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Introduction

Welcome to the proceedings of the system demonstration track of the Joint Conference of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-IJCNLP) on August 1st - August 6th, 2021.
ACL-IJCNLP 2021 will be an online conference.

The ACL-IJCNLP 2021 system demonstration track invites submissions ranging from early research
prototypes to mature production-ready systems. We received 133 submissions, of which 43 were
selected for inclusion in the program (acceptance rate of 32.3%) after reviewed by at least three
members of the program committee. We would like to thank the members of the program committee for
their timely help in reviewing the submissions.

Lastly, we thank the many authors that submitted their work to the demonstrations track. This year,
the ACL conference is completely virtual. The demonstration paper will be presented through one
pre-recorded talk and one live online QA session.

Best,
Heng Ji, Jong C. Park and Rui Xia
ACL-IJCNLP 2021 Demonstration Chairs
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Abstract
This paper introduces TexSmart, a text
understanding system that supports fine-
grained named entity recognition (NER)
and enhanced semantic analysis functional-
ities. Compared to most previous publicly
available text understanding systems and
tools, TexSmart holds some unique features.
First, the NER function of TexSmart sup-
ports over 1,000 entity types, while most
other public tools typically support several
to (at most) dozens of entity types. Second,
TexSmart introduces new semantic analysis
functions like semantic expansion and deep
semantic representation, that are absent in
most previous systems. Third, a spectrum
of algorithms (from very fast algorithms
to those that are relatively slow but more
accurate) are implemented for one function
in TexSmart, to fulfill the requirements of
different academic and industrial applica-
tions. The adoption of unsupervised or
weakly-supervised algorithms is especially
emphasized, with the goal of easily updat-
ing our models to include fresh data with
less human annotation efforts. 1

1 Introduction
The long-term goal of natural language process-
ing (NLP) is to help computers understand natural
language as well as we do, which is one of the
most fundamental and representative challenges
for artificial intelligence. Natural language under-
standing includes a broad variety of tasks covering
lexical analysis, syntactic analysis and semantic
analysis. In this paper we introduce TexSmart, a
new text understanding system that provides en-
hanced named entity recognition (NER) and seman-
tic analysis functionalities besides standard NLP
modules. Compared to most previous publicly-
available text understanding systems (Loper and

∗Project lead and chief architect
1TexSmart is available at https://texsmart.qq.

com/en, and the long version of this paper can be found
in the technical report (Zhang et al., 2020).

Bird, 2002; OpenNLP; Manning et al., 2014; Gard-
ner et al., 2018; Che et al., 2010; Qiu et al., 2013),
TexSmart holds the following key characteristics:

• Fine-grained named entity recognition (NER)
• Enhanced semantic analysis
• A spectrum of algorithms implemented for one

function, to fulfill the requirements of different
academic and industrial applications

First, the fine-grained NER function of TexS-
mart supports over 1,000 entity types while most
previous text understanding systems typically sup-
port several to (at most) dozens of coarse entity
types (among which the most popular types are
people, locations, and organizations). Large-scale
fine-grained entity types are expected to provide
richer semantic information for downstream NLP
applications. Figure 1 shows a comparison between
the NER results of a previous system and the fine-
grained NER results of TexSmart. It is shown
that TexSmart recognizes more entity types (e.g.,
work.movie) and finer-grained ones (e.g., loc.city
vs. the general location type). Examples of en-
tity types (and their important sub-types) which
TexSmart is able to recognize include people, lo-
cations, organizations, products, brands, creative
work, time, numerical values, living creatures, food,
drugs, diseases, academic disciplines, languages, ce-
lestial bodies, organs, events, activities, colors, etc.

Second, TexSmart provides two advanced seman-
tic analysis functionalities: semantic expansion, and
deep semantic representation for a few entity types.
These two functions are not available in most pre-
vious public text understanding systems. Semantic
expansion suggests a list of related entities for an
entity in the input sentence (as shown in Figure 1).
It provides more information about the semantic
meaning of an entity. Semantic expansion could
also benefit upper-layer applications like web search
(e.g., for query suggestion) and recommendation
systems. For time and quantity entities, in addi-
tion to recognizing them from a sentence, TexSmart
also tries to parse them into deep representations
(as shown in Figure 1). This kind of deep repre-
sentations is essential for some NLP applications.
For example, when a chatbot is processing query

1



No. Entity Type ID Semantics

1 Captain Marvel work.movie
{"related":["Batman","Superman","Wonder Woman”,


"Green Lantern”,"the flash”,"Aquaman","Spider-Man",

"Green Arrow”,"Supergirl","Captain America"]}

2 Los Angeles loc.city {“related":["Toronto","Montreal","Vancouver","Ottawa",

"Calgary","London","Paris","Chicago","Edmonton","Boston"]}

3 24 months ago time.generic {“value”:[2019,3]}

Fine-grained NER Deep Semantic Expression

Semantic Expansion

No. Entity Type ID

1 Marvel person

2 Los Angeles location

3 24 months ago time

(a) (b)

Figure 1: Comparison between the NER results of a traditional text understanding system in (a) and
the fine-grained NER and semantic analysis results provided by TexSmart in (b). The input sentence is
“Captain Marvel was premiered in Los Angeles 24 months ago.”. The screenshot was taken in Mar. 2021.

“please book an air ticket to London at 4 pm the
day after tomorrow”, it needs to know the exact
time represented by “4 pm the day after tomorrow”.

Third, a spectrum of algorithms is implemented
for one task (e.g., part-of-speech tagging and NER)
in TexSmart, to fulfill the requirements of differ-
ent academic and industrial applications. On one
side of the spectrum are the algorithms that are
very fast but not necessarily the best in accuracy.
On the opposite side are those that are relatively
slow yet delivering state-of-the-art performance in
terms of accuracy. Different application scenarios
may have different requirements for efficiency and
accuracy. Unfortunately, it is often very difficult or
even impossible for a single algorithm to achieve
the best in both speed and accuracy at the same
time. With multiple algorithms implemented for
one task, we have more chances to better fulfill the
requirements of more applications.

One design principle of TexSmart is to put a lot
of efforts into designing and implementing unsuper-
vised or weakly-supervised algorithms for a task,
based on large-scale structured, semi-structured,
or unstructured data. The goal is to update our
models easier to include fresh data with less human
annotation efforts.

2 System Modules

Compared to most other public text understanding
systems, TexSmart supports three unique modules,
i.e., fine-grained NER, semantic expansion and deep
semantic representation. Besides, traditional tasks
supported by both TexSmart and many other sys-
tems include word segmentation, part-of-speech
(POS) tagging, coarse-grained NER, constituency
parsing, semantic role labeling, text classification
and text matching. Below we first introduce the
unique modules, and then describe the traditional
tasks, followed by System Usage.

2.1 Key Modules

Since the implementation of fine-grained NER de-
pends on semantic expansion, we first present se-
mantic expansion, then fine-grained NER, and fi-

nally deep semantic representation.

2.1.1 Semantic Expansion
Given an entity within a sentence, the semantic ex-
pansion module suggests a list of entities related to
the given entity. For example in Figure 1, the sug-
gestion results for “Captain Marvel” include “Spider-
Man”, “Captain America”, and other related movies.
Semantic expansion attaches additional information
to an entity mention, which could be leveraged by
upper-layer applications for better understanding
the entity and the source sentence. Possible appli-
cations of the expansion results include web search
(e.g., for query suggestion) and recommendation
systems.
Semantic expansion task was firstly introduced

in Han et al. (2020), and it was addressed by a neu-
ral method. However, this method is not as efficient
as one expected for some industrial applications.
Therefore, we propose a light-weight alternative
approach in TexSmart for this task.

This approach includes two offline steps and two
online ones, as illustrated in Figure 2. During the
offline procedure, Hearst patterns are first applied
to a large-scale text corpus to obtain a is-a map (or
called a hyponym-to-hypernym map) (Hearst, 1992;
Zhang et al., 2011). Then a clustering algorithm is
employed to build a collection of term clusters from
all the hyponyms, allowing a hyponym to belong
to multiple clusters. Each term cluster is labeled
by one or more hypernyms (or called type names).
Term similarity scores used in the clustering al-
gorithm are calculated by a combination of word
embedding, distributional similarity, and pattern-
based methods (Mikolov et al., 2013; Song et al.,
2018; Shi et al., 2010).

During the online testing time, clusters contain-
ing the target entity mention are first retrieved by
referring to the cluster collection. Generally, there
may be multiple (ambiguous) clusters containing
the target entity mention and thus it is necessary
to pick the best cluster through disambiguation.
Once the best cluster is chosen, its members (or
instances) can be returned as the expansion results.
Now the core challenge is how to calculate the
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fruits such as 
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… …
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(google, company)
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… …
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microsoft,…}, 
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… …

“Apple juice”

C1, C2

{apple, banana, peach, …}
C1

Extraction Clustering Retrieval

Disambiguation

Offline Training Online Testing

Figure 2: Key steps for semantic expansion: extraction, clustering, retrieval and disambiguation. The
first two steps are conducted offline and the last two are performed online.

score of a cluster given an entity mention. We
choose to compute the score as the average simi-
larity score between a term in the cluster and a
term in the context of the entity mention. For-
mally, suppose e is a mention in a sentence, context
C = {c1, c2, · · · , cm} is a window of e within the
sentence, and L = {e1, e2, · · · , en} is a term cluster
containing the entity mention (i.e., e ∈ L). The
cluster score is then calculated below:

sim(C,L; e) =

1

(m− 1)× (n− 1)

∑

x∈C\{e},y∈L\{e}
cos(vx, wy) (1)

where C \ {e} means excluding a subset {e} from a
set C, vx denotes the input word embedding of x,
wy denotes the output word embedding of y from
a well-trained word embedding model, and cos is
the cosine similarity function.

2.1.2 Fine-Grained NER
Generally, it is challenging to build a fine-grained
NER system. Xu et al. (2020) create a fine-grained
NER dataset for Chinese, but the number of its
types is less than 20. A knowledge base (such as
Freebase (Bollacker et al., 2008)) is utilized in Ling
and Weld (2012) as distant supervision to obtain
a training dataset for fine-grained NER. However,
this dataset only includes about one hundred types
whereas TexSmart supports up to one thousand
types. Moreover, the fine-grained NER module in
TexSmart does not rely on any knowledge bases and
thus can be readily extended to other languages for
which there is no knowledge base available.

Ontology To establish fine-grained NER in TexS-
mart, we need to define an ontology of entity
types. The TexSmart ontology was built in a semi-
automatic way, based on the term clusters in Fig-
ure 2. Please note that each term cluster is labeled
by one or more hypernyms as type names of the
cluster. We first conduct a simple statistics over
the term clusters to get a list of popular type names
(i.e., those having a lot of corresponding term clus-
ters). Then we manually create one or more formal
types from one popular type name and add the type
name to the name list of the formal types. For ex-
ample, formal type “work.movie” is manually built

from type name “movie”, and the word “movie” is
added to the name list of “work.movie”. As another
example, formal types “language.human_lang” and
“language.programming” are manually built from
type name “language”, and the word “language” is
added to the name lists of both the two formal types.
Each formal type is also assigned with a sample in-
stance list in addition to a name list. Instances can
be chosen manually from the clusters correspond-
ing to the names of the formal type. To reduce
manual efforts, the sample instance list for every
type is often quite short. The supertype/subtype
relation between the formal types are also specified
manually. As a result, we obtain a type hierarchy
containing about 1,000 formal types, each assigned
with a standard id (e.g., work.movie), a list of
names (e.g., “movie” and “film”), and a short list of
example instances (e.g., “Star Wars”). The TexS-
mart ontology is available on the download page2.
Figure 3 shows a sub-tree (with type id “loc.generic”
as the root) sampled from the entire ontology.

Unsupervised method The unsupervised fine-
grained NER method works in two steps. First, run
the semantic expansion algorithm (referring to the
previous subsection) to get the best cluster for the
entity mention. Second, derive an entity type from
the cluster.
For the best cluster obtained in the first step,

it contains a list of terms as instances and is also
labeled with a list of hypernyms (or type names).
The final entity type id for the cluster is determined
by a type scoring algorithm. The candidate types
are those in the TexSmart ontology whose name
lists contain at least one hypernym of the cluster.
Please note that each entity type in the TexSmart
ontology has been assigned with a name list and
a sample instance list. Therefore the score of a
candidate entity type can be calculated according
to the information of the entity type and cluster.

This unsupervised method has a major drawback:
It cannot recognize unknown entity mentions (i.e.,
entity mentions that are not in any of our term
clusters).

2https://ai.tencent.com/ailab/nlp/texsmart/
en/download.html
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loc.town

Figure 3: A sub-tree of the TexSmart ontology, with “loc.generic” as the root

Hybrid method In order to address the above
issue, we propose a hybrid method for fine-grained
NER. Its key idea is to combine the results of
the unsupervised method and those of a coarse-
grained NER model. We train a coarse-grained
NER model in a supervised manner using an off-
the-shelf training dataset (for example, Ontonotes
dataset (Weischedel et al., 2013)). Given the su-
pervised and unsupervised results, the combination
policy is as follows: If the fine-grained type is com-
patible with the coarse type, i.e., the fine-grained
one is a subtype of the coarse one, the fine-grained
type is returned; otherwise the coarse type is cho-
sen.

For example, assume that the entity mention “ap-
ple” in the sentence “...apple juice...” is determined
as “food.fruit” by the unsupervised method and
“food.generic” by the supervised model. The hy-
brid approach returns “food.fruit” according to the
above policy. However, if the unsupervised method
returns “org.company”, the hybrid approach will re-
turn “food.generic” because the two types returned
by the supervised method and the unsupervised
method are not compatible.
Although both unsupervised and hybrid meth-

ods are described on top of the ontology manually
defined above, they can actually be used for other
ontologies such as those in FIGER and Ontonotes
datasets, because most type names in these on-
tologies can be covered by our clusters obtained in
semantic expansion as long as the training data is
sufficient. In this sense, both methods are general
in practice.

2.1.3 Deep Semantic Representation
For a time or quantity entity within a sentence,
TexSmart can analyze its potential structured rep-
resentation, so as to further derive its precise se-
mantic meaning. For example in Figure 1, the deep
semantic representation given by TexSmart for “24
months ago” is a structured string with a precise
date in JSON format: {"value": [2019, 3]} if the
screenshot time was Mar. 2021. Deep semantic
representation is important for applications like
task-oriented chatbots, where the precise meanings
of some entities are required. So far, most public
text understanding tools do not provide such a fea-

ture. As a result, applications using these tools
have to implement deep semantic representation by
themselves.
Some NLP toolkits make use of regular expres-

sions or supervised sequence tagging methods to
recognize time and quantity entities. However, it is
difficult for those methods to derive structured or
deep semantic information of entities. To overcome
this problem, time and quantity entities are parsed
in TexSmart by Context Free Grammar (CFG),
which is more expressive than regular expressions.
Its key idea is similar to that in Shi et al. (2015) and
can be described as follows: First, CFG grammar
rules are manually written according to possible nat-
ural language expressions of a specific entity type.
Second, the Earley algorithm (Earley, 1970) is em-
ployed to parse a piece of text to obtain semantic
trees of entities. Finally, deep semantic represen-
tations of entities are derived from the semantic
trees.

2.2 Other Modules

Word Segmentation In order to support differ-
ent application scenarios, TexSmart provides word
segmentation results of two granularity levels: word
level (or basic level), and phrase level. For phrase-
level segmentation, some phrases (especially noun
phrases) may contained as a unit. An unsuper-
vised algorithm is implemented in TexSmart for
both English and Chinese word segmentation. We
choose an unsupervised method over supervised
ones due to two reasons. First, it is at least 10
times faster. Second, its accuracy is good enough
for most applications.

Part-of-Speech Tagging Part-of-Speech (POS)
denotes the syntactic role of each word in a sentence,
also known as word classes or syntactic categories
and it is helpful for many downstream text under-
standing tasks such as parsing (Huang, 2008; Chen
and Manning, 2014; Liu et al., 2018a). We imple-
ment three models among many popular ones for
part-of-speech tagging (Ratnaparkhi, 1996; Huang
et al., 2015; Li et al., 2021b): Log-linear based
model (Ratnaparkhi, 1996), conditional random
field (CRF) based model (Lafferty et al., 2001) and
deep neural network (DNN) based model (Akbik
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et al., 2018; Liu et al., 2019). We denote them as:
log_linear, crf and dnn, respectively.

Coarse-grained NER The difference between
fine-grained and coarse-grained NERs is that the
former involves more entity types with a finer gran-
ularity. We implement coarse-grained NER using
supervised learning methods, including conditional
random field (CRF) (Lafferty et al., 2001) based
and deep neural network (DNN) based models (Ak-
bik et al., 2018; Liu et al., 2019; Li et al., 2020).

Constituency Parsing We implement the con-
stituency parsing model based on the work (Kitaev
and Klein, 2018). Kitaev and Klein (2018) build
the parser by combining a sentence encoder with
a chart decoder based on the self-attention mecha-
nism. Different from work (Kitaev and Klein, 2018)
, we use pre-trained BERT model as the text en-
coder to extract features to support the subsequent
decoder-based parsing. Our model achieves excel-
lent performance and has low search complexity.

Semantic Role Labeling Semantic role label-
ing (also called shallow semantic parsing) tries to
assign role labels to words or phrases in a sen-
tence. TexSmart takes a sequence labeling model
with BERT as the text encoder for semantic role
labeling similar to Shi and Lin (2019). TexSmart
supports semantic role labeling on both Chinese
and English texts.

Text Classification Text Classification aims to
assign a semantic label for an input text among a
predefined label set. Text Classification is a clas-
sical task in NLP and it has been widely used in
many applications, such as spam filtering, sentiment
analysis and question classification. The predefined
label set in TexSmart is available on the web page.3

Text Matching We implement two text match-
ing algorithms in TexSmart: Linkage and ESIM
(Chen et al., 2017). Linkage is an unsupervised
algorithm designed by ourselves that incorporates
synonymy information and word embedding knowl-
edge to compute semantic similarity. Different from
the previous models with complicated network ar-
chitectures, ESIM carefully designs the sequential
model with both local and global inference based
on chain LSTMs and outperforms the counterparts.

3 System Usage

Two ways are available to use TexSmart: Calling
the HTTP API directly, or downloading one version
of the offline SDK. Note that for the same input
text, the results from the HTTP API and the SDK
may be slightly different, because the HTTP API
employs a larger knowledge base and supports more

3https://ai.tencent.com/ailab/nlp/texsmart/
table_html/tc_label_set.html.

text understanding tasks and algorithms. The de-
tailed comparison between the SDK and the HTTP
API is available in https://ai.tencent.com/
ailab/nlp/texsmart/en/instructions.html.
Offline Toolkit (SDK) So far the SDK sup-
ports Linux, Windows, and Windows Subsystem
for Linux (WSL). Mac OS support will be added in
v0.3.0. Programming languages supported include
C, C++, Python (both version 2 and version 3) and
Java (version ≥ 1.6.0). Example codes for using the
SDK with different programming languages are in
the ./examples sub-folder. For example, the Python
codes in ./examples/python/en_nlu_example1.py
show how to use the TexSmart SDK to process
an English sentence. The C++ codes in ./exam-
ples/c_cpp/src/nlu_cpp_example1.cc show how
to use the SDK to analyze both an English sentence
and a Chinese sentence.
HTTP API The HTTP API of TexSmart con-
tains two parts: the text understanding API and
the text matching API. The text understanding API
can be accessed via HTTP-POST and the URL is
available on the web page.4 The text matching
API is used to calculate the similarity between a
pair of sentences. Similar to the text understanding
API, the text matching API also supports access
via HTTP-POST and the URL is available on the
web page.5

4 System Evaluation
4.1 Settings
Semantic Expansion The performance of se-
mantic expansion are evaluated based on human
annotation. We first select at random 5,000
<sentence, entity mention> pairs (called SE
pairs) from our test set of NER (to make sure
that the entities selected are correct). Then our
semantic expansion algorithm is applied to the SE
pairs to generate a related-entity list for each pair.
Top nine expansion results of each SE pair are then
judged by human annotators in terms of quality
and relatedness, with each result annotated by two
annotators. For each result, a label of 2, 1, or 0 is
assigned by each annotator. The three labels mean
“highly related”, “slightly related”, and “not related”
respectively. In calculating evaluation scores, the
three labels are normalized to scores 100, 50, and
0 respectively. As there is no context for each
expanded entity, it is challenging for human to an-
notate its ground-truth label. In fact, the overall
disagreement rate between two annotators is 23.5%.
To measure the quality of our model, we report the
average score according to both annotators.
Fine-grained NER Ling and Weld (2012) pro-
vide a test set for fine-grained NER evaluation.

