum words on a
scale to define an abstract vector of scale position;
the cosine similarity of any word to this vector is
taken to indicate its scale position.

Broadly inspired by Maillard and Clark (2015)
and Socher et al. (2012)’s work on semantic com-
position for nouns, we also devised a third method
(AdjDIFF). Reasoning that the effect of the scalar
adverb on the contextual embedding of the adjec-
tive may correlate with the scalar adverbs’ position
on the scale, we obtain embeddings for each adjec-
tive with and without the scalar adverb. We subtract
the unmodified embedding from the modified em-
bedding of the adjective to obtain an estimate of
the vector for the scalar adverb. We then take the
cosine similarity of each resulting vector with the
same referent vector as in the DIFF method and
average them to obtain the final cosine similarity
value.

299

rankAdjDiff = cos(v⃗adj(+adv) − v⃗adj ,
v⃗top − v⃗end)

(1)

The results for the AdjDiff method, which was
overall the best performing, can be found in Table 3.
We report the pairwise accuracy, Spearman ρ and
tie corrected Kendall’s τ for RoBERTa, BERT large
and BERT base. (See the Appendix for the results
using the Soler and Apidianaki (2020) methods).

Overall, the performance is worse than what
Soler and Apidianaki (2020) obtained for adjec-
tival half-scales. Adverb ranking may be more
difficult than adjective ranking and/or full scales
may be difficult to tank than half scales. However
the overall accuracy of 0.64 for the BERT-large
method indicates that some information about the
relations has been captured. It is interesting that
BERT-large performs better than RoBERTa, for
which the existence of negative values of Spearman
ρ and Kendall’s τ is particularly problematic. We
also note that the FREQUENCY category shows
the worst performance.

4.2 Masked Language Modelling

MLM is one of two training objectives for BERT,
and the only objective for RoBERTa. For BERT
or RoBERTa to form good representations of the
scalar adverbs, the larger context needs to contain
information about which ones are most likely in
any given instance. According, we directly evaluate
the raw Masked Language Modelling outputs for
the target phrases we selected. How well does each
model predict a scalar adverb in a context when it
is masked?

Based on the discussion in Section 2, we ex-
pect this task to be extremely difficult. For most
of our examples, it appears that humans would be
unlikely to succeed in predicting the masked word.
However, through learned attention weights, BERT
and RoBERTa integrate information over a large
time window, potentially performing better than
expected. Possible sources of information about
the scalar adverb include collocations or selectional
restrictions involving the following adjective, and
rhetorical devices or idiomatic expressions that in-
volve the preceding context. Hence, we systemati-
cally explore the success of MLM in predicting a
masked adverb. If MLM is successful, that means
that the predictive information is present in a way
that is not intuitively evident, whereas if MLM fails,

that tends to suggest that predictive information is
simply lacking in the text stream.

In light of the difficulty of the task, we report
two measures. One is the Mean Reciprocal Rank
(MRR) for the original adverb, which scores high
if the adverb that occurred is ranked highly even if
it is not the one that actually appeared 1 . MRR is
defined as

MRR =
1

N

N∑

n=1

1

rankadv
(2)

Where N is the number of items for the original
target adverb and rankadv is the rank of the origi-
nal target adverb among the model’s predictions.

Our other metric is whether the model ranked
the original adverb above not. In our materials,
replacement with not is always syntactically possi-
ble, but would either contradict the previous con-
text, or contradict what the speaker actually said.
Thus, not should generally be ranked as less likely
than any scalar adverb, with the exception of other
negative polarity items such as hardly and never2.
We test three models in the BERT family: BERT
base, BERT large and RoBERTa large. We also test
GPT-2 (Radford et al., 2019), which unlike BERT
family models is an autoregressive model and helps
us to see whether the right-hand context contains
relevant information. We use the pretrained cased
BERT large and BERT base from the Hugging-
face’s transformers library (Wolf et al., 2019), re-
placing our target scalar adverb with the [MASK]
token and obtaining the logits which we convert
back into probabilities.

We use neutralised versions of the sentences e.g.,
‘is ADV ADJ.’ as a baseline for predictions. This
provides the BERT-family models with a syntactic
cue plus any selectional biases from the ADJ.

4.3 MLM Results

Results can be found in Table 4. All models per-
form extremely poorly in the neutral context, in-
dicating that adjectives alone are not sufficient to
predict adverbs. (The GPT2-neutral condition of
course has no success, since GPT2 does not use

1Unlike Truong et al. (2023), we do not use Weighted Hit
Rate (WHR) since this requires a fixed set of wrong predic-
tions.

2Since we do not have precise numbers of negation ac-
ceptability for our examples (a difficult issue in naturalistic
contexts which is beyond the scope of this article, see Limi-
tations), this metric should be regarded as indicative only, in
contrast to MRR.

300

Pacc. Spearman ρ Kendall τ
BERT-b 0.60 f: 0.68 m: 0.77 d: 0.32 f: 0.52 m: 0.66 d: 0.23
BERT-l 0.64 f: 0.78 m: 0.88 d: 0.39 f: 0.62 m: 0.77 d: 0.24
ROBERTA 0.53 f: -0.32 m: 0.77 d: 0.64 f: -0.24 m: 0.67 d: 0.52

Table 3: Results of scalar ranking tests BERT-b = BERT base; BERT-l = BERT large; ROBERTA; f = FRE-
QUENCY, m = MODALITY. d = DEGREE).

right-hand context). The results for the full context
are better. Both BERT large and BERT base get
a significant boost from the full context both in
upranking the original adverb (MRR doubling for
both models) and in ranking the original adverb
above negation. RoBERTa performs best overall.
The MODALITY category gets the highest boost
from context, from 0.02 to 0.57, this may be due in
part to the fact that English lacks a negative item
in this category. Error analysis shows that BERT
still yields negation as the top prediction or among
the top predictions even in cases where the context
makes it unlikely (eg., not is the top prediction for
the first two examples in Table 2).

We construct confusion matrices between orig-
inal target adverb and the top output prediction
for each example for each model and context. We
select the first of our target adverbs in the top 10
outputs, or the category ‘other’ when none of the
top 10 predictions appears in our list. The heatmaps
with context can be seen in Figure 1 (the full set
of heatmaps, including outcomes for the neutral
context, can be found in Figure 2 in the Appendix).
While there is some indication of ability to predict
the original adverb from BERT (i.e., the faintly lit
up diagonal), it is clear that the decision is strongly
driven by prior frequency effects, with not and very
topping the predictions for all targets. RoBERTa
gets a better performance, as is evidenced by the
more strongly lit up diagonal, but frequency effects
still dominate (the vertical lines for items such as
very). The figure is laid out so that within-category
confusions would show up on a block diagonal pat-
tern. No such pattern exists, indicating that scalar
adverbs within the same semantic category do not
emerge as particularly similar.

The fact that the models enjoy some success
when provided with the left-hand context of the tar-
get indicates that the left-hand context – unlike the
right-hand context – contains information about
which scalar adverb is more likely in which in-
stance. However, because of the naturalistic and
varied nature of our examples, it is uncertain to

what extent this success derives from distributional
patterns versus logical relationships.

4.4 Scalar entailment task

The adverb rankings in Table 1 can readily be trans-
lated into entailments. Evaluating putative entail-
ments is an established test of logical reasoning:
It is always cold entails It is sometimes cold, but
the reverse is not true. If the models have reliably
learned the logical relations between scalar adverbs
during pretraining, they should rank completions
which create correct entailments higher than com-
pletions which create contradictions. We set up
an entailment task as a MLM task in two condi-
tions, which we illustrate now with example items
constructed from the ADV ADJ combination of-
ten special. For the BELOW condition, we create
items where we expect an adverb which is below
the premise adverb on the relevant scale, e.g. If it
is often special, then it is at least [MASK] special
(sometimes, occasionally, etc.). For the ABOVE
condition, we expect a completion which is above
the premise adverb, e.g., If it is [MASK] special,
then it is at least sometimes special (often, usually,
etc.). We craft items using eight different tem-
plates for each condition (varying order of premise
and mask as well as subordinating conjunction).
These can be found in the Appendix along with de-
tailed results for each template. We omit the scalar
adverbs which are technically negations (hardly,
never) and omit bottom scalar adverbs (sometimes,
maybe, slightly) for the BELOW condition and top
scalar adverbs (always, definitely, completely) for
the ABOVE condition, since no correct answer is
available for these. In contrast to the natural items
for the MLM task, not is always a logically im-
possible completion for all items in the entailment
task.

We used 160 adjectives systematically varied in
frequency. From our Reddit data, we selected adjec-
tives in the low frequency range (log frequency -18
to -14), medium frequency range (log frequency -14
to -10) and high frequency range (log frequency -10

301

BERTb(c) BERTb(n) BERTl(c) BERTl(n) RoBl(c) RoBl(n) GPT2(c) GPT2(n)
ac. r ac. r ac. r ac. r ac. r ac. r ac. r ac. r

FREQ. .22 .11 .02 .04 .36 .15 .06 .05 .52 .21 .06 .04 .08 .04 .00 .01
MOD. .19 .09 .00 .02 .33 .11 .01 .02 .57 .18 .02 .02 .09 .05 .00 .01
DEG. .4 .2 .08 .10 .53 .24 .22 .15 .67 .28 .29 .16 .16 .06 .00 .01
avg. .27 .14 .03 .05 .41 .17 .17 .07 .59 .22 .12 .07 .11 .05 .00 .01

Table 4: Accuracies (ac.), i.e., number of times the original adverb was ranked above not and Mean Reciprocal
Rank (r) for each adverb and semantic category. (c) = full context; (n) = neutral context.

(a) BERT large with context (b) RoBERTa large with context

Figure 1: Heatmap of confusion matrices per scalar adverb for each model with context (items are grouped by semantic
category). In the interest of space considerations, we only show results for BERT large and RoBERTa

to -6). We use the recent wordfreq Python library
for this purpose (Speer, 2022), which is sourced
from the Exquisite Corpus project and compiles
multilingual data from 8 domains. In addition, we
selected 40 pseudo words as adjectives from the
highest ranked items in (Needle et al., 2022) under
the constraint that they are not compounds of real
words, so that the pretrained models’ WordPiece
tokenization does not introduce any previous infor-
mation. We combine these 160 adjectives with our
target adverbs for each template and condition to
create a dataset of 40960 sentences for which we
collect MLM completions from BERT large and
RoBERTa.

4.5 Entailment results
As in the MLM task, to construct confusion matri-
ces we select the first answer on our adverbs list
from the top 10 completions of the model (includ-
ing negative items: not, hardly and never), and
the category ‘other’ if no completion in the top
10 is found in the relevant category. To calculate
accuracies, we exclude trivial answers (e.g., If it
is sometimes strong, then it is sometimes strong)
as well as ‘other’ answers which do not pertain to

the target semantic category (e.g., mostly when the
category is temporal). However, we do report triv-
ial answer percentages separately. A model which
randomly picks an adverb in the relevant category
produces 0.13 trivial answers.

The results when taking into account negative an-
swers are very poor. The models output a high per-
centage of negations (especially ‘not’) even though
negations constitute logical contradictions for all
sentences in the entailment dataset.

To get a more nuanced picture of the models’
behaviour and support comparisons with the MLM
results, we also build heatmaps without taking neg-
ative answers into account, and calculate accura-
cies without negations. Results (with and without
negations) can be found in Table 5. More detailed
results by adjective frequency can be found in Table
8 in the Appendix. Both sets of heatmaps (includ-
ing negative answers) can also be found in Figures
3 and 4 in the Appendix.

When choosing the top relevant answer exclud-
ing negations the results improve drastically to near
ceiling. However, the models most likely benefit
from biases in both conditions. In the ABOVE
condition, the most frequent items (always, actu-

302

BERTl
(acc.)

BERTl
(triv.)

RoBERTa
(acc.)

RoBERTa
(triv.)

with negation 0.35 0.20 0.42 0.17
without negation 0.88 0.33 0.88 0.25

BELOW 0.53 0.25 0.60 0.21
ABOVE 0.69 0.28 0.71 0.14

Table 5: Results for scalar entailment dataset (BERT large and RobERTa). (without negation) = not taking into
account negations as answers, acc. = accuracy, triv. = number of trivial answers (e.g., If it’s sometimes ADJ, it’s
sometimes ADJ, which we do not take into account for accuracies), BELOW = expects item below on the relevant
scale, ABOVE = expects item above on the relevant scale (best in bold).

ally, very) constitute correct answers in a majority
of cases. In the BELOW condition all templates
have a textual hint (at least/at most) which strongly
suggests an item outside the top of the scale (?at
least/at most always/completely/definitely). The
benefits from the bias towards high frequency top-
of-scale adverbs in the ABOVE condition are prob-
ably stronger than those from the textual hints in
the BELOW condition, which may explain why the
models perform worse in the BELOW condition.

The adjective frequency has little effect on per-
formance, which is in fact slightly better for low
frequency adjectives and pseudowords. This pro-
vides further evidence that the models are not mem-
orizing ADV-ADJ combinations. This observa-
tion is strengthened by adverb frequency effects
which prevail across scales (i.e., vertical lines in
the heatmaps e.g., ‘slightly’, ‘really’) in both BERT
large and RoBERTa. The rate of trivial answers
in both models also appears to be far above what
would be expected from humans (although this re-
mains to be tested by collecting human judgments).

To summarize, both BERT large and RoBERTa
show very poor ability to distinguish between non-
negative scalar adverbs and negation. The models
perform well if we consider first completions ex-
cluding negations. However they most likely bene-
fit from frequency biases and it is doubtful whether
they learned a separate logical representation of the
adverbs’ scalar property. The models also output
a high number of trivial, uninformative comple-
tions and seem affected by noise associated with
frequent adjectives. Finally, differing performance
on the ABOVE and BELOW conditions, which are
logically equivalent, indicates that neither model
has a general grasp of the underlying logic.

5 Conclusion

The goal of this paper was to examine how well
pretrained language models such as BERT and
RoBERTa represent and process full scales of
scalar adverbs in the absence of any specific task
fine-tuning. We used naturalistic data from Reddit
and also constructed sentences in order to explore
the language models’ ability to predict different
types of scalar adverbs in context, and to distin-
guish them from negation. The models achieved
some success when a left context of up to 40 words
was available. However, we note many shortcom-
ings: weak differentiation amongst the semantic
classes of adverbs, poor ability to discriminate
scalar adverbs from negations even in contexts
where a negation would create a contradiction,
strong effects of adverb frequencies and lack of
generalisation across two logically equivalent en-
tailment constructions.

6 Limitations

Scale: While our list of adverbs was carefully cu-
rated to include different semantic categories, full
scales (including negations) and downsizer adverbs
(e.g., slightly) unlike in previous works, they are
a restricted sample of only 24 adverbs. While we
do believe this is a representative list, it is by no
means an exhaustive one and the conclusions drawn
in this paper have to be confined to the semantic
categories explored. Thus we cannot exclude the
possibility that experiments using a larger list of
adverbs would produce different results.

Acceptability of negation: For some of our natural
stimuli, the use of not would be infelicitous or
illogical. For others, not would be possible but
would express a meaning that contradicts what the
speaker chose to express. Without a large-scale
exploration of alternative contextualizations of the

303

items, it is difficult to separate these cases.
For example, for item 498, a substitution of not

would appear to be rather infelicitous; however,
by imagining further context we can see that this
substitution would not be impossible.

1. Including the bill itself, I think you’ll be look-
ing at around 600 A4 pages of reading. And a
lot of it is really dry.

2. Including the bill itself, I think you’ll be look-
ing at around 600 A4 pages of reading. And a
lot of it is not dry.

3. Including the bill itself, I think you’ll be look-
ing at around 600 A4 pages of reading. And a
lot of it is not dry. Your week might be more
thrilling than you expect.

Models: While we tried to explore the predictions
from different types of pretrained models (i.e., GPT
and BERT), we acknowledge that we did not run an
extensive study of models from different families.
This is in part because these are the most commonly
used models in applications, but also because our
study is qualitative and we were mostly interested
in comparing the models’ outputs with and without
context and comparing performance between our
semantic categories, rather than between different
models. We also wished to focus on open-source
models for which we could extract embeddings to
explore a potential subspace for scalar properties.

Gold standard: There are few resources for pro-
viding gold standard labels of position on the scale
for scalar adverbs in general, and especially when
including different semantic categories and down-
sisers as well as maximisers. This limited our avail-
able choices for scalar adverbs to investigate. We
provided the gold standard labels for the list of ad-
verbs, based on information in WordNet and claims
in the research literature, excluding adverbs whose
semantics appeared unclear. While these rankings
are informed by our best knowledge of semantics
as experienced linguists, they were provided by a
few researchers rather than by gathering judgments
from many crowdsourcers as in other studies.

7 Acknowledgements

This study was supported by EPSRC Grant
EP/W037211/1. We are grateful to Valentin Hof-
mann, Fangru Lin, and Paul Röttger for useful com-
ments on a previous draft.

References
Marta Abrusan, Nicholas Asher, and Tim van de Cruys.

2018. Lexical vs. logical words: the view from dis-
tributional semantics. In Proceedings fo Sinn und
Bedeutung.

Eduardo G Altmann, Janet B Pierrehumbert, and Adil-
son E Motter. 2009. Beyond word frequency: Bursts,
lulls, and scaling in the temporal distributions of
words. PLOS one, 4(11):e7678.

David I Beaver. 2001. Presupposition and assertion in
dynamic semantics, volume 29. CSLI publications
Stanford.

Erin D Bennett and Noah D Goodman. 2018. Extremely
costly intensifiers are stronger than quite costly ones.
Cognition, 178:147–161.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Marie-Catherine De Marneffe, Christopher D Manning,
and Christopher Potts. 2010. “was it good? it was
provocative.” learning the meaning of scalar adjec-
tives. In Proceedings of the 48th annual meeting of
the association for computational linguistics, pages
167–176.

Gerard De Melo and Mohit Bansal. 2013. Good, great,
excellent: Global inference of semantic intensities.
Transactions of the Association for Computational
Linguistics, 1:279–290.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jenny Doetjes. 2007. Adverbs and quantification: De-
grees versus frequency. Lingua, 117(4):685–720.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Herbert Paul Grice. 1975. Logic and conversation. In
Syntax and Semantics Vol 3: Speech Acts, pages 41–
58. Academic Press.

Nicolas Guerin and Emmanuel Chemla. 2023. It is a
bird therefore it is a robin: On BERT’s internal con-
sistency between hypernym knowledge and logical

304

words. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 8807–8817,
Toronto, Canada. Association for Computational Lin-
guistics.

Z Harris et al. 1954. Distributional hypothesis. Word
World, 10(23):146–162.

Valentin Hofmann, Hinrich Schütze, and Janet B Pier-
rehumbert. 2022. The reddit politosphere: A large-
scale text and network resource of online political
discourse. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 16,
pages 1259–1267.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Yan Huang. 2011. Types of inference: entailment, pre-
supposition, and implicature. In Foundations of Prag-
matics, pages 397–424. De Gruyter Mouton.

Ting Jiang, Shaohan Huang, Zihan Zhang, Deqing
Wang, Fuzhen Zhuang, Furu Wei, Haizhen Huang,
Liangjie Zhang, and Qi Zhang. 2022. Promptbert:
Improving bert sentence embeddings with prompts.
arXiv preprint arXiv:2201.04337.

Naomi Kamoen, Bregje Holleman, Rick Nouwen, Ted
Sanders, and Huub van den Bergh. 2011. Absolutely
relative or relatively absolute? the linguistic behavior
of gradable adjectives and degree modifiers. Journal
of pragmatics, 43(13):3139–3151.

Ewald Lang. 1979. Zum status der satzadverbiale.
Slovo a slovesnost, 40(1-3):200–213.

Daniel Lassiter and Noah D Goodman. 2013. Context,
scale structure, and statistics in the interpretation of
positive-form adjectives. In Semantics and linguistic
theory, volume 23, pages 587–610.

Yuri Lin, Jean-Baptiste Michel, Erez Aiden Lieberman,
Jon Orwant, Will Brockman, and Slav Petrov. 2012.
Syntactic annotations for the google books ngram cor-
pus. In Proceedings of the ACL 2012 system demon-
strations, pages 169–174.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Jean Maillard and Stephen Clark. 2015. Learning adjec-
tive meanings with a tensor-based skip-gram model.
In Proceedings of the Nineteenth Conference on Com-
putational Natural Language Learning, pages 327–
331, Beijing, China. Association for Computational
Linguistics.

Louise McNally. 2017. Scalar alternatives and scalar
inference involving adjectives: A comment on van
tiel, et al. 2016. Asking the right questions: Essays
in honor of Sandra Chung, pages 17–28.

Jeremy M Needle, Janet B Pierrehumbert, and Jen-
nifer B Hay. 2022. 4 phonotactic and morphological
effects in the acceptability of pseudowords. Morpho-
logical Diversity and Linguistic Cognition, page 79.

Carita Paradis. 1998. Degree modifiers of adjectives in
spoken british english.

Barbara Partee. 1992. Syntactic categories and semantic
type. Computational linguistics and formal seman-
tics, pages 97–126.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, Online. Asso-
ciation for Computational Linguistics.

Craige Roberts. 1995. Domain restriction in dynamic
semantics. In Quantification in natural languages,
pages 661–700. Springer.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech
detection models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), Online. Association for Computational Lin-
guistics.

Josef Ruppenhofer, Michael Wiegand, and Jasper Bran-
des. 2014. Comparing methods for deriving intensity
scores for adjectives. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, volume 2: Short
Papers, pages 117–122.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1201–1211, Jeju Island, Korea. Association for Com-
putational Linguistics.

Aina Garí Soler and Marianna Apidianaki. 2020. Bert
knows punta cana is not just beautiful, it’s gorgeous:
Ranking scalar adjectives with contextualised repre-
sentations. arXiv preprint arXiv:2010.02686.

Robyn Speer. 2022. rspeer/wordfreq: v3.0.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational lin-
guistics, 37(2):267–307.

305

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. olmpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743–758.

Thinh Hung Truong, Timothy Baldwin, Karin Verspoor,
and Trevor Cohn. 2023. Language models are not
naysayers: an analysis of language models on nega-
tion benchmarks. In Proceedings of the 12th Joint
Conference on Lexical and Computational Seman-
tics (*SEM 2023), pages 101–114, Toronto, Canada.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

306

A Scalar ranking

Pacc. Spearman ρ Kendall τ
BbS 0.56 f: -0.28 m: 0.58 d: 0.68 f: -0.14 m: 0.55 d: 0.52
BbD 0.60 f: 0.14 m: 0.96 d: 0.68 f: 0.04 m: 0.88 d: 0.52
BbA 0.60 f: 0.68 m: 0.77 d: 0.32 f: 0.52 m: 0.66 d: 0.23
BlS 0.57 f: -0.07 m: 0.85 d: 0.43 f: -0.05 m: 0.77 d: 0.33
BlD 0.54 f: -0.07 m: 0.85 d: 0.36 f: -0.05 m: 0.77 d: 0.33
BlA 0.64 f: 0.78 m: 0.88 d: 0.39 f: 0.62 m: 0.77 d: 0.24
RobS 0.32 f: -0.82 m: -0.38 d: 0.18 f: -0.62 m: -0.28 d: 0.14
RobD 0.51 f: -0.46 m: 0.81 d: 0.54 f: -0.52 m: 0.67 d: 0.43
RobA 0.53 f: -0.32 m: 0.77 d: 0.64 f: -0.24 m: 0.67 d: 0.52

Table 6: Results of scalar ranking tests (BbS = BERT base SIM method, BbD = BERT base DIFF method, BbA =
BERT base AdjDIFF method, BlS = BERT large SIM method, BlD = BERT large DIFF method, BlA = BERT large
AdjDIFF method, RobS = RoBERTa SIM method, RobD = RoBERTa DIFF method, RobA = RoBERTa AdjDIFF
method f = FREQUENCY, m = MODALITY. d = DEGREE).

307

B Heatmaps

(a) BERT large with context (b) BERT large neutral context

(c) RoBERTa large with context (d) RoBERTa large neutral context

Figure 2: Heatmap of confusion matrices per intensifier for model and context in the MLM task (items are grouped by semantic
category). In the interest of space considerations, we only show results for BERT large and RoBERTa.

308

(a) BERT large BELOW condition (b) BERT large ABOVE condition

(c) RoBERTa large BELOW condition (d) RoBERTa large ABOVE condition

Figure 3: Heatmap of confusion matrices for BELOW and ABOVE conditions including negations as answer.

309

(a) BERT large BELOW condition (b) BERT large ABOVE condition

(c) RoBERTa large BELOW condition (d) RoBERTa large ABOVE condition

Figure 4: Heatmap of confusion matrices for BELOW and ABOVE conditions of the entailment task, excluding negations as
answer.

310

C Adverb frequencies

ADVERB Wordfreq Reddit politosphere 2015
not 0.34 0.44
never 0.007 0.07
sometimes 0.002 0.017
usually 0.003 0.012
generally 0.005 0.008
often 0.004 0.023
already 0.01 0.03
frequently 0.0004 0.003
always 0.02 0.05
maybe 0.001 0.025
perhaps 0.0006 0.011
possibly 0.002 0.005
probably 0.02 0.02
really 0.078 0.08
actually 0.03 0.027
certainly 0.006 0.009
definitely 0.007 0.008
slightly 0.006 0.005
hardly 0.005 0.003
basically 0.004 0.004
quite 0.05 0.017
pretty 0.13 0.021
very 0.19 0.09
seriously 0.002 0.007
completely 0.07 0.009

Table 7: Relative frequencies of our scalar adverbs

311

D Detailed results entailment task

BERTl
(acc.)

BERTl
(triv.)

RoBERTa
(acc.)

RoBERTa
(triv.)

pseudo (below) 0.22 0.19 0.47 0.31
low (below) 0.30 0.19 0.38 0.23

medium (below) 0.24 0.18 0.34 0.22
high (below) 0.20 0.21 0.30 0.24

pseudo (above) 0.39 0.23 0.45 0.15
low (above) 0.46 0.19 0.48 0.09

medium (above) 0.46 0.19 0.49 0.09
high (above) 0.49 0.22 0.51 0.10

pseudo (below -no neg) 0.83 0.30 0.90 0.37
low (below -no neg) 0.90 0.31 0.87 0.33

medium (below -no neg)) 0.84 0.30 0.82 0.32
high (below -no neg) 0.74 0.34 0.70 0.33

pseudo (above -no neg) 0.95 0.40 0.96 0.24
low (above -no neg) 0.92 0.36 0.95 0.15

medium (above -no neg) 0.92 0.32 0.95 0.15
high (above -no neg) 0.92 0.32 0.95 0.15

Table 8: Results for scalar entailment dataset (BERT large and RobERTa). pseudo = sentences with pseudo words
from (Needle et al., 2022) low= sentences with adjectives log frequencies -18 to -14, med= sentences with adjectives
log frequencies -14 to -10, high= sentences with adjective log frequencies -10 to -6, (no neg) = not taking into
account negations as answers, acc. = accuracy, triv. = number of trivial answers (e.g., If it’s sometimes ADJ, it’s
sometimes ADJ, which we do not take into account for accuracies), below = expects item below on the relevant
scale, above = expects item above on the relevant scale (best in bold).

E Further probes

E.1 GPT-3
GPT-3 is widely acknowledged to perform better than GPT-2. We probe GPT-3 (text-davinci-002) (Brown
et al., 2020) on a sample of 5120 sentences from our dataset (from templates 1_below and 1_above given
that the ABOVE condition for that particular template is the most difficult for RoBERTa), with a prompt
mimicking the MLM task to obtain ten completions for the MASK token in our dataset. The results can be
seen in Table 9 along with the results from RoBERTa on the same sample dataset. While GPT-3 outputs a
much lower number of trivial and negative completions, it seems to be even more biased towards high
frequency top-of-the-scale answers, causing it to perform poorly, especially in the BELOW condition.

E.2 NLI trained model
To evaluate whether models which have been fine-tuned on a Natural Language Inference dataset (e.g.,
MNLI, Williams et al., 2018) we also adapt the dataset to the MNLI format. We adapted the items by
replacing the [MASK] token at random with an adverb that created a correct entailment for half our
items and an incorrect one for the remaining items (e.g., It is always cold. It is sometimes cold. vs. It
is sometimes cold. It is always cold.’. We obtain predictions from MNLI fine-tuned, BERT large and
RoBERTa models. The results can be found in Table 10. The models perform near chance, indicating that
training on a dataset containing broadly defined inferences such as MNLI does not improve performance
on a strict entailment task involving scalar adverbs.

312

GPT-3
(acc.)

GPT-3
(triv.)

RoBERTa
(acc.)

RoBERTa
(triv.)

pseudo (below) 0.39 0.11 0.73 0.28
low (below) 0.41 0.09 0.6 0.20

medium (below) 0.38 0.08 0.54 0.22
high (below) 0.42 0.09 0.47 0.27

pseudo (above) 0.40 0.13 0.0 0.0
low (above) 0.46 0.13 0.0 0.0

medium (above) 0.51 0.08 0.0 0.0
high (above) 0.47 0.06 0.0 0.0

pseudo (below -no neg) 0.44 0.11 0.83 0.28
low (below -no neg) 0.47 0.09 0.79 0.21

medium (below -no neg) 0.46 0.08 0.73 0.24
high (below -no neg) 0.45 0.09 0.58 0.28

pseudo (above -no neg) 0.70 0.13 1.0 0.13
low (above -no neg) 0.80 0.14 0.99 0.04

medium (above -no neg) 0.89 0.09 0.97 0.08
high (above -no neg) 0.81 0.06 0.97 0.08

with negation 0.43 0.10 0.29 0.12
without negation 0.62 0.10 0.85 0.18

BELOW 0.43 0.09 0.75 0.25
ABOVE 0.63 0.10 0.49 0.04

Table 9: Results for sample scalar entailment dataset (GPT-3 and RoBERTa). pseudo = sentences with pseudo
words from (Needle et al., 2022) low = sentences with adjectives log frequencies -18 to -14, med = sentences with
adjectives log frequencies -14 to -10, high = sentences with adjective log frequencies -10 to -6, (no neg) = not taking
into account negations as answers, acc. = accuracy, triv. = number of trivial answers (e.g., If it’s sometimes ADJ, it’s
sometimes ADJ, which we do not take into account for accuracies), below = expects item below on the relevant
scale, above = expects item above on the relevant scale (best in bold).

BERTl
(acc.)

RoBERTa
(acc.)

pseudo 0.46 0.45
low 0.46 0.44
med 0.45 0.42
high 0.43 0.41
avg. 0.45 0.43

Table 10: Results for scalar entailment with models fine tuned on MNLI (Williams et al., 2018). pseudo = sentences
with pseudo words from (Needle et al., 2022) low = sentences with adjectives log frequencies -18 to -14, med =
sentences with adjectives log frequencies -14 to -10, high = sentences with adjective log frequencies -10 to -6, acc.
= accuracy (dataset is balanced with chance = 0.50)

313

F Dataset characteristics

category samples min
words

max
words

avg
words n_adj adj. overlap

frequency 320 4 59 22.08 273 1.92
modality 320 4 53 21.97 283 1.57
degree 320 4 48 21.33 304 0.57

Table 11: word length and adjective characteristics of dataset: samples=n samples in category; min words=minimum
word length for each sample; max words=maximum word length for each sample; n_adj=number of adjectives; adj
overlap=average adjective overlap between adverbs

314

G Entailment results with templates

Example template Id BERTl
(acc.)

BERTl
(triv.)

RoBERTa
(acc.)

RoBERTa
(triv.)

If it is often cold, then it is at least
[MASK] cold. (below)

1_below 0.51 0.58 0.59 0.24

It is at least [MASK] cold if it is
often cold. (below)

2_below 0.12 0.16 0.22 0.11

It is often cold so it is at least
[MASK] cold. (below)

3_below 0.32 0.18 0.41 0.33

It is at least [MASK] cold be-
cause it is often cold. (below)

4_below 0.05 0.08 0.38 0.56

If it is at most [MASK] cold, then
it is not often cold. (below)

5_below 0.63 0.26 0.37 0.39

It is not often cold if it is at most
[MASK] cold. (below)

6_below 0.24 0.07 0.38 0.11

It is at most [MASK] cold so it is
not often cold. (below)

7_below 0.24 0.15 0.32 0.15

It is not often cold because it is
at most [MASK] cold. (below)

8_below 0.12 0.09 0.37 0.09

If it is [MASK] blue, then it is at
least quite blue. (above)

1_above 0.01 0.04 0.0 0.0

It is at least quite blue if it is
[MASK] blue. (above)

2_above 0.03 0.07 0.01 0.02

It is [MASK] blue so it is at least
quite blue. (above)

3_above 0.15 0.10 0.25 0.16

It is at least quite blue because it
is [MASK] blue. (above)

4_above 0.42 0.26 0.22 0.09

If it is at most quite blue, then it
is not [MASK] blue. (above)

5_above 0.93 0.41 0.92 0.18

It is not [MASK] blue if it is at
most quite blue. (above)

6_above 0.87 0.27 0.96 0.10

It is at most quite blue so it is not
[MASK] blue. (above)

7_above 0.81 0.25 0.91 0.15

It not quite blue because it is at
most [MASK] blue. (above)

8_above 0.12 0.09 0.37 0.09

MASK before premise NA 0.29 0.14 0.36 0.20
premise before MASK NA 0.39 0.22 0.46 0.12

Table 12: Results for scalar entailment per template and example template (with negations) (best in bold).

315

Example template Id BERTl
(acc.)

BERTl
(triv.)

RoBERTa
(acc.)

RoBERTa
(triv.)

If it is often cold, then it is at least
[MASK] cold. (below)

1_below 0.80 0.59 0.74 0.26

It is at least [MASK] cold if it is
often cold. (below)

2_below 0.89 0.43 0.84 0.32

It is often cold so it is at least
[MASK] cold. (below)

3_below 0.80 0.26 0.76 0.38

It is at least [MASK] cold be-
cause it is often cold. (below)

4_below 0.85 0.32 0.86 0.65

If it is at most [MASK] cold, then
it is not often cold. (below)

5_below 0.97 0.31 0.97 0.48

It is not often cold if it is at most
[MASK] cold. (below)

6_below 0.80 0.16 0.85 0.15

It is at most [MASK] cold so it is
not often cold. (below)

7_below 0.79 0.24 0.82 0.27

It is not often cold because it is
at most [MASK] cold. (below)

8_below 0.92 0.27 0.98 0.17

If it is [MASK] blue, then it is at
least quite blue. (above)

1_above 0.92 0.50 0.98 0.08

It is at least quite blue if it is
[MASK] blue. (above)

2_above 0.90 0.28 0.92 0.16

It is [MASK] blue so it is at least
quite blue. (above)

3_above 0.86 0.42 0.87 0.30

It is at least quite blue because it
is [MASK] blue. (above)

4_above 0.95 0.37 0.96 0.24

If it is at most quite blue, then it
is not [MASK] blue. (above)

5_above 0.99 0.42 0.93 0.18

It is not [MASK] blue if it is at
most quite blue. (above)

6_above 0.93 0.28 0.99 0.10

It is at most quite blue so it is not
[MASK] blue. (above)

7_above 0.94 0.26 0.96 0.16

It not quite blue because it is at
most [MASK] blue. (above)

8_above 0.67 0.20 0.76 0.17

MASK before premise NA 0.88 0.38 0.90 0.31
premise before MASK NA 0.86 0.31 0.87 0.20

Table 13: Results for scalar entailment per template and example template (without negations) (best in bold).

316

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 317–331
December 7, 2023. ©2023 Association for Computational Linguistics

Rigorously Assessing Natural Language Explanations of Neurons

Jing Huang1 Atticus Geiger1,2 Karel D’Oosterlinck1,3 Zhengxuan Wu1 Christopher Potts1
1Stanford University 2Pr(Ai)2R Group 3Ghent University – imec

{hij, atticusg, kldooste, wuzhengx, cgpotts}@stanford.edu

Abstract

Natural language is an appealing medium for
explaining how large language models process
and store information, but evaluating the faith-
fulness of such explanations is challenging. To
help address this, we develop two modes of
evaluation for natural language explanations
that claim individual neurons represent a con-
cept in a text input. In the observational mode,
we evaluate claims that a neuron a activates on
all and only input strings that refer to a con-
cept picked out by the proposed explanation E.
In the intervention mode, we construe E as a
claim that the neuron a is a causal mediator of
the concept denoted by E. We apply our frame-
work to the GPT-4-generated explanations of
GPT-2 XL neurons of Bills et al. (2023) and
show that even the most confident explanations
have high error rates and little to no causal effi-
cacy. We close the paper by critically assessing
whether natural language is a good choice for
explanations and whether neurons are the best
level of analysis.

1 Introduction

The ability to generate natural language explana-
tions of large language models (LLMs) would be an
enormous step forward for explainability research.
Such explanations could form the basis for safety
assessments, bias detection, and model editing, in
addition to yielding fundamental insights into how
LLMs represent concepts. However, we must be
able to verify that these explanations are faithful to
how the LLM actually reasons and behaves.

What criteria should we use when assessing
the faithfulness of natural language explanations?
Without a clear answer to this question, we run
the risk of adopting incorrect (but perhaps intuitive
and appealing) explanations, which would have a
severe negative impact on all the downstream ap-
plications mentioned above.