4https://texsmart.qq.com/api
5https://texsmart.qq.com/api/match_text.
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SE FGNER
ZH EN Base Hybrid

Quality 79.5 80.5 45.9 53.8

Table 1: Semantic expansion (SE) and fine-grained
NER (FGNER) evaluation results. SE is evaluated
by human annotators and FGNER is evaluated by
a variant of F1 score. Base denotes the supervised
coarse NER model.

However, this dataset only contains about 400 sen-
tences. In addition, it misses some important en-
tities during human annotation, which is a com-
mon issue in building a dataset for evaluating fine-
grained NER (Li et al., 2021a). Therefore, we
create a larger fine-grained NER dataset, based
on the Ontonotes 5.0 dataset. We ask three hu-
man annotators to label fine-grained types for each
coarse-labeled entity. Since human annotators do
not need to identify mentions from scratch, it would
mitigate the missing entities issue to some extent.
Furthermore, because it is too costly for three hu-
man annotators to annotate types from the entire
ontology, we instead take a sub-ontology for human
annotation which combines all types from Ling and
Weld (2012) and Gillick et al. (2014), including 140
types in total. Due to ambiguous entities, there
are indeed some disagreement annotations among
three annotators but their overall agreement rate
is respectful, i.e., the averaged pair-wise agreement
rate is about 87.1% in terms of Mi-F1 scores.

Parsing SRL
EN ZH EN ZH

F1 95.42 92.25 86.7 82.1
Sents/sec 16.60 16.00 10.2 11.5

Table 2: Evaluation results for constituency parsing
and SRL. The decoding speed in is measured upon
a GPU P40 machine.

To set the hybrid method for fine-grained NER,
we select LUA (Li et al., 2020) as the coarse-grained
NER model, which is trained on Ontonotes 5.0 train-
ing dataset (Weischedel et al., 2013). To compare
fine-grained NER against coarse-grained NER, we
report a variant of F1 measure for evaluation which
only differs from standard F1 in matching count ac-
cumulation: if an output type is a fine-grained type
and it exactly matches a gold fine-grained type, the
matching count accumulates 1; if an output is a
coarse grained type and it is compatible with a gold
fine-grained type, the matching count accumulates
0.5.
POS Tagging We evaluate three POS tagging
algorithms: log-linear, CRF, and DNN. They are
all trained on the standard training datasets from

PTB for English and CTB 9.0 for Chinese. We
use their corresponding test sets to evaluate all the
models.
Coarse-grained NER To ensure better gener-
alization to industrial applications, we combine
several public training sets together for English
NER. They are CoNLL2003 (Sang and De Meulder,
2003), BTC (Derczynski et al., 2016), GMB (Bos
et al., 2017), SEC_FILING (Alvarado et al., 2015),
WikiGold (Balasuriya et al., 2009; Nothman et al.,
2013), and WNUT17 (Derczynski et al., 2017).
Since the label set for all these datasets are slightly
different, we only maintain three common labels
(Person, Location and Organization) for training
and testing. For Chinese, we create a NER dataset
including about 80 thousand sentences labeled with
12 entity types, by following a similar guideline to
that of the Ontonotes dataset. We randomly split
it into a training set and a test set with ratio of
3:1. We evaluate two algorithms for coarse-grained
NER: CRF and DNN. For DNN, we implement the
RoBERTa-CRF and Flair models. As we found
RoBERTa-CRF performs better on the Chinese
dataset while Flair is better on the English dataset,
we report results of RoBERTa-CRF for Chinese
and Flair for English in our experiments.
Constituency Parsing We conduct parsing ex-
periments on both English and Chinese datasets.
For English task, we use WSJ sections in Penn
Treebank (PTB) (Marcus et al., 1993), and we
follow the standard splits: the training data ranges
from section 2 to section 21; the development data
is section 24; and the test data is section 23. For
Chinese task, we use the Penn Chinese Treebank
(CTB) of the version 5.1 (Xue et al., 2005). The
training data includes the articles 001-270 and arti-
cles 440-1151; the development data is the articles
301- 325; and the test data is the articles 271-300.
SRL Semantic role labeling experiments are con-
ducted on both English and Chinese datasets. We
use the CoNLL 2012 datasets (Pradhan et al., 2013)
and follow the standard splits for the training, de-
velopment and test sets. The network parameters
of our model are initialized using RoBERTa. The
batch size is set to 32 and the learning rate is
5×10−5.
Text Matching Two text matching algorithms
are evaluated: ESIM and Linkage. The datasets
used in evaluating English text matching are
MRPC6 and QUORA7. For Chinese text match-
ing, four datasets are involved: LCQMC (Liu
et al., 2018b), AFQMC (Xu et al., 2020),
BQ_CORPUS (Chen et al., 2018), and PAWS-
zh (Zhang et al., 2019). We evaluate the quality

6https://www.microsoft.com/en-us/download/
details.aspx?id=52398.

7https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.
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POS Tagging Coarse-grained NER
Log-linear CRF DNN CRF DNN
EN ZH EN ZH EN ZH EN ZH EN ZH

F1 96.76 93.94 96.50 93.73 97.04 98.08 73.24 67.26 83.12 75.23
Sents/sec 3.9K 1.3K 149 1.1K 107

Table 3: Evaluation results for some POS Tagging and coarse-grained NER algorithms in TexSmart on
both English (EN) and Chinese (ZH) datasets. The English and Chinese NER datasets are labeled with 3
and 12 entity types respectively.

Algorithms Sents/Sec English Chinese
MRPC QUORA LCQMC AFQMC BQ_CORPUS PAWS-zh

ESIM 861 - - 82.63 51.30 71.05 61.55
Linkage 1973 82.18 74.94 79.26 48.66 71.23 62.30

Table 4: Text matching evaluation results. ESIM is a supervised algorithm and it is trained on an
in-house labeled dataset only for Chinese. Linkage is an unsupervised algorithm and it is trained for both
English and Chinese.

and speed for both ESIM and Linkage algorithms
in terms of F1 score and sentences per second, re-
spectively. Since we have not trained the English
version of ESIM yet, the corresponding evaluation
results are not reported.

4.2 Evaluation Results

Table 1 shows the evaluation results of semantic
expansion and fine-grained NER. For semantic ex-
pansion, it is shown that TexSmart achieves an
accuracy of about 80.0 on both English and Chi-
nese datasets. It is a pretty good performance. For
fine-grained NER, it is observed that the hybrid
approach performs much better than the supervised
model (LUA).
Evaluation results for constituency parsing and

semantic role labeling are summarized in Table 2.
For constituency parsing, the F1 scores on the En-
glish and Chinese test sets are 95.42 and 92.25,
respectively. The decoding speed depends on the
input sentence length. It can process 16.6 and 16.0
sentences per second on our test sets. For SRL, the
F1 scores on the English and Chinese test sets are
86.7 and 82.1 respectively and it processes about
10 sentences per second. The speed may be not
efficient enough for some applications. As future
work, we plan to design more efficient syntactic
parsing and SRL algorithms.
The evaluation results for POS Tagging and

coarse-grained NER are listed in Table 3. The
speed values in this table are measured in sen-
tences per second and they are measured upon
a machine with Platinum 8255C CPU @ 2.50GHz.
Please note that the speed results for Log-linear and
CRF are obtained using one single thread, while
the speed results for DNN are on 6 threads.

It is clear from the POS tagging results that the
three algorithms form a spectrum. On one side of

the spectrum is the log-linear algorithm, which is
very fast but less accurate than the DNN algorithm.
On the opposite side is the DNN algorithm, which
achieves the best accuracy but are much slower
than the other two algorithms. The CRF algorithm
is in the middle of the spectrum.

Also from Table 3, we can see that the two coarse-
grained NER algorithms form another spectrum.
The CRF algorithm is on the high-speed side, while
the DNN algorithm is on the high-accuracy side.
Note that for DNN methods in this table, we em-
ploy a data augmentation method to improve their
generalization abilities and a knowledge distillation
method to speed up its inference (Hinton et al.,
2015).

Table 4 shows the performance of two algorithms
for text matching. We can see from this table
that, in terms of speed, both algorithms are fairly
efficient. Please note that the speed is measured
in sentences per second using one single CPU from
a machine with Platinum 8255C CPU @ 2.50GHz.
In terms of accuracy, their performance comparison
depends on the dataset being used. ESIM performs
apparently better on the first two datasets, while
slightly worse on the last one. Applications may
need to test on their datasets before making decision
between the two algorithms.

5 Conclusion

In this paper we have presented TexSmart, a text
understanding system that supports fine-grained
NER, enhanced semantic analysis, as well as some
common text understanding functionalities. We
have introduced the main functions of TexSmart
and key algorithms for implementing the functions.
We have also reported some evaluation results on
major modules of TexSmart.
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Abstract

We present IntelliCAT, an interactive transla-
tion interface with neural models that stream-
line the post-editing process on machine trans-
lation output. We leverage two quality esti-
mation (QE) models at different granularities:
sentence-level QE, to predict the quality of
each machine-translated sentence, and word-
level QE, to locate the parts of the machine-
translated sentence that need correction. Addi-
tionally, we introduce a novel translation sug-
gestion model conditioned on both the left and
right contexts, providing alternatives for spe-
cific words or phrases for correction. Finally,
with word alignments, IntelliCAT automati-
cally preserves the original document’s styles
in the translated document. The experimental
results show that post-editing based on the pro-
posed QE and translation suggestions can sig-
nificantly improve translation quality. Further-
more, a user study reveals that three features
provided in IntelliCAT significantly acceler-
ate the post-editing task, achieving a 52.9%
speedup in translation time compared to trans-
lating from scratch. The interface is publicly
available at https://intellicat.beringlab.com/.

1 Introduction

Existing computer-aided translation (CAT) tools
incorporate machine translation (MT) in two ways:
post-editing (PE) or interactive translation predic-
tion (ITP). PE tools (Federico et al., 2014; Pal et al.,
2016) provide a machine-translated document and
ask the translator to edit incorrect parts. By con-
trast, ITP tools (Alabau et al., 2014; Green et al.,
2014a; Santy et al., 2019) aim to provide transla-
tion suggestions for the next word or phrase given
a partial input from the translator. A recent study
with human translators revealed that PE was 18.7%
faster than ITP in terms of translation time (Green
et al., 2014b) and required fewer edits (Do Carmo,
2020). However, many translators still prefer ITP

over PE because of (1) high cognitive loads (Koehn,
2009) and (2) the lack of subsegment MT sugges-
tions (Moorkens and O’Brien, 2017) in PE.

In this paper, we introduce IntelliCAT1, a hybrid
CAT interface designed to provide PE-level effi-
ciency while retaining the advantages of ITP, such
as subsegment translation suggestions. To mitigate
the cognitive loads of human translators, Intelli-
CAT aims to automate common post-editing tasks
by introducing three intelligent features: (1) quality
estimation, (2) translation suggestion, and (3) word
alignment.

Quality estimation (QE) is the task of estimating
the quality of MT output without reference trans-
lations (Specia et al., 2020). We integrate QE into
the CAT interface so that the human translator can
easily identify which machine-translated sentences
and which parts of the sentences require correc-
tions. Furthermore, for words that require post-
editing, our interface suggests possible translations
to reduce the translators’ cognitive load. Finally,
based on word alignments, the interface aligns the
source and translated documents in terms of for-
matting by transferring the styles applied in the
source document (e.g., bold, hyperlink, footnote,
equation) to the translated document to minimize
the post-editing time. Our contributions are:

• We integrate state-of-the-art sentence-level
and word-level QE (Lee, 2020) techniques
into an interactive CAT tool, IntelliCAT.

• We introduce a novel words and phrases sug-
gestion model, which is conditioned on both
the left and right contexts, based on XLM-
RoBERTa (Conneau et al., 2020). The model
is fine-tuned with a modified translation lan-
guage modeling (TLM) objective (Lample and
Conneau, 2019).

1A demonstration video is available at
https://youtu.be/mDmbdrQE9tc
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Figure 1: The IntelliCAT Interface. After a document (i.e., an MS Word file) is uploaded, A sentences from the

original document (source) and B the initial MT output for each sentence (target) are shown side-by-side. C

Formatting tags indicate where a specific style (identified by an integer style id) is applied and D are automatically

inserted at the proper position of the MT output based on word alignments. E The interface shows the quality of

each machine-translated sentence based on sentence-level QE. F Potentially incorrect words and G locations
of missing words are highlighted based on word-level QE. When the user selects a sequence of words in the MT
output, H the corresponding words in the source sentence are highlighted with a heat map, and I up to five
alternative translations are recommended.

• We conduct quantitative experiments and a
user study to evaluate IntelliCAT.

The experimental results on the WMT 2020
English-German QE dataset show that post-editing
with the proposed QE and translation suggestion
models could significantly improve the translation
quality (−6.01 TER and +6.15 BLEU). More-
over, the user study shows that the three features
provided by IntelliCAT significantly reduce post-
editing time (19.2%), which led to a 52.6% re-
duction in translation time compared to translating
from scratch. Finally, translators evaluate our in-
terface to be highly effective, with a SUS score of
88.61.

2 Related Work

CAT Tool and Post-Editing In the localization
industry, the use of CAT tools is a common prac-
tice for professional translators (Van den Bergh
et al., 2015). As MT has improved substantially
in recent years, approaches incorporating MT into
CAT tools have been actively researched (Alabau
et al., 2014; Federico et al., 2014; Santy et al., 2019;
Herbig et al., 2020). One of the approaches is post-
editing in which the translator is provided with a

machine-translated draft and asked to improve the
draft. Recent studies demonstrate that post-editing
MT output not only improves translation productiv-
ity but also reduces translation errors (Green et al.,
2013; Aranberri et al., 2014; Toral et al., 2018).

Translation Suggestion Translation suggestions
from interactive translation prediction (ITP) (Al-
abau et al., 2014; Santy et al., 2019; Coppers et al.,
2018) are conditioned only on the left context of the
word to be inserted. Therefore, ITP has intrinsic
limitations in post-editing tasks where the com-
plete sentence is presented, and the right context
of the words that need correction should also be
considered. We propose a novel translation sugges-
tion model in which suggestions are conditioned
on both the left and right contexts of the words
or phrases to be modified or inserted to provide
more accurate suggestions when post-editing the
complete sentence.

Cross-Lingual Language Model Cross-lingual
language models (XLMs), which are language
models pre-trained in multiple languages, have led
to advances in MT (Lample and Conneau, 2019)
and related tasks such as QE (Lee, 2020), auto-
matic post-editing (Wang et al., 2020; Lee et al.,
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2020), and parallel corpus filtering (Lo and Joanis,
2020). Accordingly, our QE and translation sugges-
tion models are trained on top of XLM-R (Conneau
et al., 2020), an XLM that shows state-of-the-art
performance for a wide range of cross-lingual tasks.
To the best of our knowledge, IntelliCAT is the first
CAT interface that leverages XLM to assist human
post-editing for MT outputs.

3 System Description

3.1 Overview

IntelliCAT is a web-based interactive interface for
post-editing MT outputs (Figure 1). Once loaded,
it shows two documents side-by-side: the uploaded
original document (an MS Word file) on the left and
the machine-translated document on the right. Each
document is displayed as a list of sentences with
formatting tags inserted, tags that show the style of
the original document, including text styles (e.g.,
bold, italic, or hyperlinked) and inline contents
(e.g., a media element or an equation).

The user can post-edit MT outputs on the right
using the following three features: (1) sentence-
level and word-level QE, (2) word or phrase sugges-
tion, and (3) automatic tagging based on word align-
ments. The sentence-level QE shows the estimated
MT quality for each sentence, and word-level QE
highlights the parts of each machine-translated sen-
tence that need correction. When the user selects
a specific word or phrase, the top-5 recommended
alternatives appear below, allowing the user to re-
place the selected words or insert a new word. Fi-
nally, the system automatically captures the origi-
nal document style and inserts formatting tags in
machine-translated sentences at the appropriate lo-
cations. After post-editing, the user can click on the
export button to download the translated document
with the original style preserved. A sample docu-
ment and its translated document without human
post-editing is presented in Appendix A.

3.2 Machine Translation

Our system provides MT for each sentence in
the input document. We build our NMT model
based on Transformer (Vaswani et al., 2017) using
OpenNMT-py (Klein et al., 2017). As training data,
the English-German parallel corpus provided in the
2020 News Translation Task (Barrault et al., 2020)
is used. We use unigram-LM-based subword seg-
mentation (Kudo, 2018) with a vocabulary size of
32K for English and German, respectively, and the

remaining hyperparameters follow the base model
of Vaswani et al. (2017).

3.3 Quality Estimation

Quality estimation (QE) is the task of estimating
the quality of the MT output, given only the source
text (Fonseca et al., 2019). We estimate the quality
at two different granularities: sentence and word
levels. Sentence-level QE aims to predict the hu-
man translation error rate (HTER) (Snover et al.,
2006) of a machine-translated sentence, which mea-
sures the required amount of human editing to fix
the the machine-translated sentence. By contrast,
word-level QE aims to predict whether each word
in the MT output is OK or BAD and whether there
are missing words between each word.

Figure 1 demonstrates the use of QE in our in-
terface. Based on the sentence-level QE, we show
the MT quality for each machine-translated sen-
tence computed as 1 − (predicted HTER). In
addition, based on word-level QE, we show words
that need to be corrected (with red or yellow un-
derlines) or locations for missing words (with red
or yellow checkmarks). To display the confidence
of word-level QE predictions, we encode the pre-
dicted probability of the color of underlines and
checkmarks (yellow for PBAD > 0.5 and red for
PBAD > 0.8).

For QE training, we use a two-phase cross-
lingual language model fine-tuning approach fol-
lowing Lee (2020), which showed the state-of-the-
art performance on the WMT 2020 QE Shared Task
(Specia et al., 2020). We fine-tune XLM-RoBERTa
(Conneau et al., 2020) with a few additional param-
eters to jointly train sentence-level and word-level
QEs. We train our model in two phases. First, we
pre-train the model with a large artificially gener-
ated QE dataset based on a parallel corpus. Sub-
sequently, we fine-tune the model with the WMT
2020 English-German QE dataset (Specia et al.,
2020), which consists of 7,000 triplets consisting
of source, MT, and post-edited sentences.