In the current paper, we seek to define criteria
for assessing natural language explanations that

Figure 1: An overview of our proposed framework. In
the observational mode, we evaluate whether a neuron
activates on strings picked out by the explanation. In
the intervention mode, we assess whether the neuron is
a causal mediator of the concept in the explanation.

claim individual neurons represent a concept in a
text input. We consider two modes of evaluation
(Figure 1). In the observational mode, we evaluate
the claim that a neuron a activates on all and only
input strings that refer to a concept picked out by
the proposed explanation E. Relative to a set of
inputs, we can then use the error rates to assess the
quality of E for a.

The observational mode only evaluates whether
a concept is encoded, as opposed to used (Antverg
and Belinkov, 2022). Thus, we propose an interven-
tion mode to evaluate the claim that a is a causally
active representation of the concept denoted by E.
We construct next token prediction tasks that hinge
on the concept and intervene on the neuron a to
study whether the neuron is a causal mediator of
concepts picked out by E.

For example, consider the explanation years be-
tween 2000 and 2003 of a neuron a. In the ob-
servational mode, we experimentally test which
strings the neuron a activates on and quantify how
closely this is aligned with the explanation’s mean-
ing. In the intervention mode, we can construct a
task where the prefix “The year after Y is” is given
and the model consistently outputs “Y + 1”. Then
we can swap the value of a for the value it takes on

317

a different input and observe whether the behavior
exhibits the expected change. The success rate of
interventions quantifies the extent to which the neu-
ron a is a causal mediator of the concept of years
(Vig et al., 2020; Geiger et al., 2021, 2023a).

To illustrate the value of this evaluation frame-
work, we report on a detailed audit of the expla-
nation method of Bills et al. (2023), which uses
GPT-4 to generate natural language explanations of
neurons in a pretrained GPT-2 XL model. This is,
at present, the largest-scale effort to automatically
generate explanations of LLMs: the authors offer
explanations for 300K neurons in GPT-2 XL. Auto-
matically generating natural language explanations
is inherently exciting, but our findings are inauspi-
cious. In the observational mode, we find that even
among the top 0.6% of neurons which are consid-
ered well-explained by GPT-4’s own assessment,
the explanation is far from faithful; construed as
predictions about neuron activations, GPT-4 gener-
ated explanations achieve a precision of 0.64 and a
recall of 0.50. In the intervention mode, the picture
is more worrisome: we are unable to find evidence
that neurons are causal mediators of the concepts
denoted by the explanations. While the proposed
explanations from the method of Bills et al. (2023)
can be useful in exploring hypotheses about model
computations, users of the method should have
full knowledge of these assessments if they plan to
make decisions based off these explanations.1

We conclude by discussing some of the funda-
mental issues at hand. First, is natural language a
good vehicle for model explanations? It seems ap-
pealingly accessible and expressive, but its ambigu-
ity, vagueness, and context dependence are substan-
tial problems if we want to use these explanations
to guide technical decision making. Second, are
neurons appropriate units to analyze? There may be
useful signals in individual neurons, but it seems
likely that the important structure will be stored
in more abstract and distributed ways (Rumelhart
et al., 1986; McClelland et al., 1986; Smolensky,
1988; Geva et al., 2022; Geiger et al., 2023b).

2 Related Work

Natural Language Explanations Explanations
of black box AI models that come in the form of
language text have the obvious benefit of being
expressive and readable (Hendricks et al. 2016;

1We release our dataset and code at https://github.
com/explanare/eval_neuron_explanation.

Ling et al. 2017; Kim et al. 2018; Do et al. 2020;
Kayser et al. 2022; see Wiegreffe and Marasovic
(2021) for a review). Recent work on automated
neuron interpretability leverages natural language
to produce neuron descriptions at scale (Hernandez
et al., 2022; Bills et al., 2023; Singh et al., 2023).

However, automated generation poses chal-
lenges for evaluation. The faithfulness of natural
language explanation is inherently hard to evalu-
ate (Atanasova et al., 2023). Existing automated
metrics are mostly neuron-level (Bills et al., 2023;
Singh et al., 2023). Only a few measure model
behaviors via ablation or editing (Hernandez et al.,
2022), which is critical for distinguishing encoded
vs. used information in neuron analysis (Antverg
and Belinkov, 2022).

Besides concerns in faithfulness, recent work
on distributed representations (Geva et al., 2022;
Geiger et al., 2023b) and superposition phenomena
(Elhage et al., 2022) suggests individual neurons
may not provide the most interpretable structure.

Intervention-Based Methods Interpretability
methods that use interventions to create counter-
factual model states have so far provided the most
provably faithful explanations of model behaviors
(Sundararajan et al., 2017; Chattopadhyay et al.,
2019; Vig et al., 2020; Feder et al., 2021; Geiger
et al., 2021, 2023a,b; Meng et al., 2022, 2023;
Materzynska et al., 2022; Olsson et al., 2022; Wang
et al., 2023; Conmy et al., 2023). Intervention-
based methods are also adopted to measure the
faithfulness of explanations (Antverg and Belinkov,
2022; Abraham et al., 2022; Atanasova et al., 2023).
Our evaluation is a causal mediation analysis (Pearl,
2014; Vig et al., 2020), a special case of causal ab-
straction analysis (Geiger et al., 2021, 2023a).

3 Observation-Based Evaluation

We now define a framework for evaluating claims
that a natural language text E explains a neuron a
in a model M using direct observational data.

3.1 Methods

We first need to specify how E itself should be
understood. Intuitively, an explanation like years
between 2000 and 2003 refers to a set of abstract
entities (a specific set of years).2 However, this

2Does the English expression between X and Y include X
and Y? The answer is highly variable and depends on the con-
text and the entities being discussed (Potts and Levy, 2015).
Here we adopt an inclusive sense. This actually illustrates a

318

approach to meaning is hard to operationalize
in terms of language models, which deal only
with strings, so we opt to construe meanings as
sets of strings. For example, the explanation
years between 2000 and 2003 of a neuron a
is given by Jyears between 2000 and 2003K =
{“2000”, . . . , “2003”, “the year before 2002”, . . .}.

Abstractly speaking, the above means that every
explanation denotes an infinite set of strings: there
will typically be large numbers of sensible ways
of describing entities, and more generally, for any
q ∈ JEK, we will also have “q and True” ∈ E,
where “True” is a tautology of some sort. How-
ever, experimentally, we can approximate these sets
with finite sets of strings. For example, we might
approximate Jyears between 2000 and 2003K with
just the set {“2000”, “2001”, “2002”, “2003”} for
a partial but still robust test of E. In what follows,
we assume that JEK is always approximated by a
finite set; the precise membership of this set is an
important experimental detail.

Bringing the above ideas together, we say that
EXPLAINM,Q(a,E) is the claim that, for every in-
put q ∈ Q to model M containing neuron a, the
activation a(q) > 0 iff q ∈ JEK. Here, Q is an
experimental dataset defined to include our approx-
imation of JEK as well as strings that will allow us
to probe for cases where E predicts no activation
for the neuron but we do see activation. For exam-
ple, to test years between 2000 and 2003, we might
use Q = {“2000”, . . . , “2003”, “pizza”, “$5.75”}.

In the observational mode, we evaluate whether
the neuron a activates on all and only strings in
Q∩ JEK. We quantify this by considering an expla-
nation E as making predictions about whether the
neuron a will activate on a given input q. Type I
errors occur where the explanation E falsely pre-
dicts that the neuron a will activate on a string
q ∈ JEK. Type II errors occur where the expla-
nation E falsely predicts that the neuron will not
activate on a string q /∈ JEK. For the year example
above, an error is of Type I when a does not acti-
vate on “2001” in an input, and of Type II when a
does activate for a string like “pizza” in an input.

As there are usually neurons in each layer shar-
ing semantically similar explanations, we can
also evaluate how well an explanation E predicts
the activations of a set of neurons [a0, . . . , an],
i.e., a claim that for every input q ∈ Q,

core challenge of using natural language for model explana-
tions: the explanations often need their own explanations.

f([a0(q), . . . , an(q)]) > 0 iff q ∈ JEK, where
f(x) = w · x+ b is a linear probe parameterized
by w and b. For each explanation E, we first learn
a probe f that maximizes the mutual information
between JEK and the activations (Belinkov, 2022)
and then evaluate the claim with the learned probe.
The claim of a single neuron a activates on all and
only strings in JEK can be viewed as a special case
where f is an identity function.

3.2 Experimental Setup

Explanations to Evaluate We randomly sam-
pled 300 (18%) of the 1.7k neurons whose expla-
nations have a score of at least 0.8. The score (re-
ferred to as the GPT-4 score below) represents the
correlation coefficient between GPT-4 simulated
neuron activation and actual neuron activation over
a set of inputs sampled from the GPT-2 XL train-
ing corpus. Bills et al. (2023) say that a GPT-4
explanation with a score higher than 0.8 means that
“according to GPT-4 [the explanation] accounts for
most of the neuron’s top-activating behavior”.

Dataset For each neuron a with explanation E,
we construct two sets of test sentences. One set
probes for Type I errors by evaluating the claim
“a activates on q ∈ JEK” with a set of sentences
each containing a string q ∈ JEK. We prompt GPT-
3.5-turbo (referred as GPT-3.5 below) to sample
a list of 20 words or phrases in JEK and embed
each word or phrase into a sentence context. The
other set probes for Type II errors by evaluating the
claim “a only activates on q ∈ JEK” with a set of
sentences each containing a string that the neuron a
activates on. We search for token sequences that the
neuron a activates on over a large corpus, record the
sentence context of the token sequence, and prompt
GPT-3.5 to determine whether the token sequence
is in JEK. When evaluating a set of neurons, we
sample extra sentences to train the probe.

We manually verified the correctness of the gen-
erated datasets. We found over 95% of the sen-
tences to be valid. Most mistakes were on ex-
planations that involve form-based properties like
spelling, as GPT-3.5 does not have direct access to
character information in each token (Kaushal and
Mahowald, 2022; Huang et al., 2023). These cases,
however, are easy to check programmatically. For
form-based explanation E, we use a regex-based
program to determine if a string belongs to JEK.
Wrongly selected negative entities can also occur
due to vagueness of the explanation, i.e., the con-

319

No Probe With Probe
N=1 N=1 N=2 N=4 N=16

Random 0.00 0.29 0.44 0.54 0.69
GPT-4 0.56 0.60 0.64 0.67 0.73

Table 1: F1 scores measure how well randomly selected
explanations and GPT-4 generated explanations predict
neuron activations, averaged over 300 explanations with
a GPT-4 score of at least 0.8. For each explanation to
evaluate, we either randomly select N neurons or select
N neurons whose explanations are semantically most
similar to the given explanation.

cepts are related following one interpretation but
not another. We exclude incorrectly generated and
ambiguous sentences from our test sets.

Metrics For a given explanation E of neuron
a and a set of inputs Q, we define precision and
recall as follows. Let a(q) be the activation of
neuron a on pattern q, and let TQ be the set of true
positive instances in Q, i.e. TQ = {q : q ∈ Q, q ∈
JEK and a(q) > 0}. Then:

Precision(a,Q,E) =
|TQ|

|{q : q ∈ Q, q ∈ JEK}|

Recall(a,Q,E) =
|TQ|

|{q : q ∈ Q, a(q) > 0}|
We then compute F1-score as the harmonic mean
of precision and recall. In the case where q spans
multiple tokens, we apply max pooling over all
tokens. In the case where multiple neurons are
evaluated, we use f([a0(q), . . . , an(q)]) instead of
a(q), where f is learned from a training set.

Baselines We consider random pairings of neu-
rons with GPT-4 explanations as baselines. For
an explanation E, we randomly select N neurons
from a given layer and evaluate E against the acti-
vations of the randomly selected neurons.

3.3 Results

Results over 300 neuron explanations are shown
in Table 1. For single neuron without probing,
the GPT-4 explanations have a mean F1 score of
0.56 (with a precision of 0.64 and a recall of 0.50),
whereas the random baseline has a F1 score of
zero. With learned probes, the F1 score of GPT-4
explanations is 0.60. The F1-score has a correlation
coefficient of −0.1 with the GPT-4 score. With
more neurons, F1 scores increase while the margin
over the random baseline decreases, suggesting that
most semantically relevant neurons have already

been sampled. Examples of error cases are shown
in Table 2, with analysis in Appendix B.

3.4 Discussion

Our experimental results show that the Bills et al.
2023 explanations are not well aligned with neuron
activations; with an F1 score around 0.6 across 300
of the top-scoring explanations, it seems as though
it would be risky to depend on these explanations
for downstream tasks.

One might wonder how it can be that high GPT-4
scores do not lead to high precision/recall in our
evaluation. There is no inconsistency here, though,
and indeed it is easy to show that a high GPT-4
score does not guarantee a faithful explanation.

The GPT-4 score is computed on a set of 10 ex-
amples from the GPT-2 XL training corpus, 5 con-
taining tokens with top activations and 5 randomly
sampled. We now show that an unfaithful explana-
tion with a precision of 0.50 can still have a perfect
GPT-4 score with high probability. Consider an un-
faithful explanation E = year 2000 and 2001 of
a neuron a that only activates on “2000”. When
sampling the 10 examples from a corpus that has
n% examples containing “2001”, the probability
of having at least one example containing “2001”
(a Type I error) is 1− (1− n%)5 ≈ 5n%. For any
large corpus, n% could be extremely small due to a
long tail distribution, which means the GPT-4 score
is insensitive to Type I errors. In contrast, our pre-
cision metric can capture Type I errors by directly
sampling different instances from JEK, such that
50% test examples should contain “2001”.

This example shows two things: (i) high correla-
tion scores from GPT-4 simulations do not guaran-
tee high-quality explanations, and (ii) our observa-
tional testing regime is more reliable, provided the
chosen experimental datasets have the potential to
diagnose both Type I and Type II errors.

4 Intervention-Based Evaluation

The goal of intervention-based evaluation is to as-
sess the claim that a neuron a is a causal mediator
of the concept denoted by E. Intervention-based
evaluation allows us to distinguish concepts that
are used vs. encoded in a model (Antverg and Be-
linkov, 2022), which is tightly connected to appli-
cations that require control and manipulation of the
model, such as model editing. If we would like to
use the explanation to inform us about where a con-
cept is stored, we need explanations that pass the

320

Explanation True Positives Type I Errors Type II Errors

days of the week
I have a music class

every Wednesday evening

Thursday is usually reserved

for grocery

Philadelphia is where the

Declaration of Independence

years, specifically
four-digit years

Castro took power in Cuba

in 1959 .

rated during re - entry in

2003 .

We need to rev amp the

website to attract more

the word "most"
and words related to
comparison

lottery is a singular event

for most people .

She is the most talented

artist in the group

Their hostility towards each

other was palpable .

color-related words
the sky in vibrant shades

of violet and pink .

garden bloom ed in shades

of mag enta .

her lifelong dream , she

opened her own bakery

reflexive pronouns
related to people or
entities

They blamed themselves for

the failure .

She prepared herself for

the interview .

She gave the do ork nob

a twist and the door

proper names,
specifically names
related to mathe-
maticians, scientists,
and artists

E instein ’s theory of

relativity revolution

Stephen Hawking was a

renowned physicist

A software engineer needs

to compose lines of

technology-related
words, specifically
focusing on Linux
and robots

R aspberry Pi is a small

, versatile

Ub untu is a user -

friendly

He obtained a restraining

order to prevent

verbs related to
movement or
running out of
something

He decided to run to the

store before it

The clever fox managed to

evade capture

He loves ice cream , but

on the

Table 2: Examples of GPT-4 generated neuron descriptions with correct and error cases. The underlined words and
phrases are strings belonging to the set denoted by the explanation. The ground truth GPT-2 XL neuron activation is
color-coded, with activated tokens highlighted in green . Some examples are truncated due to space constraints.

intervention-based assessment. Otherwise, modi-
fying neurons associated with the explanation will
have no effect on model behaviors.

4.1 Methods
To conduct these analyses, we first identify a task
that takes any string q ∈ JEK as part of the input
and has an output behavior that depends on JEK.
To ensure that we are assessing E rather than the
model’s performance, the task should be one that
the model solves perfectly.

For example, consider a task where a model M
receives the prompt “The year after Y is” and is
evaluated on whether the next token is Y +1. Here,
a set of inputs QE,T for explanation E = years is
a set of inputs based in a single template T = “The
year after Y is” and differing only in the substring
Y , where Y could be any string in JEK plus strings
not in JEK that can be used to fill the template T ,
such as “college”. QE,T depends only on E and T .

We say M performs this task perfectly if M gets
every case in QE,T correct.

In the intervention mode, we assess whether the
neuron a is a causal mediator between the string
encoding the year Y and the predicted tokens en-
coding the year Y +1. To do this, we require just a
few technical concepts from the literature on causal
mediation and causal abstraction.

Let M(x) be the entire state of the model M
when it receives input x. In other words,M(x) sets
all the input, internal, and output representations of
the model via a standard forward pass. Let τ be a
function that maps an entire model state to some
output behavior. In our example, τ could be a func-
tion that first (i) maps M(“The year after Y is”) to
the next token predicted via greedy decoding and
then (ii) classifies that token as being the desired
Y + 1 value or not.

We use GetVals(M(x), v) to specify the value
321

stored at the position v in M(x), and we use
Mv←i(x) to specify the intervention in which M
processes x but the value at v is replaced with the
constant value i.

An interchange intervention is a nested use of
GetVals and the intervention operation. For a
source input s and an activation at of the neuron a
at the step t, we set z = GetVals(M(s), at). For
a distinct base input b, we then process Mat←z(b).
In other words, we process b with everything as
usual, except that the value of at is the one it has
when the model processes s.

With the above definitions, we can say that
CAUSALEXPLAINM,τ,T (a,E) is the claim that for
all inputs b, s ∈ QE,T , we have

τ(Mat←z(b)) = τ(M(s)) (1)

where z = GetVals(M(s), at) for some step t.
This can be viewed as a variant of causal medi-

tation (Vig et al., 2020). In intuitive terms: given
the prompt “The year after Y is”, the model returns
the next year. If a is causally explained by “years”,
and assuming M performs our task perfectly, when
we process “The year after 2023 is” but with the
value of a set to what it has when we process “The
year after 2000 is”, then the model should output
2001. If it outputs 2024 or some other token, then
a evidently did not encode “years” in a way that is
causally efficacious for our task.

Finding even one task that satisfies these criteria
is strong evidence for the explanation. If we can’t
find such tasks, it is also evidence against the expla-
nation; we might always worry that there are some
tasks that do satisfy the criteria, but every failed
task will erode our confidence that the explanation
has any force in explaining model behavior.

4.2 Experimental Setup

Explanations to Evaluate The explanations of
interest are associated with neurons in the Trans-
former MLP (feed-forward) layers, where concepts
are represented in a highly distributed manner that
require inter-layer and intra-layer aggregation to
decode (Geva et al., 2021). Hence, we consider
evaluating both explanations of individual neurons
and explanations of a set of semantically similar
neurons. For example, explanations related to num-
bers, such as numbers, particularly two-digit num-
bers and numerical values related to quantity are
evaluated as a single abstraction of the concept
number. We identify a few common concepts that

cover 80K (27%) of explanations that correspond
to neurons at various layers, as shown in Table 3.

Evaluation Tasks We curate two tasks per con-
cept that involve different manipulations of the con-
cept. Example tasks are shown in Table 3.

Evaluating on different tasks is necessary, as two
neurons with the same vague explanation may have
different functionalities. For example, neurons in
the first layer may activate to detect a number, while
neurons in middle layers may activate to compare
two numbers, even if the hypothesized explanation
for both neurons is numerical values. Depending
on the functionality, we apply interchange interven-
tions either at the token positions corresponding to
the string in JEK or at the last token position. We
include evaluation details in Appendix C.

Metrics For a given explanation E of a set of
neurons [a0, . . . , an], a task T , a set of input pairs
QE,T , we define interchange intervention accuracy
(IIA) as the percentage of input pairs where the
intervention output matches the expected output
according to (1). This IIA metric can be seen as a
variant of the metric of Geiger et al. (2022).

As many explanation methods also predict a con-
fidence score with an explanation, we can extend
the IIA metric to IIA@K, where given a set of neu-
rons and an explanation E, the IIA is computed
with respect to the top K percent of neurons with
the highest confidence score of E being the expla-
nation. IIA@K also allows us to compare expla-
nations generated by two methods. Given a fixed
set of neurons, such as all neurons in a given MLP
layer, each method produces a ranking of which
neurons are most likely explained by E. We then
systematically vary K to compare IIA@K between
the two methods.

Baselines To better understand to what extent a
set of neurons could affect model behaviors, we
also consider two baselines: a random baseline
randomly selecting K% of neurons, and a token-
activation correlation baseline selecting the top
K% of neurons with high activation over tokens
that represent instances in JEK and low activation
over other tokens in the test inputs. The random
baseline serves as a lower bound on the causal
effects, while the token-activation correlation base-
line is expected to have stronger causal effects. A
causal explanation should at least select neurons
with an IIA@K higher than the random baseline.

322

Explanation E Task Template T with strings in JEK and expected outputs

Numbers (13%) Unit conversion
Numerical comparison

The hiking trail stretches for 2 miles (3.2
The war was in 1935 and he was born in 1937 , which was a few years after

Verbs (9%) Verb tense They play piano every day, so I believe yesterday they also played piano
Time expressions (0.3%) Verb tense They play piano every day, so I believe yesterday they also played piano
Locations (4%) Capital retrieval The capital of Canada is Ottawa

Table 3: Examples of intervention-based evaluation tasks.

Explanation: Numbers
Task: Unit conversion
Intervention location: Layer 0 at the
number tokens

Explanation: Verbs
Task: Verb tense
Intervention location: Layer 0 at the
verb tokens

Explanation: Locations
Task: Capital retrieval
Intervention location: Layer 0 at the
country tokens

Explanation: Numbers (with years)
Task: Numerical comparison
Intervention location: Layer 11-21 at
the second year tokens

Explanation: Time expressions
Task: Verb tense
Intervention location: Layer 35-45 at
the last token

Explanation: Locations
Task: Capital retrieval
Intervention location: Layer 30-40 at
the last token

Table 4: Intervention-based evaluation results. For each task, we rank and select the top K% of neurons using three
methods: random, correlation, and GPT-4 explanation score. We evaluate IIA@K for K = 1, 6, 12, 25, 50, 75, 100.
The dotted vertical line marks the percentage of GPT-4 explanation that directly mention the target pattern.

4.3 Results

Results on various tasks are shown in Table 4.
There are two trends consistent across tasks. First,
in terms of the IIA ranking, we have: token-
activation correlation baseline≫ GPT-4 explana-
tion ≈ random baseline. Second, IIA increases as
we intervene on a higher percentage of neurons. At
K = 100, MLP layer neurons show causal effects
on all tasks. We further discuss the implications of
these two observations below.

4.4 Discussion

Does GPT-4 produce causal explanations?
GPT-4 generated explanations have similar causal

effects as the random baseline on most tasks. The
only exception is the explanation for neurons re-
lated to numerical expressions, which has higher
IIA than the random baseline, but still far below
the token-activation correlation baseline.

In other words, if we were using GPT-4 gen-
erated explanation to inform us which weights to
modify in a model editing task, we would have sim-
ilar performance as randomly selecting neurons to
edit. This finding is worrisome but not surprising
given low precision and recall values we obtained
in our observational evaluation (Section 3).

Which neurons have causal effects? The high
IIA@100 suggests that MLP layer neurons, when

323

evaluated as a whole, have strong causal effects on
model behavior, especially in the first layer. Neu-
rons in the middle and later layers only show causal
effects on model behaviors after aggregating over
multiple consecutive layers. This result is consis-
tent with previous findings on the role of MLP
layers (Geva et al., 2022, 2023; Meng et al., 2022).

High IIA from the token-activation baseline sug-
gests that the causal effects can be further narrowed
down to neurons whose activation correlates well
with the target pattern. For neurons in the first layer,
the top 20% of neurons with the highest correlation
can already account for 80% of the causal effect.
While this finding shows there are relatively small
subsets of neurons that encode certain high-level
concepts, the granularity is still on the magnitude
of hundreds of neurons. We have not found a task
where intervening on a single neuron can change
model behavior in a causal manner. We further
discuss the choice for analysis unit in Section 5.2.

5 General Discussion

5.1 Inherent Drawbacks to Natural Language
Explanations

Is natural language the best medium for explaining
large language models?

The benefits of using natural language in this
context are that it is intuitive and expressive; one
needn’t learn a specialized formal language or data
visualization language in order to consume expla-
nations in this format and draw inferences from
them to inform subsequent work.

However, natural languages are characterized
by vagueness, ambiguity, and context dependence.
These properties actually work in concert to facil-
itate the expressivity of language: vagueness and
ambiguity allow words and phrases to be used flex-
ibly, and context dependence means that people
can coordinate on specific meanings using context
(Partee, 1995). From a relatively small set of prim-
itives, we can talk about the complex universe we
inhabit, but only because we can subtly refine the
meanings of what we hear.

Given these facts about language, how are we
meant to interpret explanations like the follow-
ing, which were generated by the Bills et al. 2023
method?

1. sentence-ending punctuation, specifically pe-
riods.

2. references to geographical locations, particu-

larly related to Shanghai.

3. years, mostly from the 1980s and 2000s.

Does the first explanation include the question
mark, or does “specifically periods” refine the
meaning to just the set containing the period? All
of the above have the format “a general concept
E, specifically E′ ⊂ E”, and there is no way to
tell whether this is a prediction that the neuron will
activate on E \ E′. Where the stakes are high,
the human thing would be to discuss the meanings
and the intentions behind them and come to some
understanding. This path is not open to us for cur-
rent LLM-based explanation methods, and it seems
cumbersome if the goal is to use explanations to
inform downstream tasks.

A similar issue arises where the explanation has
the form “words and phrases related to a concept”.
More than 30% of neuron explanations in the Bills
et al. 2023 dataset contain the phrase “related to”.
Here are some examples:

1. mentions of pizza and related food items

2. words or parts of words related to the prefix
‘an’

Is the first a reference to all Italian food, or to the
various ingredients used to make pizza, or both? Is
the second just a list of words beginning with those
two characters, or does it refer to all words with
one of the English morphological negations (e.g.,
“an”, “un”, “in”, “non” and their allophones)?

There may be a way to define a fragment of natu-
ral language that is less prone to these interpretative
issues, and then we could seek to have explainer
models generate such language. However, if we
do take these steps, we are conceding that model
explanations actually require specialized training
to interpret. In light of this, it may be better to
chose an existing, rigorously interpreted formalism
(e.g., a programming language) as the medium of
explanation.

5.2 Explanation Beyond Individual Neurons
While top-activation patterns of individual neurons
provide a rough idea of what concepts are encoded
in the model, isolating the effect of individual neu-
rons on model behavior is not always feasible, as
features can be distributed across multiple neurons
and may be polysemantic in nature (Antverg and
Belinkov, 2022; Geva et al., 2022; Elhage et al.,
2022; Geiger et al., 2023b). Our intervention-based
evaluation results suggest that individual neurons

324

are not the best unit of analysis in terms of under-
standing the causal effects of representations.

Similarly, we should not limit ourselves to neu-
rons located in particular parts of the network.
While Bills et al. (2023) choose to analyze neurons
in the MLP layers, attention heads and residual
streams can also be used as different level of ab-
stractions to understand model behaviors (Vig et al.,
2020; Geiger et al., 2021; Olsson et al., 2022).

6 Conclusion

We developed a framework for rigorously evaluat-
ing natural language explanations of neurons. Our
observational mode of analysis directly tests ex-
planations against sets of relevant inputs, and our
intervention mode assesses whether explanations
have causal efficacy. When we applied this frame-
work to the method of Bills et al. (2023), we saw
low F1 scores in the observational mode and little
or no evidence for causal effects in the intervention
mode. Finally, we confronted what seem to us to be
deep limitations of (i) using natural language to ex-
plain model behavior and (ii) focusing on neurons
as the primary unit of analysis. Overall, we are
more optimistic about approaches to model expla-
nation that are grounded in structured formalisms
(e.g., programming languages) and seek to explain
how groups of neurons act in concert to represent
examples and shape input–output behaviors.

Limitations

Our work contributes to improving the faithfulness
of neuron interpretability methods that use natu-
ral language as a medium. Faithful explanation
could provide the basis for safety assessments, bias
detection efforts, model editing, and many other
downstream applications. However, the ability to
acquire more faithful explanations can also be used
in malicious manipulations of the models. For ex-
ample, high-quality explanations could help people
to identify private or toxic information in a model,
and these findings could be used to improve the
model or to exploit the problem for ill-effect. We
emphasize that explanations of large language mod-
els should always be used responsibly.

In an effort to evaluate the method proposed
in Bills et al. (2023), our analysis is primarily
conducted on neuron behaviors of a pre-trained
GPT-2 XL model, which is a decoder-only Trans-
former with 1.5B parameters (Radford et al., 2019).
The architecture used by GPT-2 XL has been

widely adopted in current large language models,
with similar neuron behaviors observed across vari-
ations of Transformers (Mu and Andreas, 2020;
Hernandez et al., 2022; Geva et al., 2022; Elhage
et al., 2022), but we might nonetheless see differ-
ent neuron behaviors emerge in new architectures.
Our results should not be construed as extending di-
rectly to these architectures, but we are hopeful that
our proposed evaluation framework will be useful
for performing the necessary follow-up analyses.

Acknowledgements

We thank William Saunders and Henk Tillman for
helpful discussion of the evaluation framework.
This research is supported in part by grants from
Open Philanthropy, Meta, Amazon, and the Stan-
ford Institute for Human-Centered Artificial Intelli-
gence (HAI).

References
Eldar David Abraham, Karel D’Oosterlinck, Amir

Feder, Yair Ori Gat, Atticus Geiger, Christopher
Potts, Roi Reichart, and Zhengxuan Wu. 2022. CE-
Bab: Estimating the causal effects of real-world con-
cepts on NLP model behavior. In Advances in Neural
Information Processing Systems.

Omer Antverg and Yonatan Belinkov. 2022. On the
pitfalls of analyzing individual neurons in language
models. In International Conference on Learning
Representations.

Pepa Atanasova, Oana-Maria Camburu, Christina Li-
oma, Thomas Lukasiewicz, Jakob Grue Simonsen,
and Isabelle Augenstein. 2023. Faithfulness tests
for natural language explanations. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 283–294, Toronto, Canada. Association for
Computational Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Steven Bills, Nick Cammarata, Dan Moss-
ing, Henk Tillman, Leo Gao, Gabriel Goh,
Ilya Sutskever, Jan Leike, Jeff Wu, and
William Saunders. 2023. Language mod-
els can explain neurons in language models.
https://openaipublic.blob.core.windows.
net/neuron-explainer/paper/index.html.

Aditya Chattopadhyay, Piyushi Manupriya, Anirban
Sarkar, and Vineeth N Balasubramanian. 2019. Neu-
ral network attributions: A causal perspective. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 981–990. PMLR.

325

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. 2023. Towards automated circuit discovery
for mechanistic interpretability.

Virginie Do, Oana-Maria Camburu, Zeynep Akata, and
Thomas Lukasiewicz. 2020. e-snli-ve-2.0: Corrected
visual-textual entailment with natural language ex-
planations. CoRR, abs/2004.03744.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and
Christopher Olah. 2022. Toy models of superpo-
sition. Transformer Circuits Thread.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart.
2021. CausaLM: Causal model explanation through
counterfactual language models. Computational Lin-
guistics, 47(2):333–386.

Atticus Geiger, Hanson Lu, Thomas F Icard, and
Christopher Potts. 2021. Causal abstractions of neu-
ral networks. In Advances in Neural Information
Processing Systems.

Atticus Geiger, Christopher Potts, and Thomas Icard.
2023a. Causal abstraction for faithful model interpre-
tation. Ms., Stanford University.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh
Rozner, Elisa Kreiss, Thomas Icard, Noah Goodman,
and Christopher Potts. 2022. Inducing causal struc-
ture for interpretable neural networks. In Proceed-
ings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine
Learning Research, pages 7324–7338. PMLR.

Atticus Geiger, Zhengxuan Wu, Christopher Potts,
Thomas Icard, and Noah D. Goodman. 2023b. Find-
ing alignments between interpretable causal variables
and distributed neural representations. Ms., Stanford
University.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associ-
ations in auto-regressive language models.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach,
Jeff Donahue, Bernt Schiele, and Trevor Darrell.
2016. Generating visual explanations. In Computer
Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part IV, volume 9908 of Lecture Notes
in Computer Science, pages 3–19. Springer.

Evan Hernandez, Sarah Schwettmann, David Bau,
Teona Bagashvili, Antonio Torralba, and Jacob An-
dreas. 2022. Natural language descriptions of deep
features. In International Conference on Learning
Representations.

Jing Huang, Zhengxuan Wu, Kyle Mahowald, and
Christopher Potts. 2023. Inducing character-level
structure in subword-based language models with
type-level interchange intervention training. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 12163–12180, Toronto, Canada. As-
sociation for Computational Linguistics.

Ayush Kaushal and Kyle Mahowald. 2022. What do
tokens know about their characters and how do they
know it? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2487–2507, Seattle, United States.
Association for Computational Linguistics.

Maxime Kayser, Cornelius Emde, Oana-Maria Cam-
buru, Guy Parsons, Bartlomiej W. Papiez, and
Thomas Lukasiewicz. 2022. Explaining chest x-
ray pathologies in natural language. In Medical Im-
age Computing and Computer Assisted Intervention -
MICCAI 2022 - 25th International Conference, Sin-
gapore, September 18-22, 2022, Proceedings, Part V,
volume 13435 of Lecture Notes in Computer Science,
pages 701–713. Springer.

Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John F.
Canny, and Zeynep Akata. 2018. Textual explana-
tions for self-driving vehicles. In Computer Vision
- ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part
II, volume 11206 of Lecture Notes in Computer Sci-
ence, pages 577–593. Springer.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 158–167. Association
for Computational Linguistics.

Joanna Materzynska, Antonio Torralba, and David Bau.
2022. Disentangling visual and written concepts
in clip. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 16389–
16398.

J. L. McClelland, D. E. Rumelhart, and PDP Research
Group, editors. 1986. Parallel Distributed Process-

326

ing. Volume 2: Psychological and Biological Models.
MIT Press, Cambridge, MA.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2023.
Language models implement simple word2vec-style
vector arithmetic.

Jesse Mu and Jacob Andreas. 2020. Compositional ex-
planations of neurons. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 17153–
17163. Curran Associates, Inc.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. 2022. In-context
learning and induction heads. Transformer Circuits
Thread. Https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Barbara H Partee. 1995. Lexical semantics and compo-
sitionality. In Lila R. Gleitman and Mark Liberman,
editors, Invitation to Cognitive Science, volume 1,
pages 311–360. MIT Press, Cambridge, MA.

Judea Pearl. 2014. Interpretation and identification of
causal mediation. Psychological methods, 19.

Christopher Potts and Roger Levy. 2015. Negotiating
lexical uncertainty and speaker expertise with dis-
junction. In Proceedings of the 41st Annual Meeting
of the Berkeley Linguistics Society, pages 417–445,
Berkeley, CA. Berkeley Linguistics Society.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever.
2019. Language models are unsupervised
multitask learners. https://cdn.openai.com/
better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

D. E. Rumelhart, J. L. McClelland, and PDP Research
Group, editors. 1986. Parallel Distributed Process-
ing. Volume 1: Foundations. MIT Press, Cambridge,
MA.

Chandan Singh, Aliyah R. Hsu, Richard Antonello,
Shailee Jain, Alexander G. Huth, Bin Yu, and Jian-
feng Gao. 2023. Explaining black box text modules
in natural language with language models.

Paul Smolensky. 1988. On the proper treatment of con-
nectionism. Behavioral and Brain Sciences, 11(1):1–
23.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3319–3328. PMLR.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388–12401. Curran Associates,
Inc.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Sarah Wiegreffe and Ana Marasovic. 2021. Teach me to
explain: A review of datasets for explainable natural
language processing. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 1).

327

Supplementary Materials

A Prompts Used in Observation-Based Evaluation

Prompts used for test set construction are shown in Figure 2 and Figure 3.

PROMPT: For each word or symbol in [’los’, ’middle’, ’opened’, ’green’, ’phoenix’, ’brown’,
’grandchildren’, ’north’, ’silver’, ’south’, ’newly’, ’long’, ’narrow’, ’big’, ’white’, ’small’,
’hawaii’, ’blue’, ’central’, ’san’], decide if it is related to the definition: color-related
words. Output all the words you found related as a Python string list called related_words. If
no word is found, output related_words = [].
OUTPUT: related_words = [’green’, ’brown’, ’silver’, ’white’, ’blue’]

PROMPT: List 20 examples, each in 1-2 words, that are words expressing appreciation, importance,
or overlooking. Directly output the examples as a Python string list called "examples".
OUTPUT: examples = [’grateful’, ’thankful’, ’admire’, ’cherish’, ’treasure’, ’valuable’, ’crucial’,
’significant’, ’vital’, ’essential’, ’crucial’, ’imperative’, ’paramount’, ’indispensable’, ’key’,
’disregard’, ’neglect’, ’overlook’, ’ignore’, ’forgive’]

Figure 2: Examples of prompts (gray) and GPT-3.5-turbo outputs (bold) for sampling string in JEK.