3.4 Translation Suggestion

As shown in Figure 1, when the user selects a spe-
cific word or phrase to modify or presses a hotkey
(ALT+s) between words to insert a missing word,
the system suggests the top-5 alternatives based on
fine-tuned XLM-R.

XLM-R Fine-Tuning For translation suggestion,
we fine-tune XLM-R with a modified translation
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language modeling (TLM) objective (Lample and
Conneau, 2019), which is designed to better pre-
dict the masked spans of text in the translation.
Following Lample and Conneau (2019), we tok-
enize source (English) and target (German) sen-
tences with the shared BPE model (Sennrich et al.,
2016), and concatenate the source and target tokens
with a separation token (</s>). Unlike the TLM
objective of Lample and Conneau (2019), which
randomly masked tokens in both the source and
target sentences, we only mask tokens in target
sentences since the complete source sentence is
always given in the translation task. We randomly
replace p% (p ∈ [15, 20, 25]) of the BPE tokens in
the target sentences by <mask> tokens and train
the model to predict the actual tokens for the masks.
In addition, motivated by SpanBERT (Joshi et al.,
2020), we always mask complete words instead
of sub-word tokens since translation suggestion re-
quires predictions of complete words. As training
data, we use the same parallel corpus that is used
for MT training.

Inference To suggest alternative translations for
the selected sequence of words, we first replace
it with multiple <mask> tokens. The alternative
translations may consist of sub-word tokens of
varying lengths. Hence, we generate m inputs,
where m denotes the maximum number of masks,
and in the ith input (i ∈ [1, ...,m]), the selected
sequence is replaced with i consecutive <mask>
tokens. In other words, we track all cases in which
alternative translations consist of 1 to m sub-word
tokens. Then, each input is fed into the fine-tuned
XLM-R, and <mask> tokens are iteratively re-
placed by the predicted tokens from left to right.
In each iteration, we use a beam search with a
beam size k to generate the top-k candidates. Fi-
nally, all mask prediction results from m inputs are
sorted based on probability, and the top-k results
are shown to the user.

3.5 Word Alignment and Automatic
Formatting

To obtain word alignments, we jointly train the
NMT model (§3.2) to produce both translations
and alignments following Garg et al. (2019). One
attention head on the Transformer’s penultimate
layer is supervised with an alignment loss to learn
the alignments. We use Giza++ (Och and Ney,
2003) alignments as the guided labels for the train-
ing. As sub-word segmentation is used to train the

NMT model, we convert the sub-word-level align-
ments back to the word-level. We consider each
target word to be aligned with a source word if any
of the target sub-words is aligned with the source
sub-words.

We provide two features based on word align-
ment information. First, when the user selects a
specific word or phrase in the machine-translated
sentence, the corresponding words or phrases
in the source sentence are highlighted using a
heatmap. Second, formatting tags are automati-
cally inserted at the appropriate locations in the
machine-translated sentences. We use two types of
tags to represent the formatting of the document:
paired tags and unpaired tags. Paired tags repre-
sent styles applied across a section of text (e.g.,
bold or italic). To retain the style applied in the
source sentence to the MT, we identify the source
word with the highest alignment score for each tar-
get word and apply the the corresponding source
word’s style to the target word. By contrast, un-
paired tags represent inline non-text contents such
as media elements and equations. To automatically
insert an unpaired tag in the MT, we identify the
target word with the highest alignment score with
the source word right before the tag and insert the
corresponding tag after the target word.

4 Experiments

4.1 Model Evaluation
Experimental Setup To evaluate the perfor-
mance of translation suggestions, we measure MT
quality improvement when a sentence is corrected
with the suggested words or phrases. We intro-
duce two selection conditions (Oracle QE and Pre-
dicted QE) and two suggestion methods (XLM-R
and Proposed). The selection conditions locate the
words that need to be corrected in a sentence; in
Oracle QE condition, the ground truth word-level
QE label is used as a baseline, and in Predicted
QE condition, our word-level QE model is used to
identify the target words. The suggestion methods
determine the words that the selected words should
be replaced with. We test two suggestion models,
the pre-trained XLM-R2 and the proposed model,
fine-tuned with the modified TLM objective, with
three different suggestion sizes: top-1, top-3, and
top-5.

Each of the QE and translation suggestion mod-
els was trained using two Tesla V100 GPUs. As an

2https://pytext.readthedocs.io/en/master/xlm r.html
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(With Predicted QE) (With Oracle QE)
Model TER↓ BLEU↑ TER↓ BLEU↑
Baseline (MT) 31.37 50.37 31.37 50.37

XLM-R
(Conneau et al., 2020)

Top-1 30.28 (-1.09) 50.78 (+0.41) 26.57 (-4.80) 56.02(+5.65)
Top-3 29.47 (-1.90) 50.89 (+0.52) 24.10 (-7.27) 60.28 (+9.91)
Top-5 28.75 (-2.62) 51.85 (+1.48) 22.78 (-8.59) 62.40 (+12.03)

Proposed
Top-1 29.04 (-2.33) 51.93 (+1.56) 24.26 (-7.11) 59.38 (+9.01)
Top-3 26.69 (-4.68) 54.70 (+4.33) 19.08 (-12.29) 67.51 (+17.14)
Top-5 25.36 (-6.01) 56.52 (+6.15) 17.30 (-14.07) 70.50 (+20.13)

Table 1: TER and BLEU for machine-translated sentences (Baseline) and post-edited sentences (XLM-R and
Proposed) based on word-level QE and translation suggestion.

evaluation dataset, we use the WMT 2020 English-
German QE dev dataset (Specia et al., 2020). As
evaluation metrics, we use the translation error rate
(TER) (Snover et al., 2006) and BLEU (Papineni
et al., 2002).

Experimental Result Table 1 shows the trans-
lation quality of (1) MT sentences (baseline), (2)
post-edited sentences with XLM-R-based transla-
tion suggestion, and (3) post-edited sentences with
the proposed translation suggestion model. When
MT sentences are post-edited based on QE predic-
tion with the top-1 suggestion, TER and BLEU are
improved over the baseline by −2.33 and +1.56,
respectively. This result suggests that our QE and
translation suggestion models can be used to im-
prove MT performance without human interven-
tion. When the top-5 suggestions are provided,
TER and BLEU are improved by−6.01 and +6.15,
respectively, for the QE prediction condition and
improved by −14.07 and +20.13, respectively, for
the oracle QE condition. These results imply that
post-editing based on translation suggestions can
significantly improve the translation quality. Fi-
nally, the proposed model significantly outperforms
XLM-R in all experimental settings, showing that
fine-tuning XLM-R with the modified TLM objec-
tive is effective for the suggestion performance.

4.2 User Study

We conducted a user study to evaluate the effective-
ness of IntelliCAT.

Tasks and Stimuli We asked participants to
translate an English document to German using
the given interface. As stimuli, we prepared three
English documents, each with 12 sentences and
130, 160, and 164 words. The documents included

22, 18, and 20 styles, respectively (e.g., bold, italic,
or a footnote), and participants were also asked to
apply these styles in the target document.

Translation Interfaces We compared three
translation interfaces: MSWord, MT-Only, and
Full. In MSWord, the participants were asked to
translate documents using a popular word proces-
sor, Microsoft Word. In this baseline condition, two
Microsoft Word instances were shown side-by-side:
one showing an English document (source) and the
other showing an empty document where one could
type the translated sentences (target). In MT-Only,
participants started with a machine-translated docu-
ment on IntelliCAT without QE, translation sugges-
tion, and word alignment; they had to edit incorrect
parts and transfer styles by themselves. In Full, the
participants could use all the features of IntelliCAT.

Participants and Study Design We recruited
nine participants (aged 23–31 years). All partici-
pants majored in German and were fluent in both
English and German. We adopted a within-subject
design; each participant tested all three interfaces
and three documents. Thus, our study consisted
of nine (participants) × 3 (conditions) = 27 trials
in total. The order of interfaces and documents
was counterbalanced using a 3 × 3 Latin square
to alleviate the possible bias of learning effects or
fatigue. For each trial, we measured the translation
completion time.

Procedure Participants attended a training ses-
sion for ten minutes, where they tried each inter-
face with a short sample document. Subsequently,
they performed three translation tasks with differ-
ent interfaces. We allowed them to look up words
for which they did not know the translation before
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Figure 2: SUS Feedback. The usability of IntelliCAT was evaluated as an excellent level with a score of
88.61±7.82.

starting each translation task. Upon completing
the three tasks, participants responded to a system
usability scale (SUS) questionnaire (Brooke, 1996),
and we gathered subjective feedback. The entire
session took approximately 90 min per participant.

Interface Avg. time (s)

MSWord 1178.78 ± 280.41
MT-Only 688.00 ± 175.02
Full 555.66 ± 200.81

Table 2: Translation completion time. The differences
between the three interface conditions are statistically
significant.

Result and Discussion Table 2 summarizes
the result of the user study. A repeated mea-
sures ANOVA with a Greenhouse-Geisser cor-
rection found a significant difference in comple-
tion time between the three translation interfaces
(F (1.306, 10.449) = 56.398, p < 0.001). Post
hoc tests using the Bonferroni correction revealed
that Full (555.66 ± 200.81 s) was significantly
faster than MT-Only (688.00 ± 175.02 s) (p =
0.013) and MT-Only was significantly faster than
MSWord (1,178.78 ± 280.41 s) (p < 0.001).
These results suggest that our QE, translation sug-
gestion, and word alignment features could further
accelerate post-editing (a 19.2% speedup) (Full vs.
MT-Only), and our system could reduce the trans-
lation time by more than half (52.9%) compared to
translating from scratch (Full vs. MSWord).

We could not find a significant difference be-
tween documents (F (1.964, 15.712) = 0.430, ns)
with the same statistical procedure, which suggests
that the translation difficulties of the three English
documents were not statistically different.

Our interface received a mean SUS score of
88.61 (σ = 7.82), which is slightly higher than the

score for an “Excellent” adjective ratings (85.58,
Bangor et al. (2008)). Eight out of nine participants
reported that QE was useful for proofreading pur-
poses; P2 stated, “With QE, I could double-check
the words that are possibly wrong.” All partici-
pants evaluated the translation suggestions to be
useful; P7 mentioned “Translation suggestion was
very convenient. It might significantly reduce the
dependence on the dictionary.”

Overall, the user study results demonstrated the
effectiveness of IntelliCAT both quantitatively and
qualitatively, and we found that human translators
could streamline their post-editing process with the
three features provided in IntelliCAT.

5 Conclusion and Future Work

In this paper, we introduce IntelliCAT, an intelli-
gent MT post-editing interface for document trans-
lation. The interface provides three neural network-
based features to assist post-editing: (1) sentence-
level and word-level QEs, (2) alternative translation
suggestions for words or phrases, and (3) automatic
formatting of the translated document based on
word alignments. The model evaluation shows that
post-editing based on the proposed QE and transla-
tion suggestion models can significantly improve
the quality of translation. Moreover, the user study
shows that these features significantly accelerate
post-editing, achieving a 52.9% speedup in trans-
lation time compared to translating from scratch.
Finally, the usability of IntelliCAT was evaluated
as an “excellent” level, with a SUS score of 88.61.

In future work, we will build a pipeline that con-
tinuously improves the performance of neural mod-
els based on automatically collected triplets con-
sisting of source, MT, and post-edited sentences.
We will implement an automatic post-editing (Chat-
terjee et al., 2020) model to continuously improve
MT performance and apply online learning to QE
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models to continually enhance QE performance.
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Figure 3: A sample document (left) and the translated document (right) without human intervention.
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Abstract

This paper announces version 1.0 of the Clas-
sical Language Toolkit (CLTK), an NLP frame-
work for pre-modern languages. The vast ma-
jority of NLP, its algorithms and software, is
created with assumptions particular to living
languages, thus neglecting certain important
characteristics of largely non-spoken historical
languages. Further, scholars of pre-modern
languages often have different goals than those
of living-language researchers. To fill this void,
the CLTK adapts ideas from several leading
NLP frameworks to create a novel software ar-
chitecture that satisfies the unique needs of pre-
modern languages and their researchers. Its
centerpiece is a modular processing pipeline
that balances the competing demands of algo-
rithmic diversity with pre-configured defaults.
The CLTK currently provides pipelines, includ-
ing models, for almost 20 languages.

1 Introduction

Pre-modern (or historical) languages are linguisti-
cally no different than those with speakers living
today. Differences, however, manifest in how pre-
modern languages are preserved, to what extent
they are preserved, how they may be analyzed, and
the ends to which they are studied. NLP is com-
prised of “computational techniques for the pur-
pose of learning, understanding, and producing hu-
man language content” (Hirschberg and Manning,
2015, 261). In principle, such techniques may
be applied to pre-modern languages. But because
NLP, its algorithms and software, presumes living
languages, there remains a significant void for NLP
for pre-modern languages.

The Classical Language Toolkit (CLTK) is a
Python library that borrows ideas from state-of-the-
art NLP software, in order to cater to the partic-
ular needs of pre-modern languages and their re-

searchers.1 Its centerpiece is a modular processing
pipeline that balances the competing demands of
algorithmic diversity with pre-configured defaults.
The CLTK currently provides pipelines, including
models, for almost 20 languages. This architec-
ture allows for relatively easy customization of cur-
rently available pipelines to new languages.

1.1 NLP for Pre-modern Languages
The authors adopt the term pre-modern to encom-
pass the ISO 639-3 definitions of ancient (whose
speakers died over 1,000 years ago), extinct (speak-
ers who died within the last 200–300 years), and
historic (distinct antecedents to living languages)
(SIL International). The CLTK aims to treat all
such languages, as they survive in written texts,
from the 33rd century B.C. (Sumerian) up until the
start of the A.D. 19th century.2

Pre-modern languages have traits distinguishing
them from living languages, including:

• A finite corpus: Since native speakers no
longer generate new texts, corpora may be
too small for some machine learning algo-
rithms, thus requiring rules-based or hybrid

1http://cltk.org. Begun in 2014, v. 0.1 was a
collection of user-submitted NLP algorithms, plus models, for
about a dozen pre-modern languages. In this 1.0 release, the
CLTK offers a standard API and pre-configured processing
pipelines. Burns et al. (2019) contains some earlier history
and concepts behind v. 0.1. The MIT-licensed code is avail-
able in version control (https://github.com/cltk/
cltk) and packaged on PyPI (with pip install cltk).

2This cutoff date need not be absolute, as the date of intro-
duction of the printing press may be taken into consideration.
The press, which spread asynchronously, normalizes orthog-
raphy and reduces copyist errors (Eisenstein, 1979, 181–225),
thus obviating need for some of the CLTK’s tools. As orthog-
raphy stabilizes, coming closer to contemporary usage, living-
language NLP becomes increasingly tractable. The Chinese
movable type press (A.D. 11th century) could be considered
an exception, though modern metal typefaces, with attendant
productivity gains, were not applied to Chinese texts until the
mid-19th century (Wilkinson, 2000, 451–453). The Sume-
rian date comes from (Michalowski, 2004, 19).
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approaches. In some cases, a language’s cor-
pus may be small enough that it can be fully
annotated.3

• Variation: Corpora of pre-modern languages
are likely to demonstrate greater variation
than living languages. This may include non-
standardized orthography, regional dialects,
and temporal language change (over spans of
hundreds and even thousands of years).4

• Limited resources: Interest in pre-modern
languages is largely scholarly or religious,
meaning less funding from government and
industry for the creation of resources such as
text corpora, treebanks, and lexica.

These three differences spur the need for NLP spe-
cific to pre-modern languages.

1.2 Researchers of Pre-modern Languages

Researchers of pre-modern languages have con-
cerns that are likely philological, linguistic, or ped-
agogical. Philology is an approach to pre-modern
writing that focuses on the historical origins of
texts; it is comparative as well as genealogical in
nature (Turner, 2014, x). Historical linguists study
diachronic change in a language itself, as opposed
to philologists’ focus upon written language.5 Ed-
ucators have unique concerns, too, including fore-
most that students generally do not learn by speak-
ing and that they begin studying difficult, orig-
inal texts within a year of study. In the class-
room, a high premium is put upon sight translation,
which is accomplished by the sub-tasks of identify-
ing words’ parts-of-speech, grammatical construc-
tions, and lexical headwords.6 These three objec-
tives may find some representation among users
of living-language NLP,7 however they are not sig-

3As with Gothic, for which the only sizable evidence sur-
viving is a 6th century manuscript containing a 4th century
translation of the Bible (Miller, 2019, 1, 8–15), most of which
the PROIEL project has annotated (Haug and Jøhndal, 2008).

4Sumerian, for example, survived 3,000 years (Michalow-
ski, 2004, 19). Piotrowski (2012, 14–22) introduces the cat-
egories of difference (diachronic spelling variation), variance
(synchronic spelling variation), and uncertainty (information
loss during digital transcription).

5On linguists’ focus on spoken language change: Hock
(1991, 1–10) and Campbell (2013, 1–5); on contrast to philol-
ogy: Hock (1991, 3–5) and Campbell (2013, 373, 391–
392). Philology is fundamentally “intepretation of textual
data” (Hock 1991, 5).

6See Adams (2016) on the origins of this pedagogy in the
English-speaking world.

7E.g., for secondary language acquisition (Inniss et al.,
2006)

nificant stimuli to industrial and governmental re-
search.

1.3 Previous Work

Two software architectural patterns, the framework
and the pipeline, are most relevant to the CLTK’s
design.

As NLP matured in the early 2000’s, frame-
works (or toolkits) emerged with the purpose of
making the technology easier for non-specialists to
use. To this end, these frameworks generally have
documentation friendly for beginners, value diver-
sity in algorithms, treat multiple languages, pro-
vide data sets, help with text preprocessing, and
provide pre-trained models.8 Of these characteris-
tics, the CLTK especially values multilingual and
multi-algorithmic NLP, the latter of which being
necessary to accommodate the varying state of data
sets of pre-modern languages. The CLTK shows
some especial similarity to the quanteda library for
the R language (Benoit et al., 2018), as it contains
novel algorithms yet also “wraps” other NLP li-
braries.

Several NLP frameworks have popularized the
pipeline processing architecture, in which default
algorithms (tokenization, POS tagging, depen-
dency parsing, etc.) are run in series upon input
text. Algorithms may be added or removed from
a default pipeline. Increasingly, frameworks use
identical algorithms for every language, without
special consideration for a language’s nuances.

Aside from the CLTK, NLP tools for pre-
modern languages have been uncommon,9 despite
a steady growth of language resources.10 Pre-
modern languages are often low-resource. Low-
resource software applications, however, have
tended toward transcription11 and, in the case of en-

8Prominent frameworks include the NLTK (Bird and Lo-
per, 2004), OpenNLP (Apache Software Foundation, 2011),
CoreNLP (Manning et al., 2014), spaCy (Honnibal and John-
son, 2015), and Stanza (Qi et al., 2020).

9For a previous discussion of NLP pipelines for the CLTK,
see Burns (2019). There has been some noteworthy work on
how generally pre-modern NLP should be done (Piotrowski,
2012; Köntges et al., 2019; McGillivray et al., 2019); also
Zeldes and Schroeder (2016), a Python library for Coptic.

10Treebanks exist for twelve Indo-European languages ac-
cording to the PROIEL annotation standards (Haug and Jøh-
ndal, 2008; Eckhoff and Berdicevskis, 2015; Bech and Eide,
2014); texts also for Greek and Latin (Celano et al., 2014),
Sanskrit (Hellwig et al., 2020), Cuneiform (Sumerian, Akka-
dian, etc.) (Englund, 2016), historical Arabic (Belinkov et al.,
2016), and Classical Chinese (Lee and Kong, 2012; Yasuoka,
2019).