PROMPT: For each word in [’grateful’, ’thankful’, ’admire’, ’cherish’, ’treasure’,
’valuable’, ’crucial’, ’significant’, ’vital’, ’essential’, ’crucial’, ’imperative’, ’paramount’,
’indispensable’, ’key’, ’disregard’, ’neglect’, ’overlook’, ’ignore’, ’forgive’], write a coherent
sentence that includes the word in a meaningful context and surround the text with two asterisks
(**). Avoid having the text at the start of the sentence. Directly output the sentences as a
python string list called "sentences".
OUTPUT: sentences = [
"I am **grateful** for all the support and love that I have received.",
"I am **thankful** for having such wonderful friends in my life.",
"I **admire** the way she handled that difficult situation with grace.",
"I **cherish** the memories we made together during our vacation.",
"**Treasure** the moments you spend with your loved ones.",
"Education is **valuable** for personal and professional growth.",
"A healthy diet is **crucial** for maintaining good physical health.",
"**Significant** progress has been made in the field of technology.",
"It is **vital** to take care of our mental well-being.",
"Communication skills are **essential** for effective teamwork.",
"A healthy work-life balance is **crucial** for overall well-being.",
"It is **imperative** that we take action to protect the environment.",
"Financial planning is **paramount** for a secure future.",
"Innovation is **indispensable** in driving progress and growth.",
"Time management is **key** to achieving success in any endeavor.",
"We should not **disregard** the feelings of others.",
"It is important not to **neglect** our physical health.",
"Let’s not **overlook** the efforts made by our teammates.",
"We should not **ignore** the warning signs of burnout.",
"**Forgive** yourself for any mistakes you have made in the past."]

Figure 3: Examples of prompts (gray) and GPT-3.5-turbo outputs (bold) for embedding a string into a sentence
context.

B Additional Analysis of Type I and Type II Errors

For Type I errors, i.e. precision error cases, we observe that form-based explanations have a higher
precision at 0.78, while the rest only have a precision of 0.62.

For Type II errors, i.e. recall error cases, neurons mostly activate on inputs that have no clear relation-
ship with the explained pattern, as hypothesized by work on superposition phenomena (Elhage et al.,
2022) where a single neuron potentially encodes a mix of concepts. We further investigate whether the
Type II errors in GPT-4 explanations are due to multiple concepts encoded in a single neuron, where the
explanation only covers a subset of the concepts.

328

GPT-4 explained patterns Type II error patterns

The pandemic had a negligible impact on the economy. The pandemic had a drastic impact on the economy.
In her life, winning the lottery was a minor turning point. In her life, winning the lottery was a major turning point.
The new regulations will have an insignificant impact on busi-
nesses.

The new regulations will have a significant impact on businesses.

In its research and development, the company made insubstantial
progress.

In its research and development, the company made substantial
progress.

To solve the problem, they introduced a conservative new ap-
proach.

To solve the problem, they introduced a nonconservative new
approach.

The death of a loved one can have a superficial effect on a person. The death of a loved one can have a profound effect on a person.
They received a paltry amount of donations for the charity. They received a considerable amount of donations for the charity.
The dinosaur had a tiny size compared to other animals. The dinosaur had an enormous size compared to other animals.
The desert stretched out before them, with its small sandy dunes. The desert stretched out before them, with its immense sandy

dunes.
She felt a mild adrenaline rush before her performance. She felt an intense adrenaline rush before her performance.
The young artist’s art exhibition received no recognition and was
mediocre.

The young artist’s art exhibition received recognition and was
noteworthy.

Signing the peace treaty was a trivial event in history. Signing the peace treaty was a momentous event in history.
The painting had unimpressive color changes and simple details. The painting had striking color changes and intricate details.
The play had an unremarkable plot twist that didn’t surprise the
audience.

The play had a dramatic plot twist that surprised the audience.

His decision to invest in the company at an early stage was
unimportant.

His decision to invest in the company at an early stage was
crucial.

The news of the accident was inconsequential and didn’t affect
the whole community.

The news of the accident was grave and saddened the whole
community.

The construction of a new airport was an modest task for the
engineers.

The construction of a new airport was a monumental task for the
engineers.

They had a light discussion about the future of their relationship. They had a serious discussion about the future of their relation-
ship.

(a) Given the GPT-4 explanation “small or minor changes, issues or improvements”, we generate minimal contrasting pairs where
each adjective meaning minor is changed to its antonym. We extract neuron activation from each sentence at the underlined
words. If the GPT-4 explanation is accurate, the neuron should not activate on opposite words, however, we observe high
activation on opposite words as shown in Figure 4b.

(b) Neuron activation on “big or major changes” has similar distribution as “small or minor changes”, despite GPT-4 explanation
of the neuron is “small or minor changes”.

Figure 4: Examples of Type II errors where a neuron activates on antonyms of the concept in the explanation.

329

Explanation E Task Template T with strings in JEK and expected outputs

Numbers
(13%)

Unit conversion
Numerical comparison

The hiking trail stretches for 2 miles (3.2
The war was in 1935 and he was born in 1937 , which was a few years after

Verbs
(9%)

Verb tense
Transitive/Intransitive

They play piano every day, so I believe last night they also played
We live. They have pets. You leave. I stand. It happens. We swim .

Locations
(4%)

Capital retrieval
City retrieval

The capital of Canada is Ottawa
The CN Tower is located in the city of Toronto

Names of people
(1%)

Gender agreement
Position retrieval

Alice didn’t come because she
Kay Ivey was the governor of Alabama

Time expressions
(0.3%)

Verb tense
Next day

They play piano every day, so I believe last night they also played
Yesterday was Wednesday, February 1st 2020. Today is Thursday

Plural inflection
(0.1%)

Subject-verb agreement
Noun-pron. agreement

We saw the trees , which were
The cats ran away because they

Table 5: The full list of intervention-based evaluation tasks.

We manually inspect 100 explanations that have Type II errors and observe at least 6 cases where the
error involves antonyms of the concepts picked out by the explanation, such as the word “above” for an
explanation the word “below” and phrases related to it, and the word “ended” for an explanation words
and phrases related to continuation, particularly in the context of ‘reading.’. A full example with test
inputs is shown in Figure 4.

We also found neurons activate on inputs that have shared linguistic structures as the concepts in the
explanation. For example, while the explanation is days of the week, the neuron also consistently activates
on internet platforms such as “Google” or “Facebook” when preceded by the preposition “on”. More
interesting, the Type I errors of the same neuron involve inputs where the day of the week is not preceded
by the preposition “on”.

The majority of error cases, however, involve neurons activating on inputs unrelated to the explanation
but nonetheless forming coherent concepts. These findings further support the view that individual neurons
might not be the most useful unit of analysis in a large language model.

C Experiment Details in Intervention-Base Evaluation

C.1 Tasks

We curate tasks based on existing work that conducts behavioral testing on Transformer models, such as
tests on grammatical phenomena (Warstadt et al., 2020) and factual associations (Meng et al., 2022). For
each task specified by the template T and a fixed set of at least 30 strings in JEK, we verify that GPT-2 XL
can correctly predict the next token on this set of inputs. The full list of tasks is shown in Table 5.

C.2 Interchange Interventions

Inputs For a given template T , we sample a set of at least 30 strings from JEK to fill the template and
randomly pair up the filled templates to create 256 pairs of (base, source) as the test inputs.

Intervention Locations For each set of explanations to evaluate, one could perform an exhaustive
search over every token position and report the highest IIA among all positions. However, based on
how information is processed in Transformer MLP layers (Geva et al., 2022; Meng et al., 2022, 2023;
Merullo et al., 2023), we could determine intervention locations as follows. If the neurons associated
with the explanations are in the earlier layers (i.e. layer 1-24), we apply interchange interventions at the
token positions that correspond to the string in JEK, i.e. tokens highlighted in light blue in Table 5. If the
neurons are in later layers, we apply interchange interventions at the last token position.

330

Explanation: Names of people
Task: Gender agreement
Intervention location: Layer 0 at the
name tokens

Explanation: Plural inflection
Task: Noun-pron. agreement
Intervention location: Layer 0 at the
noun tokens

Explanation: Time expressions
Task: Next day
Intervention location: Layer 0 at the
day of the week/month tokens

Explanation: Names of people
Task: Position retrieval
Intervention location: Layer 15-25 at
the name token

Explanation: Plural inflection
Task: Subject-verb agreement
Intervention location: Layer 29-39 at
the last token

Explanation: Verbs
Task: Transitive/Intransitive
Intervention location: Layer 25-35 at
the last token

Table 6: Additional intervention-based evaluation results.

C.3 Additional Results
We show additional intervention-based evaluation results in Table 6. Results on the rest of the tasks can
be found in Table 4. These results further confirm the two trends discussed in Section 4.3, namely (i)
token-activation correlation baseline≫ GPT-4 explanation ≈ random baseline and (ii) IIA increases as
we intervene on a higher percentage of neurons.

331

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 332–341
December 7, 2023. ©2023 Association for Computational Linguistics

NPIs Aren’t Exactly Easy:
Variation in Licensing across Large Language Models

Deanna DeCarlo∗1 William Palmer∗1 Michael Wilson2 Bob Frank1

1Department of Linguistics, Yale University
2Department of Linguistics & Cognitive Science, University of Delaware

{deanna.decarlo, w.palmer, bob.frank}@yale.edu; mawilson@udel.edu

Abstract

We examine the licensing of negative polarity
items (NPIs) in large language models (LLMs)
to enrich the picture of how models acquire
NPIs as linguistic phenomena at the syntax-
semantics interface. NPIs are a class of words
which have a restricted distribution, appearing
only in certain licensing contexts, prototypi-
cally negation. Unlike much of previous work
which assumes NPIs and their licensing envi-
ronments constitute unified classes, we con-
sider NPI distribution in its full complexity: dif-
ferent NPIs are possible in different licensing
environments. By studying this phenomenon
across a broad range of models, we are able
to explore which features of the model archi-
tecture, properties of the training data, and lin-
guistic characteristics of the NPI phenomenon
itself drive performance.1

1 Introduction

Negative polarity items (NPIs) are words or phrases
that must be licensed by another element, often
negation, that occurs in a syntactically appropriate
context (Klima, 1964). Determining the contexts in
which such elements are possible has proven to be a
difficult problem for language models. Marvin and
Linzen (2018) report that LSTM language mod-
els fail to systematically distinguish grammatical
from ungrammatical occurrences of NPIs across
a range of difficult cases. Warstadt et al. (2019)
study BERT’s ability to determine the possibility
of an NPI occuring in a masked position and find
improved performance, though success depends
upon the mode of evaluation. Hu et al. (2020) re-
port even better results with GPT-2 and GPT-2-XL.
Finally, Zhang et al. (2021) show that with suffi-
ciently many parameters and enough training data,
as found in RoBERTa-Large (Zhuang et al., 2021),

∗These authors contributed equally to this work
1Our code and dataset are available at github.com/clay-

lab/condgen-evaluation.

a transformer language model can achieve near-
human levels of performance on NPI licensing.

Though this might be thought of as a success
story for LLMs, we may still wonder why this
particular grammatical regularity has posed such
difficulty, as compared to subject-verb agreement,
where smaller LSTMs trained on less data achieved
quite good performance (Marvin and Linzen, 2018).
We suspect that the reasons for this are threefold.
First, unlike grammatical subjects that condition
agreement on their corresponding verbs in reason-
ably predictable ways, the set of contexts that li-
cense NPIs and the range of NPIs are both rather
diverse. Further, while every instance of a finite
clause will include a subject and agreeing verb,
many contexts that could license NPIs do not in-
clude one. Finally, NPI licensing and subject-
verb agreement are both dependencies that are un-
bounded by linear distance; however, the structural
distance between a licensing context and an NPI
can grow without bound (cf. I don’t see anyone and
I don’t want to try to see anyone), unlike the de-
pendency that determines subject-verb agreement.

Previous studies of LLM performance on NPIs,
including Warstadt et al. (2019) and Jumelet et al.
(2021), have examined the first of these factors: the
variability of the licensing environment. Specifi-
cally, these studies explored the degree to which the
licensing properties of distinct environments are en-
coded uniformly, with what look like reasonably
promising results. Such work assumes implicitly
that different environments should be treated iden-
tically (though see Bylinina and Tikhonov (2022)
for work that does not make this assumption). Sim-
ilarly, LLM evaluations on NPIs have assumed that
different NPIs are licensed in identical environ-
ments. However, as we will discuss in Section 2,
these assumptions are false: different environments
license different NPIs. Learning the distribution
of NPIs is thus more complex than previous LLM
evaluations have assumed. We aim to develop an

332

approach to evaluate LLMs’ knowledge of NPIs in
a way that is sensitive to their unique distributional
patterns, and to uncover what factors lead to greater
success in a model’s ability to correctly determine
the possibility of an NPI in a given context.

2 Variability in NPI Licensing

As already noted, NPIs are expressions that are
only grammatical in a restricted set of contexts,
prototypically understood to be negative. Canoni-
cal examples of such contexts include the negative
quantifiers no or none of the, or sentential negation
not. As seen in (1), the English NPI ever is possi-
ble when it is in the scope of such an element, and
ungrammatical otherwise.

(1) a. No/None of the packages had ever
arrived at the yellow house.

b. Packages had not ever arrived at the
yellow house.

c. * Packages had ever arrived at the yel-
low house.

As seen in (2), the NPI ever is also licensed by other
contexts, including (indirect) yes/no questions, the
restrictor of superlatives, and under the scope of
only, among many others.

(2) a. I wonder whether the packages had
ever arrived at the yellow house.

b. These are the greatest packages that
had ever arrived at the yellow house.

c. Only packages had ever arrived at
the yellow house.

A major step forward in our understanding of the
distribution of NPIs came from attempts to char-
acterize these licensing environments in a uniform
fashion (Ladusaw, 1979). However, it was quickly
observed that not all NPIs are licensed by the same
contexts. For example, the English NPI (adverbial)
any is licensed by negation and indirect yes/no
questions but not by superlatives.

(3) a. No masons build cathedrals any bet-
ter than that.

b. * These are the greatest masons that
build cathedrals any better than that.

c. I wonder whether the masons have
built a cathedral any better than that.

NPIs like exactly are even more restrictive, occur-
ring only with negation:

(4) a. None of the students have exactly
been getting good grades.

b. * These are the smartest students
that have exactly been getting good
grades.

c. * I wonder whether the students have
exactly been getting good grades.

Recent research in formal semantics has aimed
to understand this variation. Under the proposal
of Zwarts (1998), which was further refined in
Giannakidou (1998), licensing contexts are char-
acterized according to their semantic properties.
Zwarts and Giannakidou provide four increasingly
demanding semantic criteria for characterizing con-
texts, each of which entails the previous one. Such
a semantic classification allows us to characterize
the distribution of different NPIs. Each NPI is as-
sociated with a certain minimal requirement on its
licensing context, and will therefore be allowed in
all more restrictive contexts. This creates a hierar-
chy of NPIs, ranging from superweak NPIs, which
require environments satisfying only the weakest
condition, to superstrong NPIs, which are require
environments satisfying the strongest condition.

Elegant as this approach is, Hoeksema (2012)
shows that this classification is not completely ad-
equate, as it does not capture the full complexity
and diversity in the distribution of different NPIs.
Table 1 reports Hoeksema’s characterization of li-
censing contexts for a number of NPIs.2,3 Among
other things, this table demonstrates that the rela-
tionship between the set of licensing contexts for
different NPIs does not follow the subset-superset
relationship that would be expected from the pro-
posal just outlined: the set of contexts that license
yet is neither a subset nor a superset of those licens-

2The data in this table reflects Hoeksema’s reports from
the NPI literature and his own corpus analysis. The authors,
all native English speakers, have checked and agree with these
judgments. Following Bylinina and Tikhonov (2022), we
believe it would be useful to compare model performance
to experimental measures of NPI acceptability. While there
is a rich body of experimental work on this topic, including
Chemla et al. (2011), Geurts (2003), and Denić et al. (2021),
none of these studies consider the range of contexts and NPIs
explored in the current work, so detailed comparison with
human judgments and behavior will need to wait for future
research.

3We exclude from consideration expressions that are not
uniquely identifiable as NPIs from their position in the sen-
tence, as opposed to their interpretation (e.g., either, can help).
Furthermore, we also exclude NPIs that consist of multiple
words (e.g., at all or in years), since, as an anonymous re-
viewer pointed out, it is a non-trivial matter to assess whether
a language model “accepts” them.

333

1 2 3 4 5 6 7 8 9
any + + + + + + + + +
ever + + + + + + + + +
remotely + + + + + + + - +
adv. any + + + + + + + - +
yet + + + - + - + + +
anymore + - - - - - + - -
squat + - - - - - + - -
exactly + - - - - - - - -

Table 1: Licensing contexts for English negative polar-
ity items (modified from Hoeksema 2012). Contexts: 1
= negation, 2 = indirect y/n questions, 3 = matrix y/n
questions, 4 = wh-questions, 5 = conditional clauses, 6
= universal restrictors, 7 = the only restrictor, 8 = su-
perlative restrictors, 9 = scope of only

ing adverbial any. Nonetheless, the distribution of
NPIs instantiated in this table is something that a
language model should master. Further, we may
expect that differences in restrictiveness, both of
NPIs (in terms of the number of contexts in which
they are licensed) and contexts (in terms of the
number of NPIs they license) have an impact on
the feasibility of learning the distributions. We turn
now to exploring these questions.

3 Experiment

3.1 Models

In recent years, LLMs have been developed with
a variety of architectures, model sizes and train-
ing datasets. While smaller models with smaller
datasets are easier to train and work with, larger
models with larger datasets typically perform better
on linguistic tasks. In the current work, we consider
as broad a range of LLMs as was feasible, with the
limitation that many state-of-the-art models are pro-
prietary and do not provide access to the detailed in-
formation our experiments require. Specifically, we
consider three broad classes of transformer archi-
tectures: Encoder-only Masked Language Models
(MLMs), Decoder-only Language Models (LMs),
and Encoder-Decoder Sequence to Sequence Mod-
els (Seq2Seqs). Parameter counts in these models
ranged from 11 million to 175 billion, and training
data ranged from from 6 GB to 4.7 TB. Details of
the models studied are in Table 2.

3.2 Materials and Methods

We construct a test dataset that includes each of
the 8 NPIs and 9 contexts listed in Table 1. To

Task Architecture # Models # Params. (M) Dataset Size (GB)
MLM AlBERT 8 11 - 206 6
MLM BERT 6 66 - 335 49
MLM MultiBERTs 25 110 49
MLM RoBERTa 4 82 - 355 16
MLM Electra 3 14 - 51 14
LM LLaMA 4 6738 - 65286 4700
LM OPT 9 125 - 174604 800
LM GPT2 4 124 - 1558 55
Seq2Seq T5 Efficient 26 16 - 11307 305

Table 2: LLMs used in current experiment.

these contexts, we add an additional Null context
that does not license any NPIs. For each NPI, we
create 6 distinct sentence templates each of which
can be prefixed by a carrier of the licensing context.
Some contexts support more than one carrier prefix,
which yielded at total of 12 distinct instantiations
per sentence template. An example of how this
works is shown in Table 3. In total, there are 576
sentences in the test dataset.

3.3 Testing Procedure

Testing of the different model types proceeds in
slightly differently fashions. For MLMs, we re-
place the NPIs in the test examples with mask to-
kens, feeding the resulting string to the model. We
then extract the log probability of the NPI at the
position of the mask token. For the Seq2Seq mod-
els, which were trained on span-mask denoising,
we used a similar procedure, giving the appropriate
masked sequence to the model, and then extracting
the log probability of the NPI given by the decoder
as the filler for the mask. Autoregressive LMs are
tested by truncating the sentence to the position
immediately before the NPI. We then feed this se-
quence to the model, using teacher, and then obtain
the log probability for the NPI at the following to-
ken position. In all cases, we ensure that the NPIs
under study constitute single tokens in the model
vocabulary.4

It is immediately clear that there is an asymmetry
between the MLMs and Seq2Seq models on the one
hand and the LMs on the other: the former models
see both the left and right context in assessing the
likelihood of the NPI, while the LMs only see left
context. We have done our best to construct stimuli
in which the right context provides no information
about the possible presence of an NPI (the right
context is fully acceptable in the Null context in
the absence of an NPI), as this would penalize the

4Cases where NPIs were more than one token and thus
excluded were the following: DistilBERT Base Cased, BERT
Base Cased, and BERT Large Cased lacked squat; all LLaMA
models lacked squat and remotely; and all Seq2Seq models
(which were all T5 models) lacked squat.

334

Licensing Context Carrier prefix(es) any Example
*Null 0, The *Laws have done any harm.

Negation No, None of the No laws have done any harm.
Indirect y/n question I wonder whether the I wonder whether the laws have done any harm.
Matrix y/n question Is it likely that Is it likely that laws have done any harm.
Indirect wh-question I wonder which I wonder which laws have done any harm.
Conditional clauses They will notify everyone if the They will notify everyone if the laws have done any harm.
Universal restrictor These are all of the <that> These are all of the laws that have done any harm.
The only restrictor These are the only <that> These are the only laws that have done any harm.
Superlative restrictor These are the greatest <that> These are the greatest laws that have done any harm.
Scope of only Only Only laws have done any harm.

Table 3: Test examples created from the template laws have done any harm with the italicized NPI any. For each
licensing context, this template is prefixed by one or more of the carriers in bold to produce the test.

LMs.

3.4 Analysis via Point-Biserial Correlations
There is no absolute probability that can tell us
whether a model licenses an NPI in a particular
context. Instead, we must compare relative proba-
bilities: how much more (or less) likely is an NPI in
a particular licensing context compared to a context
that does not license any NPIs? For this reason, we
“adjust” the probability by subtracting from it the
probability of the Null context, which we know is
not a licensing context for any NPI.5 The resulting
value tells us whether an NPI in a particular context
is more or less probable compared to a minimally
different context that does not license any NPIs: a
positive value indicates that an NPI is predicted to
be more likely than in the baseline context (i.e., the
model “licenses” it in that context to some degree),
while a 0 or negative value indicates the opposite
(i.e., the model does not license it in that context).

To explore to what degree LLMs are sensitive to
the contours of NPI distributions in the same way
that humans are, we compute the point-biserial cor-
relation between the (adjusted) model log probabil-
ities extracted during testing and the dichotomous
human judgments given in Table 1. The analysis
from here on is bifurcated into evaluation by NPI
and by licensing context. For each analysis, the log
probabilities obtained in Section 3.3 are grouped
by model instance and NPI or context. The point-
biserial correlation is performed separately for each
probability group with a binary encoding of the hu-
man judgments from Table 1 using the following
equation:

r =
x̄1 − x̄0
sx

·
√
n1 · n0
n2

5We then exclude the adjusted probability of the NPI in
the baseline context from further analysis, as it is always 0
following this procedure.

For both analyses (NPI and context), n and sx have
the same interpretation:

n = # of test items
sx = s.d. of human binary judgments

For analysis by an NPI N, the interpretation of these
variables is as follows:

x̄1 = mean adj. log prob of N in items that license it
x̄0 = mean adj. log prob of N in items that do not license it
n1 = # of items in which N is licensed
n0 = # of items in which N is not licensed

We can take n1 to be a rough proxy for strength
of the NPI: a weak NPI will have a higher value,
while a strong NPI will have a lower one. 6

For analysis by a licensing context C, the inter-
pretation is:

x̄1 = mean adj. log prob across NPIs licensed by C
x̄0 = mean adj. log prob across NPIs not licensed by C
n1 = # of C items with licensed NPI
n0 = # of C items with unlicensed NPI

Note that in the analysis by licensing context,
the negation context is excluded as there is no vari-
ance in its associated human licensing judgments;
it licenses all of the NPIs.

3.5 Beta Regressions
In order to understand what factors are responsible
for the variation in correlations across different
NPIs and contexts, as well as across models, we
perform a number of beta regressions. Because
beta regressions require a dependent variable in the
range [0, 1] and our values are correlations with
a possible range of [−1, 1], we scale them to the
appropriate range by adding 1 and dividing by 2.

6We recognize that this quantification of NPI strength flat-
tens distinctions among NPIs that are not characterized in
terms of a subset-superset relationship among licensing en-
vironments, as seen in “bagel" environments, though such
elements do not exist in English.

335

Context Occurrences
Indirect y/n question 266
Matrix y/n question 358
Indirect wh-question 866
Conditional clauses 1960
Universal restrictor 755
The only restrictor 187
Superlative restrictor 807
Scope of only 142

Table 4: Frequency of licensing contexts predictions in
the parsed Penn Treebank datasets Brown and WSJ.

For each of the correlation data sets (by NPI
and by context), we run two types of regressions.
In the first, we regress the scaled correlations on
the log of the number of parameters in a given
model and a linguistic quantity we call licensing
number. We define the licensing number of an
NPI as the number of distinct environments that
license it according to Table 1. For instance, the
licensing number of any is 9, while the licensing
number of exactly is 1. Similarly, we define the
licensing number of a context as the number of
NPIs it licenses; for example, the licensing number
of negation is 8, while the licensing number of
superlative restrictors in 3. Because some of the
LLMs we evaluate do not include particular NPIs
as single tokens, we convert the licensing number
of contexts to a ratio by dividing it by the number
of NPIs that occur in the model’s vocabulary as a
single token. This gives us the proportion of the
available NPIs that a model licenses in a context.
As a second type of regression, we use as predictor
variables the individual NPIs or contexts for the
analysis by NPI or context, respectively. NPIs and
contexts are converted to one-hot encodings, and
the resulting vectors are used as predictors.

3.6 Context Frequencies

We also considered as an additional predictor of
model correlations the frequencies of the different
licensing contexts. To do this, we used the Brown
and WSJ parsed datasets from the Penn Treebank
(Marcus et al., 1999) to estimate the frequency of
our licensing contexts in natural text, which we
expect to be indicative of the frequency of the li-
censing contexts in the models’ training corpora.
We searched the datasets using Tregex (Levy and
Andrew, 2006). Due to inconsistencies in assigned
structures in the corpus, the frequencies reported
in Table 4 are imprecise, but we believe that they

are reasonably representative.
Ideally, one would determine the frequencies

of NPIs in natural text as well. However, such a
pursuit is difficult, since many NPIs have non-NPI
uses that may occur in non-licensing environments.
For example, any lives a double life as an NPI and
as a word indicating “free-choice”:

(5) a. Nobody had any questions. (NPI)

b. Pick a card, any card! (free-choice)

What’s more, a possible NPI appearing in the scope
of a licensor is insufficient to ensure it is interpreted
as an NPI:

(6) John isn’t remotely working.

Here, remotely can be read as an NPI, with the
resulting interpretation that John isn’t even close
to doing anything that could be considered work-
ing. However, it could also be interpreted literally,
as saying that John is working in-person. To our
knowledge, all (English) NPIs suffer from one type
of ambiguity or another in a similar way. Searching
for NPIs in corpora is thus not as straightforward
as one might hope because it involves not only
the relatively simple task of finding specific words,
but also the more complicated task of determining
how those words are meant to be interpreted in a
particular context.

4 Results

4.1 By NPI

Figure 1 shows the result of the correlations by NPI,
with parameter count as the independent variable.
Here we see considerable variation in performance
across NPIs, particularly in the LMs and Seq2Seq
models, where ever has a relatively high correlation
across model sizes, while yet has a much lower
correlation.

A beta regression on the licensing number and
parameter count, shows a significant positive effect
of licensing number (β = 0.196, p < 0.001), as
well as a significant positive effect of the number
of parameters (β = 0.230, p < 0.001). When we
investigate our results by model type (LM, MLM,
Seq2Seq) separately, we find that the relationships
hold only for Seq2Seq models, but not for MLM
and LM models, with a positive relationship for
licensing number (β = 0.190, p < 0.05) and
a positive relationship for number of parameters
(β = 0.226, p < 0.05).

336

Figure 1: Relationship between the number of model parameters and the correlation between model predictions and
human judgments for NPIs. NPIs are presented from most to least licensed, from left to right.

We also run a series of beta regressions to evalu-
ate the relative performance of different NPIs. To
do this, we code the NPIs as separate one-hot pre-
dictors, and regress on all but one of the one-hot
vectors in turn. The omitted vector can be inter-
preted as the regression model’s “baseline,” with
effects associated with the other predictors reveal-
ing how model performance on the associated NPIs
compare to this baseline. By leaving out each NPI,
we obtain a partial ordering that describes the rela-
tive degree to which the models’ predictions accord
with human judgments.

Figure 2 shows the partial orderings obtained for
each model type, represented as Hasse diagrams.
The sequence from left to right represents MLMs,
LMs, and Seq2Seqs. The visual ranking of one NPI
over another indicates that the models’ judgments
for the higher ranked NPI more closely match hu-
man judgments than the lower ranked NPI. Our re-
gression results for the whole dataset are reflected
in the MLM Hasse diagram as NPIs with higher
licensing numbers (ever, remotely, and any (adv.))
generally appear nearer to the top, while NPIs with
lower licensing numbers (squat and anymore) ap-
pear toward the bottom. An interesting exception
is that exactly has the lowest licensing number, be-
ing licensed by only 1 context, yet it is one of the
highest ranked NPIs.

For LMs, we similarly see many NPIs in a po-
sition in the Hasse diagram consistent with the
regression results. For example, ever and exactly
appear again at the top. Additionally, we see that
any (adv.) is in the middle of the LM Hasse dia-

gram, just as it is in the other two diagrams.
For Seq2Seqs, we see ever and remotely at the

top, in a similar position as in the MLM and LM
Hasse diagrams. We also see that yet, anymore,
exactly, and any (det.) have many of the same or
similar relative orderings as in the MLM Hasse
diagram.

4.2 By Context
The correlation results broken down by model type
and context are illustrated in Figure 3. We see that
there is considerable variability across contexts,
particularly in the LM results, with Indirect Wh-Qs
having a correlation near 0, and Indirect Y/N-Qs
and Conditionals having a correlation generally
above 0.5.

A beta regression on the results by context with
the licensing number, parameter count, and their
interaction as independent variables found signifi-
cant effects of licensing number (β = −3.286, p <
0.001) and number of parameters (β = −0.175,
p < 0.05). These effects were qualified by a signif-
icant interaction of licensing number and number of
parameters (β = 0.302, p < 0.01). The direction-
ality of these effects indicates that while smaller
models tend to display behavior less correlated with
human judgments for contexts that license more
NPIs, this penalty decreases for larger models 7.
Additionally, a regression on context frequency

7It is worth noting that the licensing contexts in our study
exhibit limited variability, typically licensing 4 to 5 NPIs.
Notable exceptions in our study are The Only Restrictor and
Superlative Restrictor, which license 7 and 3 out of 8 NPIs,
respectively. As such, our results are sensitive to the choice of
the set of NPIs to a good degree.

337

ever

exactly remotely any (adv.)

squat yet any (det.)

anymore

ever exactly

anymore

squat any (adv.) remotely

yet any (det.)

ever

remotely

exactly any (adv.) any (det.)

yet

anymore

Conditional

Only Univ. Restr. Indirect Y/N-Q

Indirect Wh-Q Matrix Y/N-Q

Superl. Restr.

The Only Restr.

Indirect Y/N-Q Conditional

Superl. Restr. Matrix Y/N-Q Univ. Restr.

The Only Restr.

Only

Indirect Wh-Q

Conditional Superl. Restr. Indirect Wh-Q

Indirect Y/N-Q Univ. Restr. Only

The Only Restr.

Matrix Y/N-Q

1

Figure 2: The diagrams are presented in the following sequence, from left to right: MLM, LM, and Seq2Seq.
These Hasse diagrams depict the partial ordering of NPIs based on the results of the beta regressions performed
on the one-hot encodings. The orderings are derived from correlations between the NPIs and human licensing
judgments, with certain NPIs demonstrating notably higher correlations. These diagrams utilize vertical positioning
to visually represent the relative ordering: an NPI positioned higher in the diagram indicates a stronger correlation
with human judgments compared to any NPI reachable by following a downward line. As an illustration, in the
Seq2Seq diagram, ever occupies the topmost position. Every other NPI can be reached by tracing a line downward
from ever, signifying its comparatively greater correlation with the human judgments. NPIs that are not connected
in this manner did not exhibit any statistically significant relative relationships in the regression results.

found significant positive effects (β = 0.210,
p < 0.001).

As with the NPIs, we perform beta regressions
on the licensing contexts encoded as one-hot vec-
tors, excluding each licensing context in turn as
a “baseline.” We thus obtain a partial ordering of
model performance on particular contexts across
all NPIs that a context licenses.

Figure 4 shows the partial orderings of the licens-
ing contexts obtained for each model type. The
sequence from left to right represents MLMs, LMs,
and Seq2Seqs. MLMs’ predictions most closely
correlate with human judgments for Conditionals,
with the least similarity found for the licensor The
Only Restrictor. Figure 4 also demonstrates that
LMs’ performance most closely accords with hu-
man preferences in the Conditional and Indirect
Y/N-Q contexts and least so in the Indirect Wh-Q
context. For the Seq2Seq model, performance is
best for the Conditional, Superlative Restrictor,
and Indirect Wh-Q contexts.

Across all models, Conditional licensing envi-
ronments are associated with the highest model
performance. Indirect Y/N-Q and Universal Re-
strictor contexts tend to be associated with an up-
per middling performance across the model tasks.
Other licensing environments, namely Superlative
Restrictor and Indirect Wh-Q, are associated with
all levels of performance, appearing toward the
top, middle, and bottom of the different model dia-
grams.

5 Discussion

Our results paint a complex picture, where both
model size and the number of licensing contexts of
a given NPI contribute to higher correlations with
human judgments. Nevertheless, we observe sub-
stantial variation in the correlations between model
and human preferences across NPIs and contexts.

For the results by NPI, we see relatively con-
sistent positions of NPIs across different model
architectures when considering their relative rela-
tionships with the correlations, indicating that in-
teresting structural patterns exist within the class of
NPIs. While some aspects of traditional NPI theory
are reflected, namely the number of licensing con-
texts for a given NPI (which is informative about
its relationship to other NPIs), there is still much
complexity that does not fit in with the specifics of
NPI theory. For example, exactly is consistently
among the NPIs on which the models perform best,
despite being licensed in only one of the contexts
we consider. This indicates that the behavior of the
LLMs we considered does not fully capture the dis-
tinctions relevant to the licensing of NPIs proposed
in traditional linguistic theories. It is also possible
that because exactly is not licensed by any contexts
other than negation, its licensing conditions are
easier to learn. In other words, exactly is such a
strong NPI in a prototypical sense that models may
find it easier to distinguish the context that licenses
it from the contexts that do not in comparison to

338

Superlative restrictor Indirect wh question Universal restrictor Indirect y/n question Matrix y/n question Conditional Only The only restrictor
L

M
M

L
M

S
e

q
2

S
e

q

7 8 9 10 11 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11 7 8 9 10 11

-0.25

0.00

0.25

0.50

0.75

0.0

0.2

0.4

0.6

-0.25

0.00

0.25

0.50

Number of Parameters

C
o
rr

e
la

tio
n

Figure 3: Relationship between the number of model parameters and the correlation between model predictions and
human judgments for the licensing contexts. Contexts are presented from least to most licensing, from left to right.

NPIs that are subject to greater complexity.
Although much contemporary research has

shown that larger LLMs trained on larger datasets
tend to exhibit better performance compared to
smaller models trained on smaller datasets, our find-
ings make us less sanguine about the prospect of
big models and big data leading to fully human-like
linguistic behavior. While the models do acquire
a degree of knowledge pertaining to NPI licensing
contexts, many of the subtleties are lost. It is plau-
sible that within this domain, the notion that larger
LLMs are inherently superior may not hold true at
the level of detail we investigate. Additionally, it is
worth noting that the context frequency in natural
text seems to be related to model performance in
some way, though a more extensive investigation
may better distinguish its effects from the effects
of licensing number and model features.

The elevated performance observed in Condi-
tional contexts across all three model types may
be plausibly attributed to the syntactic character-
istics of this licensing environment. Specifically,
the use of the word if serves as a distinguishing
marker for a Conditional, while other contexts may
be identified only by more abstract structural prop-
erties. This easy-to-identify distinguishing feature
may render proficiency in this licensing construc-
tion relatively more obtainable. In future research,
more robust NPI theory could provide additional
explanatory power for understanding the relation-
ship that LLMs learn about NPIs and their licensing
environments.

6 Conclusion

We investigated NPI licensing in LLMs by ana-
lyzing the similarities between model and human
judgments and their relationship with certain lin-
guistic and model features. Analysis by NPI re-
veals a significant positive relationship between
both model size and model performance, as well as
between licensing number and model performance.
However, analysis by licensing context reveals that
larger LLMs may not be inherently better than
smaller LLMs at particular levels of granularity
and that model performance may not be influenced
by all of the anticipated factors in the most intuitive
way. Additionally, we have determined hierarchies
among NPIs and licensing contexts, which pro-
vide a broader perspective on NPI licensing across
model tasks. Several patterns emerged: while tra-
ditional semantic classifications of NPIs were not
reflected, a key feature, namely the number of con-
texts that license a given NPI, does appear to have
an impact on the hierarchies, though with some
clear exceptions. Similarly, hierarchies among li-
censing contexts may be influenced by the syntactic
characteristics of the environments. This complex
situation seems to reflect the complexity of NPIs,
which are linguistically heterogeneous.

Limitations

Many prominent LLMs today are proprietary and
restrict the ability to collect the probability the
model gives to an arbitrary token at an arbitrary

339

ever

exactly remotely any (adv.)

squat yet any (det.)

anymore

ever exactly

anymore

squat any (adv.) remotely

yet any (det.)

ever

remotely

exactly any (adv.) any (det.)

yet

anymore

Conditional

Only Univ. Restr. Indirect Y/N-Q

Indirect Wh-Q Matrix Y/N-Q

Superl. Restr.

The Only Restr.

Indirect Y/N-Q Conditional

Superl. Restr. Matrix Y/N-Q Univ. Restr.

The Only Restr.

Only

Indirect Wh-Q

Conditional Superl. Restr. Indirect Wh-Q

Indirect Y/N-Q Univ. Restr. Only

The Only Restr.

Matrix Y/N-Q

1

Figure 4: The diagrams are presented in the following sequence, from left to right: MLM, LM, and Seq2Seq.
These Hasse diagrams depict the partial ordering of licensing contexts based on the results of the beta regressions
performed on the one-hot encodings. The orderings are derived from correlations between the contexts and human
licensing judgments, with certain contexts demonstrating notably higher correlations. These diagrams utilize
vertical positioning to visually represent the relative ordering: a context positioned higher in the diagram indicates
a stronger correlation with human judgments compared to any context reachable by following a downward line.
As an illustration, in the LM diagram, Conditional occupies one of the topmost positions. Every context other
than Indirect Y/N-Q can be reached by tracing a line downward from Conditional, signifying its comparatively
greater correlation with the human judgments. Contexts that are not connected in this manner did not exhibit any
statistically significant relative relationships in the regression results.

position. As a result, our approach does not allow
us to evaluate such models.

Additionally, the incorporation of training
dataset size as predictor of performance is com-
plicated due to a lack of consistent documentation
of this potentially crucial part of the pre-training
regimen. Many papers that present new LLMs
either omit information regarding the size of the
training dataset, or else present it in units that are
difficult to convert to a standardized measure, in-
cluding compressed disk size, uncompressed disk
size, token count, and word count. While it seems
clear that larger datasets should lead to increased
performance, it is difficult to determine precisely
what the relationship between dataset size and per-
formance on various tasks is for this reason.

Moreover, the nature of progress in terms of
available computational resources naturally leads
to a confound between model size and dataset size.
As more computational resources become more
available over time, models and datasets tend to
grow in tandem. Furthermore, the fact of when
MLMs, Seq2Seqs, or LMs happen to be en vogue,
and the particular computing resources available at
that time, leads to a confound between a model’s
pretraining task, its size, and the size of the dataset
used to (pre-)train it. Training and making available
a more systematically varied set of LLMs, where
task, model size, and dataset size are intentionally
varied independently, could help alleviate our cur-
rent inability to distinguish the effect of such differ-

ences on various tasks. Such an undertaking would
be, however, out of reach for all but those with
the most computational resources at hand, given
the current size of state-of-the-art LLMs and the
datasets they are pre-trained on.

Finally, the available data on the assessment of
NPI licensing is not entirely comprehensive, as we
find the subtleties of NPI/context combinations fit
for our purposes represented by binary judgments.
A more detailed empirical investigation could well
reveal more gradient human judgments, which may
alter future analysis of LLM knowledge of NPI
licensing.

References
Lisa Bylinina and Alexey Tikhonov. 2022. Transform-

ers in the loop: Polarity in neural models of language.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6601–6610, Dublin, Ireland.
Association for Computational Linguistics.

Emmanuel Chemla, Vincent Homer, and Daniel Roth-
schild. 2011. Modularity and intuitions in formal
semantics: The case of polarity items. Linguistics
and Philosophy, 34:537–570.

Milica Denić, Vincent Homer, Daniel Rothschild, and
Emmanuel Chemla. 2021. The influence of po-
larity items on inferential judgments. Cognition,
215:104791.

Bart Geurts. 2003. Reasoning with quantifiers. Cogni-
tion, 86(3):223––251.

340

Anastasia Giannakidou. 1998. Polarity Sensitivity as
(non)Veridical Dependency. John Benjamins, Ams-
terdam.

Jack Hoeksema. 2012. On the natural history of nega-
tive polarity items. Linguistic Analysis, 44:3–33.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725–1744, Online. Association for Computational
Linguistics.

Jaap Jumelet, Milica Denić, Jakub Szymanik, Dieuwke
Hupkes, and Shane Steinert-Threlkeld. 2021. Lan-
guage models use monotonicity to assess npi licens-
ing.

Edward Klima. 1964. Negation in english. In Jerry A.
Fodor and Jerrold Katz, editors, The Structure of
Language, pages 246–323. Prentice Hall, Englewood
Cliffs, NJ.

William A. Ladusaw. 1979. Polarity Sensitivity as In-
herent Scope Relations. Ph.D. thesis, University of
Texas, Austin.

Roger Levy and Galen Andrew. 2006. Tregex and tsur-
geon: tools for querying and manipulating tree data
structures. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation
(LREC’06), Genoa, Italy. European Language Re-
sources Association (ELRA).

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1999. Treebank-3 ldc99t42.
Philadelphia: Linguistic Data Consortium.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Volume:
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason
Phang, Anhad Mohananey, Phu Mon Htut, Paloma
Jeretic, and Samuel R. Bowman. 2019. Investigating
BERT’s knowledge of language: Five analysis meth-
ods with NPIs. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2877–2887, Hong Kong, China. Association
for Computational Linguistics.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When do you need bil-
lions of words of pretraining data? In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1112–1125, Online.
Association for Computational Linguistics.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218–1227, Huhhot, China. Chinese Informa-
tion Processing Society of China.

Frans Zwarts. 1998. Three types of polarity. In
F. Hamm and E. W. Hinrichs, editors, Plurality and
Quantification, pages 177–238. Kluwer.

341

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 342–356
December 7, 2023. ©2023 Association for Computational Linguistics

Memory Injections: Correcting Multi-Hop Reasoning Failures during
Inference in Transformer-Based Language Models

Mansi Sakarvadia1,*, Aswathy Ajith1, Arham Khan1, Daniel Grzenda1,
Nathaniel Hudson1,2, André Bauer1,2, Kyle Chard1,2, Ian Foster1,2

1University of Chicago, 2Argonne National Laboratory

Abstract

Answering multi-hop reasoning questions re-
quires retrieving and synthesizing information
from diverse sources. Large Language Models
(LLMs) struggle to perform such reasoning con-
sistently. Here we propose an approach to pin-
point and rectify multi-hop reasoning failures
through targeted memory injections on LLM
attention heads. First, we analyze the per-layer
activations of GPT-2 models in response to sin-
gle and multi-hop prompts. We then propose a
mechanism that allows users to inject pertinent
prompt-specific information, which we refer to
as “memories,” at critical LLM locations dur-
ing inference. By thus enabling the LLM to
incorporate additional relevant information dur-
ing inference, we enhance the quality of multi-
hop prompt completions. We show empirically
that a simple, efficient, and targeted memory
injection into a key attention layer can often in-
crease the probability of the desired next token
in multi-hop tasks, by up to 424%.

1 Introduction

Transformer-based Large Language Models
(LLMs) (Vaswani et al., 2017; Brown et al.,
2020) have shown exceptional promise for basic
knowledge retrieval and language generation;
however, they often lack the ability to perform
basic reasoning tasks (Arkoudas, 2023; Guo et al.,
2023; Blair-Stanek et al., 2023). In this work, we
focus on the simple task of answering multi-hop
prompts (i.e., prompts in which the subject is not
stated explicitly), which humans handle easily but
with which LLMs often struggle (see Fig. 1).

Researchers have attempted to rectify multi-
hop reasoning failures by using various prompting
methods such as Chain-of-Thought (CoT), Tree-
of-Thought (ToT), and Graph-of-Thought (GoT)
reasoning (Wei et al., 2022; Wang et al., 2023;
Long, 2023; Xie et al., 2023; Yao et al., 2023; Besta

* Correspondence to sakarvadia@uchicago.edu

The largest coral reef
in the world is located

off the coast of
the PhilippinesLLM

(a) Multi-hop prompt.

The Great Barrier
Reef is located off

the coast of
Australia

The name of the
largest coral reef

is

the Great Barrier
Reef

LLM

LLM

(b) Multi-hop prompt broken into 2 single-hop prompts.

Figure 1: A multi-hop prompt vs. two analogous single-
hop prompts. The outputs are from GPT2-Small.

et al., 2023). However, these approaches often put
the burden on users to know how to elicit desired
responses—and, in the hands of non-expert users,
can lead to unreliable prompt completions. Re-
searchers have also proposed model editing (Meng
et al., 2022a,b; Zhong et al., 2023; Li et al., 2023)
approaches that may hard-code distant relation-
ships directly into model weights, rather than en-
hancing the model’s abilities to recall and then link
simpler relationships. These approaches can be
computationally expensive and have unintended ef-
fects on other knowledge originally embedded in
the model’s weights (Cohen et al., 2023).

Our approach to this problem is based on the
hypothesis that LLMs often fail to recall relevant
memories when attempting to answer a prompt
that requires multiple “hops” of reasoning, rather
than lacking knowledge of the memories altogether.
For example, when attempting to complete the
multi-hop prompt, “The largest coral reef system
in the world is located off the coast of. . . ,” we hy-
pothesize that the model does not correctly recall
that “the largest coral reef system in the world”

342

is “the Great Barrier Reef” before predicting the
next token in the sequence. Yet the model can
accurately complete both the corresponding single-
hop prompt “The Great Barrier Reef is located of
the coast of. . . ,” and, when prompted, “the largest
coral reef” as “the Great Barrier Reef.” Clearly,
this information was encoded in the model during
training but is not incorporated when answering
questions that reference the prompt’s subject indi-
rectly. In this case, therefore, we define the missing
memory to be “the Great Barrier Reef.”

To study our hypothesis, we first attempt
to reverse engineer a key mechanism by
which transformer-based LLMs conduct reasoning.
Specifically, we find that in transformer-based mod-
els it is attention heads, rather than multi-layer per-
ceptrons, that are responsible for retrieving mem-
ories critical to successful model predictions; our
finding is further substantiated by similar findings
by Li et al. (2023); Geva et al. (2023); Dar et al.
(2022). We then study instances in which this mech-
anism fails in multi-hop reasoning tasks and find
that this mechanism is likely the source of incor-
rect, insufficient, or irrelevant memory retrievals
(Contribution 1)—for an example, see Fig. 2.

We then propose a lightweight memory injection
method that can be employed to correct a multi-
hop reasoning failure during inference (Contribu-
tion 2). As an example: by employing our method
to inject the memory of “The Great Barrier Reef”
into the multi-hop prompt “The largest coral reef
system in the world is located off the coast of. . . ”
during inference, we increase the probability of the
next token “Australia” by 189%; refer to Fig. 3 for
details.

For our analyses, we hand-crafted a dataset
for interpretabilty purposes (Contribution 3) and
make use of a larger programmatically-generated
dataset—refer Table 1 for more information.

Finally we conduct additional experiments (Con-
tribution 4) to:

1. Identify the ideal layer and magnitude for the
memory injection.

2. Demonstrate the significance of curating
prompt-specific memories for injection.

3. Analyze if memories drawn from different
parts of speech—namely, nouns, adjectives,
adverbs, conjunctions, verbs—behave differ-
ently during memory injection.

2 Background & Notation

We define single- vs. multi-hop prompts and pro-
vide a formal definition of the transformer model.

2.1 Multi-hop vs. single-hop prompts
We refer to a prompt as single-hop if the subject of
the relation is stated explicitly in the prompt, and
multi-hop otherwise. Multi-hop prompts refer to
their subject in a way that requires an additional
“hop” or inference step. For example, consider the
single-hop prompt, “George Washington fought in
the. . . ” with a correct answer being “Revolutionary
War.” In the analogous multi-hop prompt, “The
first president of the United States fought in the. . . ,”
a preliminary inference step is needed to identity
of the first US president before predicting the next
token. For additional examples of single- and mutli-
hop prompts, see Table 3 in the appendix.

2.2 Transformer Architecture
We introduce a common notation for the compo-
nents of the transformer-based language model
architectures that are the focus of our analyses.
Specifically, we focus on auto-regressive, decoder-
only models. We adopt much of our notation from
Elhage et al. (2021) and Geva et al. (2023).

2.2.1 Embedding Inputs
An input text is parsed into N distinct tokens
t0, · · · , tN . Each token ti is then embedded as
x0i ∈ Rd via an embedding matrix WE ∈ R|V |×d,
where V is the vocabulary and d is the hidden di-
mension.

2.2.2 Residual Stream
Following the embedding layer, all tokenized em-
beddings x0i are passed through a series of residual
blocks. The outputs of each residual block are
added back into the model’s residual stream de-
noted by Rℓ (∀ℓ ∈ {1, · · · , L}) where L is the
number of layers in the LLM.

We define the residual stream at layer ℓ as:

Rℓ = [xℓ0, · · · , xℓN], (1)

where xℓi is the representation of token i at layer ℓ.
The residual stream is updated by its respective
residual block rℓ:

Rℓ+1 = Rℓ + rℓ+1, (2)

and the output of a residual block rℓ is:

rℓ = aℓ +mℓ, (3)
343

where aℓ is the output of the Multi-Headed Self
Attention (MHSA) layer andmℓ is the output of the
Multi-Layer Perceptron (MLP). We define MHSA
and MLP in the following sections.

2.2.3 Multi-Headed Self Attention (MHSA)
Each MHSA layer ℓ is defined via four parame-
ter matrices W ℓ

Q,W
ℓ
K ,W

ℓ
V ,W

ℓ
O ∈ Rd×d (∀ℓ ∈

{1, · · · , L}) and the hyperparameter H denotes
the number of attention heads. Following Elhage
et al. (2021) and Geva et al. (2023), we can further
dissect our parameter matrices to better observe
the relationship between unique sets of parameters
and individual attention heads: W l,j

Q ,W ℓ,j
K ,W ℓ,j

V ∈
Rd× d

H and W ℓ,j
O ∈ R

d
H
×d for j ∈ [1, H]. Now, we

can define the output of each MHSA aℓ as the sum
of all attention head outputs,

aℓ =
H∑

j=1

hℓ,j , (4)

where hℓ,j is the output of the jth head in layer ℓ:

hℓ,j = Aℓ,j
(
Rℓ−1W ℓ,j

V

)
W ℓ,j

O . (5)

Aℓ,j = softmax

((
Rℓ−1W ℓ,j

Q

)(
Rℓ−1W ℓ,j

K

)T
√

d/H
⊙M

)
(6)

where the softmax(·) is performed as a row-wise
operation, ⊙ is the Hadamard product, and M ∈
{0, 1}N×N is an auto-regressive attention mask
where masked token positions are set to 0.

2.2.4 Multi-Layer Perceptron (MLP)
Each MLP is defined via two parameter matrices
W ℓ

F ,W
ℓ
I ∈ Rd×dp with inner-dimension dp and a

nonlinear activation function, σ.

mℓ =W ℓ
F σ
(
W ℓ

I

(
aℓ +Rℓ−1)) (7)

2.2.5 Unembedding Predictions into Logits
After the final residual block, all token positions
x−1i will be projected back into the vocabulary do-
main via the unembedding matrix WU ∈ Rd×|V |.
The output of the last token position is the next
token prediction of the model.

3 Experimental Overview

Our central aim is to better understand how the
outputs of the attention heads affect model perfor-
mance with respect to predicting the correct next

token in prompts requiring single-hop reasoning
versus in prompts requiring multi-hop reasoning.

3.1 Dataset Descriptions

We employ three datasets in this work. Two, used
to assess model prompt completion accuracy, are
our own high-quality manually curated dataset of
single and multi-hop pairs and a programmatically
generated dataset of prompt pairs. The third com-
prises lists of words from common parts of speech,
which we use to study how the effectiveness of
our intervention varies with the part of speech of
injected tokens.

3.1.1 Programmatically Generated Dataset
The 2WikiMultiHop dataset (Ho et al.,
2020) contains pairs of knowledge triples
{(s1, r1, s2)1, (s2, r2, s3)2}, each with two
subjects s and a relationship r. We used these
knowledge triples, plus a set of predefined
templates, to generate a set of pairs of single-
and multiple-hop questions, 2WMH: see Tables 1
and 3.

For example, let s1 = “Lilli’s Marriage,” r1 =“di-
rector,” s2 = “Jaap Speyer,” r2 = “country of citi-
zenship,” s3 = “Dutch.” Then for single-hop, the
template: “The r2 of s2 is . . . s3”, the prompt yields
the prompt “The country of citizenship of Jaap
Speyer is . . . [Dutch]”; for multi-hop, the template
“The r2 of the r1 of s1 is . . . s3” yields then the
prompt: “The country of citizenship of the director
of Lilli’s Marriage is . . . [Dutch].”

3.1.2 Human-Generated Dataset
As evidenced by the example presented above,
the 2WMH dataset, while scalable, contains many
grammatical flaws. Therefore, we construct an
additional dataset for multi-hop reasoning with a
focus on grammatical and factual correctness pre-
sented below. We hand-crafted 106 (single-hop,
multiple-hop) prompt pairs, each in the same form
as those in 2WMH: e.g., single-hop: “St. Peter’s
Basilica is in the city of. . . [Rome]” and multi-
hop: “The biggest church in the world is in the
city of. . . [Rome]”. Each prompt pair was also eval-
uated by two external reviewers for factual and
grammatical accuracy. We hereafter refer to this
dataset as Hand; see Tables 1 and 3.

3.1.3 Part of Speech Dataset
We used a subset of the Corpus of Contemporary
American English (Davies, 2011) which compiles

344

Single-hop Multi-hop

Data Size Model Answer prob. Surprisal Prompt len. Answer prob. Surprisal Prompt len.

Hand 106 GPT2-Small 0.157 4.21 9.66 0.087 4.91 12.99
Hand 106 GPT2-Large 0.28 2.90 9.66 0.157 3.97 12.99

2WMH 1000 GPT2-Small 0.0007 9.80 10.44 0.00086 9.64 14.00
2WMH 1000 GPT2-Large 0.0023 8.71 10.44 0.002 8.57 14.00

Table 1: Properties of the datasets used in our work. Size: Number of prompts. Answer prob.: Average model
probability model for expected next token. Surprisal: Average model surprisal value for expected next token
(surprisal ≜ − log(p) where p is a probability). Prompt len.: Average tokenized length of prompt.

word frequencies (Davies, 2010) to generate lists
of (i) the most common words from various parts
of speech: 824 adjectives, 331 adverbs, 40 con-
junctions, 2635 nouns, 969 verbs, and (ii) the 5050
most common words overall (“top 5050”).

3.2 Model Description

We work with two pretrained GPT2 models (Rad-
ford et al., 2019). GPT2-Small has 12 layers, 12
attention heads per attention layer, and ∼160M pa-
rameters. GPT2-Large has 36 layers, 20 attention
heads per attention layer, and ∼840M parameters.
Both have a vocabulary of ∼50K tokens.

3.3 Tools & System Setup

We use the Transformer Lens Python package
(Nanda and Bloom, 2022) to cache, inspect, and
construct interventions on model inference passes.
We ran experiments on a single A100 GPU with
40 GB RAM. Experimental code, dependency in-
formation, and datasets are available on GitHub.1

4 Proposed Methods

Recent work suggests that attention heads are
knowledge retrievers during a model’s inference
pass (Geva et al., 2023; Li et al., 2023). Extending
this result to multi-hop prompts, we hypothesize
that attention layers play an important role in re-
trieving memories relevant to the “hop” in a given
prompt. Therefore we define two algorithms below:
one for analyzing attention head outputs in embed-
ding space and the other for injecting a targeted
memory into a model’s hidden activations in order
to correct faulty/incomplete reasoning.

4.1 Interpreting Attention Heads

We want to further understand the outputs of indi-
vidual heads, and more specifically assess if any

1https://github.com/msakarvadia/memory_
injections

individual attention heads are exercised differently
by single-hop vs. multi-hop prompts.

Inspired by Logit Lens (nostalgebraist, 2021),
we leverage the model’s unembedding matrix to
study the internal mechanism of each attention
head. For attention head j in layer ℓ, hℓ,j , we ap-
ply the model’s unembedding matrix WU followed
by a softmax(·) operation and interpret the last
token position (out of N total tokens) as a set of
probabilities over tokens in the vocabulary space:

vocabℓ,j = softmax(hℓ,jWU)N−1 (8)

See in Fig. 2 an example of discrepancy in attention
head behavior, when using Eq. (8), for analogous
single vs. multi-hop prompts. See additional exam-
ples in Table 5.

A potential limitation of this approach is that it
may portray attention head behavior inaccurately
due to representational drift between model layers—
and, like (nostalgebraist, 2021), may not generalize
to other models. Nevertheless, we find it to be an ef-
fective preliminary tool for studying the function of
attention heads in updating the output distribution.
We leave the development of an interpretability tool
that considers these drawbacks to future work.

4.2 Memory Injections to Correct Failures

Fig. 2 shows how Eq. (8) can reveal discrepan-
cies between attention head behaviors for single-
vs. multi-hop prompts. We hypothesize that such
discrepancies arise because the model, when up-
dating the output distribution in each layer, fails to
incorporate information about the implicit entity
in the multi-hop prompt. This seems reasonable,
as to retrieve information about an implicit entity
one likely must first relate that entity to some ex-
plicit subject and then retrieve relevant information
(hence our notion that processing prompts with im-
plicit subjects requires an extra hop compared to
those with explicit subjects).

345

tokens

logits

... h8 ...

MLP

"The Great Barrier
Reef is located off the

coast of"

"The largest coral reef system
in the world is located off the

coast of"

Single-Hop Prompt Multi-Hop Prompt

" Australia",
" Australians",
"Australia",
"Australian",
...

" coral"
" reef"
" reefs"
"Fiji"
...

Layer 9

A
ttention O

utputs

(Single-Hop)

(Multi-Hop)

residual stream

embed ()

unembed ()

Figure 2: Diagram of language model reasoning.
Highest ranked attention outputs of GPT2-Small at layer
ℓ = 9, head h = 8 when projected into vocabulary space
(via the GPT2-Small embedding matrix) for a single-
hop prompt (green) and its multi-hop counterpart (red).

Thus we design a method (see Fig. 3) for inject-
ing a missing hop directly into the output hidden
states of an attention head before those outputs are
added back into the transformer’s residual stream:

1. Let m be a memory (a phrase, for example:
“The Great Barrier Reef”) and let τ be the
magnitude of the memory injection.

2. Tokenize the memorym into t0, · · · , tq where
q is the number of tokens. We encode each to-
ken ti into a one-hot vector bi ∈ {0, 1}|V | and
sum all resulting one-hot vectors bi together
into a binary vector B ≜

∑
i bi.

3. Embed the binary vector, B, back into the
model’s latent space by applying the transpose
of the unembedding matrix:

B∗ = BW T
U (9)

4. Then, to inject a memory at the attention layer
of layer ℓ, add the embedded memory into
the outputs of the attention heads during the
inference pass:

aℓ =
H∑

j=1

hℓ,j + τB∗ (10)

See additional examples of memory injections in
Table 4.

tokens

logits

... h8 ...

MLP

"The largest coral reef system in
the world is located off the coast

of"

Multi-Hop Prompt

" coral"
" reef"
" reefs"
"Fiji"
...

Layer 9

A
ttention O

utputs

residual stream

"The Great Barrier Reef"
(memory)

unembed ()

embed ()

injection

Next Token Pred. Prob. for " Australia"

Pre-Injection: 0.047

Post-Injection: 0.136 (189% increase)

Figure 3: Memory injection. Injecting memory “The
Great Barrier Reef” into GPT2-Small hidden activations
at layer ℓ = 9, head 8, τ = 4.

5 Results and Discussion

We report, in turn, on our curated memory, random
memory, and part-of-speech injection experiments.

5.1 Curated Memory Injections

We hypothesize that a model’s poor performance on
multi-hop prompts is due to its inability to resolve
the implicit subject (e.g., “The largest coral reef
system in the world”) to an explicit subject (e.g.,
“The Great Barrier Reef”). This failure limits the
later layers’ ability to retrieve relevant information
about this subject before predicting the next token.
Therefore, in this experiment, we curate sets of
tokens to inject into our model’s residual stream
such that it can resolve the explicit subject more
easily. We further study the effect that the injection
magnitude τ has on its success.

Experimental design: For every multi-hop
prompt in our datasets, we extract the explicitly
stated subject from the corresponding single-hop
prompt and inject those tokens as memories into
each attention layer as described in Section 4.2.
For example, given the single-hop prompt “The
Great Barrier Reef is located off the coast of. . . ”
and the multi-hop prompt “The largest coral reef
system in the world is located off the coast of. . . ,”
the memory is “The Great Barrier Reef.”

We assess the effects of injection layer ℓ and
magnitude τ ∈ [1, · · · , 15] by enumerating the re-
sulting change in accuracy for all combinations

346

0 2 4 6 8 10
Layer ()

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Layer ()

0 2 4 6 8 10
Layer ()

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Layer ()

-80
%

-40
%

0% 20
%

40
%

-80
%

-50
%

-25
%

0% 20
%

40
%

60
%

-80
%

-40
%

0% 20
0%

40
0%

-40
%

-25
%

-15
%

0% 60
%

12
5%

20
0%

Figure 4: Curated memory injections. From left to right: GPT2-Small + Hand, GPT2-Large + Hand, GPT2-Small
+ 2WMH, GPT2-Large + 2WMH. Each cell in each heatmap is the average percent difference between the pre- and
post-injection next token predictions for multi-hop prompts. Green cells denote a positive percent difference (i.e.,
correct prediction is more likely), while red cells denote a negative percent difference (i.e., correct prediction is less
likely). When computing the averages for each (ℓ, τ) pair we exclude outliers not within ±2 standard deviations
from the mean.

of these two parameters for both GPT2-Small and
GPT2-Large. We measure the success of a mem-
ory injection by calculating the percent increase
between the model’s predicted probability for the
expected next token from the multi-hop prompt
with and without the injection. A greater positive
difference indicates a more successful injection.

Discussion: Results are in Fig. 4. We observe
that each model/dataset combination has an optimal
layer ℓ and magnitude τ for memory injections: the
darkest green areas, which signify the highest aver-
age percent increase in probability of the expected
next token for the respective dataset. The best (ℓ,
τ) pair injection results are in Table 2. Additional
examples of memory injections are in Table 4.

5.2 Random Memory Injections

In Section 5.1, we identify ideal (ℓ, τ) pairs for
each model and dataset for a curated memory in-
jection. We now demonstrate that the results we
observe are not spurious: i.e., the information that
we inject at each head should be related to the ex-
plicit subject. We demonstrate the need for our
particular injection routine by assessing the effects
on model accuracy of randomly injecting tokens
from various parts of speech.

Experimental design: We conduct targeted in-
jections for the high-scoring (ℓ, τ) pairs identified
via the experiment in Section 5.1, Table 2. Instead
of injecting curated subject tokens, we select as
candidate injections the 40 most common words
from each of the adjectives, adverbs, conjunctions,
nouns, verbs, and top 5050 subsets of our Part of

Speech dataset. We then apply each word as an
individual injection for every prompt in our multi-
hop dataset at the ideal (ℓ, τ) pair. We term these
injections “random,” as they were not curated to be
relevant to our prompts.

Discussion: The results are in the right half of
Table 2. We observe that a random injection led, on
average, to a degradation in predictive performance
across most parts of speech considered, as indi-
cated by a negative percent difference (decrease in
correct answer probability) between the pre- and
post-injection expected next token probabilities for
multi-hop prompt completions. Additionally, no
random injection result exceeded the performance
of a curated injection. These findings suggest that
the choice of injected tokens is critical for improv-
ing multi-hop prompt completion success.

5.3 Memory Injections for Parts of Speech

We have tested curated vs. random memory injec-
tions at ideal (ℓ, τ) pairs. Now we assess whether
memory injections from specific parts of speech
more broadly have positive impacts on prompt com-
pletions, not just at the ideal locations for curated
memories, but also at other (ℓ, τ) pairs. Our hypoth-
esis is that if a transformer-based LLM has learned
a division of labor regarding which attention lay-
ers are responsible for retrieving specific concepts
(e.g., parts of speech) then this experiment might
highlight those learned roles.

Experimental design: This experiment is iden-
tical to that of Section 5.1, except that: (i) for each
part of speech pos ∈ [adjectives, adverbs, conjunc-

347

Curated Random

Model Data ℓ τ Subject Adj. Adv. Conj. Noun Verb Top-5050

GPT2 Small Hand 7 3 45% -7.6% -6.0% -6.3% -6.5% -7.5% -6.0%
GPT2 Small 2wmh 6 5 424% -17.1% -15.1% -10.3% -1.1% -1.2% 1.6%
GPT2 Large Hand 14 10 68% -8.1% -4.4% -4.9% -9.8% -6.0% -4.7%
GPT2 Large 2wmh 8 9 204% 13.0% 11.6% 3.5% 11.8% 4.3% 17.6%

Table 2: Curated vs. random memory injections. Table shows the (ℓ, τ) pairs for the best token injections, along
with the average percent difference (excluding outliers >±2 standard deviations from the mean) between pre- and
post-injection expected next token predictions for multi-hop prompts. Each random injection column indicates 40
random injections from [Adjectives, Adverbs, Conjunctions, Nouns, Verbs, Top 5050] at the ideal (ℓ, τ).

0 5 10
Layer ()

(a)

100

50

0

50

100

150

Av
g.

 P
er

ce
nt

 D
iff

er
en

ce
 (%

) GPT2-Small (2WMH)

0 10 20 30
Layer ()

(b)

100

50

0

50

100

150
GPT2-Large (2WMH)

0 5 10
Layer ()

(c)

100

50

0

50

100

150
GPT2-Small (Hand)

0 10 20 30
Layer ()

(d)

100

50

0

50

100

150
GPT2-Large (Hand)

5 10 15
Magnitude ()

(e)

100

0

100

200

300

Av
g.

 P
er

ce
nt

 D
iff

er
en

ce
 (%

) GPT2-Small (2WMH)

5 10 15
Magnitude ()

(f)

100

0

100

200

300
GPT2-Large (2WMH)

5 10 15
Magnitude ()

(g)

100

0

100

200

300
GPT2-Small (Hand)

5 10 15
Magnitude ()

(h)

100

0

100

200

300
GPT2-Large (Hand)

Noun Top 5050 Verb Conjunction Verb Adjective Curated

Figure 5: Part of speech memory injections. This figure shows the average effect of memory injections from
various parts of speech as a function of layer ℓ (top row) and magnitude τ (bottom row). The standard deviation
scaled by 10% is pictured across magnitudes (top row) and layers (bottom row).

tions, nouns, verbs, top 5050], we use a randomly
selected word: e.g., “apple” from “nouns”; and (ii)
when searching for the ideal (ℓ, τ) pair for a given
part of speech and multi-hop prompt, we use a new
random word for each injection.

Discussion: The results are in Fig. 5. We note
that for no part of speech considered here does
the average performance of the studied memory
injections exceed that of the curated memory injec-
tions presented in Table 2. Additionally, memory
injections from adjectives, adverbs, nouns, verbs,
and top 5050 seemed to exhibit similar behavior.
Memory injections from conjunctions, however,
typically outperformed all other parts of speech.
We hypothesize that this is because conjunctions
often play a neutral role in prompt completions.

Thus, while a random noun (e.g., “apple”) might
distort prompt completion, a random conjunction
(e.g., “and,” “for”) is less likely to do so.

We note also that for each part of speech, perfor-
mance averaged over all injections for most (ℓ, τ)
pairs was reduced (< 0) for Hand (refer Fig. 5:
subplots c, d, g, h), but was sometimes improved
(> 0) for 2WMH (refer Fig. 5: subplots a, b, e, f).
We attribute this result to the relative difficulties
of the two datasets. Hand has, on average, lower
surprisals than does 2WMH, as seen in Table 1,
suggesting that there is additional information that
the model could use successfully for 2WMH, but
not for Hand.

These results (see also the Appendix; Figs 6–9)
suggest that while curated memories are ideal for

348

correcting multi-hop reasoning failures, language
models can also benefit from injections of different
parts of speech. This result suggests that different
parts of a language model (namely, early layers)
serve specialized roles, with some dealing with
processing related to specific parts of speech.

In future work we will curate relevant memories
from various parts of speech for each prompt, to
better understand the effects of curated memories.

6 Related Work

Much recent work has focused on the inner work-
ings of Transformers (Vaswani et al., 2017; De-
vlin et al., 2019; Brown et al., 2020; Radford
et al., 2019). Nanda et al. (2023) explore how the
emergent properties of LLMs form during train-
ing. Recent interpretability research has focused
on the mechanisms by which linear layers in LLMs
retrieve information, characterizing them as key-
value stores of information (Geva et al., 2021; Dai
et al., 2022a,b) and showing that tokens can be
characterized by their distribution in the output vo-
cabulary (Geva et al., 2022).

Others have also examined the intermediate ac-
tivations of LLMs in order to uncover underlying
reasoning mechanisms. nostalgebraist (2021) ap-
plied GPT-2’s unembedding matrix to intermediate
layers to interpret how the model arrives at its final
answer. Belrose et al. (2023) employed a learned
transformation to mitigate the effect of any bias
introduced by using the unembedding matrix.

There has been much recent interest in whether
LLMs are reliable stores of information for attempt-
ing to both identify where knowledge exists and
how to edit stored factual knowledge effectively
(Mitchell et al., 2022a,b; Elazar et al., 2021; Hase
et al., 2023). Recent approaches to knowledge
editing make use of learned hyper-models to edit
weights, additional trained parameters, or direct in-
terventions on model weights (De Cao et al., 2021;
Huang et al., 2023; Dhingra et al., 2022). How-
ever, these approaches raise another issue: deal-
ing with knowledge retention and preventing catas-
trophic forgetting (Jang et al., 2022; Hase et al.,
2021; Zhong et al., 2023). Additionally, it is not
clear that the mechanisms by which model predic-
tions are constructed is fully understood, limiting
our ability to improve model performance (Turpin
et al., 2023). Some approaches propose to use ex-
ternal knowledge stores such as knowledge graphs
to augment the factual capabilities of LLMs (Jiang

et al., 2023; Sun et al., 2018; Zhang et al., 2022).

7 Conclusions and Future Directions

We demonstrate that a key reason LLMs perform
worse on multi-hop prompts is because they fail to
recall intermediary information that is relevant to a
hop. We find that attention heads play an important
role in this factual recall process, and that in the
case of multi-hop reasoning, certain attention lay-
ers fail to recall relevant information. To rectify this
shortcoming, we establish an algorithm for inject-
ing “memories” directly into the model’s hidden
activations during inference. Through experimenta-
tion, we find that injecting relevant memories into
the hidden activations of the attention heads dur-
ing inference is an efficient way to boost model
performance on multi-hop prompts.

We anticipate that our memory injection scheme
can extend a model’s longevity by enabling less
frequent retraining/fine-tuning. We also hope in
future work to demonstrate the use of memory in-
jections to correct stale or incorrect information,
remove private or harmful information, and combat
bias during LLM inference.

There is also a tremendous opportunity to scale
online-memory injections to enhance the quality of
thousands/millions of model inferences, if we can
automate the process of memory selection via un-
supervised algorithms, for instance by connecting
LLMs with knowledge bases.

Limitations

Internal biases of the question writers as well as
the rigid structure that had to be imposed on the
prompt structure mean that our human-generated
dataset is representative only of a small fraction
of the many types of multi-hop questions. Fur-
thermore, our hand-generated dataset is relatively
small compared to our programmatically generated
dataset. Additionally, our analyses were limited
to GPT2-Small and GPT2-Large; further work is
needed to determine whether, as we expect, other
language models sharing a transformer-based ar-
chitecture and a similar unsupervised causal lan-
guage modeling training objective display similar
behavior. Lastly, we rely on the model’s unembed-
ding matrix WU to interpret model hidden states
and embed memories for injection. While for our
work, results indicate that this transformation was
sufficient, we acknowledge that this unembedding
matrix is not tuned to interpret intermediate layers;

349

we aim to address this shortcoming in future work
by instead using layer-specific learned projections
to transform between hidden states and vocabulary.

Ethics

Our attention head inspection mechanism uncov-
ered several sources of bias (such as racism); refer
Table 5 for examples. We expect a more detailed
study of the attention heads of GPT2-Small and
GPT2-Large, as well as other LLMs, to reveal ad-
ditional undesirable behaviors. We aim in future
work to use our inspection method to uncover (and
hopefully address) these biases.

Acknowledgements

This material is based upon work supported by
the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing
Research, Department of Energy Computational
Science Graduate Fellowship under Award Num-
ber DE-SC0023112. This work is also supported
in part by the U.S. Department of Energy under
Contract DE-AC02-06CH11357.

References
Konstantine Arkoudas. 2023. GPT-4 can’t reason.

arXiv preprint arXiv:2308.03762.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint arXiv:2308.09687.

Andrew Blair-Stanek, Nils Holzenberger, and Benjamin
Van Durme. 2023. Can GPT-3 perform statutory
reasoning? arXiv preprint arXiv:2302.06100.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems, 33:1877–1901.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects
of knowledge editing in language models. arXiv
preprint arXiv:2307.12976.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022a. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502.