11E.g., Brugman et al. (2004); Ulinski et al. (2014).
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dangered languages, language preservation.12 An
interesting exception may be UralicNLP (Hämälä-
inen, 2019), which provides algorithms intended
for relatively small data sets in Finnish and related
languages.

2 System Design

An NLP pipeline within a framework architecture
standardizes I/O while preserving algorithmic di-
versity. The CLTK should provide:

• Modular processing pipelines: Each lan-
guage should come with a pre-configured
pipeline set to defaults expected by most users.
A user should be able to modify, replace, and
add processes to a pipeline. Pipelines may be
adjusted for new languages.

• Diversity of algorithms: When there are sev-
eral popular ways researchers perform a par-
ticular process (e.g., tagging entities with a
word list or a neural network), the CLTK
should support them both. Due to limited lan-
guage resources, such as digitized texts and
treebanks, machine learning at times may not
be tractable (and if so, then only certain algo-
rithms).13 While rules-based approaches of-
ten do not adapt to the dynamism of living
languages, they can perform well in restricted
tasks within narrow domains.14

• Standard I/O: To optimize user productiv-
ity and facilitate scholarly communication, an
API should accept standard input for all hu-
man languages. Likewise, when linguistically
justified, outputs should be expressed using
data structures and representations that are
shared across languages.

• Model management: The project must pro-
vide models for every pipeline.

12E.g., Katinskaia et al. (2017); Buszard-Welcher (2018).
13For example, surviving literary Ancient Greek texts, from

c. 800 B.C. to A.D. 1453, amount to only 65M words (Berko-
witz and Squitier, 1990). By contrast, the original English-
language BERT was trained on 3,300M tokens (Devlin et al.,
2019, 5). (Nevertheless, a BERT model has been made for
the Latin language with 643M tokens (Bamman and Burns,
2020, 2).) On small historical corpora, Hamilton et al. (2016)
demonstrates benefits of SVD word embeddings over word2-
vec.

14For example, the CLTK’s meter scanners for Latin poetry
(cltk/prosody/lat/verse.py).

>>> from cltk import NLP
>>> cltk_nlp = NLP(language="lat")
��  CLTK version '1.0.14'.
Pipeline for language 'Latin' (ISO:

'lat'): `LatinNormalizeProcess`,
`LatinStanzaProcess`,
`LatinEmbeddingsProcess`,
`StopsProcess`,
`LatinNERProcess`,
`LatinLexiconProcess`.

↪→
↪→
↪→
↪→
↪→
↪→
>>> text = "Marcus Cato, ortus

municipio Tusculo adulescentulus,
priusquam honoribus operam daret,
versatus est in Sabinis, quod
ibi heredium a patre relict um
habebat."

↪→
↪→
↪→
↪→
↪→
>>> cltk_doc =

cltk_nlp.analyze(text=text)↪→
>>> print(cltk_doc.tokens[:12])
['Marcus', 'Cato', ',', 'ortus',

'municipio', 'Tusculo',
'adulescentulus', ',',
'priusquam', 'honoribus',
'operam', 'daret']

↪→
↪→
↪→
↪→
>>> print(cltk_doc.pos[:12])
['PROPN', 'PROPN', 'PUNCT', 'NOUN',

'NOUN', 'NOUN', 'ADJ', 'PUNCT',
'ADV', 'NOUN', 'NOUN', 'VERB']

↪→
↪→
>>> print(cltk_doc.words[11].string)
daret
>>> print(cltk_doc.words[11].pos)
POS.verb
>>> print(cltk_ ⌋

doc.words[11].features)↪→
{Aspect: [imperfective], Mood:

[subjunctive], Number:
[singular], Person: [third],
Tense: [imperfect], VerbForm:
[finite], Voice: [active]}

↪→
↪→
↪→
↪→

Code Block 1: Example of NLP() (3.1) processing the
first sentence of Cornelius Nepos’ M. Porcius Cato.

3 Architecture and Usage

The CLTK has one primary interface, NLP(), and
five custom data types: When a user calls NLP. ⌋

analyze(), it outputs a Doc, which contains all
processed information. At Doc.words is a list
of Word objects, each of which contains token-
level information added by each Process. A
Pipeline contains a list of Process objects for
a given language.

3.1 NLP()

The CLTK’s NLP() class offers a common in-
terface for all languages, for which a pipeline of
NLP algorithms is called. Calling analyze(),
the class’s only public method, triggers each
Process in succession. The CLTK executes the
algorithms and returns a Doc object. Code Block 1
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Process

...EmbeddingsProcess

...ArabicEmbeddingsProcess

Figure 1: Illustration of the inheritance of Process
(3.2) objects.

illustrates its use.15

3.2 Process

An algorithm in the CLTK may be called directly
or wrapped in a Process that is incorporated into
in a Pipeline. Each of the following classes,
which inherit from Process, keep the project’s
algorithms organized according the kind of NLP
they contain (Figure 1).16

• NormalizeProcess: Reads Doc.raw,
then does Unicode normalization and other
text transformation as required per language;
outputs to Doc.normalized_text.

• TokenizationProcess: Normally the
first Process run, splits input string into
word tokens; sets string value at Word.st ⌋

ring.
• SentenceProcess: Determines sentence

boundaries and sets integer at Word.inde ⌋

x_sentence.
• StopsProcess: Checks whether a token is

contained within a stopword list; adds Bool-
ean value at Word.stop.

• LemmatizationProcess: Reads Word ⌋

.string, and perhaps other contextual in-
formation, then sets value at Word.lemm ⌋

a.17

• MorphologyProcess: Determines mor-
phology and writes word class (noun, verb,
etc.) and features (case, tense, etc.).18 Values

15Text and translation from Rolfe (1984, 282–283): “Mar-
cus Cato, born in the town of Tusculum, in his early youth,
before entering on an official career, lived in the land of the
Sabines, since he had there an hereditary property, left him by
his father.”

16See Appendix for how the actual code is organized.
17Previous work on CLTK lemmatization documented at

Burns (2020).
18 The CLTK relies on Stanza for morphological parsing

for Chinese, Coptic, Gothic, Greek, Latin, Old Church Sla-

output by morphological taggers, before being
set at Word.pos and Word.features,
are normalized to custom CLTK data types
that model the annotations of the Universal
Dependencies project (see 3.4.3).

• DependencyProcess: Outputs results of
a dependency grammar parser at Word.de ⌋

pendency_relation and Word.gove ⌋

rnor.19

• NERProcess: Determines whether a token
is a named entity and, if so, what kind; sets
string value at Word.named_entity.

• EmbeddingsProcess: Fetches word em-
bedding from a language model; sets array at
Word.embedding.20

• PhonologyProcess: Ascertains phono-
logical properties of a word (specifically with
the inheriting PhonologicalTranscr ⌋

iptionProcess) and then reconstructs a
phonetic representation in IPA; sets output at
Word.phonetic_transcription.21

• ProsodyProcess: Scans input strings and
outputs scans of their poetic meter.22

• StemmingProcess: Writes a token’s stem
to Word.stem.23

• WordNetProcess: Queries WordNet and
writes a word’s synset to Word.synsets.24

• LexiconProcess: Matches Word.lem ⌋

ma to a dictionary’s headword and writes to
Word.definition.

• StanzaProcess: A Process has been
created for Stanza because of its usefulness

vonic, and Old French. See also StanzaProcess. Other
software, however, may be used, as in the case of Akkadian
(cltk/morphology/akk.py).

19At time of publication, the CLTK uses the Stanza proj-
ect’s pretrained models with StanzaProcess. In the fu-
ture, custom-trained models (e.g., with spaCy or Stanza)
will be wrapped by DependencyProcess. See also sec-
tion 3.4.4 for post-processing the flat Doc.words into a tree.

20Using fastText embeddings for Arabic, Aramaic, Gothic,
Latin, Old English, Pali, and Sanskrit (Bojanowski et al.,
2016); using NLPL for Ancient Greek and Old Church Sla-
vonic (http://vectors.nlpl.eu).

21Subclassed SyllabifierProcess is also available
for dividing words into a list of syllable strings; sets output
at Word.syllables.

22Currently available for Greek, Latin, Middle High Ger-
man, and Old Norse. Prose analysis of Latin clausulae also
available (Keeline and Kirby, 2019).

23Akkadian, Latin, Middle English, Middle High German,
and Old French.

24See Short for Latin WordNet API; Ancient Greek and San-
skrit WordNets are under development.

23



from dataclasses import dataclass,
field↪→

from typing import List, Type
from cltk.core.data_types import

Language, Pipeline, Process↪→
from cltk.languages.utils import

get_lang↪→

@dataclass
class LatinPipeline(Pipeline):

"""Default ``Pipeline`` for
Latin."""↪→

description: str = "Pipeline for
the Latin language"↪→

language: Language =
get_lang("lat")↪→

processes: List[Type[Process]] =
field(↪→
default_factory=lambda: [

LatinNormalizeProcess,
LatinStanzaProcess,
LatinEmbeddingsProcess,
StopsProcess,
LatinNERProcess,
LatinLexiconProcess,

]
)

Code Block 2: Example of LatinPipeline (3.3)
and the processes declared within it; defined atcltk/ ⌋
languages/pipelines.py.

for seven languages (see ft. 18).

3.3 Pipeline

A language has onePipeline defining a list of
Process objects, as illustrated in Code Block 2.
The objects within Pipeline.processes are
looped over when called by NLP.analyze().
Each time, a Doc is sent into the Process and
a new Doc, now with an updated Doc.words, is
produced. These algorithms are invoked by default,
though a user may override them by declaring his
own Pipeline and passing it to NLP(). At time
of publication, 19 languages have pre-configured
pipelines.25

3.4 Doc

The NLP.analyze() method returns a Doc ob-
ject that contains all information generated by the
Pipeline (example at Code Block 1). Most of
this information is stored within a list of Word

25Akkadian ("akk"), Arabic ("arb"), Aramaic
("arc"), Classical Chinese ("lzh"), Coptic ("cop"),
Gothic ("grc"), Hindi ("hin"), Latin ("lat"), Middle
High German ("gmh"), Old English ("ang"), Middle
English ("enm"), Old French ("frm"), Old Church Sla-
vonic ("chu"), Old Norse ("non"), Pali ("pli"), Panjabi
("pan"), and Sanskrit ("san").

>>> print(cltk_doc.words[11])
Word(index_char_start=None,

index_char_stop=None,
index_token=11, index_sentence=0,
string='daret', pos=verb,
lemma='do', stem=None,
scansion=None,
xpos='J3|modB|tem2|gen6',
upos='VERB',
dependency_relation='root',
governor=-1, features={Aspect:
[imperfective], Mood:
[subjunctive], Number:
[singular], Person: [third],
Tense: [imperfect], VerbForm:
[finite], Voice: [active]},
category={F: [neg], N: [neg], V:
[pos]}, stop=False,
named_entity=False,
syllables=None,
phonetic_transcription=None,
embedding=array([-1.2459e-01,
...], dtype=float32),
definition="dō\n\n (old subj.
duis, duit, duint, etc.), dedī,
datus, are \n1 DA-, \nto hand
over, deliver, give up, render,
furnish, pay, surrender")

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Code Block 3: Example of processed information con-
tained within a Word (3.4.1) object. Continues from
Code Block 1.

objects at Doc.words, which may be accessed
directly or by helper methods, such as Doc. ⌋

tokens (returning a list of token strings) and
Doc.embeddings (a list of arrays). When these
access methods are not enough, a user may post-
process the Doc and add attributes to it or the
Word objects within.

3.4.1 Word

Word stores all token information. Code Block 3
shows some of what a Word object may contain.

3.4.2 Language

The module cltk/languages/glottolog ⌋

.py contains 219 Language objects, each of
which contains information about a pre-modern
language that is, or should be, covered by the
CLTK.26 Code Block 4 shows how to retrieve a
Language with a three-letter ISO code. Each

26Language definitions and data provided by Glottolog, a
database of the world’s languages (Hammarström et al., 2021).
These 219 languages are those falling within the definition of
pre-modern (discussed at 1.1), plus some with significant con-
tinuity between pre-modern and contemporary written forms:
Standard Arabic, nine South Asian languages (Bengali, Hindi,
etc.), Western Farsi, and Coptic.
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>>> from cltk.languages.utils import
find_iso_name↪→

>>> print(find_iso_name("Latin"))
['lat']
>>> from cltk.languages.utils import

get_lang↪→
>>> print(get_lang("lat"))
Language(name='Latin',

glottolog_id='lati1261',
latitude=41.9026,
longitude=12.4502, dates=[],
family_id='indo1319',
parent_id='impe1234',
level='language',
iso_639_3_code='lat', type='a')

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Code Block 4: Example of a Language (3.4.2) object
for Latin (ISO code "lat").

Pipeline references these classes (see Code
Block 2).

3.4.3 MorphosyntacticFeature and
MorphosyntacticFeatureBundle

Beyond the categorical information at Word.pos,
a language’s Pipeline adds complete morphol-
ogy at the Word.features accessor (see Code
Block 5). The sometimes arbitrary output strings
of morphological taggers (“indicative,” “Indic.,”
etc.) are mapped to these specific CLTK classes
(inheriting from MorphosyntacticFeature)
that represent all features defined by version 2
of the Universal Dependencies project.27 Hence,
different taggers resolve to a common annotation
schema.

3.4.4 DependencyTree
The CLTK uses the “built-in” xml library to make
trees for modeling dependency parses. A Word is
mapped into a Form, then ElementTree is used
to organize these into a DependencyTree (see
Code Block 6).

3.5 FetchCorpus

Git repositories host models developed by CLTK
contributors.28 When the software cannot find a re-
quired model, FetchCorpus is invoked to down-
load the required dependency and put it within the
appropriate directory at ~/cltk_data/.29

27Annotation guidelines at Universal Dependencies (2016)
and CLTK objects at cltk/morphology/universal ⌋
_dependencies_annotations.py.

28All CLTK models are stored on GitHub at: https://
github.com/cltk/?q=model.

29A language-specific Git repository is available for most
languages, e.g., "lat_models_cltk" at the URI ht

>>> print(cltk_doc.words[11].featur ⌋
es)↪→

{Aspect: [imperfective], Mood:
[subjunctive], Number:
[singular], Person: [third],
Tense: [imperfect], VerbForm:
[finite], Voice: [active]}

↪→
↪→
↪→
↪→
>>> print(type(cltk_doc.wor ⌋

ds[11].features))↪→
<class 'cltk.morphology.mor ⌋

phosyntax.MorphosyntacticFeatur ⌋
eBundle'>

↪→
↪→
>>> print(cltk_doc.words[11].featur ⌋

es["Aspect"][0])↪→
Aspect.imperfective
>>> print(cltk_doc.words[11].featur ⌋

es["Mood"][0])↪→
Mood.subjunctive

Code Block 5: Example of MorphosyntacticFe ⌋
ature and MorphosyntacticFeatureBundle
(3.4.3). Continues from Code Block 3.

>>> from cltk.dependency.tree import
DependencyTree↪→

>>> a_tree = DependencyTree.to_tree ⌋
(cltk_doc.sentences[0])↪→

>>> print(a_tree.get_dependencie ⌋
s()[:5])↪→

[nsubj(daret_11, Marcus_0),
nsubj(daret_11, Cato_1),
nsubj(daret_11, ortus_3),
nsubj(daret_11, Marcus_0),
nsubj(daret_11, Cato_1)]

↪→
↪→
↪→
↪→

Code Block 6: Example ofDependencyTree (3.4.4).
Continues from Code Block 1.

4 Conclusion and Future Work

The architecture of the CLTK v. 1.0 has an engi-
neering rigor necessary to model the world’s sev-
eral hundred pre-modern languages. Currently, it
serves the basic, and several more advanced, needs
of researchers for 19 languages.

Software alone, however, is not sufficient. The
CLTK lacks formal evaluations of its models’ accu-
racies. At time of publication, most Process def-
initions wrap models trained by upstream projects
(e.g., Stanza). While these projects report accura-
cies respective to their training sets (i.e., with cross-
validation), they do not provide evaluations against
outside benchmarks. Unfortunately, such bench-
marks do not yet exist for pre-modern languages,
with the exception of the recent Sprugnoli et al.
tps://github.com/cltk/lat_models_clt
k.git. Users may share private or non-official reposito-
ries by defining them at ~/cltk_data/distributed_ ⌋
corpora.yaml.
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(2020) for Latin. To remedy this problem, the au-
thors will focus upon the following areas:

• to create evaluation benchmarks for each NLP
task, for each language;

• to make a TrainingPipeline, similar to
the inference Pipeline, that would stan-
dardize the training of new models;

• to normalize duplicative treebanks;30

• and to develop Internet infrastructure for train-
ing and hosting models;

These efforts will improve scientific procedure for
pre-modern NLP.

Another initiative involves experimentation with
transfer learning, along the lines of Multilingual
BERT (Pires et al., 2019), training on all surviving
pre-modern texts. Because languages are related
and because texts, even in different languages, of-
ten share entities, information sharing may prove
felicitous.31

The pre-modern world, its languages and peo-
ples, was deeply networked.32 The CLTK is a com-
prehensive collection of NLP technologies to sup-
port the study of this history.
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A Appendix

The following top-level directories are found at
src/cltk, within the project’s repository.

• nlp: The main module, contains class NLP ⌋

()

• alphabet: Manipulate characters of a lan-
guage’s orthographic system

• core: Custom data types, error handling
• corpora: Metadata for and preprocessing

of specific data sets
• data: Download CLTK-hosted data sets
• dependency: Dependency parsing
• embeddings: Making and loading word

embeddings
• languages: Definition of all pre-modern

languages, text snippets for demonstration
• lemmatize: Find lemma for an inflected

form
• lexicon: Find a lemma’s definition in a dic-

tionary
• morphology: Model morphology and syn-

tax with data types from Universal Dependen-
cies

• ner: Tag named entities (i.e., proper nouns)
• phonology: Syllabifying and tagging pho-

nemes
• prosody: Scanning poetic meter
• sentence: Splitting sentences
• stem: Create unique stem from inflected

form
• stops: Identify if a token is a stopword
• tag: Part-of-speech tagging
• text: Language-specific, extensible text pre-

processing
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• tokenizers: Create tokens from an input
string

• utils: Helpers for feature extraction and
disk I/O

• wordnet: Lookup of lemma on available on-
line WordNets
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Abstract

In this paper, we release an open-source li-
brary, called TextBox, to provide a unified,
modularized, and extensible text generation
framework. TextBox aims to support a broad
set of text generation tasks and models. In
our library, we implement 21 text generation
models on 9 benchmark datasets, covering the
categories of VAE, GAN, and pretrained lan-
guage models. Meanwhile, our library main-
tains sufficient modularity and extensibility by
properly decomposing the model architecture,
inference, and learning process into highly
reusable modules, which allows users to eas-
ily incorporate new models into our frame-
work. The above features make TextBox es-
pecially suitable for researchers and practi-
tioners to quickly reproduce baseline models
and develop new models. TextBox is imple-
mented based on PyTorch, and released un-
der Apache License 2.0 at the link https:

//github.com/RUCAIBox/TextBox.

1 Introduction

Text generation, which has emerged as an impor-
tant branch of natural language processing (NLP),
is often formally referred as natural language gen-
eration (NLG) (Li et al., 2021b). It aims to produce
plausible and understandable text in human lan-
guage from input data (e.g., a sequence, keywords)
or machine representation. Because of incredible
performance of deep learning models, many classic
text generation tasks have achieved rapid progress,
such as machine translation (Vaswani et al., 2017),
dialogue systems (Li et al., 2016b), text summariza-
tion (See et al., 2017), graph-to-text generation (Li
et al., 2021a), and more.