Damai Dai, Wenbin Jiang, Qingxiu Dong, Yajuan Lyu,
Qiaoqiao She, and Zhifang Sui. 2022b. Neural
knowledge bank for pretrained transformers. arXiv
preprint arXiv:2208.00399.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2022. Analyzing transformers in embedding space.
arXiv preprint arXiv:2209.02535.

Mark Davies. 2010. The Corpus of Contemporary
American English as the first reliable monitor cor-
pus of English. Literary and Linguistic Computing,
25(4):447–464.

Mark Davies. 2011. Word frequency data from the
Corpus of Contemporary American English (COCA).

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. 2022. Time-aware language mod-
els as temporal knowledge bases. Transactions of the
Association for Computational Linguistics, 10:257–
273.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph,
B Mann, A Askell, Y Bai, A Chen, T Conerly, et al.
2021. A mathematical framework for transformer
circuits.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. arXiv
preprint arXiv:2304.14767.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary

350

space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Taicheng Guo, Kehan Guo, Zhengwen Liang, Zhichun
Guo, Nitesh V Chawla, Olaf Wiest, Xiangliang
Zhang, et al. 2023. What indeed can GPT models do
in chemistry? a comprehensive benchmark on eight
tasks. arXiv preprint arXiv:2305.18365.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
Surprising differences in causality-based localization
vs. knowledge editing in language models. arXiv
preprint arXiv:2301.04213.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zor-
nitsa Kozareva, Veselin Stoyanov, Mohit Bansal, and
Srinivasan Iyer. 2021. Do language models have be-
liefs? Methods for detecting, updating, and visualiz-
ing model beliefs. arXiv preprint arXiv:2111.13654.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609–6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun KIM, Stanley Jungkyu
Choi, and Minjoon Seo. 2022. Towards continual
knowledge learning of language models. In Interna-
tional Conference on Learning Representations.

Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen.
2023. UniKGQA: Unified retrieval and reasoning for
solving multi-hop question answering over knowl-
edge graph. In The Eleventh International Confer-
ence on Learning Representations.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023. PMET: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Jieyi Long. 2023. Large language model guided tree-of-
thought. arXiv preprint arXiv:2305.08291.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 15817–15831. PMLR.

Neel Nanda and Joseph Bloom. 2022. Transformer-
Lens.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability. In
The Eleventh International Conference on Learning
Representations.

nostalgebraist. 2021. Logit Lens on non-GPT2 models
+ extensions.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242,
Brussels, Belgium. Association for Computational
Linguistics.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R Bowman. 2023. Language models don’t
always say what they think: Unfaithful explana-
tions in chain-of-thought prompting. arXiv preprint
arXiv:2305.04388.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

351

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-
Yen Kan, Junxian He, and Qizhe Xie. 2023. De-
composition enhances reasoning via self-evaluation
guided decoding. arXiv preprint arXiv:2305.00633.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5773–
5784, Dublin, Ireland. Association for Computational
Linguistics.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
MQuAKE: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

352

A Part-of-Speech Memory Injection Appendix

0 7 14 21 28 35

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

Noun

0 7 14 21 28 35
1

3
5

7
9

11
13

15

Verb

0 7 14 21 28 35

1
3

5
7

9
11

13
15

Adverb

0 7 14 21 28 35
Layer ()

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

Conjunction

0 7 14 21 28 35
Layer ()

1
3

5
7

9
11

13
15

Top 5050

0 7 14 21 28 35
Layer ()

1
3

5
7

9
11

13
15

Adjective

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: GPT2-Large, 2WMH dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.

0 7 14 21 28 35

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

Noun

0 7 14 21 28 35

1
3

5
7

9
11

13
15

Verb

0 7 14 21 28 35

1
3

5
7

9
11

13
15

Adverb

0 7 14 21 28 35
Layer ()

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

Conjunction

0 7 14 21 28 35
Layer ()

1
3

5
7

9
11

13
15

Top 5050

0 7 14 21 28 35
Layer ()

1
3

5
7

9
11

13
15

Adjective

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: GPT2-Large, Hand dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.

353

0 2 4 6 8 11

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)
Noun

0 2 4 6 8 11

1
3

5
7

9
11

13
15

Verb

0 2 4 6 8 11

1
3

5
7

9
11

13
15

Adverb

0 2 4 6 8 11
Layer ()

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

Conjunction

0 2 4 6 8 11
Layer ()

1
3

5
7

9
11

13
15

Top 5050

0 2 4 6 8 11
Layer ()

1
3

5
7

9
11

13
15

Adjective

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 8: GPT2-Small, 2WMH dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.

0 2 4 6 8 11

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

Noun

0 2 4 6 8 11

1
3

5
7

9
11

13
15

Verb

0 2 4 6 8 11

1
3

5
7

9
11

13
15

Adverb

0 2 4 6 8 11
Layer ()

1
3

5
7

9
11

13
15

M
ag

ni
tu

de
 (

)

Conjunction

0 2 4 6 8 11
Layer ()

1
3

5
7

9
11

13
15

Top 5050

0 2 4 6 8 11
Layer ()

1
3

5
7

9
11

13
15

Adjective

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9: GPT2-Small, Hand dataset. Heatmap shows average percent difference between pre- and post-injection
answer probabilities for multi-hop prompts excluding outliers not within ±2 standard deviations from the mean
across various parts of speech.

354

B Dataset Example Appendix

Dataset Single-Hop Prompt Multi-Hop Prompt

Hand

George Washington fought in the . . . [Revolutionary
War]

The first president of the United States fought in the
. . . [Revolutionary War]

Burj Khalifa is located in the city of . . . [Dubai] The tallest building in the world is located in the city of
. . . [Dubai]

Nelson Mandela brought an end to . . . [Apartheid] The first president of South Africa brought an end to
. . . [Apartheid]

John F Kennedy was assassinated by a person
named . . . [Lee Harvey Oswald]

The 35th president of the United States was assassinated
by a person named . . . [Lee Harvey Oswald]

The father of Hermes is . . . [Zeus] The father of the Greek messenger god is . . . [Zeus]

2WMH

The place of birth of Dušan Hanák is . . . [Bratislava] The place of birth of the director of I Love, You Love is
. . . [Bratislava]

The employer of Éric Rohmer is . . . [Cahiers du
cinéma]

The employer of the director of Triple Agent is . . . [Cahiers
du cinéma]

The employer of Chip Gubera is . . . [University of
Missouri]

The employer of the director of Academy of Doom is
. . . [University of Missouri]

Steve Vai received the . . . [Grammy] The performer of The Attitude Song received the
. . . [Grammy]

The place of death of Augustus II the Strong is
. . . [Warsaw]

The place of death of the spouse of Christiane Eberhardine
of Brandenburg-Bayreuth is . . . [Warsaw]

Table 3: Example prompts. Single/multi-hop prompt pairs from Hand and 2WMH datasets.

Multiple-Hop Prompt Memory Answer Pre-
injection
Answer
Prob.

Post-
injection
Answer
Prob.

The God of Thunder is the son of . . . Thor Odin 0.84% 3.37%

The first president to be assassinated succeeded
in abolishing . . .

Abraham Lincoln slavery 30.46% 63.09%

The founder of Microsoft was born in the city of
. . .

Bill Gates Seattle 1.55% 2.44%

The highest peak in the world is located in the . . . Mount Everest Himalayan 3.40% 22.58%

Table 4: Examples of memory injections. Injecting memories with τ = 4, ℓ = 9 into GPT2-Small.

355

Prompt Type Prompt Layer ℓ Head h Output

Single-Hop

John F Kennedy was as-
sassinated by a person
named . . .

10 0 [‘ Kennedy’, ‘ JFK’, ‘ Assass’, ‘ assass’, ‘Kenn’, ‘ as-
sassination’, ‘ Cuba’, ‘ Oswald’, ‘ assassin’, ‘ Cuban’, ‘
Fidel’, ‘ Bobby’, ‘ Havana’, ‘ assassinated’, ‘ assassins’, ‘
Jackie’, ‘ Castro’, ‘ Jinn’, ‘ assassinate’, ‘Mu’, ‘ 1963’, ‘
Kahn’, ‘ drone’, ‘ Cah’, ‘ Mu’, ‘ Ghosts’, ‘ Soul’, ‘ Laos’,
‘ Cemetery’, ‘ CIA’]

Barack Obama was a
member of the . . .

9 8 [‘ Obama’, ‘Obama’, ‘ Maryland’, ‘ America’, ‘ JFK’, ‘
Biden’, ‘ Harlem’, ‘ Washington’, ‘ American’, ‘ Clinton’,
‘ White’, ‘ Americans’, ‘ Congressional’, ‘ Harvard’, ‘
Kennedy’, ‘ FBI’, ‘ Federal’, ‘ CDC’, ‘ DOJ’, ‘ President’,
‘ Georgetown’, ‘ HHS’, ‘ Barack’, ‘ US’, ‘ Trayvon’, ‘
Connecticut’, ‘ Holder’, ‘ New’, ‘ BLM’, ‘ Baltimore’]

Cain murdered a person
named . . .

2 1 [‘ police’, ‘,’, ‘ the’, ‘ a’, ‘\n’, ‘ and’, ‘ violence’, ‘.’, ‘
death’, ‘ in’, ‘ criminal’, ‘ of’, ‘ to’, ‘ victim’, ‘ "’, ‘-’, ‘
at’, ‘ victims’, ‘ crime’, ‘ from’, ‘ an’, ‘ that’, ‘ murder’, ‘
crimes’, ‘ is’, ‘ was’, ‘ he’, ‘ for’, ‘ (’, ‘ killed’]

Russia is mostly located
on the continent of . . .

9 8 [‘ Moscow’, ‘ Russian’, ‘Moscow’, ‘ Russia’, ‘ Kremlin’,
‘ Putin’, ‘Putin’, ‘Russia’, ‘ Russians’, ‘Russian’, ‘♦?’, ‘ ♦?’,
‘ Dmitry’, ‘ Mikhail’, ‘ Vladimir’, ‘ Sergei’, ‘ Siberia’, ‘
Soviet’, ‘ Siberian’, ‘ Ukraine’, ‘ Ukrainian’, ‘ Sochi’, ‘
Caucasus’, ‘ Nikol’, ‘Soviet’, ‘ KGB’, ‘ Dmit’, ‘ USSR’,
‘Ukraine’, ‘ Ukrainians’]

George Washington
fought in the . . .

9 8 [‘ Washington’, ‘Washington’, ‘ Virginia’, ‘Virginia’, ‘
Maryland’, ‘ Congressional’, ‘ Georgetown’, ‘ Dull’, ‘
Smithsonian’, ‘ Maine’, ‘ Burr’, ‘ Jefferson’, ‘ Navy’, ‘
Capitol’, ‘ congressional’, ‘ FDR’, ‘ Lexington’, ‘ Byrd’,
‘ Rhode’, ‘ Roosevelt’, ‘ Pike’, ‘ Everett’, ‘ Brookings’,
‘ Madison’, ‘apeake’, ‘ Randolph’, ‘ VA’, ‘ Arlington’, ‘
Americans’, ‘ Lafayette’]

Multi-Hop

The 35th president of the
United States was assassi-
nated by a person named
. . .

10 0 [‘ assass’, ‘ Assass’, ‘ assassination’, ‘ assassin’, ‘ as-
sassins’, ‘ assassinate’, ‘ Malik’, ‘ bullets’, ‘ gunmen’, ‘
assassinated’, ‘Mu’, ‘ Pakistani’, ‘ sniper’, ‘ killings’, ‘
JFK’, ‘ Pakistan’, ‘ homicides’, ‘ Alger’, ‘ lethal’, ‘ Islam-
abad’, ‘ Karachi’, ‘ shooting’, ‘ gun’, ‘ gunshot’, ‘ Mu’, ‘
murder’, ‘ killing’, ‘ pistols’, ‘ murders’, ‘ gunned’]

The first black president
of the United States was a
member of the . . .

9 8 [‘ Negro’, ‘ NAACP’, ‘ blacks’, ‘ black’, ‘ Baltimore’, ‘
White’, ‘ negro’, ‘ Washington’, ‘ BLM’, ‘ white’, ‘ FBI’,
‘ America’, ‘ Maryland’, ‘ African’, ‘ Trump’, ‘ Nixon’, ‘
Charleston’, ‘ Americ’, ‘ KKK’, ‘Washington’, ‘ Virginia’,
‘ racial’, ‘ Blacks’, ‘white’, ‘White’, ‘ nig’, ‘ Black’, ‘
Obama’, ‘ Louisiana’, ‘ whites’]

Adam and Eve’s eldest
son murdered a person
named . . .

2 1 [‘,’, ‘ the’, ‘ and’, ‘ a’, ‘ "’, ‘ in’, ‘\n’, ‘.’, ‘ to’, ‘ of’, ‘ at’, ‘
is’, ‘ he’, ‘-’, ‘ that’, ‘ was’, ‘ for’, ‘ police’, ‘ from’, ‘ on’,
" ‘", ‘ as’, ‘ death’, ‘ had’, "’", ‘ an’, ‘ his’, "’s", ‘ said’, ‘
told’]

The largest country in the
world is mostly located
on the continent of . . .

9 8 [‘,’, ‘\n’, ‘ the’, ‘ and’, ‘.’, ‘ in’, ‘ a’, ‘ to’, ‘ of’, ‘ (’, ‘-’,
‘ for’, ‘ that’, ‘ "’, ‘:’, ‘ is’, ‘ or’, ‘ at’, ‘ as’, ‘ I’, ‘ on’, ‘
with’, ‘ it’, ‘ an’, ‘ from’, ‘ all’, ‘ by’, ‘ not’, "’s", ‘ more’]

The first president of the
United States fought in
the . . .

9 8 [‘ Trump’, ‘ Washington’, ‘ America’, ‘Washington’, ‘
American’, ‘Trump’, ‘America’, ‘ Obama’, ‘ Donald’,
‘ FBI’, ‘ Congressional’, ‘ Americans’, ‘American’, ‘
Nixon’, ‘ Congress’, ‘ congressional’, ‘ White’, ‘ Roo-
sevelt’, ‘ Republican’, ‘ Negro’, ‘ Clinton’, ‘ JFK’, ‘
Reagan’, ‘ Virginia’, ‘ FDR’, ‘Obama’, ‘Americans’, ‘
Americ’, ‘FBI’, ‘Congress’]

Table 5: Example of attention head outputs from GPT2-Small for Hand.

356

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 357–366
December 7, 2023. ©2023 Association for Computational Linguistics

Systematic Generalization by Finetuning? Analyzing Pretrained Language
Models Using Constituency Tests

Aishik Chakraborty Jackie CK Cheung
School of Computer Science, McGill University

Québec AI Instuite (Mila)
aishik.chakraborty@mail.mcgill.ca, {timothy.odonell, jackie.cheung}@mcgill.ca

Timothy J. O’Donnell

Abstract

Constituents are groups of words that behave
as a syntactic unit. Many linguistic phenomena
(e.g., question formation, diathesis alternations)
require the manipulation and rearrangement of
constituents in a sentence. In this paper, we in-
vestigate how different finetuning setups affect
the ability of pretrained sequence-to-sequence
language models such as BART and T5 to repli-
cate constituency tests — transformations that
involve manipulating constituents in a sentence.
We design multiple evaluation settings by vary-
ing the combinations of constituency tests and
sentence types that a model is exposed to during
finetuning. We show that models can replicate
a linguistic transformation on a specific type
of sentence that they saw during finetuning,
but performance degrades substantially in other
settings, showing a lack of systematic gener-
alization. These results suggest that models
often learn to manipulate sentences at a surface
level unrelated to the constituent-level syntac-
tic structure, for example by copying the first
word of a sentence. These results may partially
explain the brittleness of pretrained language
models in downstream tasks 1.

1 Introduction

The study of syntax revolves around understand-
ing how words and phrases are combined to form
sentences. Certain groups of words, known as con-
stituents, behave as units in a sentence. In lin-
guistics, groups of words that form constituents
are often identified via constituency tests (see, e.g.,
Haegeman, 1994). The tests involve transforming
an input sentence using operations that substitute,
displace, or otherwise modify constituents. For
example, one well-known constituency test is pro-
form substitution whereby a constituent is replaced
by a corresponding pronominal form: John gave
the book about syntax to the student−→John gave

1Code is available at https://github.com/
aishikchakraborty/constituency

it to the student. The fact that the phrase the book
about syntax can be replaced by it as a single unit,
indicates that it is a constituent. Other examples of
constituency tests include clefting and wh-question
formation.

Previous work has shown that pretrained
transformer-based (Vaswani et al., 2017; Liu et al.,
2019b) language models (LMs), trained on large
amounts of text achieve unparalleled performance
on virtually every downstream task. Nevertheless,
these models suffer from robustness issues which
call into question their reliability and ability to re-
cover human-like linguistic generalizations. For
example, in natural language inference, it has been
shown that models rely on superficial cues such
as lexical overlap between the premise and the hy-
pothesis in order to make the correct predictions
(McCoy et al., 2019; Nie et al., 2019).

A line of work has thus attempted to probe pre-
trained LMs by training classifiers on top of frozen
LM weights in order to extract some desired lin-
guistic representation such as syntax trees (Hewitt
and Manning, 2019; Coenen et al., 2019). Work by
Prasad et al. (2019) also shows that LSTM based
LMs contain information about relative clauses in
an interpretable manner. However, such analyses
have several limitations. First, it is difficult to sepa-
rate the contributions of the pre-trained LM weights
from that of the probing classifier. In practice, it is
necessary to place some constraints on the classifier
(e.g., they must be linear) to ensure that extractive
performance can be attributed to the pre-trained
LMs. More fundamentally, understanding what
can be extracted from pre-trained representations
is a different issue from the NLP system designer’s
ultimate concern, which is whether a fine-tuned sys-
tem will perform well on new data which involves
novel combinations of the units it has seen during
pre-training and finetuning; that is, its ability to
generalize systematically (Tamkin et al., 2020).

In this paper, we propose analyzing the syntactic
357

competence of pre-trained and fine-tuned LMs. We
focus on the phenomenon of constituency because
of its core role in supporting semantic understand-
ing and natural language inference, with applica-
tions to a wide variety of downstream tasks in NLU
and NLG.

We ask whether LMs after fine-tuning are able to
perform transformations on input sentences which
correspond to well-known constituency tests from
the literature. Performing these transformations
correctly requires that models represent the con-
stituency structure of sentences. In our experi-
ments, we systematically vary two dimensions of
generalization: i) whether input sentences repre-
sent novel syntactic constructions and ii) whether
the main verb of the sentence is novel. We also
pose as a control a version of the input sentence
where constituents of varying lengths are replaced
by their head word.

Our results show that models are able to cor-
rectly transform input sentences only when tested
on verbs and syntactic constructions that they were
trained on. These results indicate that it is unlikely
that these models have acquired a human-like rep-
resentation of constituent structure, instead suggest-
ing that they instead leverage surface-level cues.

2 Background

Constituency Tests. Constituency tests on sen-
tences are a well-known tool from linguistics (see,
e.g., Haegeman, 1994) for identifying groups of
words that behave as units in a sentence. The idea
of building grammar in terms of constituent struc-
ture is old (e.g., Wells, 1947) and has been at the
heart of formal models of generative grammar since
the 1950s (e.g., Chomsky, 1979). Constituents re-
main of interest as they are a fundamental building
block of most modern approaches to grammars
and are an important part of most theories of form-
meaning mapping.

Extractive Probing. A thread of research fo-
cuses on the construction of probes to study the rep-
resentations of pre-trained language models (Con-
neau et al., 2018). Extractive probes do so by at-
tempting to extract linguistically interpretable struc-
tures. Probing word representations like GloVe
(Pennington et al., 2014) for linguistic properties
have been proposed by Köhn (2015). These early
probing methods, that use linear functions as prob-
ing functions, have been further used to under-
stand intermediate representations of deep neural

networks (Shi et al., 2016; Ettinger et al., 2016;
Veldhoen et al., 2016). Since then, probing meth-
ods have been used to study questions such as
whether neural representations capture information
about linguistic structure such as verb tense, part-
of-speech, or syntactic dependency type (e.g., Liu
et al., 2019a; Hewitt and Manning, 2019).

As pointed out by Hewitt and Liang (2019), an
important limitation with existing probing tasks is
that they fail to distinguish between information
present in probed representations and information
that comes from the probe supervision signal. Thus,
distinguishing between decoding and learning the
probing task is essential.

Understanding Language Model Behavior
through Syntactic Tests. Mueller et al. (2022)
show that pretraining of language models can in-
duce some specific forms of hierarchical gener-
alization. The authors create linguistic tasks us-
ing different sentence transformations, such as,
question formation and passivisation. They show
that language models can exhibit syntactic gen-
eralization on pretraining. McCoy et al. (2020)
show that inducing syntactic structures in model
architectures is essential for exhibiting syntactic
generalization capabilities similar to human be-
ings. Lake and Baroni (2018) show the zero-shot
compositional generalization capabilities of sev-
eral sequence-to-sequence models on a specialized
dataset called SCAN. The authors demonstrate that
these sequence-to-sequence models posses very
limited capabilities to generalize compositionally
in the absence of surface-level cues that can be
exploited.

In our work, we use sequence-to-sequence mod-
els to probe for constituency in pretrained language
models.

3 Syntactic Constructions

Our interest in this work is to probe the behaviour
of a pre-trained language model M after it is fine-
tuned to transform input sentences according to a
number of constituency-sensitive transformations
(CST) which are inspired by constituent tests from
the literature. In this section, we describe the set of
syntactic constructions which we use to construct
our training and test datasets, as well as introduce
a notation which allows us to compactly specify
CSTs with respect to these constructions.

We start with the set of simple declarative base
sentences presented in Kann et al. (2018) (Dbase).

358

Each of these sentences is constructed using a main
verb which is either an English dative or loca-
tive alternator (Levin and Rappaport Hovav, 2005;
Levin, 1993), which are well-understood syntac-
tic alterations in the literature. Each sentence S
can appear as one of four types, which we denote
using the feature A with the following notation
S[A] ∈ {DO, PO, LOC, IN}.
Dative Sentences using dative main verbs may
either be in the double-object (S[A] = DO) or the
prepositional object construction (S[A] = PO):

(1) Michael passed the people across the table
the salt. (S1[A] = DO)

(2) Michael passed the salt to the people across
the table. (S2[A] = PO)

Locative Sentences using locative main verbs
may be in the locative (S[A] = LOC) or instrumen-
tal form (S[A] = IN) constructions:

(3) John sprayed the paint onto the wall.
(S3[A] = LOC)

(4) John sprayed the wall with paint. (S4[A] =
IN)

Our corpus also includes more complex sen-
tences that result from modifying one of the argu-
ments of each verb using a transformation inspired
by a constituency test from the literature.

Pronominalization (P) Proform substitution in-
volves replacing one of the verbal arguments with
an appropriate proform (he, it, them, etc.). We will
use the feature P to indicate whether a sentence
contains a noun phrase that is pronominalized, and
if so, which syntactic position is pronominalized.2

For example, (2) has S2[P] = NONE, in contrast
to:

(5) Michael passed it to the people across the
table. (S5[P] = DOBJ)

Clefting (C) Clefting is a syntactic construction
that involves displacing a verb argument X... into
a copular structure "It was X that ...". We use the
featureC to indicate whether a constituent has been
clefted, and its original syntactic position. So, (2)
has S2[C] = NONE, whereas:

(6) It was Michael that passed the salt to the
people across the table. (S6[C] = SUBJ)

2In this work, we ignore the case where multiple arguments
are pronominalized. This case can be easily handled by an
extension of our notation to allow sets as features.

Wh-question (W) Wh-question formation in-
volves replacing a verb argument with a corre-
sponding wh-phrase, displacing it to the beginning
of the sentence, and adding appropriate do-support.
We use the feature W to indicate the formation
of a wh-question from a declarative sentence. For
example, (2) has S2[W] = NONE, whereas:

(7) What did Michael pass to the people across
the table? (S7[W] = DO)

Putting this all together, the syntactic form of any
sentence in our training or test sets can be described
by specifying values for our four features A, C,
P , and W . For example, the complete featural
description of (2) would be:

S2 = {A : PO, P : NONE,

C : NONE, W : NONE}

Informally, a constituency-sensitive transfor-
mation T can be can be thought of as function
Sout = T (Sin) such that T substitutes, displaces,
or otherwise modifies one or more constituents
in a grammatical input sentence Sin in such a
way that grammaticality is maintained. In terms
of the featural representation we have just intro-
duced, a CST T can be described by (re)assigning
a value VAL for feature F in the description of
some sentence. We will denote this (re)assignment
as tF←VAL. For example, a CST which pronom-
inalizes the direct object of a sentence would be
written tP←DO(S) : S[P] ← DO. The sentence
that results from applying this transformation to
input S2 that is, tP←DO(S2), would then be (5).

4 Evaluation Framework

In this section, we describe the framework we use
to evaluate our fine-tuned models. Our goal is
to test the degree to which our fine-tuned models
have captured a notion of constituency. If a model
has represented CSTs in terms of the abstract con-
stituent structure of input and output sentences,
it should generalize easily to novel words, novel
combinations of words, and novel combinations of
CSTs. On the other hand, if it is instead relying
on low-level cues, it may successfully learn the
mappings involved in particular cases of a CST, but
not be able to generalize across these dimensions.
We test models’ constituent structure by system-
atically varying the amount of generalization we
demand in different test conditions. In this section,
we describe this evaluation framework.

359

In our setting, a training or test item is a triple
(T, Sin, Sout) where T is a CST as described in the
preceding section and Sin and Sout are sentences
such that T (Sin) = Sout. Note that in our frame-
work, all three parts of the triple are observed dur-
ing training—the models observe which CST char-
acterizes the relationship between Sin and Sout.

Test and training datasets are disjoint sets of such
items. A model M will be finetuned on Dtrain and
tested according to its performance on Dtest.

Recall that all of the sentences in our dataset are
built using main verbs which are either dative or
locative alternators. Thus, for all sentences, the
value of the base argument structure feature A is
one of DO, PO, LOC, or IN.

The high-level idea of our experiments is to see
if the models can correct apply a target CST to
sentences which vary in terms of their similarity to
training sentences. In each evaluation we choose a
single CST called the target CST. In practice, we
only evaluate CSTs which correspond to dative or
locative alternations (i.e., we only test the following
CSTs A ← PO, A ← DO, A ← INS, A ←
LOC). For the sake of concreteness, our description
of training data construction below will use the
target A ← PO, but the other targets are handled
analogously.

For this target transformation, define the set of
base sentences

Sbase ={S|S[A] = DO,

S[P] = S[C] = S[W] = NONE};

These are simple declarative sentences in the dou-
ble object construction without any further pronom-
inalization, clefting, or wh-question formation ap-
plied.
Dtrain will consist of the union of following sets

of triples (T, sin, sout):

I. Non-base transformations applied to each S ∈
Sbase:

(TC←∗, S, TC←∗(S)),

(TP←∗, S, TP←∗(S)),

(TW←∗, S, TW←∗(S)),

where * denotes all possible non-null values for
that feature. That is, training includes all non-base
transformation applied to the double object base
sentences.

II. The target transformation applied to the base
sentences:

(TA←PO, S, TA←PO(S)).

Thus, training also includes the prepositional
object alternation applied to double object base
sentences.

III. The target verb alternation, applied in the
opposite direction (i.e., A ← DO), to a sentence
which is in one of the more complex construction
forms (pronominalized, clefted, wh-item). Let S′

be the base sentence S transformed to be in the PO
construction S′ = TA←PO(S).

(TA←DO, TC←∗(S′), TA←DO(TC←∗(S′))),

(TA←DO, TP←∗(S′), TA←DO(TP←∗(S′))),

(TA←DO, TW←∗(S′), TA←DO(TW←∗(S′)))

Test At test time, the model will be evaluated on
its performance on the set Dtest, which consists of
the target transformation applied to the output of
I.:

(TA←PO, TC←∗(S), TA←PO(TC←∗(S))),

(TA←PO, TP←∗(S), TA←PO(TP←∗(S))),

(TA←PO, TW←∗(S), TA←PO(TW←∗(S)))

Notably, the model is trained on each of the
transformations involved in generating the test set
(TA←PO, TC←∗, TP←∗, TW←∗), as well as on all
construction types. Our test sets vary (i) whether
particular combinations of CST and input sen-
tence type are held out (ii) whether particular verbs
and arguments are held out and (iii) whether con-
stituents vary in length between test and train.

4.1 Evaluation Dimension 1: Novel
Combinations of CST and Input

As our first dimension of evaluation, we vary
whether the test items described in Section 4 are in-
cluded in the training set or not. We call these con-
ditions NOVEL-CST-INPUT and OBSERVED-CST-
INPUT. Note, that in NOVEL-CST-INPUT, the model
will have never seen the particular combination of
target CST and input item construction type in the
training data. A model which is able to generalize
in this condition must be able to correctly iden-
tify the arguments of the main verb despite the

360

fact that these argument appear pronominalized,
clefted, or as what-items, and then apply the corre-
sponding target transformation. For instance, the
model might be presented with the sentence what
did the painter spray the wall with and have to cor-
rectly identify what as the instrumental argument
of this instrumental construction, and transform the
sentence to the locative construction what did the
painter spray onto the wall. This is a very challeng-
ing task.

4.2 Evaluation Dimension 2: Novel Verbs and
Arguments

As our second dimension of evaluation, we vary
whether the test items use completely novel verbs
and arguments (NOVEL-WORDS) or whether they
reuse verbs and arguments observed during test
(OBSERVED-WORDS). Note that the verbs and
argument constituents are novel with respect to
the fine-tuning task; they appear however in pre-
training.

As mentioned before, our base transformations
come from the dataset proposed by Kann et al.
(2018). In this dataset, the test set verbs are disjoint
from both the training and development set verbs.
This helps us test for novel verbs and arguments.

The tests for the case where the test set verbs are
non-novel are done by creating the non-novel verb
test set. We describe this in Section 6.2.

4.3 Evaluation Dimension 3: Generalization
across Constituent Lengths

A critical property of constituents is that they are
sets of words of varying size that behave as sin-
gle units. Thus, as our third dimension of eval-
uation, we introduce a baseline condition where
all constituents are replaced by their head word
HEAD-WORD-ORACLE (HWO) resulting in a cor-
pus where constituents can always be identified
with single words.

5 Model

5.1 Model Architecture
We evaluate two pretrained sequence-to-sequence
transformer models BART (Lewis et al., 2019) and
T5 (Raffel et al., 2020). We utilize the BART-base
checkpoint to initialize the BART model. For T5,
we utilize the t5-base checkpoint for initialization.

Input Embedding Details The inputs to the en-
coder are transformed into the embedding space
by using the input embeddings of pretrained BART

(or T5). Similar to the original implementation,
we use 0 as the decoder start token for BART and
the PAD token as the decoder start token for the
T5 model. To inform the model of what kind of
transformation we want to get, we append a special
token TRANSFORMATION: uid at the start of every
input. The uid is a unique identifier corresponding
to a transformation t ∈ T . We always use greedy
search for decoding purposes.

The model is trained using a standard next-word
cross-entropy loss function.

5.2 Building the Head Word Oracle

We introduce a head word oracle (HWO) model
that controls for the effect of the varying constituent
lengths. This HWO identifies the head of each
noun phrase constituent in our dataset using a de-
pendency parse of the sentences. We then replaced
each noun phrase in the dataset with its head word
piece as a pre-processing step. This procedure stan-
dardizes the lengths of constituents, and simplifies
the problem that the model must solve. The head
words are identified using a dependency parser on
the original sentence. After the model does the
necessary transformation task, we transform the
head words into their original constituents and eval-
uate the model using the original constituents. In
case such a transformation is not possible due to
incorrect outputs, we keep the head words as is.

6 Experimental Setup

6.1 Evaluation Metrics

We adopt the following three evaluation measures
of the similarity between the predicted output and
the reference sentence.

Edit Distance We make use of a standard (i.e.,
Levenshtein) edit distance between predicted and
gold standard output sentences.

BLEU BLEU is a widely used automatic evalua-
tion metric from machine translation that considers
N-gram overlap with a brevity penalty (Papineni
et al., 2002).

METEOR Meteor (Banerjee and Lavie, 2005)
is an automatic evaluation metric that measures
how well a system adds, deletes or preserves words.
This metric is a standard measure for evaluating
several language generation systems.

361

6.2 Datasets

Base Sentences We adopt the dataset of Kann
et al. (2018) as the base upon which we build more
complex sentences. This subset of sentences con-
sists of simple declarative sentences using dative
and locative (spray/load) alternator verbs. The orig-
inal dataset provided by Kann et al. (2018) (Dbase)
contains both grammatical and ungrammatical sen-
tences, we remove the latter for the purposes of our
study.

Proform Substitution: All sentences in our base
dataset make use of dative or locative verbs and
thus have three verbal arguments: in the case of
dative verbs, a subject, object, and indirect object
or oblique; in the case of locative verbs a subject,
and two oblique arguments. Sentences with a pro-
form substitution set replace one of these three
arguments with an appropriate pronominal form
such as he, she, they, or it. Thus S[P] can take on
values DOBJ, INOBJ and SUBJ.

Clefting: We generate clefted sentences in a sim-
ilar way to the pro-form substitutions, targeting
one of the three arguments for extraction. Thus the
S[C] can take on values DOBJ, INOBJ and SUBJ.

wh-questions: We generate wh-questions by tar-
geting one of the three arguments in each base
sentence for extraction. Thus, S[W] can take on
values DOBJ, INOBJ and SUBJ.

Creating the NOVEL-WORDS test set and every
train, val split: We use the training, validation
and test sets from the base corpus Dbase. We apply
the relevant syntactic transformations to create the
experiments described in Section 4 by using the
clefting, proform and wh sentence generation strat-
egy discussed above. The final corpus statistics are
shown in Table 1.

Creating the OBSERVED-WORDS test set: This
test set is made by using the base transformation
dataset already available to us. The main property
of this new test set is that the main verb in the test
set is seen during training. We randomly chose 30
sentences from the training corpus. We create the
new test set the by replacing the direct object and
the prepositional objects of the randomly chosen
training sentences with new objects. These objects
can appear during training and must make the final
sentence a grammatical sentence.

Dataset Split Dative Locative
Train NOVEL-CST-INPUT 4,268 5,668

Train OBSERVED-CST-INPUT 8,208 8,208
Validation 153 612

Test NOVEL-WORDS 225 585
Test OBSERVED-WORDS 90 -

Table 1: Final train, test and validation corpus statistics

6.3 Model Initializations and
Hyperparameters

Encoder and Decoder Initializations For all
BART models, the encoders and deocders are ini-
tialized with the bart-base checkpoint. Similarly,
for the T5 model, the encoder is initialized with
t5-base. Note that the BART and T5 models have
different number of trainable parameters. During
evaluation, we do not make any comparisons be-
tween the pretrained models. The outputs of the
encoder-decoder model are subwords. We use the
BART(T5) tokenizer to combine these subwords
into words. Finally, during generation, we always
use greedy decoding in all our experiments.

Optimization We use the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
3e − 5 to train all non-head word oracle models
and 3e − 6 for the training of HWO models. We
use a batch size of 32 and the model is trained for
a total of 5 epochs.

For all models, we save the model with the best
validation BLEU score and load the model corre-
sponding to the best validation performance during
test time.

7 Results

We evaluate the models proposed in Sec-
tion 5 using the tasks proposed in Sec-
tion 3. We apply the four base transformations
(TA←PO, TA←DO, TA←LOC , TA←IN) to the three
separate non-base transformations (clefting, pronor-
malization and wh-question generation). We take
an average of the results corresponding to the four
base transformations.

7.1 Performance of PLMs on Constituency
Tasks

Generalization across sentence types and verbs:
We look at the effect of holding out the tar-
get linguistic composition (NOVEL-CST-INPUT

vs OBSERVED-CST-INPUT) on each of the con-
stituency task . In this setup, the verbs in the test set
are novel. Tables 2 and 3 shows that the Head Word

362

Input transformation type Cleft Proform wh
Models ED BLEU METEOR ED BLEU METEOR ED BLEU METEOR

NOVEL-CST-INPUT and NOVEL-WORDS

BART HWO 6.27 82.33 80.13 6.00 84.72 87.64 6.00 86.89 86.65
BART 14.91 70.17 70.74 13.30 76.66 75.03 13.00 80.86 80.59

NOVEL-CST-INPUT and OBSERVED-WORDS

BART HWO 5.93 88.33 86.49 5.22 90.05 89.27 5.02 88.02 87.56
BART 14.82 72.82 72.91 15.72 72.62 72.87 15.98 72.02 72.22

OBSERVED-CST-INPUT and NOVEL-WORDS

BART HWO 3.54 89.36 88.73 3.11 85.78 84.49 3.62 92.25 92.03
BART 8.19 84.65 84.53 4.88 81.44 80.31 2.32 90.74 91.34

OBSERVED-CST-INPUT and OBSERVED-WORDS

BART HWO 0.31 98.32 96.53 0.38 98.54 96.09 0.32 98.10 96.73
BART 2.71 97.32 97.29 2.36 97.68 97.91 2.98 97.37 97.27

Table 2: Evaluating the BART models in the four different experimental settings. The results are an average of the
results obtained by composing four base transformations with our non-base input transformations (cleft, proform
and wh).