To facilitate the development of text generation
models, a few remarkable open-source libraries

†Equal contribution.
∗Corresponding author.

have been developed (Britz et al., 2017; Klein et al.,
2017b; Miller et al., 2017b; Zhu et al., 2018; Hu
et al., 2019). These frameworks are mainly de-
signed for some or a small number of specific tasks,
particularly machine translation and dialogue sys-
tems. They usually focus on a special kind of tech-
niques for text generation such as generative adver-
sarial networks (GAN), or have limitations in cov-
ering commonly-used baseline implementations.
Even for an experienced researcher, it is difficult
and time-consuming to implement all compared
baselines under a unified framework. Therefore, it
is highly desirable to re-consider the implementa-
tion of text generation algorithms in a unified and
modularized framework.

In order to alleviate the above issues, we initi-
ate a project to provide a unified framework for
text generation algorithms. We implement an open-
source text generation library, called TextBox,
aiming to enhance the reproducibility of existing
text generation models, standardize the implemen-
tation and evaluation protocol of text generation
algorithms, and ease the development process of
new algorithms. Our work is also useful to support
several real-world applications in the field of text
generation. We have extensively surveyed related
text generation libraries and broadly fused their
merits into TextBox. The key features and capabili-
ties of our library are summarized in the following
three aspects:

• Unified and modularized framework. TextBox
is built upon PyTorch (Paszke et al., 2019), which is
one of the most popular deep learning frameworks
(especially in the research community). Moreover,
it is designed to be highly modularized, by decou-
pling text generation models into a set of highly
reusable modules, including data module, model
module, evaluation module, and many common
components and functionalities. In our library, it
is convenient to compare different text generation
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Figure 1: The illustration of the main functionalities and modules in our library TextBox.

algorithms with built-in evaluation protocols via
simple yet flexible configurations, or develop new
text generation models at a highly conceptual level
by plugging in or swapping out modules.

• Comprehensive models, benchmark datasets
and standardized evaluations. TextBox contains
a wide range of text generation models, covering
the categories of variational auto-encoder (VAE),
generative adversarial networks (GAN), recurrent
neural network (RNN) and pretrained language
models (PLMs). We provide flexible supporting
mechanisms via the configuration file or command
line to run, compare and test these traditional and
state-of-the-art algorithms. Based on these mod-
els, we implement two major text generation tasks,
namely unconditional text generation tasks and con-
ditional text generation tasks (e.g., text summa-
rization and machine translation). To construct a
reusable benchmark, we incorporate 9 widely-used
datasets with regards to different text generation
tasks for evaluation. Our library supports a series
of frequently adopted evaluation protocols for test-
ing and comparing text generation algorithms, such
as perplexity, BLEU, ROUGE, and Distinct.

• Extensible and flexible framework. TextBox
provides convenient interfaces of various common
functions or modules in text generation models,
e.g., RNN-based and Transformer-based encoders
and decoders, pretrained language models, and at-
tention mechanisms. Within our library, users are
convenient to choose different API interfaces for
building and evaluating their own models. Besides,
the interfaces of our library are fully compatible
with the PyTorch interface which allows seamless
integration of user-customized modules and func-

tions as needed.

2 Architecture and Design

Figure 1 presents the illustration of the main func-
tionalities and modules in our library TextBox. The
configuration module at the bottom helps users
set up the experimental environment (e.g., hyper-
parameters and running details). Built upon the
configuration module, the data, model, and evalua-
tion modules form the core elements of our library.
In the following, we describe the detailed structure
of these three modules.

2.1 Data Module
A major design principle of our library is to support
different text generation tasks. For this purpose,
data module is the fundamental part to provide
various data structures and functions adapting to
different generation tasks.

For extensibility and reusability, our data mod-
ule designs a unified data flow feeding input text
into the models. The data flow can be described
as: input text → Dataset → DataLoader →
models. The class Dataset involves two special
data structures, i.e., single sequence and paired se-
quence, which are oriented to unconditional and
conditional text generation tasks, respectively. The
single sequence structure requires users to prepro-
cess input text into one sequence per line in input
files, while the paired sequence structure requires
users to separate the source and target into two files
with one sequence per line in each file. Specifically,
for conditional text generation, TextBox supports
several source formats corresponding to different
tasks, e.g., discrete attributes or tokens for attribute-
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to-text and keyword-to-text generation, a text se-
quence for machine translation or text summariza-
tion, and multiple text sequences for multi-turn dia-
logue systems. Furthermore, users can also provide
additional information as inputs, e.g., background
text for agents in dialogues. The implementation
of Dataset contains many common data prepro-
cessing functionalities, such as converting text into
lowercase, word tokenization, and building vocab-
ulary. And the class Dataloader is based on the
above two data structures, which is responsible for
organizing the data stream.

In order to compare different generation models,
we have collected 9 commonly-used benchmarks
for text generation tasks, which makes it quite con-
venient for users to start with our library.

2.2 Model Module

To support a variety of models, we set up the model
module by decoupling the algorithm implemen-
tation from other components and abstracting a
set of widely-used modules, e.g., encoder and
decoder. These modules can be flexibly com-
bined following the required interface and then con-
nected with data and evaluation modules. Based
on this abstract design, it is convenient to switch
between different text generation tasks, and change
from one modeling paradigm to another by simply
plugging in or swapping out modules.

In addition to modularized design, our library
also includes a large number of text genera-
tion baseline models for reproducibility. At the
current released version, we have implemented
21 baseline models within four main categories
of text generation models, namely VAE-based,
GAN-based, pretrained language models, and
sequence-to-sequence, corresponding to different
generation architectures and tasks. For example,
GAN-based models consist of generator and
discriminator, and VAE-based models con-
tain encoder and decoder. We summarize all
the implemented models in Table 1. For all the
implemented models, we test their performance for
unconditional and conditional generation tasks on
corresponding benchmarks, and invite a code re-
viewer to examine the correctness of the implemen-
tation. Overall, the extensible and comprehensive
model modules can be beneficial for fast explo-
ration of new algorithms for a specific task, and
convenient comparison between different models.

In specific, for each model, we utilize two inter-

Category Models Reference

VAE

LSTM-VAE (Bowman et al., 2016)
CNN-VAE (Yang et al., 2017)

Hybrid-VAE (Semeniuta et al., 2017)
CVAE (Li et al., 2018)

GAN

SeqGAN (Yu et al., 2017)
TextGAN (Zhang et al., 2017)
RankGAN (Lin et al., 2017)
MaliGAN (Che et al., 2017)
LeakGAN (Guo et al., 2018)
MaskGAN (Fedus et al., 2018)

Pretrained
Language

Model

GPT-2 (Radford et al., 2019)
XLNet (Yang et al., 2019)

BERT2BERT (Rothe et al., 2020)
BART (Lewis et al., 2020)

ProphetNet (Qi et al., 2020)
T5 (Raffel et al., 2020)

Seq2Seq

RNN (Sutskever et al., 2014)
Transformer (Vaswani et al., 2017)
Context2Seq (Tang et al., 2016)

Attr2Seq (Dong et al., 2017)
HRED (Serban et al., 2016)

Table 1: Implemented models in our library TextBox.

face functions, i.e., forward and generate, for
training and testing, respectively. These functions
are general to various text generation algorithms,
so that we can implement various algorithms in
a highly unified way. Such a design also enables
quick development of new models.

In order to improve the quality of generation
results, we also implement a series of generation
strategies when generating text, such as greedy
search, top-k search and beam search. Users are al-
lowed to switch between different generation strate-
gies leading to better performance through setting
a hyper-parameter, i.e., decoding_strategy.
Besides, we add the functions of model saving and
loading to store and reuse the learned models, re-
spectively. In the training process, one can print
and monitor the change of the loss value and apply
training tricks such as warm-up and early-stopping.
These tiny tricks largely improve the usage experi-
ences with our library.

2.3 Evaluation Module

It is important that different models should be com-
pared under the unified evaluate protocols, which
is useful to standardize the evaluation of text gener-
ation. To achieve this goal, we set up the evaluation
module to implement commonly-used evaluation
protocols for text generation models.

Our library supports both logit-based and word-
based evaluation metrics. The logit-based met-
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rics include perplexity (PPL) (Brown et al., 1992)
and negative log-likelihood (NLL) (Huszar, 2015),
measuring how well the probability distribution
or a probability model predicts a sample com-
pared with the ground-truth. The word-based
metrics include the most widely-used generation
metrics for evaluating lexical similarity, semantic
equivalence and diversity. For example, BLEU-
n (Papineni et al., 2002) and ROUGE-n (Lin,
2004) measure the ratios of the overlapping n-
grams between the generated and real samples,
METEOR (Banerjee and Lavie, 2005) measures
the word-to-word matches based on WordNet,
CIDEr (Vedantam et al., 2015) computes the TF-
IDF weights for each n-gram in generated/real sam-
ples and CHRF++ (Popovic, 2015) computes F-
score averaged on both character- and word-level
n-grams. To evaluate the semantic equivalence
between generated and real samples, we include
BERTScore (Zhang et al., 2020), a metric based
on the similarity of sentence embeddings relied on
pretrained language model BERT (Devlin et al.,
2019). Moreover, Distinct-n and Unique-n (Li
et al., 2016a) measures the degree of diversity of
generated text by calculating the number of dis-
tinct unigrams and bigrams in generated text. Be-
sides, to evaluate the diversity of unconditionally
generated samples, we also take into account the
Self-BLEU (Zhu et al., 2018) metric. In summary,
users can choose different evaluation protocols
towards a specific generation task by setting the
hyper-parameter, i.e., metrics.

In practice, as the model may generate many
text pieces, evaluation efficiency is an important
concern. Hence, we integrate efficient computing
package, fastBLEU (Alihosseini et al., 2019), to
compute evaluation scores. Compared with other
package, fastBLEU adopts the multi-threaded
C++ implementation.

3 System Usage

In this section, we show a detailed guideline to
use our system library. Users can run the existing
models or add their own models as needed.

3.1 Running Existing Models

To run an existing model within TextBox, users
only need to specify the dataset and model by
setting hyper-parameters, i.e., dataset and
model. And then experiments can be run with a
simple command-line interface:

python run_textbox.py \

--model=GPT2 --dataset=COCO

The above case shows an example that runs
GPT-2 (Radford et al., 2019) model on COCO
dataset (Lin et al., 2015). In our system library,
the generation task, such as translation, and
summarization, is determined once users spec-
ify the dataset, thus the task is not necessary to
be explicitly specified in hyper-parameters. To fa-
cilitate the modification of hyper-parameters, we
provides two kinds of YAML configuration files,
i.e., dataset configuration and model configuration,
which allow running many experiments without
modifying source code. It also supports users to
include hyper-parameters in the command line,
which is useful for some specifically defined param-
eters. TextBox is designed to be run on different
hardware devices. By default, CUDA devices will
be used if users set the hyper-parameter use_gpu
as True, or otherwise CPU will be used. Users
can determine the ID of used CUDA devices by
setting hyper-parameter gpu_id. We also sup-
port distributed model training in multiple GPUs
by setting the hyper-parameter DDP as True.

Based on the configuration, we provide the aux-
iliary function to split the dataset into train, valida-
tion and test sets according to the provided hyper-
parameter split_ratio, or load the pre-split
dataset. Moreover, TextBox also allows users to
load and re-train the saved model for speeding up
reproduction, rather than training from scratch.

Figure 2 presents a general usage flow when
running a model in our library. The running pro-
cedure relies on some experimental configuration,
obtained from the files, command line or parameter
dictionaries. The dataset and model are prepared
and initialized according to the configured settings,
and the execution module is responsible for training
and evaluating models.

3.2 Implementing a New Model

With the unified Data and Evaluation mod-
ules, one needs to implement a specific Model
class and three mandatory functions as follows:

• __init__() function. In this function, the
user performs parameters initialization, global vari-
able definition and so on. It is worth noting that, the
imported new model should be a sub-class of the
abstract model class defined in our library. One can
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Figure 2: An illustractive usage flow of our library.

reuse the modules (e.g., Transformer) and layers
(e.g., Highway net) already existing in our library
for convenience. A configuration file is preferable
to conduct further flexible adjustment.

• forward() function. This function calcu-
lates the training loss to be optimized and valida-
tion loss to avoid overfitting. Based on the returned
training loss, our library will automatically invoke
different optimization methods to learn the param-
eters according to pre-defined configuration.

• generate() function. This function is em-
ployed to generate output text based on input text
or free text. Our library also provides several gen-
eration strategies, such as beam search and top-k
search, for users to improve generation results.

In order to implement user-customized modules,
one can reuse functions and classes inherited from
our basic modules, or override original functions
and add new functions.

4 Performance Evaluation

To evaluate the models in TextBox, we conduct ex-
tensive experiments to compare their performance
on unconditional and conditional generation tasks.

4.1 Unconditional Text Generation
Following previous work, we adopt COCO (Lin
et al., 2015), EMNLP2017 WMT News (Chatterjee
et al., 2017) and IMDB Movie Reviews (Maas et al.,
2011) datasets for comparing the performance of
five traditional and state-of-the-art models, i.e.,
LSTM-VAE, SeqGAN, RankGAN, MaliGAN, and
GPT-2, in the unconditional text generation task.

In our experiments, we run models with the pa-
rameter configurations described in their original

papers. Note that the BLEU-n metric employs
the one-hot weights (e.g., (0, 0, 0, 1) for BLEU-
4) instead of average weights, since we consider
that one-hot weights can reflect the overlapping
n-grams more realistically.

These results on COCO datasets are shown in Ta-
ble 2, and other results on EMNLP2017 and IMDB
datasets can be found in our GitHub page. We
can see from Table 2, these models implemented
in our library have the comparable performance
compared with the results reported in the original
papers. Moreover, the pretrained language model,
i.e., GPT-2, achieves consistent and remarkable per-
formance, which is in line with our expectations.

4.2 Conditional Text Generation

In this section, we apply various models on four
conditional text generation tasks, i.e., attribute-to-
text generation, dialogue systems, machine transla-
tion, and text summarization. The task of attribute-
to-text generation is to generate text given sev-
eral discrete attributes, such as user, item, and rat-
ing. We use the popular context-to-sequence (Con-
text2Seq) and attribute-to-sequence (Attr2Seq) as
base models, which utilize the multi-layer percep-
tron (MLP) and RNN as the encoder and decoder,
respectively. Besides, dialogue systems aim to gen-
erate response given a conversation history. We
consider two typical models, i.e., attention-based
RNN and Transformer, and one popular hierarchi-
cal recurrent encoder-decoder model (HRED) as
base models. In RNN and Transformer, the multi-
sequence conversation history is concatenated as
one sequence feeding into the encoder, while in
HERD the hierarchical structure of the conversa-
tion history is kept and modeled with a hierarchical
encoder. Their results are shown in Table 2.

To showcase how our TextBox can support di-
verse techniques on several tasks with different
decoding strategies, we compare the attention-
based RNN model, Transformer, and four state-
of-the-art pretrained language models, i.e., BART,
BERT2BERT, ProphetNet, and T5, for both ma-
chine translation and text summarization tasks. In
Table 3, we adopt the IWSLT2014 German-to-
English (Cettolo et al., 2014) translation dataset
and utilize three generation strategies, i.e., top-
k, greedy, and beam search. The greedy strategy
considers the most probable token at each gener-
ation step, the top-k search strategy means sort-
ing by probability and zero-ing out the probabili-
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Tasks Datasets Models Distinct-1 Distinct-2 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Unconditional
Generation

COCO

LSTM-VAE - - 63.97 46.56 18.53 5.97
SeqGAN - - 99.76 82.32 51.26 25.18
RankGAN - - 99.76 82.92 52.46 26.40
MailGAN - - 99.71 81.95 50.86 24.87
GPT-2 - - 88.15 78.13 55.81 31.88

Attribute-to-Text
Generation

AMAZON Context2Seq 0.07 0.39 17.21 2.80 0.83 0.43
Attr2Seq 0.14 2.81 17.14 2.81 0.87 0.48

Dialogue
Systems

Personal
Chat

RNN+Attn 0.24 0.72 17.51 4.65 2.11 1.47
Transformer 0.38 2.28 17.29 4.85 2.32 1.65
HRED 0.22 0.63 17.29 4.72 2.20 1.60

Table 2: Performance comparisons of different methods for three tasks, i.e., unconditional generation, attribute-
to-text generation, and dialogue systems. Distinct-n is not applicable to the unconditional generation task. “-”
denotes the metric Distinct-n is generally not applicable to unconditional text generation.

Model Strategy BLEU2 BLEU3 BLEU4

RNN+Attn
Top-k 26.68 16.95 10.85
Greedy 33.74 23.03 15.79
Beam 35.68 24.94 17.42

Transformer
Top-k 30.96 20.83 14.16
Greedy 35.48 24.76 17.41
Beam 36.88 26.10 18.54

Table 3: Performance comparison of different genera-
tion models with three strategies for machine transla-
tion from German to English.

ties for anything below the k-th token, and beam
search (Vijayakumar et al., 2018) strategy selects
the top scoring B candidates from the set of all pos-
sible one token extensions of its beams, where B
is the beam size (B = 5 in our experiments). From
Table 3 we observe that the beam search strategy
brings more improvement than the others. For text
summarization, we compare RNN and Transformer
with four pretrained models as shown in Table 4.
These models are trained or fine-tuned in Giga-
Word (Graff et al., 2003) dataset. As observed in
Table 4, pretrained models outperform the RNN
model and Transformer by a clear margin.

The results of all implemented models in other
tasks can be acquired from our GitHub page.

5 Related Work

Several toolkits have been released focusing on one
or a few specific text generation tasks or techniques.
For example, Tensor2Tensor (Vaswani et al., 2018),
MarianNMT (Junczys-Dowmunt et al., 2018) and
OpenNMT (Klein et al., 2017a) are designed for
machine translation task, while ParlAI (Miller et al.,
2017a) and Plato (Papangelis et al., 2020) special-

Model ROUGE-1 ROUGE-2 ROUGE-L

RNN+Attn 36.32 17.63 38.36
Transformer 36.21 17.64 38.10

BART 39.34 20.07 41.25
BERT2BERT 38.16 18.89 40.06
ProphetNet 38.49 18.41 39.84
T5 38.83 19.68 40.76

Table 4: Performance comparison of different genera-
tion models for text summarization. Specifically, we
adopt the base version of BART, BERT2BERT, T5 and
the large version of ProphetNet.

ized for dialog research in this field. There are
two text generation libraries closely related to our
library, including Texygen (Zhu et al., 2018) and
Texar (Hu et al., 2019) focusing on GAN technique
and high modularization, respectively. TextBox
has drawn inspirations from these toolkits when
designing relevant functions.

Compared with them, TextBox covers more text
generation tasks and models, which is useful for re-
producibility. Besides, we implement standardized
evaluation to compare different models. Also, our
library provides various common modules for con-
venience. It has a proper focus on text generation
field, and provide a comprehensive set of modules
and functionalities.

6 Conclusion

This paper presented a unified, modularized, and
extensible text generation library, called TextBox.
So far, we have implemented 21 text generation
models, including VAE-based, GAN-based, pre-
trained language models, sequence-to-sequence
and 9 benchmark datasets for unconditional and
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conditional text generation tasks. Moreover, Our
library is modularized to easily plug in or swap out
components, and extensible to support seamless
incorporation of other external modules. In the fu-
ture, features and functionalities will continue be
added to our library, including more models and
datasets, diverse inputs such as graph and table,
and distributed training in multiple machines. We
invite researchers and practitioners to join and en-
rich TextBox, and help push forward the research
on text generation.

7 Broader Impacts

Text generation has a wide range of beneficial appli-
cations for society, including code auto-completion,
game narrative generation, and answering ques-
tions. But it also has potentially harmful applica-
tions. For example, GPT-3 improves the quality of
generated text over smaller models and increases
the difficulty of distinguishing synthetic text from
human-written text, such as fake news and reviews.

Here we focus on two potential issues: the po-
tential for deliberate misuse of generation models
and the issue of bias. Malicious uses of generation
models can be somewhat difficult to anticipate be-
cause they often involve repurposing models in a
very different environment or for a different pur-
pose than researchers intended. To mitigate this,
we can think in terms of traditional security risk
assessment frameworks such as identifying threats.
Biases present in training text may lead models to
generate stereotyped or prejudiced content. This is
concerning, since model bias could harm people in
the relevant groups in different ways. In order to
prevent bias, there is a need for building a common
vocabulary tying together the normative, technical
and empirical challenges of bias mitigation for gen-
eration models. We expect this to be an area of
continuous research for us.
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Abstract
ASCENT is a fully automated methodology
for extracting and consolidating commonsense
assertions from web contents (Nguyen et al.,
2021). It advances traditional triple-based
commonsense knowledge representation by
capturing semantic facets like locations and
purposes, and composite concepts, i.e., sub-
groups and related aspects of subjects. In this
demo, we present a web portal that allows
users to understand its construction process,
explore its content, and observe its impact in
the use case of question answering. The demo
website1 and an introductory video2 are both
available online.

1 Introduction

Commonsense knowledge (CSK) is an enduring
theme of AI (McCarthy, 1960) that has been re-
cently revived for the goal of building more robust
and reliable applications (Monroe, 2020). Recent
years have witnessed the emerging of large pre-
trained language models (LMs), notably BERT (De-
vlin et al., 2018), GPT (Brown et al., 2020) and
their variants which significantly boosted the per-
formance of tasks requiring natural language under-
standing such as question answering and dialogue
systems (Clark et al., 2020). Although it has been
shown that such LMs implicitly store some com-
monsense knowledge (Talmor et al., 2019), this
comes with various caveats, for example regarding
degree of truth, or negation, and their commercial
development is inherently hampered by their low
interpretability and explainability.

Structured knowledge bases (KBs), in contrast,
give a great possibility of explaining and interpret-
ing outputs of systems leveraging the resources.
There have been great efforts towards build-
ing large-scale commonsense knowledge bases

1https://ascent.mpi-inf.mpg.de
2https://youtu.be/qMkJXqu_Yd4

(CSKBs), including expert-annotated KBs (e.g.,
Cyc (Lenat, 1995)), crowdsourced KBs (e.g., Con-
ceptNet (Speer and Havasi, 2012) and Atomic (Sap
et al., 2019)) and KBs built by automatic acqui-
sition methods such as WebChild (Tandon et al.,
2014, 2017), TupleKB (Mishra et al., 2017), Quasi-
modo (Romero et al., 2019) and CSKG (Ilievski
et al., 2020). Human-created KBs, although pos-
sessing high precision, usually suffer from low cov-
erage. On the other hand, automatically-acquired
KBs typically have better coverage, but also con-
tain more noise. Nonetheless, despite different
construction methods, these KBs are all based on a
simple subject-predicate-object model, which has
major limitations in validity and expressiveness.

We recently presented ASCENT (Nguyen et al.,
2021), a methodology for automatically collecting
and consolidating commonsense assertions from
the general web. To overcome the limitations of
prior works, ASCENT refines subjects with sub-
groups (e.g., circus elephant and domesticated ele-
phant) and aspects (e.g., elephant tusk and elephant
habitat), and captures semantic facets of assertions
(e.g., 〈lawyer, represents, clients, LOCATION: in
courts〉 or 〈elephant, uses, its trunk, PURPOSE: to
suck up water〉).

For a given concept, ASCENT searches through
the web with pattern-based search queries dis-
ambiguated using WordNet (Miller, 1995) hyper-
nymy. Then, irrelevant documents are filtered out
based on similarity comparison against the corre-
sponding Wikipedia articles. We then use a se-
ries of judicious dependency-parse-based rules to
collect faceted assertions from the retained texts.
The semantic facets, which come from preposi-
tional phrases and supporting adverbs are then la-
beled by a supervised classifier. Finally, asser-
tions are clustered using similarity scores from
word2vec (Mikolov et al., 2013) and a fine-tuned
RoBERTa (Liu et al., 2019) model.
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We executed the ASCENT pipeline for 10,000
prominent concepts (selected based on their respec-
tive number of assertions in ConceptNet) as pri-
mary subjects. In (Nguyen et al., 2021), we showed
that the content of the resulting CSKB (hereinafter
referred to as ASCENT KB) is a milestone in both
salience and recall. As extrinsic evaluation, we
conducted a comprehensive evaluation of the con-
tribution of CSK to zero-shot question answering
(QA) with pre-trained language models (Petroni
et al., 2020; Guu et al., 2020).

This paper presents a companion web portal of
the ASCENT KB, which enables the following in-
teractions:

1. Exploration of the construction process
of ASCENT, by inspecting word sense
and Wikipedia disambiguation, web search
queries, clustered statements, and source sen-
tences and documents.

2. Inspection of the resulting KB, starting from
subjects, predicates, objects, or examining
specific subgroups or aspects.

3. Observation of the impact of structured knowl-
edge on question answering with pretrained
language models, comparing generated an-
swers across various CSKBs and QA settings.

The web portal is available at https://ascent.
mpi-inf.mpg.de, and a screencast demonstrating
the system can be found at https://youtu.be/
qMkJXqu_Yd4.

2 ASCENT

Two major contributions of ASCENT are its ex-
pressive knowledge model, and its state-of-the-art
extraction methodology. Details are in the techni-
cal paper (Nguyen et al., 2021). In this section, we
revisit the most important points.

2.1 Knowledge model

ASCENT extends the traditional triple-based data
model in existing CSKBs in two ways.

Expressive subjects. Subjects in existing CSKBs
are usually single nouns, which implies two short-
comings: (i) different meanings for the same word
are conflated, and (ii) refinements and variants of
word senses are missed out. ASCENT has addressed
this problem with the following means:

1. When searching for source texts, ASCENT

combines the target subject with an informa-
tive hypernym from WordNet to distinguish
different senses of the word (e.g., “bus public
transport” and “bus network topology” for the
subject bus).

2. ASCENT refines subjects with multi-word
phrases into subgroups and aspects. For ex-
ample, subgroups for the subject bus would
be tourist bus and school bus, while one of its
aspects would be bus driver.

Semantic facets. The validity of commonsense
assertions is usually non-binary (Zhang et al., 2017;
Chalier et al., 2020), and depends on specific tem-
poral and spatial circumstances (e.g., lions live for
10-14 years in the wild but for more than 15 years
in captivity). Moreover, CSK triples often ben-
efit from further context regarding causes/effects
and instruments (e.g., elephants communicate with
each other by creating sounds, beer is served in
bars). In ASCENT’s knowledge model, such infor-
mation is added to SPO triples via semantic facets.
ASCENT distinguished 8 types of facets: cause,
manner, purpose, transitive-object, degree, loca-
tion, temporal and other-quality.

2.2 Extraction pipeline
ASCENT is a pipeline operating in three phases:
source discovery, knowledge extraction and knowl-
edge consolidation. Fig. 1 illustrates the architec-
ture of the pipeline.

Source discovery. We utilize the Bing Web
Search API to obtain documents specific to each
subject, with search queries refined by the sub-
ject’s hypernyms in WordNet. We manually de-
signed query templates for 35 prominent hyper-
nyms (e.g., if subject s0 has hypernym animal.n.01,
we produce the search query “s0 animal facts”,
similarly for the hypernym professional.n.01, the
search query will be “s0 job descriptions”). We
then compute the cosine similarity between the
bag-of-words representations of each obtained doc-
ument and a respective Wikipedia article to deter-
mine the relevance of the documents. Low-ranked
documents will be omitted in further steps.

Knowledge extraction. The extractors take in the
relevant documents and their outputs include: open
information extraction (OIE) tuples, list of sub-
groups and list of aspects. To obtain OIE tuples,
we extend the STUFFIE approach (Prasojo et al.,
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Figure 1: Architecture of the ASCENT extraction pipeline (Nguyen et al., 2021).

2018), a list of carefully crafted dependency-parse-
based rules, to pull out faceted assertions from the
texts. Then we classify each facet into one of the
eight semantic labels using a fine-tuned RoBERTa
model. For subgroups, noun phrases whose head
word is the target subject are collected as candi-
dates and then are clustered using the hierarchical
agglomerative clustering (HAC) algorithm on av-
erage word2vec representations. Finally, we col-
lect aspects from possessive noun chunks and SPO
triples where P is either “have”, “contain”, “be
assembled of” or “be composed of”.

Knowledge consolidation. We perform cluster-
ing on SPO triples and facet values. As SPO
triples, we first filter triple-pair candidates with
fast word2vec similarity. After that, advanced simi-
larity of triple pairs computed by another fine-tuned
RoBERTa model is fed to the HAC algorithm to
group the triples into semantically similar clusters.
For facet values, we group phrases with the same
head words together (e.g., “during evening” and
“in the evening”).

2.3 Web portal

The web portal (https://ascent.mpi-inf.mpg.
de) is implemented in Python using Django, and
hosted on an Nginx web server. The underlying
structured CSK is stored in a PostgreSQL database,
while for the QA part, statements of all CSKBs
are indexed and queried via Apache Solr, for fast
text-based querying. All components are deployed
on a virtual machine with access to 4 virtual CPUs
and 8 GB of RAM.

In the demonstration session, we show how users
can interact with the portal for exploring the KB
(Section 4.1), understanding the KB construction
(Section 4.2), and observing its utility for question

answering (Section 4.3).

3 Commonsense QA setups

One common extrinsic use case of KBs is question
answering. Recently, it was observed that prim-
ing language models (LMs) with relevant context
can considerably benefit their performance in QA-
like tasks (Petroni et al., 2020; Guu et al., 2020).
In (Nguyen et al., 2021), to evaluate the contri-
bution of structured CSK to QA, we conducted a
comprehensive evaluation consisting of four differ-
ent setups, all based on the above idea.

1. In masked prediction (MP), LMs are asked
to predict single masked tokens in generic
sentences.

2. In free generation (FG), LMs arbitrarily gen-
erate answer sentences to given questions.

3. Guided generation (GG) extends free genera-
tion by answer prefixes that prevent the LMs
from evading answering.

4. Span prediction (SP) is the task of locating
the answer of a question in provided context.

Examples of the QA setups can be seen in Ta-
ble 1. Generally, given a question, our system
will retrieve from CSKBs assertions relevant to it,
and then use the assertions as additional context
to guide the LMs. In the ASCENT demonstrator,
we provide a web interface for experimenting with
all of those QA setups with context retrieved from
several popular CSKBs.

4 Demonstration experience

In the demonstration session, attendees will experi-
ence three main functionalities of our demonstra-
tion system.
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Setup Input Sample output

MP
Elephants eat [MASK]. [SEP] Ele-
phants eat roots, grasses, fruit, and
bark, and they eat a lot of these things.

everything (15.52%),
trees (15.32%), plants
(11.26%)

FG

C: Elephants eat roots, grasses, fruit,
and bark, and they eat...

They eat a lot of
grasses, fruits, and...

Q: What do elephants eat?
A:

GG

C: Elephants eat roots, grasses, fruit,
and bark, and they eat...

Elephants eat a lot of
things.

Q: What do elephants eat?
A: Elephants eat

SP
question=“What do elephants eat?” start=14, end=46,
context=“Elephants eat roots, grasses,
fruit, and bark, and they eat...”

answer=“roots, grasses,
fruit, and bark”

Table 1: Examples of QA setups (Nguyen et al., 2021).

4.1 Exploring the ASCENT KB

Concept page. Suppose a user wants to know
which knowledge ASCENT stores for elephants.
They can enter the concept into the search field in
the top right of the start page, and select the first
result from the autocompletion list, or press enter,
to arrive at the intended concept. The resulting
website (see Fig. 2) is divided into three main areas.

At the top left, they can inspect an image from
https://pixabay.com, the WordNet synset used
for disambiguation, the Wikipedia page used for
result filtering, and a list of alternative lemmas, if
existing.

At the top right, users can see subgroups and
related aspects, which in our knowledge represen-
tation model, can carry their own statements. This
way, they can learn that the most salient aspects of
elephants are their trunks, tusks and ears, or that
elephant trunks have more than 40,000 muscles.

The body of the page, presents the assertions,
organized into groups of same-predicate assertions.
In each group, assertions are sorted by their fre-
quency displayed beside their objects. For example,
the most commonly mentioned foods of elephants
are grasses, fruits, and plants. Many assertions
come with a red asterisk. This indicates that the as-
sertion comes with semantic facets. When clicking
on an assertion, it will show a small box display-
ing an SVG-based visualisation of the assertion in
which we illustrate all elements of the assertion: its
subject, predicate, object, facet labels and values,
frequency of the assertion as well as frequency of
each facet. For example, one can see that the pur-
pose of elephants using their trunks is to suck up
water.

Searching and downloading assertions. Alter-
natively to exploring statements starting from a
subject, users can start from a search functional-

ity under the Browse menu. This way, they can
search, for instance, for all concepts that eat grass
(capybara, zebra, kangaroo, ...).

The website also provides a JSON-formatted
data dump (678MB) of all 8.9 million assertions
extracted by the pipeline and their corresponding
source sentences and documents. This dataset is
also accessible via the HuggingFace Datasets pack-
age3.

4.2 Inspecting the construction of assertions

For many downstream use cases, it is important to
know about the provenance of information.

Users can inspect general properties of the con-
struction process by observing the WordNet lemma
and the Wikipedia page used for filtering, as well
as inspect specific statistics about the number of
retained websites, sentences, and assertions, in a
panel at the bottom of subject pages (e.g., 435 web-
sites were retained for elephant, from which 50k
OpenIE assertions could be extracted).

Furthermore, users can look deeply into the con-
struction process of each assertion on its own dedi-
cated page, which displays the following:

1. Clustered triples: These are triples that were
grouped together in the knowledge consolida-
tion phase (cf. Section 2.2), where the most
frequent triple was selected as cluster repre-
sentative. For example, for the assertion 〈lion,
eat, zebra, DEGREE: mostly〉 (14), the cluster
contains: 〈lion, eat, zebra〉 (9), 〈lion, prey on,
zebra〉 (2), 〈lion, feed on, zebra〉 (1), 〈lion,
feed upon, zebra〉 (1), 〈lion, prey upon, zebra〉
(1). The numbers in parentheses indicate their
corresponding frequency.

2. Facets: The assertion’s facets are presented in
a table whose columns are facet value, facet
type and clustered facets. The frequency of
each clustered facet is also indicated.

3. Source sentences and documents: Finally, we
exhibit the sentences from which the asser-
tions were extracted and their parent docu-
ments (in the form of URLs). Furthermore, in
the extraction phase, we also recorded the po-
sition of assertion elements (i.e., subject, pred-
icate, object, facet) in the source sentences.

3https://huggingface.co/datasets/
ascent_kb
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Figure 2: Example of ASCENT’s page for the concept elephant.

We show that information to users by high-
lighting each kind of element with a different
color in the source sentences.

4.3 Experimenting with commonsense QA
The third functionality experienced in the demo ses-
sion is the utilization of commonsense knowledge
for question answering (QA).
Input. There are four main parts in the input in-
terface for the QA experiment:

1. QA setup: The user chooses one QA setup
they want to experiment with. Available
are Masked Prediction, Span Prediction and
Free/Guided Generation. If Masked Predic-
tion is selected, the user can choose how many
answers the LM should produce. For the Gen-
eration settings, users can provide an answer
prefix to avoid overly evasive answers.

2. Input query: The user enters the text question
as input. The question can be in the form
of a masked sentence (in the case of Masked
Prediction), or a standard natural-language
question (in other setups).

3. Retrieval options: The user can select one
supported retrieval method and the number of

assertions to be retrieved per CSKB for each
question.

4. Context sources: The user selects the sources
of context (i.e., “no context”, CSKBs and
“custom context”). If a CSKB is selected, the
system will retrieve from that KB assertions
relevant to the given input question. If “cus-
tom context” is selected, user must then enter
their own content. The “no context” option is
available for all setups but Span Prediction.

Output. The QA system presents its output in the
form of a table which has three columns: Source,
Answer(s) and Context. For Masked Prediction
and Span Prediction, answers are printed with
their respective confidence scores, meanwhile for
Free/Guided Generation, only answers are printed.
For Span Prediction in which answers come di-
rectly from given contexts, we also highlight the
answers in the contexts.

An example of the QA demo’s output for the
question “What do rabbits eat?” under the Free
Generation setting can be seen in Fig. 3. One can
observe that language models’ predictions are heav-
ily influenced by given contexts. Without context,
GPT-2 is only able to generate an evasive answer.
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When being given context, it tends to re-generate
the first sentence in the context first, (e.g., see the
answers aligning with ASCENT, TupleKB and Con-
ceptNet in Fig. 3). For the context retrieved from
Quasimodo, GPT-2 is able to overlook the erro-
neous first sentence, however its generated answer
is rather elusive despite the fact that subsequent
statements in the context all contain direct answers
to the question.

The question “Bartenders work in [MASK].” un-
der the Masked Prediction setting is another ex-
ample for the influence of context on LMs’ output.
Since bartender is a subject well covered by the AS-
CENT KB, the assertions pulled out are all relevant
(i.e., Bartenders work in bar. Bartenders work in
restaurant. . . ) which help guide the LM to a good
answer (bar). Meanwhile, because this subject is
not present in TupleKB, its retrieved statements are
rather unrelated (Work capitals have firm. Work
experiences include statement. . . ). Given that, the
top-1 prediction for this KB was tandem which is
obviously an evasive answer.

5 Related work

CSKB construction. Cyc (Lenat, 1995) is the
first attempt to build a large-scale common-
sense knowledge base. Since then, there have
been a number of other CSKB construction
projects, notably ConceptNet (Speer and Havasi,
2012), WebChild (Tandon et al., 2014, 2017), Tu-
pleKB (Mishra et al., 2017), and more recently
Quasimodo (Romero et al., 2019), Dice (Chalier
et al., 2020), Atomic (Sap et al., 2019), and
CSKG (Ilievski et al., 2020). The early approach
to building a CSKB is based on human annota-
tion (e.g., Cyc with expert annotation and Con-
ceptNet with crowdsourcing annotation). Later
projects tend to use automated methods based on
open information extraction to collect CSK from
texts (e.g., WebChild, TupleKB and Quasimodo).
Lately, CSKG is an attempt to combine various
commonsense knowledge resources into a single
KB. The common thread of these CSKB is that
they are all based on SPO triples as knowledge
representation, which has shortcomings (Nguyen
et al., 2021). ASCENT is the first attempt to build
a large-scale CSKB with assertions equipped with
semantic facets built upon the ideas of semantic
role labeling (Palmer et al., 2010).