Input transformation type Cleft Proform wh
Models ED BLEU METEOR ED BLEU METEOR ED BLEU METEOR

NOVEL-CST-INPUT and NOVEL-WORDS

T5 HWO 6.32 86.23 86.97 6.04 86.98 86.39 6.98 86.09 86.80
T5 8.30 80.71 80.52 8.32 80.82 81.71 8.91 80.11 81.02

NOVEL-CST-INPUT and OBSERVED-WORDS

T5 HWO 5.32 89.11 89.72 5.27 89.88 89.80 5.08 89.25 89.07
T5 8.83 83.61 83.70 7.91 86.82 86.42 7.63 86.39 86.99

OBSERVED-CST-INPUT and NOVEL-WORDS

T5 HWO 3.01 97.82 97.37 3.02 97.79 97.34 3.91 96.92 97.05
T5 3.31 95.32 96.31 3.04 95.24 96.32 3.10 95.21 96.15

OBSERVED-CST-INPUT and OBSERVED-WORDS

T5 HWO 2.71 98.66 98.59 2.83 98.30 98.54 2.85 98.75 98.02
T5 2.99 96.98 97.16 2.90 96.04 96.81 2.95 96.69 96.91

Table 3: Evaluating the T5 models in the four different experimental settings. The results are an average of the
results obtained by composing four base transformations with our non-base input transformations (cleft, proform
and wh).

Source Sentence Target Sentence BART output T5 output
It was a plate of food that john
gave to the little boy.

It was a plate of food that John
gave the little boy.

It was a plate that John gave to
the little boy.

It was a plate that John gave to
the little boy to.

Michael gave a plate of food
to them

Michael gave them a plate of
food

Michael gave them them a
plate to

Michael gave them to plate

Table 4: Common BART and T5 error cases while dealing with quantitative constructions.

Oracle models have superior performances over the
BART and the T5 model in the NOVEL-CST-INPUT

setting. This shows that identifying constituency
boundaries is a difficult task for the non-oracle mod-
els. The Head Word Oracle models need to learn
which tokens need to be rearranged, substituted,
or deleted, but they do not have to learn to group
words into constituents. This is unlike the BART

and the T5 models that need to identify constituent
boundaries and do rearragements, substitutions and
deletions on those extracted constituents.

Similar trends are seen when the sentence types
corresponding to the target linguistic composition
are not withheld. Here, BART and T5 Oracle mod-
els, as well as the BART and the T5 models in the
non-held out setting outperform their counterparts

363

in the held-out setting. This does indicate that the
models do not excel at extracting and utilizing the
constituency-level information even when the con-
stituents are reduced to single tokens.

Generalization across sentence types: In Ta-
bles 2 and 3, we observe that compositions involv-
ing the non-base transformations clefting genera-
tion results in worse performance than pronormal-
ization and wh question generation. We investi-
gated this issue and found this to be a side effect
of overfitting. During training, the model always
learns to copy the first token. Thus, it fails to learn
the fact that during clefting,it needs to generate new
tokens.

Generalization across verbs: The performance
of the BART and the T5 model is significantly bet-
ter when the target verbs and arguments are seen
during training in the OBSERVED-WORDS experi-
mental setting. This suggests that the PLMs do not
learn verbal subcategorization frames which are
important for deriving and manipulating sentential
argument structure. Instead, they seem to rely on
surface-level cues to make predictions, which is
why the models when tested on non-novel verbs
outperform the model tested on novel verbs.

7.2 Quantitative Constructions

We looked at the outputs of BART and T5 models
when the test set verbs are unseen and the target
transformation is held-out. A common error among
these models is that a lot of the time they end up
copying the inputs without the necessary transfor-
mations. We also noticed that both models make
errors consistently when the input sentence has a
quantitative construction (a.k.a. pseudopartitives,
e.g. a plate of food), as can be seen in Table 4. The
models correctly rearrange the order of the nominal
arguments. However, they have difficulty identify-
ing the precise constituent boundaries, resulting in
errors. This further illustrates why the Head Word
Oracle model ends up having superior performance.
In fact, on average, the BART Head Word Oracle
correctly transforms 90.7% of the sentences con-
taining quantitative constructions, as opposed to
the BART model, which never transforms any such
sentences correctly.

8 Conclusion

In this paper, we systematically vary the task setup
and the training signals to do a behavioral analysis

of pretrained sequence-to-sequence models. We
design several linguistic tests including verb argu-
ment structure alternations, proform substitution,
clefting and wh-question generation. We show that
the models fail to generalize well when the tar-
get transformation is held-out. We attribute this
to the failure of the pretrained language models in
utilizing constituency information and relying on
surface-level cues. We further show that simplify-
ing the constituent boundaries improves the gener-
alization capabilities of these models. Furthermore,
increasing the number of out-of-vocabulary tokens
in the test corpus decreases the generalization per-
formance of these models.

9 Limitations

Throughout this paper, we use specialized datasets
for analyzing the behavior of various pretrained
language models. The datasets we use for creat-
ing the constituency tests are in English which has
relatively fixed word order. One feature of the sen-
tences in the base constructions like dative is that
the first token is always a subject named entity
in the base sentences. This makes it easy for the
model we use to learn certain biases. For exam-
ple, the first token can be copied when we apply a
transformation to change the verb alteration. In lan-
guages with relatively free word order, this might
create an issue for these models to do some of the
basic transformations correctly as the syntactic pat-
terns might be too complex to learn. This could
make our current models including our oracle mod-
els not very effective for doing similar analyses. In
addition, the current suite of constituency tests we
use may not work on languages with different word
orders.

10 Acknowledgements

We would like to thank the reviewers for their valu-
able comments. This work is supported by funding
from Samsung Electronics. This research was en-
abled in part by support provided by Calcul Québec
3, and Compute Canada 4.

References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-

3https://www.calculquebec.ca
4https://www.computecanada.ca

364

ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Noam Chomsky. 1979. The logical structure of linguis-
tic theory. Synthese, 40(2):317–352.

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam
Pearce, Fernanda Viégas, and Martin Wattenberg.
2019. Visualizing and measuring the geometry of
bert. arXiv preprint arXiv:1906.02715.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 134–139.

L. Haegeman. 1994. Introduction to Government and
Binding Theory. Blackwell Textbooks in Linguistics.
Wiley.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Katharina Kann, Alex Warstadt, Adina Williams, and
Samuel R Bowman. 2018. Verb argument structure
alternations in word and sentence embeddings. arXiv
preprint arXiv:1811.10773.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Arne Köhn. 2015. What’s in an embedding? analyzing
word embeddings through multilingual evaluation.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2067–2073.

Brenden Lake and Marco Baroni. 2018. Generaliza-
tion without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In
35th International Conference on Machine Learning,
ICML 2018, 35th International Conference on Ma-
chine Learning, ICML 2018, pages 4487–4499. In-
ternational Machine Learning Society (IMLS). Pub-
lisher Copyright: © Copyright 2018 by the author(s).;
35th International Conference on Machine Learning,
ICML 2018 ; Conference date: 10-07-2018 Through
15-07-2018.

Beth Levin. 1993. English verb classes and alterna-
tions: A preliminary investigation. University of
Chicago Press.

Beth Levin and Malka Rappaport Hovav. 2005. Ar-
gument realization: Research surveys in linguistics.
Cambridge University Press.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does syntax need to grow on trees? sources of hier-
archical inductive bias in sequence-to-sequence net-
works. Transactions of the Association for Computa-
tional Linguistics, 8:125–140.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. arXiv
preprint arXiv:1902.01007.

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang,
and Sebastian Schuster. 2022. Coloring the blank
slate: Pre-training imparts a hierarchical inductive
bias to sequence-to-sequence models.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2019. Adversarial
nli: A new benchmark for natural language under-
standing. arXiv preprint arXiv:1910.14599.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. pages 311–318.

365

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Grusha Prasad, Marten van Schijndel, and Tal Linzen.
2019. Using priming to uncover the organization of
syntactic representations in neural language models.
In Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), pages
66–76, Hong Kong, China. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural mt learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1526–
1534.

Alex Tamkin, Trisha Singh, Davide Giovanardi, and
Noah Goodman. 2020. Investigating transferabil-
ity in pretrained language models. arXiv preprint
arXiv:2004.14975.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sara Veldhoen, Dieuwke Hupkes, and Willem Zuidema.
2016. Diagnostic classifiers: Revealing how neu-
ral networks process hierarchical structure. In Pro-
ceedings of the Workshop on Cognitive Computation
(CoCo@NIPS2016).

Rulon S. Wells. 1947. Immediate constituents. Lan-
guage, 23(2):81–117.

366

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 367–378
December 7, 2023. ©2023 Association for Computational Linguistics

On Quick Kisses and How to Make Them Count:
A Study on Event Construal in Light Verb Constructions with BERT

Chenxin Liu and Emmanuele Chersoni
The Hong Kong Polytechnic University

Department of Chinese and Bilingual Studies
Yuk Choi Road 11, Hung Hom, Kowloon, Hong Kong (China)

chenxinl@uw.edu, emmanuelechersoni@gmail.com

Abstract

Psycholinguistic studies suggested that our
mental perception of events depends not only
on the lexical items used to describe them, but
also on the syntactic structure of the event de-
scription. More specifically, it has been argued
that light verb constructions affect the percep-
tion of duration in event construal, such that
the same event in this type of constructions is
perceived by humans as taking less time (to
give a kiss takes a shorter time than to kiss).

In our paper, we present two experiments with
BERT using English stimuli from psycholin-
guistic studies to investigate the effects of the
syntactic construction on event duration and
event similarity. We show that i) the dimen-
sions of BERT vectors encode a smaller value
for duration for both punctive and durative
events in count syntax, in line with human re-
sults; on the other hand, we also found that
ii) BERT semantic similarity fails to capture
the conceptual shift that durative events should
undergo in count syntax.

1 Introduction

Temporality of event representations is at the core
of human cognition, as the event duration in lin-
guistic descriptions is likely correlated to the way
we represent time in our mind (Coll-Florit and Gen-
nari, 2011). When we talk about an event, whether
it is a hug between friends, an academic speech or
the advice given by a doctor after a visit, we gener-
ally do not make explicit the duration information,
since this information is supposed to be known
by everyone from personal experience. Moreover,
duration is usually not encoded by grammar.

However, previous studies in psycholinguistics
suggested that grammatical cues in the message
significantly affect the event representation built by
language comprehenders for aspects such as cau-
sation and event structure (Fausey and Boroditsky,
2010; Johnson and Goldberg, 2013). One of the
main hypotheses of our research work is that the

perceived duration of an event is also one of the
aspects that is influenced by grammar.

Events can be individuated or not (Barner et al.,
2008; Wellwood et al., 2018): She does runs and
She does running describe something similar, but
the count syntax in the first sentence makes us
think about several occurrences of an activity, while
the mass syntax in the second one makes us think
about a more generic action whose temporal bound-
aries are not specified 1. Moreover, some events are
more easily thought as atomic: when we hear that
Mary kissed John we can easily imagine that she
did it several times, and each time could count as a
separate kissing-event. On the other hand, speak-
ing is non-atomic: if we say that The king spoke
to the soldiers of the army, we might be plausibly
describing a situation where the king had a break in
his speech and then he started again, but this would
still count as the same speaking-event.

Atomicity is the main criterion to classify events
into punctive (like kissing) or durative. Punctive
events refer to verbs that tend to be instantaneous
and are usually bounded by a natural end point (e.g.
in Mary kissed John, the set start and end point
come with the contact and the separation of two
lips). Besides, they often receive iterative reading
when taking place in progressive form or over a
more protracted duration (e.g. by reading Mary
kicked the table for an hour, one could imagine
that there should be more than one kicking action).
Durative events usually are not naturally bounded
and not understood iteratively. For instance, the
sentence Mary talked for an hour describes a single
protracted event rather than multiple events.

A study by Wittenberg and Levy (2017) analyzed

1According to the Number Asymmetry hypothesis by
Barner and Snedeker (2005), the count syntax uses number
as the uniform dimension of measurement (e.g., two cups, a
dance, a jump). By contrast, the mass syntax is unspecified
and open to comparison using various measuring dimensions,
such as mass, volume and time (e.g., some water, some danc-
ing, some jumping).

367

the interaction of mass-count syntax with punctive
and durative events when they are used within a
light verb construction (e.g. to give a kiss, to give
a speech). In the first experiment, the author asked
human subjects to estimate the duration of events,
and the events were denoted either by a verb in
transitive construction, or by a corresponding light
verb construction2, and the results revealed that
light verb syntax has a shortening effect on the
perceived duration of the event (to give a kiss
takes a shorter time than to kiss). Moreover, in
a second experiment, human raters had to decide
whether two events occurring in two different con-
structions were the same or not. Noticeably, while
an event in the transitive or in the light verb con-
struction was rated to be similar to itself in the
cases of punctive events (e.g. to kiss vs. to give a
kiss) in count syntax and durative events in mass
syntax (e.g. to advise vs. to give advice), durative
events undergo a significantly greater semantic
shift when they are described with count syntax.
In other words, a higher semantic distance is per-
ceived between event descriptions such as to talk
and to give a talk. The event in the light verb con-
struction, although it is still conceptually related to
the one in the transitive frame, is conceived as of a
different type.

Event and temporal knowledge are useful for
many Natural Language Processing (NLP) applica-
tions, including information retrieval, story gener-
ation, question answering and text summarization
(Zhou et al., 2020; Ma et al., 2021). Performance in
NLP applications vastly improved with the advent
of Language Models (LMs) based on Transformer
architectures (Vaswani et al., 2017; Devlin et al.,
2019), and consequently, a lot of research focused
on analyzing their linguistic abilities, and question-
ing whether the representations they learn are com-
patible with linguistic theory (Li, 2022). We would
like to verify, therefore, whether the semantic rep-
resentations of LMs are able to capture changes
in the representations of time that are encoded in
subtle variations of the linguistic input.

In our study, we used the popular BERT lan-
guage model (Devlin et al., 2019) to reproduce the
experiments of Wittenberg and Levy (2017). First,
we analyzed the contextualized vector representa-

2Since give in the light verb construction is ditransitive, i.e.
taking both a direct object and an indirect object, "light verb
construction" and "ditransitive frame" were used interchange-
ably to refer to the same syntactic construction in Wittenberg
and Levy (2017). This paper follows this usage.

tions produced by different versions of BERT, and
used the technique of semantic projection (Grand
et al., 2022) to test if the value of the semantic di-
mension of duration is actually shorter for events
described with light verb constructions than in the
corresponding ditransitive constructions; secondly,
we measured the semantic similarity between the
same events in the two constructions, to see if the
distances between vectors capture the same mean-
ing shifts that have been detected by humans.

In our first experiment, we found that the short-
ening effect can be found across event types and
projection conditions, with the contextualized vec-
tor of the light verb construction showing signif-
icantly shorter duration values. In the second ex-
periment, however, the similarity between BERT
vectors largely fails to reproduce the pattern ob-
served in the original study, as no significant mean-
ing shifts were observed across event categories.
We hypothesized this might be due to an inherent
shortcoming of distributional similarity in distin-
guishing between fine-grained meaning relations
between linguistic expressions (Baroni and Lenci,
2011; Xiang et al., 2020; Schulte Im Walde, 2020).
To the best of our knowledge, our study is the first
to study meaning shifts in light verb constructions
with contextualized vector spaces, and in general
one of the first to analyze the representation of du-
ration in distributional models. The materials to
reproduce our experiments can be found at https:
//github.com/xinxinlaoshi/QuickKisses.

2 Related Work

2.1 Probing Linguistic Knowledge in
Language Models

A large number of studies in the literature on lan-
guage models (LMs) has been dedicated to the
analysis of the linguistic knowledge that they en-
code. The most popular methodology is probably
the one employing probing tasks, in which a simple
model is asked to solve a task requiring linguistic
knowledge using a representation derived from a
LM, with little or no specific linguistic supervision.
If the model achieves a good performance, then one
can infer that the LM representation encodes the
target linguistic knowledge (Tenney et al., 2019a,b;
Hewitt and Liang, 2019; Wu et al., 2020; Vulić
et al., 2020; Sorodoc et al., 2020; Ettinger, 2020;
Geiger et al., 2021; Koto et al., 2021; Chersoni
et al., 2021a; Conia and Navigli, 2022; Kim and
Linzen, 2020; Arps et al., 2022; Misra et al., 2022).

368

Some previous computational work specifically
investigated how grammatical cues of sentence in-
puts impact the predictions of Transformer lan-
guage models. Cho et al. (2021) studied the prim-
ing effect of verb aspect on BERT predictions of
event locations in English, and they found that
BERT correctly assigns higher probability scores
to typical event locations, but that it is not particu-
larly affected by the aspect. Humans, on the other
hand, activate specific expectations for event loca-
tions only when the verbs describing those events
are in the imperfective form (e.g. the location in
The boy was fishing at the lake is more salient than
in The boy had fished at the lake, as the event is
represented as still ongoing). The work by Methen-
iti et al. (2022) focused again on the BERT model
and on the aspectual features of telicity and dura-
tion. Their setup included a classification task in
English and French, and their results proved that
in both languages BERT was adequately capturing
information on telicity and duration, even in the
non-finetuned forms, although it also showed some
bias to verb tense and word order.

2.2 Modeling Conceptual Shifts in
Computational Semantics

The phenomena of coercion and metonymic inter-
pretation have widely been investigated in NLP,
either with classical distributional models (Zarcone
and Padó, 2011; Zarcone et al., 2012; Chersoni
et al., 2017; McGregor et al., 2017; Chersoni et al.,
2021b) or with Transformer-based language mod-
els (Rambelli et al., 2020; Pedinotti and Lenci,
2020; Ye et al., 2022; Gu, 2022). Most studies
focused on complement coercion, a type clash be-
tween an event selecting verb and an entity denot-
ing noun, that triggers a hidden event interpretation
(e.g. The composer began the symphony → The
composer began writing the symphony).

Some works focused instead on the mass-count
coercion in nominals. Katz and Zamparelli (2012)
considered pluralisation as a proxy of count usage
(e.g. wine (mass noun) → wines (count usage),
which is more likely to refer to glasses of wine
rather than to the liquid), and built a vector space
model with separate vector representations for the
singular and the plural of a list of candidate mass
and count nouns. Consistently with their initial
hypothesis, they found that the vector similarity
between singular and plural is higher for count
nouns than for mass nouns, since the latter undergo

a meaning shift when they are pluralized. The
follow-up work by Hürlimann et al. (2014) ana-
lyzed the factors affecting the similarity scores in
the data by Katz and Zamparelli (2012), reporting
that abstract and highly polysemous nouns undergo
greater semantic shifts as a consequence of plu-
ralization. Finally, Liu and Chersoni (2022) used
BERT vectors to study the meaning shift of coer-
cion, and they found that mass noun vector have
more pronounced shifts (i.e. a lower similarity be-
tween token vectors) when used in count contexts.

A recent work by Chronis et al. (2023) combined
the analysis of meaning shifts with interpretability,
by using regression to map distributional vectors
on interpretable feature spaces. One of their case
studies is focusing on the Article + Adjective + Nu-
meral + Noun construction (e.g. a beautiful three
days in Rome), where the noun modified by the
numeral, in virtue of the event construal associated
with this construction, behaves as a single collec-
tive unit. The authors showed that, indeed, the
BERT representations of the nouns in the context
of this construction assign more prominent values
to measure- and unit-related semantic features.

3 The Study by Wittenberg and Levy
(2017): Effects of Light Verb
Constructions on Event Duration and
Similarity

The goal of Wittenberg and Levy (2017) was to
investigate whether describing an event in mass
or count syntax with a light verb construction af-
fected the construals of event duration and sim-
ilarity in comprehenders. The authors built sen-
tences for three groups of verbs (see also Table
1 for a schematic illustration of the findings): a)
punctive events described with transitive verbs (e.g.
to kiss) vs. described in count syntax with light
verb constructions (e.g. to give a kiss); b) dura-
tive events described with transitive verbs (e.g. to
advise) vs. described in mass syntax with light
verb constructions (e.g. to give advice); c) dura-
tive events described with transitive verbs (e.g. to
talk) vs. described in count syntax with light verb
constructions (e.g. to give a talk).

The sentences were built to insert the event de-
scriptions in natural contexts, and in each verb
group, they differed only by construction type (e.g.
After their first date, Douglas kissed Mary vs. After
their first date, Douglas gave a kiss to Mary). In the
Experiments 1-2, human participants were asked

369

Findings/Event Type Punctive Count
(kiss → give a kiss)

Durative Mass
(advise → give advise)

Durative Count
(talk → give a talk)

Event Duration Shorter in constructions Non significant Non significant
Event Similarity Event semantically similar Event semantically similar Event conceptually different

Table 1: Table adapted from Wittenberg and Levy (2017), with a summary of the findings of the study (Experiments
1-2 for event duration, Experiment 4 for event similarity).

to read the sentences and estimate how long the
described event probably took. 3 While the results
suggested that light verb constructions are gener-
ally associated with shorter durations in both ex-
periments, consistent significant effects were found
only in punctive events with count syntax (the ten-
dency was present also for durative mass events,
but findings were less consistent across settings).

In Experiment 4, the participants were asked to
indicate the semantic similarity between the same
event in transitive and ditransitive construction on a
7-point Likert scale. The durative count pairs were
rated significantly less similar to each other than
the punctive count and durative mass pairs.

Combing the results from these experiments, the
authors suggested that the light-verb encoding with
count/mass syntax can also lead to a change in the
general construal of an event, besides the shorten-
ing effect on the event duration. They argued that
durative events are similar to mass nouns in terms
of atomicity, as mass nouns like milk can also be
partitioned arbitrarily, and one can get two portions
of exactly the same substance by dividing (Cheng,
1973; Link, 1983; Rothstein, 2017). When mass
nouns like wine or iron occur in a count context,
the denotation of the resulting count noun phrase
(several wines, an iron) is expected to change from
the substance to another object that is different
from but arbitrarily related to the substance, such
as various types of wine or a piece of flatiron.

Given the analogy between the durative events
and mass nouns, a similar conceptual shift would
also occur when durative verbs are represented in
the form of deverbal nouns with count syntax. For
example, it is intuitive to think that giving a speech,
while keeping the core meaning of utterance, is
conceptually further from speaking than giving a
hug is from hugging. However, the direction of the
shift depends on the context and is hard to predict,
thus any change in duration can be coincidental.
Therefore, the count light-verb encoding in this

3Notice that the experiments differed in the response op-
tions offered to the participants: in one case they were open es-
timates, in the other they were predefined time bins. Nonethe-
less, the findings were consistent across settings.

case resulted in a significant meaning difference
rather than in a consistent shortening effect.

4 Experiment 1: Modeling Event
Duration with Semantic Projections

The objective of our first experiment was to analyze
the feature of duration in the embedding represen-
tations of events in language models and compare
the results with the findings of Experiments 1-2 in
Wittenberg and Levy (2017).

But how to quantify duration in BERT embed-
dings? For this goal, we adopted the semantic pro-
jection technique introduced by Grand et al. (2022).
The authors of the study suggested that one can
infer semantic properties of objects and entities
as semantic subspaces in a distributional model.
Subspaces were found with the following proce-
dure: 1) identify multiple words that can represent
extreme values of those properties on a scale, e.g.
for SIZE they could be big, huge, gigantic on one
extreme, and tiny, small, minuscule on the other
extreme; 2) average the word vectors at the two
extremes, and then connect the two extremes with
a line. This line will represent the human mental
scale for SIZE; 3) given a list of words/concepts to
be ordered by their SIZE, project their embeddings
onto the SIZE line and take the relative ordering
of their values. Applying this simple method to
GloVe embeddings (Pennington et al., 2014), the
authors were able to predict human judgements
across different semantic categories and for dif-
ferent types of properties (e.g. TEMPERATURE,
SPEED, AROUSAL, INTELLIGENCE etc.). Our idea
is to apply the same method to contextualized em-
beddings representing concrete usages of the verbs
and the constructions from Wittenberg and Levy
(2017), by projecting them onto a DURATION sub-
space. To generate the embeddings, we used the
popular BERT model (Devlin et al., 2019), in its
base, uncased version for English.

The target events are adapted from those iden-
tified by Wittenberg and Levy (2017), and our
dataset consisted of descriptions of those events
either in bare verb forms or in ditransitive construc-

370

Figure 1: Illustration of semantic projection for the
verbs to kiss, to thank, to talk and corresponding light
verb constructions.

tions led by give. There are 3 categories of phrase
pairs in total:

1a. Punctive events in count syntax: kiss – give
a kiss, hug – give a hug, kick – give a kick,
shake – give a shake, cuddle – give a cuddle,
wink – give a wink;

1b. Durative events in count syntax: talk – give a
talk, address – give an address, lecture – give
a lecture, present – give a presentation, speak
– give a speech, check – give a check;

1c. Durative events in mass syntax: advise – give
advice, thank – give thanks, assure – give
assurance, encourage – give encouragement,
recognize – give recognition, support – give
support.

We first extracted sentences in which the target
phrases occurred from the British National Corpus
(BNC) and obtained a total of 161,752 sentences.
Generally, all three categories of events have higher
frequency when occurring as a transitive verb, and
punctive count events have the lowest frequency in
both transitive4 and ditransitive contexts (detailed
statistics for context extraction can be found in
Table 5, in the Appendix).

For each target event, we sampled 40 sentences
where it occurs in a transitive context and 40 sen-
tences where it occurs in a ditransitive context from

4Indeed, wink, talk, and speak are not transitive verbs
as they precede prepositional phrases (wink *(at) the girl).
Wittenberg and Levy (2017) used "transitive" to refer to the
two-place argument structures with either a direct object or a
prepositional phrase, and we follow their usage.

the British National Corpus (Leech, 1992), then
generated their vector representation via the BERT
architecture, using the MINICONS library5 (Misra,
2022). For transitive verb sentences, we extracted
the embeddings of the verbs from the last layer; for
light verb constructions, we used the embedding of
the nominal (e.g. we used the contextualized

−−→
kiss

vector to represent to give a kiss).

Short Long
Adjectives: brief, short,
immediate, short-term.

Nouns: minute, moment,
second.

Adjectives: long, long-term,
lengthy.

Nouns: ages,
years, decades, centuries

Table 2: List of words representing the extremes of the
DURATION scale.

To realize the semantic projection, we followed
(Grand et al., 2022) in projecting the vectors of our
sampled target events onto a 1-dimensional sub-
space (i.e., a line). The feature subspace should
extend from the concept vector of

−−−→
short (duration)

to the concept vector of
−−→
long (duration). Each

concept vector will be obtained by averaging mul-
tiple word vectors related to long or short. A list
of 14 words (7 for short and 7 for long) was se-
lected to represent the concepts, each with a min-
imum frequency of 1000 in the British National
Corpus (more detailed statistics about the context
extraction can be found in the Appendix). For the
words "long" and "short" themselves, we only use
sentences where they are followed by "time" or
"period", to discard the occurrences of the spatial
meaning. In the end, the DURATION subspace will
be the difference between the average of vectors
representing

−−→
long and the average of vectors repre-

senting
−−−→
short. By averaging, the approximation of

the feature subspace will be less likely to be biased
by a specific word choice (Grand et al., 2022).

We tested the semantic projection under two dif-
ferent settings: (i) we used all the words to build
the two concept vectors; (ii) we used the top 3
most frequent feature words (as in Grand et al.
(2022)’s original setting). Whenever a word is
selected, we randomly sampled 1000 sentences
including it from the BNC, and we averaged its
Transformer-generated vectors to obtain a sort of
"out-of-context" representation. Then we aver-
aged all word vectors related to one extreme of
the "time" continuum to get the two concept vec-

5Minicons library provides the intuitive and efficient ex-
traction of word/phrase representations from transformer mod-
els that are accessible on huggingface hub.

371

tors. Lastly, the −−−−−−−→DURATION vector was obtained by
subtracting the aggregated vector

−−−→
short from the

aggregated vector
−−→
long.

For projecting the vectors on DURATION, we
used the standard scalar projection formula:

Proj =
−−−−→
target · −−−−−−−→DURATION

∥−−−−−−−→DURATION∥

where the aggregated vector of each target event
is denoted as −−−−→target. The result obtained by this
operation is a scalar value, where larger values cor-
respond to the estimate of a longer event duration.

Figure 1 shows the pattern of semantic projec-
tion results under conditions (i) and (ii) respec-
tively. The largest mean cut-off resulting from
the ditransitive light verb construction occurs in
punctive events with count syntax under all condi-
tions, whereas the smallest reduction in projection
is observed in durative events with mass syntax.
Differently from predictions, durative events are
also estimated to take less time in ditransitive con-
struction with count syntax, to a higher degree than
when they occur with mass syntax.

We built linear mixed-effects models with R’s
lme4 package (Bates et al., 2014) to analyze the
main effect of construction (ditransitive or transi-
tive) and event category (punctive count, durative
count, or durative mass). We computed p-values
by performing likelihood-ratio tests on models that
differ only for the presence or absence of the fixed-
effect parameter(s) under consideration (construc-
tion, event category, and interaction between con-
struction and event category). The coding of the
two categorical predictors, construction and event
category follows lme4’s default coding.

We found significant main effects of construction
in both types of projection conditions and signifi-
cant interaction effects of construction and event
category. This means that, while the transitive con-
struction can generally lead to a higher projection
value (i.e. indicates a longer duration estimated by
BERT embeddings) the magnitude of effect also
depends on event category. The effect of event
category only reaches marginal significance in con-
dition (ii) (see full output in the Appendix, in Ta-
bles 6 and 7). We then ran pairwise comparisons
between transitive and ditransitive constructions
within each event category. While the count syn-
tax consistently shortens the duration of punctive
events, such an effect is not systematically present
for durative events with mass syntax. Surprisingly,

the ditransitive construction with count syntax can
predict a significantly shorter duration for durative
events in both projection conditions, similarly to
punctive events. This suggests that count syntax is
generally associated with shorter duration for both
punctive and durative events, while mass syntax
does not produce similar effects for durative ones.

The results of semantic projection align with
the prediction that punctive events in count syntax
(give a hug) are construed as taking less time than
in the transitive verb form. This suggests that the
subtle effect of the syntactic alternations on events’
temporal structure is encoded in the BERT vector
space, and this aspect of knowledge can be suc-
cessfully recovered using the semantic projection
technique. Among the proposed projection condi-
tions, type (i) projection with all the feature words
seems to be generally better for it produces the
most significant effect of construction, as well as
the most significant interaction between construc-
tion and event category.

While the data analysis reveals that the shorten-
ing effect of light verb construction is more signifi-
cant for punctive events with count syntax than for
durative events with mass syntax, in line with Wit-
tenberg and Levy (2017)’s results, we also observed
a difference: in the original study, the shortening
effect was clearly present as a tendency also for du-
rative count events, but it did not consistently reach
significance; in our experiment, light verb construc-
tions with durative count events have a significantly
shorter DURATION in both settings.

5 Experiment 2: Investigating the
Conceptual Shift of Events in
Count/Mass Syntax

Our second experiment aims at reproducing with
BERT the finding that the durative events in count
syntax (give a talk) are conceptually further apart
from their transitive verb counterparts (to talk) than
punctive events in count syntax, or durative events
in mass syntax. The prediction is drawn from the
analogy to mass nouns, such as glass or iron, when
they undergo mass-to-count coercion. When the
mass nouns are coerced to be used in the count
contexts, the denotation of the noun is enriched in
a way that is conceptually related but further from
its original sense. If durative events in count syntax
behave similarly, they are expected to be conceptu-
ally further apart from their transitive counterparts
than the other two categories of events.

372

Figure 2: Semantic projection scores with setting (i) on the left (all words are used to build the two concept vectors
for the extreme values of the scale) and setting (ii) on the right.

We used again BERT and the MINICONS li-
brary to generate semantic representations of the
target events in context: the idea is to measure the
semantic similarity scores of each event (punctive
count, durative count, or durative mass) to itself for
randomly sampled sentences. We carried out the
sampling either i) by selecting context pairs where
the target events occur in both cases in its transitive
or ditransitive contexts (within the same context
type); or ii) by selecting context pairs where the
target event occurs once in the transitive context
and once in a ditransitive context (between context
types). This means that each noun type will have
its occurrences sampled in three different ways:

(1) All context pairs sampled from transitive con-
texts;

(2) All context pairs sampled from ditransitive
contexts;

(3) The context pair composed of one occurrence
in the transitive context and one in the ditran-
sitive context.

The similarity comparison between (1) and (3) is
the most relevant one for our study: we expect that
similarities in (3) to be much lower than in (1), to
an extent proportional to the meaning shift that the
event undergoes when the count/mass syntax is in-
troduced. Conceptually, the difference between (2)
and (3) should be similar to the difference between
(1) and (3), since this difference approximates the
degree of meaning shift that the events undergo
when going from a ditransitive frame to the tran-
sitive contexts. However, given the relatively low

frequency of the three categories of events in ditran-
sitive constructions, we deemed more appropriate
to compare (3) with (1) rather than (2), as the lim-
ited sentences in (2) may not fully represent the
meaning of the events in count/mass syntax. For
each category of event, we repeat the sampling ten
times for each group, and for each time we ran-
domly extract 10 different context pairs to generate
the vectors.

For context pairs classified as occurring in transi-
tive contexts, we simply used the vector of the bare
verb as the semantic representation of the target
events. For context pairs in the ditransitive frame,
we used the embedding of the nominal represent-
ing the target event, rather than the whole give
construction. This choice is motivated by the fact
that, according to the linguistic theory (Butt, 2010;
Wiese and Maling, 2005; Wittenberg and Levy,
2017), give in the light verb construction only com-
municates the directionality of the action whereas
the bulk of the action meaning is conveyed by the
event nominal. Therefore, we deemed it better to
use the vectors of the deverbal noun instead of the
whole phrase to represent the meaning of the target
events. As a similarity score, instead of cosine,
we used the Spearman correlation between vectors.
The reason is that contextualized vector spaces are
affected by anisotropy (Ethayarajh, 2019), with a
small number of dimensions having disproportion-
ately high variance. Metrics like cosine have been
shown to be severely affected by outlier dimen-
sions, while rank-based metrics like Spearman are
better correlated with human similarity judgements
(Timkey and van Schijndel, 2021).

The results are reported in Table 3. The average
373

Context pairs Event Spearman ρ
Transitive Punctive Count 0.47

Ditransitive Punctive Count 0.65
Both Punctive Count 0.45

Transitive Durative Count 0.41
Ditransitive Durative Count 0.58

Both Durative Count 0.37
Transitive Durative Mass 0.43

Ditransitive Durative Mass 0.58
Both Durative Mass 0.38

Table 3: Average Spearman scores for each event cate-
gory under the six sampling conditions.

similarity of context pairs where the target event
occurs in transitive or ditransitive contexts suggests
how semantically similar the event is to itself when
the event is represented in the simple verb form
or in the light verb construction, while the average
similarity across different contexts type reflects the
similarity between the events encoded in the ditran-
sitive contexts and their verbal counterparts. There-
fore, the difference between the two scores should
quantify the meaning shift of the target events when
imposed the effect brought by changes in linguistic
framing. Here is an ideal example of durative count
events to illustrate the proposed meaning shift:

s1. We did not talk about ‘Robin Hood’ schemes,
not at all. (transitive context)

s2. Americans love to talk. (transitive context)

s3. I see she hasn’t actually given a talk, but she’s
going to. (ditransitive context)

The event talk in s1 and s2 refer in both cases
to the means of communication or conveying in-
formation by spoken words, while talk in s3 is
tended to be interpreted as a more formal activity.
Accordingly, the similarity of s1 and s2 is 0.60,
and the similarity of s1 and s3 is 0.51. The differ-
ence between the similarity scores should reflect
the degree of conceptual shift when entering in
the count syntax. Notice that, when the sentence
pairs are sampled across contexts, it is intuitive to
hypothesize that their average similarity will be
lower than that of the same contexts as the part-
of-speech of the word representing the event has
changed (e.g. speak – speech). However, if our
results are to replicate the findings of Wittenberg
and Levy (2017), we expect the pairs of durative
count events to undergo a greater meaning shift
than the other categories.

From Table 3, it can be seen all events have a
lower similarity in transitive contexts than in di-

transitive contexts. Since all events in our dataset,
regardless of their event categories, are more fre-
quent when occurring in the bare verbs than occur-
ring in the light-verb encoding, there might be a
higher degree of contextual variation in their pat-
terns of usage which can explain the relatively low
similarity score. Also, as predicted, the lowest sim-
ilarity is found when the sentence pairs are sampled
from different contexts. However, it is easy to see
that the meaning shift ∆ (the difference in aver-
age Spearman ρ between sampling just in transitive
contexts, and sampling transitive and ditransitive
ones) is very small for all the event categories (
average values are summarized in Table 4). We
built a linear regression model with the ∆ score for
each event as a target variable and the event cate-
gory as a predictor, and indeed we did not find any
significant effect of event category (χ2 = 1.2060,
p > 0.1; cf. Table 8 in the Appendix).

A possible reason for the absence of significant
conceptual shifts might be an inherent shortcom-
ing of vector similarity in distributional spaces:
metrics like cosine and Spearman tell us that two
word meanings are related, but they fail to tell us
in which way those meanings are related. A large
body of literature in Distributional Semantics fo-
cused on this issue regarding nominals, and pointed
out the struggle in teasing apart relations such as
synonymy and hypernymy/hyponymy (Baroni and
Lenci, 2011; Xiang et al., 2020; Schulte Im Walde,
2020), but the same problem could apply to the
relation between durative count verbs and the cor-
responding light verb constructions. For example,
the meaning of to give a lecture is still related to
the meaning of to lecture, while being a more spe-
cific type of lecturing-event (Gagné et al., 2020),
similarly to the hyponymy relation in nominals. It
is thus possible that such relations are not clearly
distinguishable from near-synonymy between verb
phrases on the basis of distributional similarity.