KB visualization. Most CSKBs share their con-

tent via CSV files. Some, like ConceptNet4, We-
bChild5, Atomic6 and Quasimodo7, have a web por-
tal to visualise their assertions. The most common
way for CSKB visualisation is to use a single page
for each subject and group assertions by predicate
(e.g., in ConceptNet and WebChild). Quasimodo,
on the other hand, implements a simple search in-
terface to filter assertions and presents assertions
in a tabular way (Romero and Razniewski, 2020).
The ASCENT demo has both functionalities: ex-
hibiting assertions of each concept in a separated
page, and supporting assertion filtering. Our demo
also uses an SVG-based visualisation of assertions
with semantic facets, which are a distinctive feature
of the ASCENT knowledge model.

Context in LM-based question answering.
Priming large pretrained LMs with context in
QA-like tasks is a relatively new line of research
(Petroni et al., 2020; Guu et al., 2020). In our orig-
inal paper, we made the first attempt to evaluate
the contribution of CSKB assertions to QA via four
different setups based on that idea. While others
use commonsense knowledge for (re-)training lan-
guage models (Hwang et al., 2021; Ilievski et al.,
2021; Ma et al., 2021; Mitra et al., 2020), to the
best of our knowledge, our demo system is the first
to visualize the effect of priming vanilla language
models, i.e., without task-specific retraining.

6 Conclusion

We presented a web portal for a state-of-the-art
commonsense knowledge base—the ASCENT KB.
It allows users to fully explore and search the
CSKB, inspect the construction process of each
assertion, and observe the impact of structured
CSKBs on different QA tasks. We hope that the
portal enables interesting interactions with the AS-
CENT methodology, and that the QA demo allows
researchers to explore the potentials of combining
structured data with pre-trained language models.
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Abstract
Scientific knowledge is evolving at an unprece-
dented rate of speed, with new concepts con-
stantly being introduced from millions of aca-
demic articles published every month. In this
paper, we introduce a self-supervised end-to-
end system, SciConceptMiner, for the auto-
matic capture of emerging scientific concepts
from both independent knowledge sources
(semi-structured data) and academic publica-
tions (unstructured documents). First, we
adopt a BERT-based sequence labeling model
to predict candidate concept phrases with self-
supervision data. Then, we incorporate rich
Web content for synonym detection and con-
cept selection via a web search API. This
two-stage approach achieves highly accurate
(94.7%) concept identification with more than
740K scientific concepts. These concepts are
deployed in the Microsoft Academic1 produc-
tion system and are the backbone for its seman-
tic search capability.

1 Introduction

Scientific knowledge has been expanded at an ex-
ponential rate over the past decades and the fast-
growing volume of academic literature accentu-
ates a pressing need for automated capture of fine-
grained emerging concepts. Statistical topic mod-
els (Blei, 2012), such as latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003), have been well-
recognized for automatically extracting the topic
structure of large document collections for past
decades. However, it has two main limitations to
prevent it from being widely applied in a modern
large-scale document collection.

First, it is the scalability issue on the number of
topics an LDA can model. The latest development
(Chen et al., 2018) can process 131M documents
with 28B tokens efficiently, however, it only ex-
tracts 1,722 topics. With the fast-growing body

1https://academic.microsoft.com/

Figure 1: Trending Topics under concept Embedding.

of scholarly communications, a comprehensive
manually controlled vocabulary like Medical Sub-
ject Headings(MeSH) (Lowe and Barnett, 1994)
contains tens of thousands of subjects (concepts)
mostly in the bio-med domain; and an automated
scientific knowledge exploration system such as
Microsoft Academic Graph (MAG) (Shen et al.,
2018) has hundreds of thousands of topics across
all academic disciplines. A topic modeling system
that is scalable not only to the size of documents
but also to the number of topics is imperative.

Second, the result of an LDA model is a list of
frequency-based terms that form a topic. It requires
manual efforts to annotate such lists to generate
a human-readable theme or topic name. An au-
tomatic process of identifying topic themes with
authoritative names and meaningful descriptions is
desired to reduce costly human interventions.

In this paper, we introduce a self-supervised
end-to-end system, SciConceptMiner, for automat-
ically discovering scientific concepts from both
semi-structured independent knowledge sources
and unstructured academic documents. It first
obtains a list of concept candidates, either
from external knowledge repositories such as
Wikipedia (Völkel et al., 2006; Vrandečić and
Krötzsch, 2014) and Unified Medical Language
System (UMLS) (Bodenreider, 2004), or directly
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Figure 2: An overview of the SciConceptMiner system.

mining concepts from a collection of academic
documents. Such concept lists are large and noisy.
They are in the scale of millions and dominated
by invalid or duplicate terms. We then send these
candidates as queries to a search engine API and
leverage rich Web content to identify legitimate
concepts, cluster synonyms, and discard improper
terms. The search API is also used to retrieve high-
quality concept descriptions.

One example is shown in Figure 1.2 Four out
of five trending topics (network embedding, triplet
loss, network representation learning, and zero shot
learning) under embedding are extracted by our
automatic concept extractor model trained on CS
corpus. It demonstrates that our designed model
can effectively capture the emerging trending topics
from the latest scientific articles.

The SciConceptMiner has been deployed to
identify concepts from millions of scholarly com-
munications in Microsoft Academic Graph (MAG)
(Sinha et al., 2015; Wang et al., 2019, 2020). The
MAG with the full list of 740K scientific concepts
can be freely accessed via the Microsoft Academic3

search website and MAG data set4.

2 System Description

As shown in Figure 2, the SciConceptMiner sys-
tem has two stages: the first is the concept can-
didates discovery from various data sources; the

2
This is a snapshot captured in March 2021 for Embedding concept at Microsoft Aca-

demic production system: https://academic.microsoft.com/topics/41608201.
3https://academic.microsoft.com/
4https://docs.microsoft.com/en-us/

academic-services/graph/

second is synonym detection and concept cluster-
ing via a Web search API.

In the concept candidates discovery stage, we
first integrate the semi-structured independent
knowledge sources, Wikipedia and UMLS, into
the system. Such an existing concept list in the
system with associated documents enables us to
train a concept extractor learning model with self-
supervision. We design a BERT-based sequence
labeling model to make a binary prediction on
whether a word or phrase in a sentence is a scien-
tific concept or not. This proposed model is trained
on self-supervised data generated from existing
concepts (from Wikipedia and UMLS) tagged to a
collection of academic documents. We do the con-
cept inference with the trained model to generate
concept candidates for the next stage.

Concept candidates, as the input to the sec-
ond stage, are either from external knowledge
sources or inferred from academic documents.
Both sources have high noisy ratios with different
natures. The independent source such as Wikipedia
has high-quality entities (well-defined names and
descriptions, rare duplication, and rich links and
relationships with each other) but type noisy (many
other types of entities than academic concepts).
The UMLS candidates and the inferred candidates
from an unstructured corpus have more irrelevant
phrases and concept synonyms. With the help of a
search engine API to retrieve top N documents by
using concept candidates as queries, we analyze the
returning web pages and associated URL domain
information collectively. This process would iden-
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tify around 3-5% of candidates from the first stage
as proper scientific concepts with consistently high
accuracy (94-95% based on sample results) across
all data sources, with over 740K concepts in total.

2.1 Concept Candidate Discovery

2.1.1 Semi-structured Independent
Knowledge Sources

There are many independent knowledge sources,
either manually curated or automatically created or
a hybrid of both. Among them, the most notable
ones are Wikipedia, WikiData5, DBpedia6, and
Yago7 in general domains and MeSH8, UMLS9 in
the bio-med fields. We have applied Wikipedia
and UMLS as sources for SciConceptMiner system
because of their data quality and comprehensive
coverage on scientific terms and phrases. Other
semi-structured sources can be integrated with the
current system design seamlessly as long as they
pass the quality and relevancy examination of their
contents.

Wikipedia: Wikipedia10 is the largest collabo-
ratively edited online encyclopedic knowledge. It
contains contents in more than 300 languages and
has over 6 million English articles as of July 2020.
It was the first external data source being integrated
into MAG considering its comprehensive coverage
on academic topics spanning from social sciences
to natural sciences, as well as technology and ap-
plied sciences. Each topic in Wikipedia (as a sepa-
rate article) is written in high quality and has rare
duplication (Lewoniewski, 2018). The key chal-
lenge of mining quality academic concepts from
Wikipedia is to identify the right type of entities, as
most articles in Wikipedia are missing entity type
information. We used graph link analysis (Milne
and Witten, 2008) for type prediction and had ex-
panded the concepts from an initial 3K to over
200K. The details are described in the Concept Dis-
covery section in (Shen et al., 2018). For concepts
from Wikipedia, we did not use the search engine
API to further filter as the resulting concept list is
already with high quality and rare duplication.

UMLS:
The Unified Medical Language System (UMLS)

5https://www.wikidata.org/
6https://wiki.dbpedia.org/
7https://yago-knowledge.org/
8https://www.nlm.nih.gov/mesh/meshhome.

html
9https://www.nlm.nih.gov/research/

umls/index.html
10https://www.wikipedia.org/

is a repository of biomedical vocabularies devel-
oped by the US National Library of Medicine
(NLM) with sources from multiple datasets and
standards. The latest 2020AA release contains
approximately 4.28 million medical concepts and
15.5 million unique concept names from over 200
sources. A system with large, complex data sources
typically has various inherent limitations on the
data quality. For UMLS, these include structural
inconsistencies such as cycles in graph hierarchy,
semantic inconsistencies between different vocabu-
laries, and missing hierarchical relationships (Bo-
denreider, 2004, 2007; Humphreys et al., 1998).

In the concept candidate discovery stage, we take
the full list of the concept names from UMLS and
first clean it with simple rules such as removing
digit-only terms, two-char terms, too long terms
(over 30 chars), etc. We further filter the remain-
ing terms with a corpus consisting of titles and
abstracts from 170 million English scientific arti-
cles in MAG and only keep terms that appeared
at least N times in above academic corpus. The
resulting list is ready to be sent to a search engine
API for duplication detection and concept selection
in the second stage.

2.1.2 Self-supervised Concept Extractor
Learning

The volume of new research being published is
rapidly increasing, with MAG adding over 1 mil-
lion new papers every month. This creates a unique
challenge to identify, describe, and categorize an
ever-evolving set of emerging concepts in a timely
fashion.

To tackle this challenge, we formulate the con-
cept detection as a self-supervised sequence label-
ing problem that allows us to extract concept can-
didates directly from unstructured academic docu-
ments. This is motivated by the recent development
of deep learning (DL) based Named Entity Recog-
nition (NER) models, which become dominant and
achieve state-of-the-art results (Lample et al., 2016;
Chiu and Nichols, 2016; Yadav and Bethard, 2019).
NER is the task of identifying named entities of a
specific type, such as person or location, in text. A
most recent survey (Li et al., 2020) proposed a new
taxonomy of DL-based NER with three parts: dis-
tributed representations for input, context encoder,
and tag decoder. We adopt this taxonomy to design
our concept extractor learning model.

Instead of a typical NER model which would
learn to identify several entity types at the same
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Figure 3: Concept extractor learning with a BERT-
based sequence labeling model.

time, we reduce our model design to identify a sin-
gle entity type - scientific concept type. We propose
to treat scientific concept extraction as a sequence
labeling task. Tokens in the text are labeled with
the BIO notation. ‘B’, ‘I’, and ‘O’ represent the be-
ginning, inside, and outside of a scientific concept
chunk respectively. On a sampled set of scientific
articles in MAG, we do lexical matching using the
synonyms of our existing concepts harvested from
Wikipedia and UMLS as self-supervised labels. We
fine-tune a transformer-based BERT model (De-
vlin et al., 2018) (e.g. BERT-Large) as a con-
text encoder and use a Conditional Random Field
(CRF) layer as a tag decoder to train a binary clas-
sifier on each word in a sentence to detect concept
mentions.11 Figure 3 illustrates the design of our
concept extractor learning model. We infer scien-
tific concept candidates using the trained model on
a larger set of high-quality MAG documents, i.e.
those published in prestigious journals/conferences.
Figure 4 provides some self-supervised concept la-
beling samples as well as sample sentences with
inferred new concepts. These new concept candi-
dates are ready to be used in the next stage.

2.2 Synonym Detection and Concept
Selection

In the second stage, we classify the scientific con-
cept candidates detected in the first stage (either
from UMLS or from automatic concept extractor
models) into three broad categories: (1) synonyms
of existing concepts, (2) new concepts, or (3) low-
quality words/phrases we shall discard.

11
We re-use the BERT vocabularies and their pre-trained embedding without regenerat-

ing and retraining on academic corpus.

Figure 4: Self-supervised concept labeling samples.

This is accomplished by searching for each con-
cept candidate using the Bing Web Search API12

and clustering candidates into scientific concept
“identities” based on the URL relevance/reputation
and the consistency of the mentions among top
search results.

More specifically, if K out of top N URLs re-
turned by two concept candidates is the same, we
consider these two candidates are synonyms of
a concept. We also curate the allowed-list and
block-list of URL domains. The concept candi-
dates whose top search results are from well-known
domains of high-quality academic knowledge (in
the allowed-list) would be accepted, and otherwise,
they would be rejected. The block-list is used to
reject terms that also have results from domains in
the allowed list. That is usually the case for com-
mon words and phrases which returned with pages
in online dictionary domains.

This simple yet effective approach can help
trim around 92%-97% concept candidates as noisy
terms and keep 3%-7% of high-quality concepts,
synonyms, and well-written descriptions from do-
mains containing credible academic knowledge and
are in the allowed-list.

3 Evaluation and Analysis

3.1 Self-supervised concept extractor
learning

We use the BERT-Large-Cased as the pre-trained
language model and fine-tune the described con-

12
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
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cept extractor learner model with 4 epochs. We
generate the training corpus from MAG from CS
and Medicine domain respectively and split them
in 8:1:1 for train/dev/test. Table 1 shows the corpus
size used for training and inference.

Training Corpus CS Med

# of articles 500K 414K
# of sentences 3.4M 3.6M
# of tokens 72.8M 82.7M
# of concept tokens 8.9M 9.7M

Inference Corpus CS Med

# of articles 2.56M 2.07M
# of sentences 17.6M 18.1M
# of tokens 373.8M 413.4M
# of concept tokens 26.2M 91.2M

Inferred Concept Terms CS Med

# of distinct terms 1.06 M 4.66M
# of cur. concept terms 73,167 88,350
# of new concept terms 48,531 34,744
# of new distinct concepts 46,182 31,302
# of new terms for cur. concepts 16,021 11,389
# of discarded terms 921k 4.53K

Table 1: Training and Inference Corpus Stats.

To ensure that this model works for documents
across various scientific domains, we conduct ex-
periments training our model using documents in
different top domains (e.g. computer science and
medicine). We observe that higher-quality candi-
dates are generated using models trained from the
same domain corpus. For example, when we apply
the model trained with a CS corpus to predict con-
cepts in the medicine corpus, the F1 score drops
from 0.942 to 0.682. Therefore, we train different
models on the corpus from an individual top-level
domain, and the F1 scores of inference results on
in-domain and out-of-domain corpus are shown in
Table 2.

CS-Model Medicine-Model
CS-Test 0.942 0.649
Medicine-Test 0.682 0.912

Table 2: F1 scores of test sets on different models.

We have only conducted model training and in-
ference on CS and medicine corpus. Continued
training on other discipline corpora as well as ex-
ploring more effective concept extractor learning
models are among our ongoing efforts.

3.2 Concept Analysis Based on Data Sources
In this section, we conduct an evaluation of the
concept quality in terms of accuracy and coverage.
We estimate the coverage by evaluating potential
missed opportunities on discarded terms. We also
leverage MAG data to conduct the analysis of top
domain distribution and topic age distribution con-
ditioned on different data sources.

The stats in this section are collected on four
groups of concepts by their data sources: Wikipedia,
UMLS, automatically extracted concepts on Com-
puter Science (AutoCS or A-CS) and Medicine
(AutoMed or A-Med) corpus respectively. Since
the concepts discovered in SciConceptMiner are
already integrated into MAG, we use the paper-
concept relationship, concept hierarchy, and paper
metadata such as publication year in MAG to fa-
cilitate this analysis. The details on how to obtain
these relationships and meta-data are out of the
scope of this work and please refer to (Wang et al.,
2019; Shen et al., 2018) for more information.

3.2.1 Size, Impact, and Accuracy
In Table 3, we report the number of concepts, av-
erage number of papers associated with a concept,
average citation received of a paper tagged with
a concept, as well as the accuracy of concepts.
The independent knowledge sources (Wikipedia
and UMLS) provide similar topic sizes on a scale
of hundreds of thousands, while the automatic ex-
traction models identify about one-tenth of the size
from external sources. On average, the concepts
from Wikipedia are broader (with more papers as-
sociated) and have a higher impact (with more ci-
tations received), while concepts from UMLS are
more fine-grained with slightly smaller influence.
We evaluate the accuracy with the same approach
described in (Shen et al., 2018) and it achieves
a similar accuracy level between 94% and 95%
across all data sources.

Data Source Size Paper Cit. Acc.
Wiki 226,466 3,386 15.6 94.8%
UMLS 433,468 59 9.1 94.5%
AutoCS 46,182 1,462 10.1 94.8%
AutoMed 31,302 1,498 10.7 94.2%

Table 3: Concept size, impact, and accuracy.

3.2.2 Potential Opportunities on Discarded
Contents

It is generally challenging to evaluate the cover-
age of such a large-scale concept discovery system
since it is nearly impossible to identify the “ground
truth” of full coverage, even in a narrowed sub-
domain. In order to estimate the coverage, we iden-
tify the potential opportunities that we may have
missed by sampling and inspecting the discarded
inferred terms from learned concept extractor mod-
els. We sample 300 discarded terms in AutoCS and
AutoMed respectively and report the size and accu-
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racy13 in Table 4. In all terms with a positive label,
roughly one quarter to one third are new concepts
not in the current system, and the remaining 66%
to 75% are synonyms. Hence, we estimate that we
might have missed about 100K concepts and 200K
synonyms from the inference results of our concept
extractor models.

Source Discarded Size Accuracy
Auto-CS terms 4.53 M 3.3%
Auto-Med terms 921 K 12.7%

Table 4: Discarded term size and accuracy.

3.2.3 Topic Domain Distribution
About 75% of 740K concepts in MAG are orga-
nized into a six-level DAG (directed acyclic graph)
structure taxonomy, with top two levels manually
curated (19 domains and 270 sub-domains). We
use this taxonomy to aggregate all concepts to top-
level 19 domains and report the percentage distri-
bution on top 5 domains per data source and for
all concepts. As shown in Table 5, Bio-Med-Chem
3 domains dominate all concepts (67%),Wikipedia
(51%), UMLS (90%), and auto-extracted AutoMed
(73%). Technology and applied sciences such as
Computer Science and Material Science are the
second biggest categories for all concepts. These
two applied sciences together with Mathematics
and Engineering dominate the AutoCS data source
(58%).

ALL Wiki UMLS AutoCS AutoMed

Bio 28.4% 28.3% 35.4% - 41.3%
Med 24.2% 11.0% 35.9% 7.5% 16.2%
Chem 14.7% 11.6% 18.6% - 15.3%
ComSci 7.0% 9.3% - 25.8% 4.9%
MatSci 5.1% - 2.6% 13.8% 7.8%
Math - 6.0% - 8.5% -
Engr - - - 9.3% -
Other 20.7% 33.9% 7.5% 35.0% 14.5%

Table 5: Top domain distribution of concepts.

3.2.4 Topic Age Distribution
In Table 6, we report the average age of the papers
associated with a concept. The average publication
year (rounded off to the floor), as well as 5%, 50%
(the median), and 95% publication year of a con-
cept are also reported. It shows that concepts from
UMLS are generally discovered and used in ear-
lier years, lasting longer (25 years for the middle
90%), while AutoCS and AutoMed contain newer
concepts with shorter life span (17-18 years for the
middle 90%).