Event type ∆
Punctive Count 0.022
Durative Count 0.039
Durative Mass 0.053

Table 4: Average meaning shift ∆ for each event type,
computed as the difference between the average Spear-
man correlations by sampling transitive contexts and
sampling transitive and ditransitive ones.

374

6 Conclusions

In our paper, we presented an analysis of subtle
meaning changes in event construal, comparing
transitive verbs and light verb constructions, using
the BERT model to represent the meaning of events
in a distributional semantic space.

In Experiment 1, we focused on event duration,
by identifying a DURATION dimension in our BERT
vector space via the semantic projection technique
(Grand et al., 2022). Similarly to the original study
by Wittenberg and Levy (2017), we found that the
light verb construction has a general shortening ef-
fect, with the vectors for the construction having
generally lower values along this dimension than
the ones of the corresponding transitive verbs. We
take this result as initial evidence that the BERT
vector space encodes subtle meaning nuances re-
lated to the representation of time in natural lan-
guage sentences.

However, in Experiment 2, we compared the dis-
tributional similarities of transitive verbs vs. con-
structions pairs, to see if the model was sensitive
enough to spot the meaning shift that durative count
events undergo in light verb constructions (cf. the
Experiment 4 in Wittenberg and Levy (2017)). In
this case, the answer was negative, and no signifi-
cant differences in the meaning shifts across event
categories was observed. We suggested that the
lack of specificity of vector similarity as a semantic
relation may explain this negative result.

Future work for specializing contextualized vec-
tor spaces, similarly to what has been done for
static models (Mrkšić et al., 2017), may be needed
to handle fine-grained semantic distinctions.

Limitations

Our work has some clear limitations: we studied
only a specific type of construction in English, and
using just a limited set of verbs.

Moreover, we only employed a single, bidirec-
tional Transformer model (BERT Base) to generate
the vector representations, and thus we cannot be
sure whether our considerations are generalizable
to other architectures.

Finally, concerning Experiment 1, the choice of
the words for building the prototypes of the ex-
tremes of the DURATION scale is likely to affect
the results, but given the space constraints we only
explored two possible settings and left a more sys-
tematic investigation to future work.

Acknowledgements

We would like to thank the three anonymous re-
viewers for their constructive feedback.

References
David Arps, Younes Samih, Laura Kallmeyer, and Has-

san Sajjad. 2022. Probing for Constituency Struc-
ture in Neural Language Models. arXiv preprint
arXiv:2204.06201.

David Barner and Jesse Snedeker. 2005. Quantity Judg-
ments and Individuation: Evidence that Mass Nouns
Count. Cognition, 97(1):41–66.

David Barner, Laura Wagner, and Jesse Snedeker. 2008.
Events and the Ontology of Individuals: Verbs as
a Source of Individuating Mass and Count Nouns.
Cognition, 106(2):805–832.

Marco Baroni and Alessandro Lenci. 2011. How We
BLESSed Distributional Semantic Evaluation. In
Proceedings of the GEMS Workshop on GEometrical
Models of Natural Language Semantics.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2014. Fitting Linear Mixed-effects Models
Using lme4. arXiv preprint arXiv:1406.5823.

Miriam Butt. 2010. The Light Verb Jungle: Still Hack-
ing Away. Complex Predicates in Cross-Linguistic
Perspective, pages 48–78.

Chung-Ying Cheng. 1973. Response to Moravcsik. Ap-
proaches to Natural Language.

Emmanuele Chersoni, Alessandro Lenci, and Philippe
Blache. 2017. Logical Metonymy in a Distributional
Model of Sentence Comprehension. In Proceedings
of *SEM.

Emmanuele Chersoni, Enrico Santus, Chu-Ren Huang,
and Alessandro Lenci. 2021a. Decoding Word Em-
beddings with Brain-based Semantic Features. Com-
putational Linguistics, 47(3):663–698.

Emmanuele Chersoni, Enrico Santus, Alessandro Lenci,
Philippe Blache, and Chu-Ren Huang. 2021b. Not
All Arguments Are Processed Equally: A Distribu-
tional Model of Argument Complexity. Language,
Resources and Evaluation, pages 1–28.

Won Ik Cho, Emmanuele Chersoni, Yu-Yin Hsu, and
Chu-Ren Huang. 2021. Modeling the Influence of
Verb Aspect on the Activation of Typical Event Lo-
cations with BERT. In Findings of ACL-IJCNLP
2021.

Gabriella Chronis, Kyle Mahowald, and Katrin Erk.
2023. A Method for Studying Semantic Construal
in Grammatical Constructions with Interpretable
Contextual Embedding Spaces. arXiv preprint
arXiv:2305.18598.

375

Marta Coll-Florit and Silvia P Gennari. 2011. Time in
Language: Event Duration in Language Comprehen-
sion. Cognitive Psychology, 62(1):41–79.

Simone Conia and Roberto Navigli. 2022. Probing
for Predicate Argument Structures in Pretrained Lan-
guage Models. In Proceedings of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL.

Kawin Ethayarajh. 2019. How Contextual are Con-
textualized Word Representations? Comparing the
Geometry of BERT, ELMo, and GPT-2 Embeddings.
In Proceedings of EMNLP.

Allyson Ettinger. 2020. What BERT Is Not: Lessons
from a New Suite of Psycholinguistic Diagnostics for
Language Models. Transactions of the Association
for Computational Linguistics, 8:34–48.

Caitlin M Fausey and Lera Boroditsky. 2010. Subtle
Linguistic Cues Influence Perceived Blame and Fi-
nancial Liability. Psychonomic Bulletin & Review,
17(5):644–650.

Christina L Gagné, Thomas L Spalding, Patricia Spicer,
Dixie Wong, Beatriz Rubio, and Karen Perez Cruz.
2020. Is Buttercup a Kind of Cup? Hyponymy and
Semantic Transparency in Compound Words. Jour-
nal of Memory and Language, 113:104110.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal Abstractions of Neural Net-
works. Advances in Neural Information Processing
Systems, 34:9574–9586.

Gabriel Grand, Idan Asher Blank, Francisco Pereira,
and Evelina Fedorenko. 2022. Semantic Projection
Recovers Rich Human Knowledge of Multiple Object
Features from Word Embeddings. Nature Human
Behaviour, 6(7):975–987.

Yuling Gu. 2022. Measure More, Question More: Ex-
perimental Studies on Transformer-based Language
Models and Complement Coercion. arXiv preprint
arXiv:2212.10536.

John Hewitt and Percy Liang. 2019. Designing and In-
terpreting Probes with Control Tasks. In Proceedings
of EMNLP.

Manuela Hürlimann, Raffaella Bernardi, and De-
nis Paperno. 2014. Nominal Coercion in Space:
Mass/Count Nouns and Distributional Semantics. In
Proceedings of CLiC-it.

Matt A Johnson and Adele E Goldberg. 2013. Evidence
for Automatic Accessing of Constructional Mean-
ing: Jabberwocky Sentences Prime Associated Verbs.
Language and Cognitive Processes, 28(10):1439–
1452.

Graham Katz and Roberto Zamparelli. 2012. Quanti-
fying Count/Mass Elasticity. In Proceedings of the
West Coast Conference on Formal Linguistics.

Najoung Kim and Tal Linzen. 2020. COGS: A Compo-
sitional Generalization Challenge Based on Semantic
Interpretation. In Proceedings of EMNLP.

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021.
Discourse Probing of Pretrained Language Models.
In Proceedings of NAACL.

Geoffrey Neil Leech. 1992. 100 Million Words of En-
glish: The British National Corpus (BNC). Language
Research.

Bai Li. 2022. Integrating Linguistic Theory and Neu-
ral Language Models. Ph.D. thesis, Department of
Computer Science, University of Toronto.

Godehard Link. 1983. The Logical Analysis of Plurals
and Mass Terms: A Lattice-theoretical Approach,
volume 127. Blackwell Oxford.

Chenxin Liu and Emmanuele Chersoni. 2022. Explor-
ing Nominal Coercion in Semantic Spaces with Static
and Contextualized Word Embeddings. In Proceed-
ings of the AACL-IJCNLP Workshop on Cognitive
Aspects of the Lexicon.

Mingyu Derek Ma, Jiao Sun, Mu Yang, Kung-Hsiang
Huang, Nuan Wen, Shikhar Singh, Rujun Han, and
Nanyun Peng. 2021. Eventplus: A Temporal Event
Understanding Pipeline. In Proceedings of NAACL-
HLT: Demonstration.

Stephen McGregor, Elisabetta Ježek, Matthew Purver,
and Geraint Wiggins. 2017. A Geometric Method
for Detecting Semantic Coercion. In Proceedings of
IWCS.

Eleni Metheniti, Tim Van De Cruys, and Nabil Hathout.
2022. About Time: Do Transformers Learn Tem-
poral Verbal Aspect? In Proceedings of the ACL
Workshop on Cognitive Modeling and Computational
Linguistics.

Kanishka Misra. 2022. minicons: Enabling Flexi-
ble Behavioral and Representational Analyses of
Transformer Language Models. arXiv preprint
arXiv:2203.13112.

Kanishka Misra, Julia Taylor Rayz, and Allyson Et-
tinger. 2022. A Property Induction Framework for
Neural Language Models. In Proceedings of CogSci.

Nikola Mrkšić, Ivan Vulić, Diarmuid O Séaghdha, Ira
Leviant, Roi Reichart, Milica Gašić, Anna Korhonen,
and Steve Young. 2017. Semantic Specialization of
Distributional Word Vector Spaces Using Monolin-
gual and Cross-lingual Constraints. Transactions of
the Association for Computational Linguistics, 5:309–
324.

376

Paolo Pedinotti and Alessandro Lenci. 2020. Don’t In-
vite BERT to Drink a Bottle: Modeling the Interpreta-
tion of Metonymies Using BERT and Distributional
Representations. In Proceedings of COLING.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of EMNLP.

Giulia Rambelli, Emmanuele Chersoni, Alessandro
Lenci, Philippe Blache, and Chu-Ren Huang.
2020. Comparing Probabilistic, Distributional and
Transformer-based Models on Logical Metonymy
Interpretation. In Proceedings of AACL-IJCNLP.

Susan Rothstein. 2017. Semantics for Counting and
Measuring. Cambridge University Press.

Sabine Schulte Im Walde. 2020. Distinguishing be-
tween Paradigmatic Semantic Relations across Word
Classes: Human Ratings and Distributional Similar-
ity. Journal of Language Modelling, 8(1):53–101.

Ionut-Teodor Sorodoc, Kristina Gulordava, and Gemma
Boleda. 2020. Probing for Referential Information in
Language Models. In Proceedings of ACL.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT Rediscovers the Classical NLP Pipeline. In
Proceedings of ACL.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, and
Ellie Pavlick. 2019b. What Do You Learn from Con-
text? Probing for Sentence Structure in Contextual-
ized Word Representations. In Proceedings of ICLR.

William Timkey and Marten van Schijndel. 2021. All
Bark and No Bite: Rogue Dimensions in Transformer
Language Models Obscure Representational Quality.
In Proceedings of EMNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in Neural Information Process-
ing Systems, 30.

Ivan Vulić, Edoardo Maria Ponti, Robert Litschko,
Goran Glavaš, and Anna Korhonen. 2020. Probing
Pretrained Language Models for Lexical Semantics.
In Proceedings of EMNLP.

Alexis Wellwood, Susan J Hespos, and Lance Rips.
2018. The Object: Substance:: Event: Process Anal-
ogy. Oxford Studies in Experimental Philosophy,
2:183–212.

Heike Wiese and Joan Maling. 2005. Beers, Kaffi, and
Schnaps: Different Grammatical Options for Restau-
rant Talk Coercions in Three Germanic Languages.
Journal of Germanic Linguistics, 17(1):1–38.

Eva Wittenberg and Roger Levy. 2017. If You Want a
Quick Kiss, Make It Count: How Choice of Syntactic
Construction Affects Event construal. Journal of
Memory and Language, 94:254–271.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed Masking: Parameter-free Probing for An-
alyzing and Interpreting BERT. In Proceedings of
ACL.

Rong Xiang, Emmanuele Chersoni, Luca Iacoponi, and
Enrico Santus. 2020. The CogALex Shared Task
on Monolingual and Multilingual Identification of
Semantic Relations. In Proceedings of the COLING
Workshop on the Cognitive Aspects of the Lexicon.

Bingyang Ye, Jingxuan Tu, Elisabetta Jezek, and James
Pustejovsky. 2022. Interpreting Logical Metonymy
through Dense Paraphrasing. In Proceedings of
CogSci.

Alessandra Zarcone and Sebastian Padó. 2011. Gener-
alized Event Knowledge in Logical Metonymy Reso-
lution. In Proceedings of CogSci.

Alessandra Zarcone, Jason Utt, and Sebastian Padó.
2012. Modeling Covert Event Retrieval in Logi-
cal Metonymy: Probabilistic and Distributional Ac-
counts. In Proceedings of the NAACL Workshop on
Cognitive Modeling and Computational Linguistics.

Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth.
2020. Temporal Common Sense Acquisition with
Minimal Supervision. In Proceedings of ACL.

A Appendix

Descriptive Statistics
The descriptive statistics for the context extraction
from the BNC can be found in Table 5.

Likelihood Estimation Results
The output of the likelihood estimation tests under
the different projection conditions can be found in
Table 6 and 7 (Experiment 1).

Table 8 shows instead the output of the test for
the ∆ meaning shift scores by Event category (Ex-
periment 2).

We also used the F-test the examine the main
effect of event category on the degree of meaning
shift, and the results are in line with the likelihood
estimation results (F (2, 15) = 0.5197, p > 0.1).
The pairwise comparisons between different cate-
gories of events suggested that the degree of mean-
ing shift does not differ significantly by event
categories (punctive count vs. durative count:
F (1, 10) = 0.3199, p > 0.1; punctive count vs.
durative mass: F (1, 10) = 0.9044, p > 0.1;
durative count vs. durative mass: F (1, 10) =
0.2439, p > 0.1).

377

Event category Context Avg. Freq Min. Freq Max. Freq
Punctive Count Transitive 2806.17 301 8549
Punctive Count Diransitive 155.17 54 354
Durative Count Transitive 14071.33 523 29366
Durative Count Ditransitive 211.83 43 384
Durative Mass Transitive 9400.83 2919 18580
Durative Mass Ditransitive 712.67 202 1683

Table 5: Descriptive statistics for the context extraction from the BNC: average, min and max frequency for each
event category – context type.

Degree of freedom χ2 p − value

Construction 1 14.285 < .001 ***
Event category 2 1.1386 > .1 n.s.

Construction × Event category 2 8.4669 < .05 *

Punctive count – construction 1 14.94 < .001 ***
Durative count - construction 1 7.1604 < .01 **
Durative mass - construction 1 1.1415 > .1 n.s.

Table 6: Likelihood estimation results under the projection condition (i) for duration estimates, testing the main
effects of construction, event category, and their interaction (upper part), and the results of testing the main effect of
construction in pairwise comparisons within each event categories (lower part).

Degree of freedom χ2 p − value

Construction 1 11.994 < .001 ***
Event category 2 1.1888 > .1 n.s.

Construction × Event category 2 9.0736 < .05 *

Punctive count – construction 1 9.5146 <.01 **
Durative count - construction 1 5.9238 <.05 *
Durative mass - construction 1 1.7316 > .1 n.s.

Table 7: Likelihood estimation results under the projection condition (ii) for duration estimates, testing the main
effects of construction, event category, and their interaction (upper part), and the results of testing the main effect of
construction in pairwise comparisons within each event categories (lower part).

Degree of freedom χ2 p − value

Event category 2 1.2060 > .1 n.s.

Punctive count vs. durative count 1 0.3779 > .1 n.s.
Durative count vs. durative mass 1 0.2892 > .1 n.s.
Punctive count vs. durative mass 1 1.0389 > .1 n.s.

Table 8: Likelihood estimation results for meaning shift ∆ scores, testing the main effect of event category, and
related pairwise comparisons.

378

Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 379–394
December 7, 2023. ©2023 Association for Computational Linguistics

Identifying and Adapting Transformer-Components Responsible for
Gender Bias in an English Language Model

Abhijith Chintam12, Rahel Beloch1

1Master AI, University of Amsterdam, 2Pegasystems, Amsterdam, The Netherlands
archintam@gmail.com, mail@rahelbeloch.de

Willem Zuidema, Michael Hanna∗, Oskar van der Wal∗
Institute for Logic, Language & Computation, University of Amsterdam

{w.h.zuidema, m.w.hanna, o.d.vanderwal}@uva.nl

Abstract

Language models (LMs) exhibit and amplify
many types of undesirable biases learned from
the training data, including gender bias. How-
ever, we lack tools for effectively and efficiently
changing this behavior without hurting general
language modeling performance. In this pa-
per, we study three methods for identifying
causal relations between LM components and
particular output: causal mediation analysis,
automated circuit discovery and our novel, ef-
ficient method called DiffMask+ based on dif-
ferential masking. We apply the methods to
GPT-2 small and the problem of gender bias,
and use the discovered sets of components to
perform parameter-efficient fine-tuning for bias
mitigation. Our results show significant over-
lap in the identified components (despite huge
differences in the computational requirements
of the methods) as well as success in mitigat-
ing gender bias, with less damage to general
language modeling compared to full model fine-
tuning. However, our work also underscores
the difficulty of defining and measuring bias,
and the sensitivity of causal discovery proce-
dures to dataset choice. We hope our work can
contribute to more attention for dataset devel-
opment, and lead to more effective mitigation
strategies for other types of bias.

1 Introduction

Modern neural language models exhibit social bi-
ases, such as biases based on gender, religion, eth-
nicity and other protected attributes. These bi-
ases may lead to real harms when used in down-
stream applications (e.g. Hovy and Spruit, 2016;
Weidinger et al., 2021). Detecting and mitigating
biases in language models has therefore become an
important area of research.

Early detection methods relied on lists of words
to measure associations with e.g., specific genders
(e.g. Caliskan et al., 2017). Most current detection

∗Shared senior authorship.

methods work with curated sets of sentence pairs
or triplets, and measure differences in sentence
probabilities or anaphora resolution probabilities
(e.g. May et al., 2019; Nadeem et al., 2021; Nangia
et al., 2020; Basta et al., 2019). Proposed miti-
gation strategies include targeted changes to the
training data (e.g., CDA; Lu et al., 2020), train-
ing procedure (e.g., adversarial learning; Zhang
et al., 2018), model parameters (e.g., INLP; Ravfo-
gel et al., 2020), or language generation procedure
(e.g., “self-debiasing”; Schick et al., 2021).

Despite this work, we still lack a proper under-
standing of how to best measure biases (how do
we guarantee the representativeness for real-world
harm of a set of sentence pairs, or of a linguistic
phenomenon such as anaphora resolution?), how
biases are implemented in the language model inter-
nals (is there a unified locus, or is, e.g., gender bias
the aggregate effect of many independent model
decisions?), and what techniques are effective at
reducing undesirable downstream behavior (e.g., is
data curation more or less effective than filtering
output? Is intervening in the model internals feasi-
ble?). Empirically, success in detecting and miti-
gating biases depends on many factors, including
the choice of embeddings, training regimes, data
sets and model choices (Blodgett et al., 2020, 2021;
Talat et al., 2022; Delobelle et al., 2022; Barrett
et al., 2019; Van Der Wal et al., 2022).

The “black-box” nature of LMs makes it diffi-
cult to identify and interpret how bias manifests
and propagates in them, especially relying solely
on correlational methods. The starting point for
the current paper is the intuition that if, instead, it
were possible to find causal relationships between
the model’s internal representations and its down-
stream bias, we could more effectively measure
and intervene on these undesirable behaviors.

We therefore turn to a recent series of papers on
interpretability methods that focus on causal dis-
covery. In Section 2 we discuss three such methods,

379

of which we adapt one (DiffMask) for our needs in
Section 3. Our new method is more efficient than
other causal methods, which is especially relevant
when applied to large language models (LLMs). In
Section 3 we also report results from these three
methods when applied to GPT2-small and the prob-
lem of gender bias, and find that they discover
largely overlapping sets of components, despite
huge differences in computation requirements. In
Section 4 we use the identified components to adapt
GPT-2 small, using parameter-efficient fine-tuning
procedures. We demonstrate how gender bias in
LMs can be reduced with minimal effect to their
language modelling performance by making tar-
geted interventions to their components. However,
we also recognize the limitations of operational-
izing gender bias as we do, using minimal pairs
of contrasting sentences—which simplify gender
as a binary construct and may not work so well
for other languages than English—and call for fu-
ture research to develop reliable and validated bias
measures (see van der Wal et al., 2023).

2 Related Work

Where and how LMs implement output behaviors—
from high-level phenomena like gender stereotypes,
to lower-level ones like subject-verb agreement—is
an active field of study. In providing an overview of
related work, we focus on causal methods for locat-
ing mechanisms in section 2.1, as non-causal meth-
ods can yield misleading conclusions (Ravichander
et al., 2021; Elazar et al., 2021). Further, we review
previous work on targeted changes to Language
models and their behavior in section 2.2

2.1 Locating Mechanisms in Language
Models

Causal methods study model processing by inter-
vening in (altering) model processing, and observ-
ing the changes in model behavior caused by these
interventions. They aim to address the shortcom-
ings in observational methods by ensuring a causal
link between mechanisms found in model internals,
and model behavior.

Many such techniques determine which repre-
sentations or components are important to model
processing by ablating them. Ablations can range
from zeroing out neurons (Lakretz et al., 2019;
Mohebbi et al., 2023), to replacing them with a
baseline (De Cao et al., 2021a; Bau et al., 2018), or
replacing them with another example’s activation

(Vig et al., 2020; Geiger et al., 2021). All of these
techniques return unstructured sets of important
components without specifying their interaction.

In recent years, the circuits abstraction of trans-
former models (Elhage et al., 2021) has become
popular. This framework views transformer mod-
els as computational graphs, and aims to find sub-
graphs responsible for certain tasks. This technique
has been used to find circuits for indirect object de-
tection and the greater-than operation in GPT-2
(Wang et al., 2023; Hanna et al., 2023), as well as
to study larger models (Lieberum et al., 2023); it
has also been automated (Conmy et al., 2023).

Note that although causal methods can provide
a higher degree of confidence in localizing mecha-
nisms, they are not foolproof. For example, Meng
et al. (2023) propose causal tracing, a method for
locating fact storage in LMs; they then edit GPT-2
XL’s factual knowledge by performing edits at rel-
evant locations. However, recent work has showed
that although edits may be successful, the local-
ization found by causal tracing is not predictive of
edit success (Hase et al., 2023). So, even causal
localizations should be assessed thoroughly.

2.2 Targeted Changes to Language Models
and Their Behavior

One way to mitigate bias in LMs is to change their
parameters or internal representations; however,
making large changes can be computationally ex-
pensive and have unintended side-effects on model
behavior. Past work has studied how to make tar-
geted changes to LMs that avoid these pitfalls. We
only discuss works on intervening in the model’s
representations and parameter-efficient fine-tuning
on curated datasets, but other bias mitigation strate-
gies exist as well (see e.g., Meade et al., 2022).

Model Interventions One line of research fo-
cuses on removing undesirable concepts from a
LM’s representations directly. Early methods like
hard-debias based on principal component analy-
sis (Bolukbasi et al., 2016) and iterated null-space
projection (INLP, Ravfogel et al., 2020) identify
and remove linear representations of gender (bias)
from embedding spaces; while others make tar-
geted changes to the activations of LMs (De Cao
et al., 2021b; Belrose et al., 2023) or edit the com-
ponents directly (Meng et al., 2022, 2023).

Altering activations at run-time is one promising
way to mitigate (gender) bias in LMs. LEACE
(Belrose et al., 2023), for example, convincingly

380

removes linearly-encoded gender information from
activations. Similarly, De Cao et al. (2021b) use an
approach called differentiable masking (DiffMask)
to identify small neuron subsets responsible for
bias and intervene on them for reducing bias.

However, a downside of these activation-altering
methods is that they require an intervention on the
activations at each inference step. Moreover, it is
not obvious which model activations we should run
these on; for instance, it is unlikely that we want to
remove gender information from every input token.

Parameter-Efficient Fine-tuning Another ap-
proach that avoids some of the pitfalls of chang-
ing the LM’s representations directly, is to fine-
tune on a carefully constructed dataset. Previ-
ous work has shown the importance of consider-
ing the training data in understanding the biases
learned by LMs (e.g., Zhao et al., 2018; Zmigrod
et al., 2019; Bordia and Bowman, 2019; Lu et al.,
2020; Bender et al., 2021; Sellam et al., 2022; Van
Der Wal et al., 2022; Biderman et al., 2023). Given
this, fine-tuning on curated datasets is a promising
strategy for mitigating gender bias in LMs (So-
laiman and Dennison, 2021; Levy et al., 2021; Gira
et al., 2022; Kirtane and Anand, 2022). Falling
within this paradigm is parameter-efficient fine-
tuning, where only some of the model parame-
ters are updated—this may not only be compu-
tationally more efficient, but even yield better re-
sults (Lauscher et al., 2021; Gira et al., 2022; Xie
and Lukasiewicz, 2023).

Our work is most similar to Gira et al. (2022),
who also use parameter-efficient fine-tuning for
debiasing GPT-2 small. However, we study the ef-
fect of fine-tuning individual attention heads, while
they focus on embedding layers, LayerNorm pa-
rameters, adding linear input/output transformation
parameters, and a combination thereof. Moreover,
Gira et al. do not adhere to any specific strategy
when selecting the components to fine-tune. In con-
trast, our method provides a principled approach to
identify the components that are causally important
for the task at hand and then fine-tune them.

Xie and Lukasiewicz’s (2023) work is also re-
lated to ours. They verify the effectiveness of
parameter-efficient bias mitigation techniques like
adapter tuning (Houlsby et al., 2019) and prefix
tuning (Li and Liang, 2021) on various types of
LMs and biases. These methods introduce extra
tuneable parameters instead of directly tuning the
model parameters themselves.

Our approach could mitigate gender bias to an
extent with minimal degradation in language mod-
elling performance, similar to the results of Xie
and Lukasiewicz (2023) and Gira et al. (2022).
However, making a direct comparison is challeng-
ing due to differences in evaluation criteria and
employed datasets. Gira et al. (2022) exclusively
assess their method on StereoSet (Nadeem et al.,
2021), whereas we have evaluated our approach on
multiple benchmarks, as discussed in Section 4.2.
Xie and Lukasiewicz (2023) evaluate their fine-
tuning methods using similar benchmarks as ours,
but they employ the older CrowS-Pairs (Nangia
et al., 2020) dataset for stereotype score and Wiki-
Text2 (Merity et al., 2016) for perplexity. We use a
newer, improved version of CrowS-Pairs (Névéol
et al., 2022) and the much larger WikiText-103
(Merity et al., 2016) instead.

3 Locating Gender Bias

In this section, we investigate the question: where
in a given LM is gender bias introduced? We
study this in GPT-2 small (Radford et al., 2019),
an English-language, auto-regressive pre-trained
transformer LM.1 Its small size—12 transformer
layers, with 12 attention heads and 1 multi-layer
perceptron (MLP) each—makes it a good object of
close studies like we perform. We seek to identify
the subset of the 144 attention heads that introduce
gender bias into the last position of GPT-2’s input,
where GPT-2 produces next-token predictions. We
identify these heads in the context of inputs that
lead to gender-biased next-tokens from GPT-2.

This study thus focuses on attention heads.
Though prior work has emphasized the role of
MLPs in gender bias and memorization (Vig et al.,
2020; Geva et al., 2022; Meng et al., 2023), we
argue that attention heads are also an interesting
subject of analysis. Unless the final word of the
input contains gender information that causes the
production of biased next-tokens, this information
must be introduced from other positions via atten-
tion heads.

To determine where GPT-2 small introduces gen-
der bias into its output, we use three methods:
causal mediation analysis (CMA), automated cir-
cuit discovery, and our own novel method that com-
bines the first approach with differential masking.
We then compare the results of these three methods.

1The code for our experiments can be found here: https:
//github.com/iabhijith/bias-causal-analysis

381

3.1 Methodology

All methods we use rely on a core technique as
outlined in Vig et al. (2020): swapping model com-
ponent activations during a forward pass on one
input, with activations taken from the model when
run on another input which induces an opposite be-
haviour in the model. For this purpose, we use the
Professions dataset from Vig et al. (2020), which
contains templated sentences designed to elicit gen-
der bias. The sentences in the dataset take the form
“The {profession} said that”. GPT-2’s continuations
on these sentences tend to be stereotypical—if the
profession is nurse, GPT-2 outputs she, while if it
is doctor, GPT-2 outputs he.

For each sentence in the dataset we generate a
corresponding counterfactual sentence with the pro-
fession word replaced by anti-stereotypical gender-
specific word. If the normal sentence’s profession
is female-stereotyped, its corresponding counter-
factual sentence is “The man said that”; for male-
stereotyped professions, the counterfactual con-
tains woman. These sentences are designed to max-
imize the change in model behavior with respect
to the predicted pronoun; this makes it easier to
identify important components. The dataset con-
tains sentences generated from 17 templates and
299 professions resulting in 5083 sentences in total.
For all methods that follow, we intervene on the
last position of the sentence.

3.1.1 Causal Mediation Analysis

Vig et al. (2020) were the first to use CMA (Pearl,
2014) to locate gender bias in GPT-2; we adopt
their methods as a baseline. CMA relies on a sim-
ple hypothesis: if a component is important to the
model’s behavior on a task, swapping its output
activation with another will change model behav-
ior. More formally, let x and x̃ be normal and
counterfactual inputs respectively, and let i be the
index of the component (attention head or MLP)
under investigation. We first run the model on x,
and observe its output distribution p(y|x), Then,
we run the model on x̃ and save h̃i, the counter-
factual output of component i. Then we run the
model on x again, but replace hi with h̃i during the
forward pass. This yields an altered model output
distribution p̃(y|x). Vig et al. (2020) measure how
important a component i is to a model behaviour b
using Natural Indirect Effect (NIE), the expected
proportional difference in model behavior after in-
tervening on component i. If bnull is the original

behaviour of the model and bi,intv is the behaviour
of the model after intervening on component i, then
NIE can be evaluated as shown in Equation (1):

NIE(i, b) = E(x,x̃)∈D

[
bi,intv
bnull

− 1

]
(1)

Vig et al. (2020) use the definition in eq. (2) to
measure biased behaviour in a LM. It is the ratio of
the probabilities assigned by the model to an anti-
stereotypical continuation as against a stereotypical
continuation given a context. In case of Professions
dataset (Vig et al., 2020), it is the ratio of proba-
bility assigned to anti-stereotypical pronoun versus
the probability assigned to stereotypical pronoun.

b(x) =
p(y = anti-stereo|x)
p(y = stereo|x) (2)

The aforementioned technique analyzes individ-
ual components; Vig et al. propose two methods
to gather a set of important components. Using the
top-k strategy, they evaluate every component, and
select the k components that cause the most change
in model behavior. Using the k-greedy strategy,
they evaluate all components, and add the most im-
pactful one. Then, they evaluate each component
again, ablating both it and their set; they once again
add the most impactful component. They repeat
the latter step until they have a set of size k.

3.1.2 Circuit Discovery
The circuits framework, which views models as
computational graphs, provides a related technique
for identifying mechanisms in LMs. While Vig
et al.’s CMA approach generates a component set
(nodes) relevant to a task, the circuits approach
generates a set of edges, resulting in a detailed
subgraph. However, the underlying methodology
is similar to CMA: we ablate edges via swaps,
and see which edges hurt performance once ab-
lated. Though our fine-tuning techniques only tar-
get nodes (not edges), comparing CMA and circuits
localisations of bias could still be insightful.

We use Conmy et al.’s (2023) automated circuit
discovery code (ACDC) to identify model com-
ponents relevant to (gender) bias. This technique
iteratively tests model edges, removing those that
can be ablated without changing task performance.
We use ACDC on the same professions dataset as
CMA, and measure task performance as the differ-
ence in probability assigned to stereotypical and
non-stereotypical pronoun continuations.

382

3.1.3 Differentiable Masking With CMA

We finally propose our own method for localizing
relevant LM components that combines two ap-
proaches: Vig et al.’s (2020) CMA and De Cao
et al.’s (2021a) differentiable masking (DiffMask).
Our method is motivated by a notable challenge
with CMA, namely, how to select the best size-
k subset of model components that contributes to
bias. Vig et al.’s two strategies for this (top-k and
k-greedy as discussed in Section 3.1.1) both have
downsides. A top-k strategy assumes that compo-
nents’ importance is independent, while a k-greedy
strategy is expensive, requiring k evaluations of
all components’ importance. A full sweep of the
search space would be combinatorially expensive.

This combinatorial search problem can be refor-
mulated as an optimization problem using a differ-
entiable relaxation (Louizos et al., 2018; Bastings
et al., 2019; De Cao et al., 2021a,b; Schlichtkrull
et al., 2021). DiffMask, proposed by De Cao et al.
(2021b) precisely apply the reformulation to learn
an almost-binary differentiable stochastic mask
over a model’s components, indicating which are
important, and which are not. Unimportant com-
ponents are those whose outputs can be ablated
without changing model behavior.

We adapt DiffMask in two ways, and label our
variant DiffMask+. First, instead of using surrogate
models that instantiate distribution per input, we
directly learn a distribution for the stochastic mask.
This change is crucial because it helps us identify
a single, generalizable set of components respon-
sible for bias in the language model across the
entire dataset, which is essential for downstream
fine-tuning. Second, instead of learning interven-
tions to ablate a component’s activations, we use
corresponding activations generated from the coun-
terfactual sentences.

Besides these changes, training and inference
with this mask proceed as in De Cao et al. (2021b).
At every time step, we run a forward pass of the
model on an example from the Professions dataset.
We stochastically replace component outputs with
corresponding counterfactual outputs, according to
the mask; components with higher mask weights
are replaced to a greater degree. We train the mask
to induce the largest change in gendered pronoun
prediction possible, while minimizing both the
number of non-zero mask entries, and the magni-
tude of overall changes made to the model’s output
distribution. This procedure yields a mask over our

components, whose expected values lie in [0, 1];
higher values indicate more important components.
For more details, see Appendix B.

3.2 Experiments
We use the three methods discussed above to dis-
cover the components that cause gender bias in
GPT-2 small. For CMA and DiffMask+, we limit
our analysis to attention heads. All experiments
were implemented using the TransformerLens2 li-
brary (Nanda and Bloom, 2022). For CMA, we
used Vig et al.’s top-k strategy and selected only
the top 10 heads as the NIE quickly diminishes
beyond this point. Similarly, for DiffMask+, we
chose the 10 heads with the highest expected mask
value at the end of training. To find our circuit,
we ran ACDC, finding a whole circuit containing
attention heads and other components as shown in
Figure 4 in Appendix A. For hyperparameters and
training details, see Appendix C.

3.3 Results
Figure 1 shows the attention heads selected using
each method. For ACDC, we show only the atten-
tion heads from the full circuit. All methods find
attention heads located mostly in the final layers
of the model; this contrasts with Vig et al. (2020),
who find heads in middle layers. This may be
due to the fact that Vig et al. (2020) mainly assess
gender bias in co-reference resolution in their atten-
tion intervention experiments and accordingly use
the WinoBias (Zhao et al., 2018) and Winogender
(Rudinger et al., 2018) datasets. The results sug-
gest that the dataset used for discovery influences
the components picked by these methods.

The Venn diagram in Figure 1 shows the overlap
of heads across methods. We observe a signifi-
cant overlap: 5 of the top 10 heads are shared by
all three methods. Attention heads selected using
CMA and ACDC have more overlap and as ob-
served in the mitigation results in Section 4.3 the
two methods perform similarly on different metrics.
The fact that DiffMask+ yields 4 heads that are not
shared might be due to its objective: DiffMask+
attempts to maximally change gendered pronoun
prediction while still minimally changing the distri-
bution overall. This latter constraint is absent from
the other two methods.

We also note that the selected heads are located
in the later half of the model. We hypothesize that

2https://github.com/neelnanda-io/
TransformerLens

383

0 2 4 6 8 10
0

2

4

6

8

10

La
ye

rs
CMA

0 2 4 6 8 10
Heads

DiffMask

0 2 4 6 8 10

ACDC

3
4

0

2

2 1

5

CMA DiffMask

ACDC

Figure 1: Top 10 attention heads selected using CMA, DiffMask+ and ACDC. Overlapping heads are shown in red.
The Venn diagram shows the overlap counts between all combinations of the sets.

this may be because these heads are transferring
gender information from the profession position to
the end position of the sentence. Although earlier
heads can also attend to gender tokens, prior work
suggests that entities are enriched by lower-layer
MLPs before information is extracted from them
by later attention heads (Geva et al., 2023).

4 Mitigating Gender Bias

Having identified components responsible for gen-
der bias in GPT-2 small, we test whether this infor-
mation can be used to mitigate the bias. To this end,
we fine-tune the model on a dataset carefully cu-
rated to be gender balanced—this has been shown
to lead to a reduction in gender bias (Gira et al.,
2022). We compare the effectiveness of fine-tuning
only the components found in the previous section
to various baselines, both fine-tuned and not.

4.1 Fine-tuning Dataset and Models
We test the effectiveness of parameter-efficient fine-
tuning with the identified GPT-2 components at
mitigating gender bias. We fine-tune on the BUG
dataset3 (Levy et al., 2021), which contains an-
notated natural sentences containing one or more
gendered pronouns. We use the balanced version of
BUG, which has an equal number of masculine and
feminine pronouns, to counteract GPT-2’s gender
bias in pronouns. For each model in Table 1, we
fine-tune only the specified subset of GPT-2’s pa-
rameters and compare our methods to the not fine-
tuned GPT-2 model, our baseline. Appendix D
contains fine-tuning details.

4.2 Metrics
We use several metrics and baselines to evaluate
the effectiveness of the bias mitigation under the
different conditions. To measure gender bias, we

3https://github.com/SLAB-NLP/BUG

Table 1: All fine-tuned models and corresponding com-
ponents selected for fine-tuning in Section 4. DM means
our proposed method DiffMask+.

Model Name Selected Components

Full Model Entire model.
Random Attn Heads Set of 10 randomly selected at-

tention heads not found by CMA,
ACDC or DM.

All Attn Layers All attention layers including the at-
tention projection.

Last 4 Attn Layers Last 4 attention layers.
ACDC MLPs, attention heads, and embed-

ding layers found by ACDC.
ACDC Attn Heads Attention heads from the ACDC cir-

cuit.
CMA Attn Heads Top 10 attention heads found by

CMA.
DM Attn Heads Top 10 attention heads found by

DiffMask+.

use WinoBias (Zhao et al., 2018) and the gen-
der bias subset of CrowS-Pairs by Névéol et al.
(2022). We also measure model performance on
the original Professions dataset using which im-
portant components were found. To ensure that
fine-tuning did not harm models’ general language
modeling abilities, we also measure these, via Wiki-
Text perplexity (Merity et al., 2016) and accuracy
on BLiMP (Warstadt et al., 2020). All metrics,
except for the perplexity, are defined as the ratio
of times that the model prefers the correct/anti-
stereotypical over the incorrect/stereotypical vari-
ant. Given a dataset D with pairs of stereotypical
and anti-stereotypical sentences (x, x̃), the Stereo-
type Score is defined as follows.

SS =
1

|D|
∑

(x,x̃)∈D
Ip(x)>p(x̃) (3)

WinoBias We measure the models’ gender bias
using WinoBias. Even if this dataset with its small
linguistic variety might not exactly reflect real-
world biased language (Lior and Stanovsky, 2023),

384

it is widely used as its simplicity allows for con-
trolled experiments. We measure models’ gender
bias using WinoBias’ type 2 dataset4 (Zhao et al.,
2018). This dataset consists of sentences contain-
ing two occupation terms and one gendered pro-
noun; models must determine which occupation
the pronoun refers to. In type 2 examples, the
sentence’s syntax always determines the correct
occupation (regardless of the pronoun’s gender).
For each sentence there is one pro- and one anti-
stereotypical version, which differ only in the gen-
der of the pronoun used. We consider a model
biased if it consistently assigns higher probability
to the pro-stereotypical sentence. We record the
proportion of examples where the model assigns
higher probability to the pro-stereotypical version.
Note that our metric differs from the original met-
ric, which was formulated in terms of co-reference
resolution accuracy.

CrowS-Pairs The gender bias subset of CrowS-
Pairs measures gender bias in LMs, construed more
broadly than occupation-gender associations. It
consists of minimal pairs, a more and a less stereo-
typical sentence. We consider a systematic prefer-
ence for more stereotypical sentences (by compar-
ing perplexities) to indicate a biased model. As in
WinoBias, the bias is measured as the proportion
of examples where the model prefers the stereo-
typical sentence. In our experiments, we use an
updated version from Névéol et al. (2022) where
potential validity issues (including those identified
by Blodgett et al. (2021)) have been addressed.

Professions We use the Professions dataset, with
which we found bias-relevant components, to as-
sess gender bias in the fine-tuned models. For every
sentence in the dataset, we measure the probabil-
ity assigned to the pro-/anti-stereotypical continua-
tions (either he or she, depending on the example).
We measure the proportion of examples where the
pro-stereotypical continuation is more probable.

BLiMP We evaluate our models’ linguistic abili-
ties using BLiMP. BLiMP consists of a number of
datasets, each of which targets a specific linguis-
tic phenomenon. Each dataset contains examples,
each of which is a minimal sentence pair: one sen-
tence is correct and the other incorrect, with respect

4We choose not to discuss the results for the type 1 dataset
because we do not test an actual co-reference resolution task,
but rather compute the perplexities of continuing with one or
the other gendered pronoun.

to the targeted phenomenon. The model should
systematically assign a higher probability to the
correct sentence. We report accuracy on BLiMP as
a whole, as well as on the Gender Anaphor Agree-
ment (AGA) and Subject Verb Agreement (SVA)
subtasks. We do this to understand the effect of our
fine-tuning on these specific linguistic phenomena,
where gender is only relevant for one of these tasks.

WikiText We evaluate our models’ general lan-
guage modeling performance by computing their
perplexity on the test split of the WikiText-103 cor-
pus5 (4358 examples) (Merity et al., 2016), which
consists of “Good” and “Featured” Wikipedia ar-
ticles. Higher perplexity might indicate that fine-
tuning hurt general language modeling abilities.

4.3 Results

Table 2 presents the average bias evaluation results
for CrowS-Pairs, WinoBias, and Professions, as
well as for the perplexity and BLiMP metrics.

Bias Metrics We find that all types of fine-tuning
improve performance on the Professions dataset
(details in the appendix; Figure 5). This suggests
that the fine-tuning procedure successfully changed
model behavior. However, not all types of fine-
tuning are equal: fine-tuning strategies that targeted
late attention heads yielded models with lower
stereotyping and variance than those that targeted
other components, spread throughout the model.

Similarly, the CrowS-Pairs results in Figure 2
show that models where only the attention heads
discovered using the three methods from Section 3
were fine-tuned, achieve the best results in terms of
gender bias reduction. In contrast, fine-tuning ran-
dom attention heads yields no reduction in gender
bias. The DM Attention Heads model in particular
significantly reduces bias with an average stereo-
type score as defined in eq. (3) from 0.58 of the
baseline to 0.55. Additionally, the scores of DM
Attention Heads model have low variance while
fine-tuning all attention layers, the full model, or
ACDC components yields high-variance results.

Evaluation on WinoBias yields contrasting re-
sults (Table 2). Fine-tuning the attention heads
only marginally reduced the gender bias on aver-
age. Surprisingly, fine-tuning the last 4 attention
layers achieved the best reduction in gender bias.

At first glance, the CrowS-Pairs and WinoBias
results are mixed. Fine-tuning the full model, last

5https://huggingface.co/datasets/wikitext

385

Table 2: Effect comparison of the different fine-tuning interventions. Reported are perplexity (PPL, measured on
WikiText), three measures of linguistic adequacy (full BLiMP as well as subject-verb and anaphora agreement
portions of BLiMP), and the gender bias measures from CrowS-Pairs, WinoBias, and the Professions bench-
marks/datasets. The cells show the % improvement (positive is better as indicated by ↑) w.r.t. the original GPT-2
before fine-tuning, averaged over 5 seeds (absolute scores are in Appendix E). * indicates p < 0.05 for two-sided
one sample t-test, where the original GPT-2 performance serves as the population mean.

perplexity ↑ linguistic adequacy ↑ gender bias measures ↑
PPL BLiMP SV AGA CrowS. WinoB. Prof.

baselines full model -44.2 -3.9* -2.9* 1.2* -1.4 4.6* 2.3
random attn heads -17.0 -3.0* -0.9* 0.2 -0.2 1.9 1.3

broad interventions
all attn layers -19.1 -2.0* -1.4* 1.4* -0.6 0.1 0.6*
last 4 attn layers -12.6 -3.4* 0.4* -1.2* -0.2 4.2* 3.2*
acdc -38.8 -4.6* -1.8* 0.6 -0.9 3.3* 3.1

narrow interventions
acdc attn heads -16.6 -3.0* 0.3* 0.2 3.5* 1.4 1.9*
cma attn heads -16.6 -3.0* 0.3* 0.2 3.5* 1.4 1.9*
dm attn heads -17.5 -2.4* 0.2 -0.0 4.8* 0.9 2.9*

full

model

random

attn

heads

all

attn

layers

last 4

attn

layers

acdc acdc

attn

heads

cma

attn

heads

dm

attn

heads

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

C
r
o
w

S
-
P
a
ir

s
 S

t
e
r
e
o
t
y
p
e
 S

c
o
r
e

Figure 2: CrowS-Pairs results (here: lower is better).
Purple models are baselines; the dotted line shows the
non-fine-tuned GPT-2 performance.

4 attention layers, or ACDC components yields
the most improvement on WinoBias, but these
models score badly on CrowS-Pairs. However,
the reverse is not true: the models that improved
most on CrowS-Pairs also improved on WinoBias—
although not consistently (Figure 3). We postulate
many potential explanations for the divergent out-
comes seen between WinoBias and CrowS-Pairs.
First, WinoBias could simply be rewarding models
that perform randomly or poorly at co-reference res-
olution, although good overall BLiMP AGA scores
suggest this is not the case. Second, gender bias
in co-reference resolution might stem from a com-
ponent set distinct from the ones we discovered.
This is supported by Vig et al.’s findings, which
revealed a distinct set of attention heads that con-
tribute to gender bias in co-reference resolution.

full

model

random

attn

heads

all

attn

layers

last 4

attn

layers

acdc acdc

attn

heads

cma

attn

heads

dm

attn

heads

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

W
in

o
B

ia
s
 T

y
p
e
2
 S

c
o
r
e

Figure 3: WinoBias Type2 Stereotype Score (here:
lower is better). Purple models are baselines; the dotted
line shows the non-fine-tuned GPT-2 performance.

Finally, this might be linked to how the bias mea-
sures are operationalized, which we will come back
to in Section 5.

WikiText & BLiMP Both the perplexity mea-
sured on WikiText and accuracies on BLiMP in-
form us about the general language modeling ca-
pability before and after fine-tuning. For Wiki-
Text, we observe that fine-tuning more parameters—
as when we fine-tune the full model or ACDC
circuit—hurts the perplexity more; the fully fine-
tuned model performs the worst, increasing per-
plexity to 34.16 from 23.69. In contrast, targeted
fine-tuning of attention heads increases perplexity
by a much lower margin. This trade-off motivates
finding a minimal component set to fine-tune, in
order to mitigate bias while maintaining general
language modeling ability.

386

All fine-tuned models attain lower performance
on BLiMP overall than the pre-trained baseline; as
in the WikiText case, the more components fine-
tuned, the more performance drops. However, ex-
amining the performance on agreement subtasks
reveals more nuance. On SVA, fine-tuning only
the top-10 attention heads found using the meth-
ods from Section 3 improved performance by a
small margin. On AGA, almost all fine-tuned mod-
els attained scores on par with the baseline. So,
while fine-tuning small sets of attention heads hurt
BLiMP performance overall, the maintained perfor-
mance on SVA and AGA suggest that agreement
ability, gender-related or not, are not hurt.

5 Discussion & Conclusions

With this work, we provide an exploratory study of
the identification and mitigation of gender bias in
GPT-2. Our three different methods identify model
components relevant to gender bias—according to
our results, they largely agree on the most rele-
vant attention heads: most of the heads responsi-
ble for gender bias are found mainly in the last
four attention layers. We then intervene on each
method’s found components to mitigate the gen-
der bias but maintain language modeling perfor-
mance. We find that language modeling perfor-
mance deteriorates only minimally for our ‘narrow’
interventions, but deteriorates more in conditions
where a larger amount of components/parameters
are adapted by fine-tuning.

Regarding computational efficiency, we find that
the circuits approach is computationally inefficient
compared to the other methods. For explanatory
and exploratory work, like ours, circuits are very
useful and can yield fine-grained insights into the
model mechanisms. However, if resource effi-
ciency is a high priority, we suggest using other
methods than (automatic) circuit discovery. One
key contribution of this paper is a new and very ef-
ficient method, DiffMask+, which finds a minimal
set of attention heads for fine-tuning, while being
computationally less prohibitive than methods such
as automatic circuit discovery.

Limitations Have we reached our goal of reduc-
ing bias, using computational efficient methods?
Considering the measured gender bias, we success-
fully reduced the bias on two out of three datasets.
This is encouraging, but our results also reveal
some inconsistencies between different ways of
measuring bias. This is not unexpected; in fact,

much previous work has highlighted many issues
that put the validity and reliability of current bias
measures into question (e.g., Blodgett et al., 2021;
Talat et al., 2022; Dev et al., 2022). Bias mea-
sures may target very different manifestations of
the bias of interest (van der Wal et al., 2023). We
therefore attribute the observed inconsistencies to
the implicit versus explicit gender bias in different
datasets, which could be represented differently in
model components, and thus also targeted differ-
ently by fine-tuning.

Despite these challenges, we tried to address
some of these concerns by using multiple different
bias metrics and testing the consistency of these
across different seeds. We believe that the suc-
cess of our approach is heavily contingent upon the
datasets employed for both component identifica-
tion and the subsequent fine-tuning of the chosen
components. For example, using template-based
datasets such as WinoBias or Professions could re-
duce the identified components’ generalizability,
as components that contribute to one form of gen-
der bias may not contribute to another. The same
applies to the fine-tuning stage as well. Using a
dataset with limited variability in structure might
result in only partial mitigation of the behavior.
We therefore conclude that for even better bias re-
duction, it is essential to use and develop datasets
that are diverse and representative of the behaviour
being studied.

Future work For a wider picture of how our
findings integrate in bias identification and miti-
gation studies, we would like to compare our ap-
proaches to other promising methods in the liter-
ature like concept erasure at the activation level
(e.g., LEACE; Belrose et al., 2023) and changes
to the language generation procedure (e.g., “self-
debiasing”; Schick et al., 2021). Future work
should also test whether these mitigation strategies
generalize to different conditions, for example, lan-
guage models larger than GPT-2 small. Lastly, we
also stress the importance of developing method-
ologies for operationalizing other forms of bias
than binary gender in English, and to overcome dif-
ficulties we currently face when using contrastive
sets and existing bias benchmarks.

6 Acknowledgements

OW’s contributions are financed by the Dutch
Research Council (NWO) as part of project
406.DI.19.059.

387

References
Maria Barrett, Yova Kementchedjhieva, Yanai Elazar,

Desmond Elliott, and Anders Søgaard. 2019. Adver-
sarial removal of demographic attributes revisited. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6330–
6335, Hong Kong, China. Association for Computa-
tional Linguistics.

Christine Basta, Marta R. Costa-jussà, and Noe Casas.
2019. Evaluating the underlying gender bias in con-
textualized word embeddings. In Proceedings of the
First Workshop on Gender Bias in Natural Language
Processing, page 33–39, Florence, Italy. Association
for Computational Linguistics.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James R. Glass. 2018.
Identifying and controlling important neurons in neu-
ral machine translation. ArXiv, abs/1811.01157.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel,
Ryan Cotterell, Edward Raff, and Stella Biderman.
2023. Leace: Perfect linear concept erasure in closed
form. arXiv preprint arXiv:2306.03819.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM confer-
ence on fairness, accountability, and transparency,
pages 610–623.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in nlp. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5454–5476.

Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu,
Robert Sim, and Hanna Wallach. 2021. Stereotyping
Norwegian salmon: An inventory of pitfalls in fair-
ness benchmark datasets. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:

Long Papers), pages 1004–1015, Online. Association
for Computational Linguistics.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances in
neural information processing systems, 29.

Shikha Bordia and Samuel Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Student Research Work-
shop, pages 7–15.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186. ArXiv:1608.07187
[cs].

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. 2023. Towards automated circuit discovery
for mechanistic interpretability. (arXiv:2304.14997).
ArXiv:2304.14997 [cs].

Nicola De Cao, Michael Schlichtkrull, Wilker Aziz,
and Ivan Titov. 2021a. How do decisions emerge
across layers in neural models? interpretation
with differentiable masking. (arXiv:2004.14992).
ArXiv:2004.14992 [cs, stat].

Nicola De Cao, Leon Schmid, Dieuwke Hupkes,
and Ivan Titov. 2021b. Sparse interventions
in language models with differentiable masking.
(arXiv:2112.06837). ArXiv:2112.06837 [cs].

Pieter Delobelle, Ewoenam Tokpo, Toon Calders, and
Bettina Berendt. 2022. Measuring fairness with bi-
ased rulers: A comparative study on bias metrics for
pre-trained language models. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, page 1693–1706, Seat-
tle, United States. Association for Computational
Linguistics.

Sunipa Dev, Emily Sheng, Jieyu Zhao, Aubrie Amstutz,
Jiao Sun, Yu Hou, Mattie Sanseverino, Jiin Kim, Ak-
ihiro Nishi, Nanyun Peng, et al. 2022. On measures
of biases and harms in nlp. In Findings of the Associ-
ation for Computational Linguistics: AACL-IJCNLP
2022, pages 246–267.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160–
175.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac

388

Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. (arXiv:2106.02997). ArXiv:2106.02997 [cs].

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associ-
ations in auto-regressive language models.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Michael Gira, Ruisu Zhang, and Kangwook Lee. 2022.
Debiasing pre-trained language models via efficient
fine-tuning. In Proceedings of the Second Workshop
on Language Technology for Equality, Diversity and
Inclusion, pages 59–69, Dublin, Ireland. Association
for Computational Linguistics.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Inter-
national Conference on Machine Learning.

Dirk Hovy and Shannon L. Spruit. 2016. The social
impact of natural language processing. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 591–598, Berlin, Germany. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Neeraja Kirtane and Tanvi Anand. 2022. Mitigating
gender stereotypes in Hindi and Marathi. In Proceed-
ings of the 4th Workshop on Gender Bias in Natu-
ral Language Processing (GeBNLP), pages 145–150,
Seattle, Washington. Association for Computational
Linguistics.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco Ba-
roni. 2019. The emergence of number and syntax
units in LSTM language models. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 11–20, Minneapolis, Minnesota.
Association for Computational Linguistics.

Anne Lauscher, Tobias Lueken, and Goran Glavaš. 2021.
Sustainable modular debiasing of language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4782–4797, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Shahar Levy, Koren Lazar, and Gabriel Stanovsky. 2021.
Collecting a large-scale gender bias dataset for coref-
erence resolution and machine translation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 2470–2480, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), abs/2101.00190.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel
Nanda, Geoffrey Irving, Rohin Shah, and Vladimir
Mikulik. 2023. Does circuit analysis interpretability
scale? evidence from multiple choice capabilities in
chinchilla.

Gili Lior and Gabriel Stanovsky. 2023. Comparing hu-
mans and models on a similar scale: Towards cogni-
tive gender bias evaluation in coreference resolution.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. ArXiv,
abs/1711.05101.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through L0

regularization. In International Conference on Learn-
ing Representations.

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Aman-
charla, and Anupam Datta. 2020. Gender bias in
neural natural language processing. Logic, Language,
and Security: Essays Dedicated to Andre Scedrov on
the Occasion of His 65th Birthday, pages 189–202.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measur-
ing social biases in sentence encoders. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), page 622–628, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

389

Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy.
2022. An empirical survey of the effectiveness of
debiasing techniques for pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1878–1898, Dublin, Ireland.
Association for Computational Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2023. Locating and editing factual associa-
tions in gpt. (arXiv:2202.05262). ArXiv:2202.05262
[cs].

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. ArXiv, abs/1609.07843.

Hosein Mohebbi, Willem Zuidema, Grzegorz Chrupała,
and Afra Alishahi. 2023. Quantifying context mixing
in transformers. In Proceedings of the 17th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, pages 3378–3400,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
Stereoset: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), page 5356–5371, Online. Association for
Computational Linguistics.

Neel Nanda and Joseph Bloom. 2022. Transformerlens.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Aurélie Névéol, Yoann Dupont, Julien Bezançon, and
Karën Fort. 2022. French crows-pairs: Extending a
challenge dataset for measuring social bias in masked
language models to a language other than english.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 8521–8531.

Judea Pearl. 2014. Interpretation and identification of
causal mediation. Psychological methods, 19.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256, Online. Association for Computational
Linguistics.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2021. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3363–3377, Online. Association
for Computational Linguistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association for
Computational Linguistics.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in NLP. Transactions of the
Association for Computational Linguistics, 9:1408–
1424.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan
Titov. 2021. Interpreting graph neural networks for
{nlp} with differentiable edge masking. In Interna-
tional Conference on Learning Representations.

Thibault Sellam, Steve Yadlowsky, Ian Tenney, Jason
Wei, Naomi Saphra, Alexander D’Amour, Tal Linzen,
Jasmijn Bastings, Iulia Raluca Turc, Jacob Eisenstein,
Dipanjan Das, and Ellie Pavlick. 2022. The multib-
erts: BERT reproductions for robustness analysis. In
The Tenth International Conference on Learning Rep-
resentations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net.

Irene Solaiman and Christy Dennison. 2021. Process
for adapting language models to society (palms) with
values-targeted datasets. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages 5861–
5873. Curran Associates, Inc.

Zeerak Talat, Aurélie Névéol, Stella Biderman, Miruna
Clinciu, Manan Dey, Shayne Longpre, Sasha Luc-
cioni, Maraim Masoud, Margaret Mitchell, Dragomir
Radev, et al. 2022. You reap what you sow: On
the challenges of bias evaluation under multilingual
settings. In Proceedings of BigScience Episode# 5–
Workshop on Challenges & Perspectives in Creating
Large Language Models, pages 26–41.

Oskar van der Wal, Dominik Bachmann, Alina Lei-
dinger, Leendert van Maanen, Willem Zuidema, and
Katrin Schulz. 2023. Undesirable biases in nlp:
Averting a crisis of measurement. arXiv preprint
arXiv:2211.13709.

390

Oskar Van Der Wal, Jaap Jumelet, Katrin Schulz, and
Willem Zuidema. 2022. The birth of bias: A case
study on the evolution of gender bias in an English
language model. In Proceedings of the 4th Work-
shop on Gender Bias in Natural Language Process-
ing (GeBNLP), pages 75–75, Seattle, Washington.
Association for Computational Linguistics.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, page 12388–12401. Curran Associates,
Inc.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: A circuit for indirect object
identification in gpt-2 small.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Laura Weidinger, John F. J. Mellor, Maribeth Rauh,
Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
Zachary Kenton, Sande Minnich Brown, William T.
Hawkins, Tom Stepleton, Courtney Biles, Abeba
Birhane, Julia Haas, Laura Rimell, Lisa Anne Hen-
dricks, William S. Isaac, Sean Legassick, Geoffrey
Irving, and Iason Gabriel. 2021. Ethical and so-
cial risks of harm from language models. ArXiv,
abs/2112.04359.

Zhongbin Xie and Thomas Lukasiewicz. 2023. An
empirical analysis of parameter-efficient meth-
ods for debiasing pre-trained language models.
(arXiv:2306.04067). ArXiv:2306.04067 [cs].

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
2018. Mitigating unwanted biases with adversarial
learning. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pages 335–
340.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20, New
Orleans, Louisiana. Association for Computational
Linguistics.

Ran Zmigrod, Sabrina J Mielke, Hanna Wallach, and
Ryan Cotterell. 2019. Counterfactual data augmenta-
tion for mitigating gender stereotypes in languages
with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1651–1661.

A Circuit Discovery

The circuit discovered in GPT-2 small model using
professions datset is shown in Figure 4

<a11.8>

<resid_post>

<a11.1>

<a10.9>

<a11.8_v>

<a9.7>

<a10.9_v>

<a9.5> <m8> <a8.11> <a8.10> <a8.3> <a7.5>

<a6.0>

<m7>

<a9.7_v>

<a4.3>

<a6.0_v>

<m0>

<m5>

<m3>

<a4.3_v>

<a10.9_q><a10.9_k>

<m9>

<a9.7_q>

<m6>

<a8.11_v> <a7.5_v>

embed

Figure 4: Circuit discovered in the GPT-2 small model
using Professions dataset.

B DiffMask+ Implementation Details

During inference, DiffMask+ works as follows. We
have two inputs—our normal input x and our coun-
terfactual input x̃—as well as a k-dimensional bi-
nary mask m ∈ {0, 1}k; for GPT-2 small, the num-
ber of components k is 144 as we choose to only
select attention heads. We run forward passes on
both inputs, recording each component’s output
on the normal dataset (h1, . . . ,hk) and the coun-
terfactual dataset (h̃1, . . . , h̃k). Finally, we run
the model once more on the normal input, apply-
ing the mask: we replace each original compo-
nent output hi with the potentially masked output
h′i = (1 −mi) · hi +mi · h̃i

6. If our mask cap-
tures which components are important, our masked
model should behave as if it were receiving the
counterfactual input.

DiffMask+’s training setup is slightly different.
We cannot learn a purely binary mask, as that
would not be differentiable. Instead, we learn a

6We can apply our mask either at every time step, or at
only the final time step.

391

parameterization of a hard concrete distribution
(Louizos et al., 2018), a type of distribution that
falls in [0, 1] and assigns non-zero probability to
both 0 and 1. This distribution is parameterized by
a location vector z ∈ [0, 1]k, and can be sampled
to produce a mask m ∈ [0, 1]k. When it comes
time to mask the model, we simply sample a mask
from the distribution pz(m); note that this mask
may no longer be strictly binary. However, we can
generate a deterministic and truly binary mask for
use at inference time in expectation (mask set to 0
if expected value < 0.5, and 1 otherwise).

With this setup, we can train our mask; we begin
by initializing the location vector to [0.5]k. We then
train it on our dataset D, optimizing a loss adapted
from De Cao et al. (2021b) which is composed
of three individual loss terms. The first, targets
our task of interest—gender bias. If the original
input would lead to a prediction of stereotypical
pronoun yo, e.g. “she”, and corresponding anti-
stereotypical pronoun is yc, e.g. “he”, we mini-
mize p̃(yo|x)/p̃(yc|x) where p̃ is the intervened or
masked model’s output distribution. This is min-
imized when the anti-stereotypical prediction is
much more likely than the original stereotypical
prediction, i.e. when the relevant model compo-
nents are intervened with the corresponding coun-
terfactual output.

The second loss term is the expected number
of non-zero elements in our sampled mask; we
want our mask to be sparse. Ideally, this would
be a hard constraint, where the number of non-
zero elements is ≤ α for a chosen α; we will in-
stead use a Lagrangian relaxation of this constraint.
The third term is the KL divergence between the
unmasked model’s output distribution p(y|x) and
masked model’s output distribution p̃(y|x) ; we
want our masking to minimally change model out-
put, besides task-relevant output. Formally, and
much like De Cao et al. (2021b), we optimize:

max
λ

min
z

∑

x,yo,yc∈D

p̃(yo|x)
p̃(yc|x)

+ λ

(
k∑

i=1

Epzi (mi)[mi ̸= 0]− α
)

+ βDKL(p(y|x)||p̃(y|x))

(4)

Here, α and β are hyperparameters regulating
sparsity and KL-divergence weight, respectively;
λ ∈ R≥0 is our Lagrangian multiplier. Optimizing
this loss should produce a mask that captures the

components relevant to gender bias, while being
maximally sparse, and still mostly preserving the
model’s output distribution.

C Component Discovery
Hyperparameters

We optimized the DiffMask loss using Adam
(Kingma and Ba, 2014) for 200 epochs on the pro-
fessions dataset with a learning rate 10−3 and a
constant schedule. We choose the sparsity hyper-
parameter α = 10 for selecting 10 attention heads
and the KL-Divergence weight β = 1 as proposed
in De Cao et al. (2021b). At the end of the train-
ing, we choose the top-10 heads with the highest
expected value of the location parameter of the
stochastic mask.

For the ACDC experiment, we chose a threshold
of 0.01, eliminating edges if ablating them caused
a change in performance of less than 0.01, as mea-
sured by our pronoun probability difference metric.

D Fine-tuning experiment

In Section 4, we fine-tune each model for a
maximum of 20 epochs using AdamW optimizer
(Loshchilov and Hutter, 2017) with an initial learn-
ing rate 10−4 and a linear schedule. We opti-
mize Cross Entropy Loss. The BUG balanced
dataset contains 25844 sentences, which we split
into gender-balanced training and validation sets,
containing 90% and 10% of the data respectively.
We use the validation loss both for selecting the
best model and early stopping with a patience of
10 epochs.

E Additional Results

Table 3 shows all results of fine-tuned models and
baselines rounded to up to 2 decimals. Figure 5
shows the stereotype scores of different models
evaluated on the Professions dataset. Figure 6
shows the perplexity of different models evaluated
on WikiText-103. Figure 7 shows the BLiMP over-
all results measured over 5 different iterations. Sim-
ilarly, Figure 8 and Figure 9 shows the AGA and
SVA results respectively.

392

Table 3: Comparison of the effect of the different fine-tuning interventions. Reported are perplexity (PPL, measured
on WikiText), three measures of linguistic adequacy (full BLiMP, and subject-verb and anaphora agreement
portions of BLiMP), as well as the gender biases measures from CrowS-Pairs, WinoBias, and the Professions
benchmarks/datasets.

perplexity linguistic adequacy gender bias measures
PPL BLiMP SV AGA CrowS. WinoB. Prof.

baseline original gpt2 23.69 0.80 0.90 0.95 0.58 0.63 0.84
full model 34.16 0.77 0.87 0.97 0.59 0.60 0.82
random attn heads 27.72 0.77 0.89 0.96 0.58 0.61 0.83

broad interventions
all attn layers 28.22 0.78 0.89 0.97 0.58 0.63 0.83
last 4 attn layers 26.67 0.77 0.90 0.94 0.58 0.60 0.81
acdc 32.89 0.76 0.88 0.96 0.58 0.61 0.81

narrow interventions
acdc attn heads 27.62 0.77 0.90 0.96 0.56 0.62 0.82
cma attn heads 27.62 0.77 0.90 0.96 0.56 0.62 0.82
dm attn heads 27.84 0.78 0.90 0.95 0.55 0.62 0.81

full

model

random

attn

heads

all

attn

layers

last 4

attn

layers

acdc acdc

attn

heads

cma

attn

heads

dm

attn

heads

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

P
r
o
f
e
s
s
io

n
s
 S

t
e
r
e
o
t
y
p
e
 S

c
o
r
e

Figure 5: Professions Stereotype Score (here: lower
is better). Purple models are baselines; the dotted line
shows the non-fine-tuned GPT-2 performance.

full
model

random
attn

heads

all
attn

layers

last 4
attn

layers

acdc acdc
attn

heads

cma
attn

heads

dm
attn

heads

24

26

28

30

32

34

Pe
rp
le
xi
ty

Figure 6: Test perplexity (lower is better) on WikiText-
103. Purple models are baselines; the dotted line shows
the non-fine-tuned GPT-2 performance.

393

full

model

random

attn

heads

all

attn

layers

last 4

attn

layers

acdc acdc

attn

heads

cma

attn

heads

dm

attn

heads

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

B
L
iM

P
 O

v
e
r
a
ll
 S

c
o
r
e

Figure 7: BLiMP Overall results (higher is better). Pur-
ple models are baselines; the dotted line shows the non-
fine-tuned GPT-2 performance.

full

model

random

attn

heads

all

attn

layers

last 4

attn

layers

acdc acdc

attn

heads

cma

attn

heads

dm

attn

heads

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

B
L
iM

P
 A

G
A

 S
c
o
r
e

Figure 8: BLiMP Anaphor Gender Agreement results
(higher is better). Purple models are baselines; the dot-
ted line shows the non-fine-tuned GPT-2 performance.

full

model

random

attn

heads

all

attn

layers

last 4

attn

layers

acdc acdc

attn

heads

cma

attn

heads

dm

attn

heads

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9
B

L
iM

P
 S

V
 S

c
o
r
e

Figure 9: BLiMP Subject Verb Agreement results
(higher is better). Purple models are baselines; the dot-
ted line shows the non-fine-tuned GPT-2 performance.

394

Author Index

Ajith, Aswathy, 342
Amsili, Pascal, 212
Aneja, Jyoti, 31
Araki, Jun, 1
Arnold, Stefan, 65

Baeumel, Tanja, 261
Bao, Wanqian, 169
Bartsch, Henning, 89
Bauer, André, 342
Beloch, Rahel, 379
Bhattacharya, Sunit, 120
Blache, Philippe, 222
Bojar, Ondřej, 120

Candito, Marie, 212
Chaffin, Antoine, 76
Chakraborty, Aishik, 357
Chard, Kyle, 342
Chersoni, Emmanuele, 222, 367
Cheung, Jackie CK, 357
Chintam, Abhijith, 379
Colas, Anthony, 1
Cong, Yan, 222

DeCarlo, Deanna, 332
Delaunay, Julien, 76
D’Oosterlinck, Karel, 317

Feng, Zhe, 1
Flechas Manrique, Natalia, 169
Foster, Ian, 342
Frank, Bob, 332

Gao, Jianfeng, 31
Geiger, Atticus, 317
Groschwitz, Jonas, 199
Grzenda, Daniel, 342
Gupta, Akshat, 56

Hanna, Michael, 379
Hasson, Uri, 169
Herbelot, Aurelie, 169
Hewitt, John, 106
Hoelscher-Obermaier, Jason, 89

Hsu, Yu-Yin, 222
Huang, Jing, 317
Hudson, Nathaniel, 342

Johnson, Jacob K., 250
Jorgensen, Ole, 89

Kemmerzell, Nils, 65
Khan, Arham, 342
Kletz, David, 212

Lee, Andrew, 16
Lee, Roy Ka-Wei, 284
Liu, Chenxin, 367
Lorge, Isabelle, 296

Marasović, Ana, 250
Mickus, Timothee, 127
Morris, John X., 31

Nanda, Neel, 16
Neumann, Guenter, 261
Nikolaev, Dmitry, 142

O’Donnell, Timothy J., 357
Ostermann, Simon, 261

Padó, Sebastian, 142
Palmer, William, 332
Pfau, Jacob, 89
Pierrehumbert, Janet B., 296
Potts, Christopher, 317
Prakash, Nirmalendu, 284

Rosati, Domenic, 89
Rush, Alexander, 31

Sakarvadia, Mansi, 342
Schreiner, Annika, 65
Sieker, Judith, 180
Singh, Chandan, 31
Srikumar, Vivek, 233
Steinert-Threlkeld, Shane, 271
Sun, Hao, 106

Tan, Juanhe (TJ), 155

395

van der Wal, Oskar, 379
van Genabith, Josef, 261
Vázquez, Raúl, 127
Vijayakumar, Soniya, 261

Wang, Bingqing, 1
Wang, Shunjie, 271
Wattenberg, Martin, 16
Wilson, Michael, 332
Wu, Zhengxuan, 317

Zarrieß, Sina, 180
Zhou, Yichu, 233
Zhou, Zhengyu, 1
Zuidema, Willem, 379

	Program
	Knowledge-Grounded Natural Language Recommendation Explanation
	Emergent Linear Representations in World Models of Self-Supervised Sequence Models
	Explaining Data Patterns in Natural Language with Language Models
	Probing Quantifier Comprehension in Large Language Models: Another Example of Inverse Scaling
	Disentangling the Linguistic Competence of Privacy-Preserving BERT
	"Honey, Tell Me What's Wrong", Global Explanation of Textual Discriminative Models through Cooperative Generation
	Self-Consistency of Large Language Models under Ambiguity
	Character-Level Chinese Backpack Language Models
	Unveiling Multilinguality in Transformer Models: Exploring Language Specificity in Feed-Forward Networks
	Why Bother with Geometry? On the Relevance of Linear Decompositions of Transformer Embeddings
	Investigating Semantic Subspaces of Transformer Sentence Embeddings through Linear Structural Probing
	Causal Abstraction for Chain-of-Thought Reasoning in Arithmetic Word Problems
	Enhancing Interpretability Using Human Similarity Judgements to Prune Word Embeddings
	When Your Language Model Cannot Even Do Determiners Right: Probing for Anti-Presuppositions and the Maximize Presupposition! Principle
	Introducing VULCAN: A Visualization Tool for Understanding Our Models and Data by Example
	The Self-Contained Negation Test Set
	Investigating the Effect of Discourse Connectives on Transformer Surprisal: Language Models Understand Connectives, Even So They Are Surprised
	METAPROBE: A Representation- and Task-Agnostic Probe
	How Much Consistency Is Your Accuracy Worth?
	Investigating the Encoding of Words in BERT's Neurons Using Feature Textualization
	Evaluating Transformer's Ability to Learn Mildly Context-Sensitive Languages
	Layered Bias: Interpreting Bias in Pretrained Large Language Models
	Not Wacky vs. Definitely Wacky: A Study of Scalar Adverbs in Pretrained Language Models
	Rigorously Assessing Natural Language Explanations of Neurons
	NPIs Aren't Exactly Easy: Variation in Licensing across Large Language Models
	Memory Injections: Correcting Multi-Hop Reasoning Failures During Inference in Transformer-Based Language Models
	Systematic Generalization by Finetuning? Analyzing Pretrained Language Models Using Constituency Tests
	On Quick Kisses and How to Make Them Count: A Study on Event Construal in Light Verb Constructions with BERT
	Identifying and Adapting Transformer-Components Responsible for Gender Bias in an English Language Model