13
We split the sampled data of each category to 3 groups with 100 each and they are

evaluated by 3 judges. We report the average of positive label ratios.

Source Age Avg Y 5% Y 50% Y 95% Y
Wiki 18.2 2002 1983 2003 2013
UMLS 21.0 1999 1982 1997 2007
A-CS 14.1 2006 1990 2008 2017
A-Med 15.7 2004 1989 2006 2016

Table 6: Age distribution of concepts.

Figure 5 provides a yearly distribution from 2010
to 2019. It represents the percentage of papers
(associated with concepts in respective sources)
over the past 10 years.14 This is consistent with
our expectation as one of our primary goals of
leveraging the automatic concept extraction is to
discover emerging concepts in the latest scientific
documents.

Figure 5: Concept Age Distribution 2010-2019.

4 Conclusion

In this work, we demonstrated a large-scale scien-
tific concept discovery production system, SciCon-
ceptMiner, for automatically capturing academic
concepts from both semi-structured data and un-
structured documents. The system has two parts:
the first is the concept candidate identification,
and the second is synonym detection and concept
selection. We used a BERT-based sequence la-
beling model to learn concept phrases with self-
supervision and leverage a Web search API to clus-
ter synonyms and identify valid concepts.

SciConceptMiner has discovered more than
740K scientific concepts across all research do-
mains from Wikipedia, UMLS, and scholarly arti-
cles with high accuracy (94.7%). These concepts
are integrated to build the Microsoft Academic
Graph, which publishes one of the largest cross-
domain scientific taxonomy. It enables easy explo-
ration of scientific knowledge as well as facilitates
many downstream applications like information re-
trieval, question answering, and recommendations.

14
Please note that the percentage of papers of each year is calculated by dividing by all

papers for a source. Since the earlier years’ distributions are very close, we do not plot them.
The sum of each source over the past 10 years is less than 1.

53



References
David M Blei. 2012. Probabilistic topic models. Com-

munications of the ACM, 55(4):77–84.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl 1):D267–
D270.

Olivier Bodenreider. 2007. The unified medical lan-
guage system what is it and how to use it? Tutorial
at Medinfo.

Jianfei Chen, Jun Zhu, Jie Lu, and Shixia Liu. 2018.
Scalable training of hierarchical topic models. Pro-
ceedings of the VLDB Endowment, 11(7):826–839.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Betsy L Humphreys, Donald AB Lindberg, Harold M
Schoolman, and G Octo Barnett. 1998. The unified
medical language system: an informatics research
collaboration. Journal of the American Medical In-
formatics Association, 5(1):1–11.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Włodzimierz Lewoniewski. 2018. Measures for qual-
ity assessment of articles and infoboxes in mul-
tilingual wikipedia. In International Conference
on Business Information Systems, pages 619–633.
Springer.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering.

Henry J Lowe and G Octo Barnett. 1994. Understand-
ing and using the medical subject headings (mesh)
vocabulary to perform literature searches. Jama,
271(14):1103–1108.

David Milne and Ian H Witten. 2008. Learning to link
with wikipedia. In Proceedings of the 17th ACM
conference on Information and knowledge manage-
ment, pages 509–518.

Zhihong Shen, Hao Ma, and Kuansan Wang. 2018.
A web-scale system for scientific knowledge explo-
ration. arXiv preprint arXiv:1805.12216.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Dar-
rin Eide, Bo-June Hsu, and Kuansan Wang. 2015.
An overview of microsoft academic service (mas)
and applications. In Proceedings of the 24th inter-
national conference on world wide web, pages 243–
246.

Max Völkel, Markus Krötzsch, Denny Vrandecic,
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Abstract

NeurST is an open-source toolkit for neural
speech translation. The toolkit mainly fo-
cuses on end-to-end speech translation, which
is easy to use, modify, and extend to ad-
vanced speech translation research and prod-
ucts. NeurST aims at facilitating the speech
translation research for NLP researchers and
building reliable benchmarks for this field. It
provides step-by-step recipes for feature ex-
traction, data preprocessing, distributed train-
ing, and evaluation. In this paper, we will in-
troduce the framework design of NeurST and
show experimental results for different bench-
mark datasets, which can be regarded as reli-
able baselines for future research. The toolkit
is publicly available at https://github.

com/bytedance/neurst and we will con-
tinuously update the performance of NeurST
with other counterparts and studies at https:
//st-benchmark.github.io/.

1 Introduction

Speech translation (ST), which translates audio sig-
nals of speech in one language into text in a foreign
language, is a hot research subject nowadays and
has widespread applications, like cross-language
videoconferencing or customer support chats.

Traditionally, researchers build a speech transla-
tion system via a cascading manner, including an
automatic speech recognition (ASR) and a machine
translation (MT) subsystem (Ney, 1999; Casacu-
berta et al., 2008; Kumar et al., 2014). Cascade sys-
tems, however, suffer from error propagation prob-
lems, where an inaccurate ASR output would theo-
retically cause translation errors. Owing to recent
progress of sequence-to-sequence modeling for
both neural machine translation (NMT) (Bahdanau
et al., 2015; Luong et al., 2015; Vaswani et al.,
2017) and end-to-end speech recognition (Chan
et al., 2016; Chiu et al., 2018; Dong et al., 2018),

it becomes feasible and efficient to train an end-to-
end direct ST model (Berard et al., 2016; Duong
et al., 2016; Weiss et al., 2017). This end-to-end
fashion attracts much attention due to its appealing
properties: a) modeling without intermediate ASR
transcriptions obviously alleviates the propagation
of errors; b) a single and unified ST model is bene-
ficial to deployment with lower latency in contrast
to cascade systems.

Recent studies show that end-to-end ST models
achieve promising performance and are compara-
ble with cascaded models (Ansari et al., 2020). The
end-to-end solution has great potential to be the
dominant technology for speech translation, how-
ever challenges remain. The first is about bench-
marks. Many ST studies conduct experiments
on different datasets. Liu et al. (2019) evaluate
the method on TED English-Chinese; and Dong
et al. (2021) use libri-trans English-French and
IWSLT2018 English-German dataset; and Wu et al.
(2020) show the results on CoVoST dataset and
the FR/RO portions of MuST-C dataset. Different
datasets make it difficult to compare the perfor-
mance of their approaches. Further, even for the
same dataset, the baseline results are not necessar-
ily kept consistent. Take the libri-trans English-
French dataset as an example. Dong et al. (2021)
report the pre-trained baseline as 15.3 and the result
of Liu et al. (2019) is 14.3 in terms of tokenized
BLEU, while Inaguma et al. (2020) report 15.5
(detokenized BLEU). The mismatching baseline re-
sults in an unfair comparison on the improvements
of their approaches. We think one of the primary
reasons is that the preprocessing of audio data is
complex, and the ST model training involves many
tricks, such as pre-training and data augmentation.

Therefore a reproducible and reliable benchmark
is required. In this work, we present NeurST ,
a toolkit for easily building and training end-to-
end ST models, as well as end-to-end ASR and
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NMT for cascade systems. We implement state-of-
the-art Transformer-based models (Vaswani et al.,
2017; Karita et al., 2019) and provide step-by-step
recipes for feature extraction, data preprocessing,
model training, and inference for researchers to
reproduce the benchmarks. Though there exist
several counterparts, such as Lingvo (Shen et al.,
2019), fairseq-ST (Wang et al., 2020a) and Kaldi 1

style ESPnet-ST (Inaguma et al., 2020), NeurST
is specially designed for speech translation tasks,
which encapsulates the details of speech processing
and frees the developers from data engineering. It
is easy to use and extend. The contributions of this
work are as follows:

• NeurST is designed specifically for end-to-
end ST, with clean and simple code. It is
lightweight and independent of Kaldi, which
simplifies installation and usage, and is more
compatible for NLP researchers.

• We report strong benchmarks with well-
designed hyper-parameters and show best
practice on several ST corpora. We provide a
series of recipes to reproduce them, which
serves as reliable baselines for the speech
translation field.

2 Design and Features

NeurST is implemented with both TensorFlow2
and PyTorch backends. In this section, we will
introduce the design components and features of
this toolkit.

2.1 Design

NeurST divides one running job into four compo-
nents: Dataset, Model, Task and Executor.

Dataset NeurST abstracts out a common inter-
face Dataset for data input. For example, we
can train a speech translation model from either
a raw dataset tarball or pre-extracted record files.
The Dataset iterates on the data files and stan-
dardizes the read records, e.g., ST tasks only accept
key-value pairs storing audio signals/features and
translations. One can implement their logic to ac-
cept the data of various modalities.

Model NeurST provides an optimal implementa-
tion of Transformer and its adaptation to speech-
to-text tasks, which achieve state-of-the-art per-
formance on standard benchmarks. Moreover,

1https://kaldi-asr.org/

one can customize various models using Tensor-
Flow2/PyTorch APIs or combine the encoders, de-
coders, and layers inside the NeurST .

Task NeurST abstracts out Task interface to
bridge Dataset and Model. In detail, Task de-
fines data pipelines to match the data samples from
Dataset to the input formats of Model. For
examples, ST task does tokenization on the text
translations and transforms each token to index. In
this way, user-defined Dataset and Model can
be efficiently integrated into NeurST , as long as
they share the same Task.

Executor NeurST provides the execution logic
for handling basic workflows of training, valida-
tion, and inference. Researchers can either define
their specific process of training and evaluation,
or pay less attention to API details in Executor
but reuse them by simply customizing Dataset,
Model and Task.

2.2 Features

Computation NeurST has high computation ef-
ficiency and it can be further optimized by en-
abling mixed-precision (Micikevicius et al., 2018)
and XLA (Accelerated Linear Algebra). Further-
more, NeurST supports fast distributed training
using Horovod (Sergeev and Balso, 2018) and
Byteps (Peng et al., 2019; Jiang et al., 2020) on
large-scale scenarios.

Data Preprocessing NeurST supports on-the-fly
data preprocessing via a number of lightweight
python packages, like python speech features2 for
extracting audio features (e.g. mel-frequency cep-
stral coefficients and log-mel filterbank coeffi-
cients). And for text processing, NeurST inte-
grates some effective tokenizers, including moses
tokenizer3, byte pair encoding (BPE) (Sennrich
et al., 2016b) and SentencePiece4. Alternatively,
the training data can be preprocessed and stored in
binary files (e.g., TFRecord) beforehand, which is
guaranteed to improve the I/O performance during
training. Moreover, to simplify such operations,
NeurST provides the command-line tool to create
such record files, which automatically iterates on

2https://github.com/jameslyons/python_
speech_features

3The python version: https://github.com/
alvations/sacremoses

4https://github.com/google/
sentencepiece

56



various data formats defined by Dataset, prepro-
cesses data samples according to Task and writes
to the disk.

Transfer Learning NeurST supports initializing
the model variables from well-trained models as
long as they have the same variable names. As
for ST, we can initialize the ST encoder with a
well-trained ASR encoder and initialize the ST
decoder with a well-trained MT decoder, which
facilitates to achieve promising improvements. Be-
sides, NeurST also provides scripts for convert-
ing released models from other repositories, like
wav2vec2.0 (Baevski et al., 2020) and BERT (De-
vlin et al., 2019). Researchers can conveniently
integrate these pre-trained components to the cus-
tomized models.

Simultaneous Translation NeurST keeps up
with the recent progress of simultaneous translation.
The models are extended to train with streaming
audio or text input.

Validation while Training NeurST supports
customizing validation process during training. By
default, NeurST offers evaluation on development
data during training and keeps track of the check-
points with the best evaluation results.

Monitoring NeurST supports TensorBoard for
monitoring metrics during training, such as training
loss, training speed, and evaluation results.

Model Serving There is no gap between the
research models and production models under
NeurST , while they can be easily served with
TensorFlow Serving. Moreover, for higher per-
formance serving of standard transformer models,
NeurST is able to integrate with other optimized in-
ference libraries, like lightseq (Wang et al., 2021).

3 Speech Translation Benchmarks

We conducted experiments on several benchmark
speech translation corpora using NeurST and com-
pared the performance with other open-source
codebases and studies. Though that would be an
unfair comparison due to the different model struc-
tures and hyperparameters, the goal of NeurST is
to provide strong and reproducible benchmarks for
future research.

3.1 Datasets
We choose the following publicly available speech
translation corpora that include speech in a source

task init scale end scale decay at decay steps

MT 1.0 1.0 - -
ASR 3.5 2.0 50k 50k
ST 3.5 1.5 50k 50k

Table 1: Hyperparameters of the learning rate schedule.
Take the case of ST, the learning rate is scaled up by
3.5x for the first 50k steps. Then, we linearly decrease
the scaling factor to 1.5 for 50k steps.

language aligned to text in a target language:
libri-trans (Kocabiyikoglu et al., 2018) 5 is a small
EN→FR dataset which was originally started from
the LibriSpeech corpus, the audiobook recordings
for ASR (Panayotov et al., 2015). The English ut-
terances were automatically aligned to the e-books
in French, and 236 hours of English speech aligned
to French translations at utterance level were fi-
nally extracted. It has been widely used in previous
studies. As such, we use the clean 100-hour por-
tion plus the augmented machine translation from
Google Translate as the training data and follow its
split of dev and test data.
MuST-C (Di Gangi et al., 2019)6 is a multilingual
speech translation corpus from English to 8 lan-
guages: Dutch (NL), French (FR), German (DE),
Italian (IT), Portuguese (PT), Romanian (RO), Rus-
sian (RU) and Spanish (ES). MuST-C comprises
at least 385 hours of audio recordings from En-
glish TED talks with their manual transcriptions
and translations at sentence level for training, and
we use the dev and tst-COMMON as our develop-
ment and test data, respectively. To the best of our
knowledge, MuST-C is currently the largest speech
translation corpus available for each language pair.

3.2 Data Preprocessing

Beyond the officially released version, we per-
formed no other audio to text alignment and data
cleaning on libri-trans and MuST-C datasets.

For speech features, we extracted 80-channel log-
mel filterbank coefficients with windows of 25ms
and steps of 10ms, resulting in 80-dimensional fea-
tures per frame. The audio features of each sample
were then normalized by the mean and the standard
deviation. All texts were segmented into subword
level by first applying Moses tokenizer and then
BPE. In detail, we removed all punctuations and
lowercased the sentences in the source side while

5https://github.com/alicank/
Translation-Augmented-LibriSpeech-Corpus

6https://ict.fbk.eu/must-c/
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Model tok detok

Cascade ESPnet-ST ASR transf-s + CTC→MT (Inaguma et al., 2020)† - 17.0

NeurST ASR transf-s→MT 18.2 16.8

End-to-End

ST BiLSTM (Bahar et al., 2019) 17.0 16.2
ST transf-s (Liu et al., 2019) 14.3 -
ST transf-s + KD (Liu et al., 2019) 17.0 -
ESPnet-ST ST transf-s (Inaguma et al., 2020)† - 16.7
TCEN-LSTM (Wang et al., 2020b)[ - 17.1
ST transf-s (Wang et al., 2020c) 16.0 -
ST transf-s + curriculum pre-training (Wang et al., 2020c) 17.7 -
LUT (Dong et al., 2021) 17.8 -

NeurST ST transf-s 18.7 17.2

Table 2: Case-insensitive BLEU scores on libri-trans test set under constrained setting (without additional ASR
and MT data). †Notably, we refer to the results presented in espnet/egs/libri trans/st1 and consider
them as detokenized BLEU according to the evaluation script in the repository7. [ The result of TCEN-LSTM is
also marked as detokenized BLEU due to its implementation on ESPnet-ST.

Model DE ES FR IT NL PT RO RU avg.

Cascade
ESPnet-ST ASR transf-s + CTC→MT
(Inaguma et al., 2020) 23.7 28.7 33.8 24.0 27.9 29.0 22.7 16.4 25.8

NeurST ASR transf-s→MT 23.4 28.0 33.9 23.8 27.1 28.3 22.2 16.0 25.3

End-to-End

ESPnet-ST ST transf-s (Inaguma et al., 2020) 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.8 25.1
fairseq-ST ST transf-s (Wang et al., 2020a) 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 24.8
ST transf-base + AFSt,f (Zhang et al., 2020) 22.4 26.9 31.6 23.0 24.9 26.3 21.0 14.7 23.9

NeurST ST transf-s 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 24.9

Table 3: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON.

the cases and punctuations of target sentences were
reserved. The BPE rules were jointly learned with
8,000 merge operations and shared across ASR,
MT, and ST tasks.

3.3 Benchmark Models

We implemented Transformer (Vaswani et al.,
2017), the state-of-the-art sequence-to-sequence
model, for all our tasks.

In detail, for MT in cascade systems, the model
included 6 layers for both encoder and decoders.
The embedding dimension was 256, and the size of
hidden units in feedforward layer was 2,048. The
attention head for self-attention and cross-attention
was set to 4. We used Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.98 and ap-
plied the same schedule algorithm as Vaswani et al.
(2017) for learning rate. We trained the MT models
with a global batch size of 25,000 tokens.

As for ASR/ST, we referred to the recent
progress of Transformer-based end-to-end ASR

7multi-bleu-detok.perl in https:
//github.com/espnet/espnet/blob/master/
utils/score_bleu.sh

models (Dong et al., 2018; Karita et al., 2019) and
extended the basic transformer model to be compat-
ible with audio inputs. The audio frames were first
compressed by two-layer CNN with 256 channels,
3× 3 kernel and stride size 2, each of which was
followed by a layer normalization. Then, we per-
formed a linear transformation on the compressed
audio representations to match the width of the
transformer model. We used the same model struc-
ture as MT, except that we enlarged the number
of encoder layers to 12 to obtain better perfor-
mance. This configuration is labeled as transf-s
(transformer small). For training, we used the same
Adam optimizer as MT but set the warmup steps to
25,000, and we empirically scaled up the learning
rate to accelerate the convergence. The hyperpa-
rameters of the learning rate schedule are listed in
Table 1. Moreover, for GPU memory efficiency,
we truncated the audio frames to 3,000 and re-
moved training samples whose transcription length
exceeded 120 and 150 for ASR and ST, respectively.
The ASR models were trained with 120,000 frames
per batch, while the batch size for ST was 80,000
frames. To further improve the performance of ST,
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Model tok detok

Cascade
NeurST ASR transf-s→MT 17.4 16.0

End-to-End
NeurST ST transf-s 17.8 16.3
ST transf-base + AFSt,f♦

18.6 17.2

Table 4: Case-sensitive BLEU scores on libri-trans
test set under constrained setting. ♦is from Zhang
et al. (2020) with the proposed adaptive feature selec-
tion method, which uses the transformer base setting
(embedding size=512).

we applied SpecAugment technique (Park et al.,
2019) with frequency masking (mF = 2, F = 27)
and time masking (mT = 2, T = 70, p = 0.2).

Additionally, we applied label smoothing of
value 0.1 for training all three tasks. The encoder
of the ST model is initialized by the ASR encoder
by default unless noted.

3.4 Evaluation
For evaluation, we averaged the latest 10 check-
points and used a beam width of 4 with no length
penalty for all the above tasks.

We use word error rate (WER) to evaluate
ASR models and report case-sensitive detok-
enized BLEU8 for MT and ST models. In or-
der to compare with existing works, we also
report case-insensitive tokenized BLEU using
multi-bleu.perl in Moses for libri-trans
dataset.

3.5 Main Results
The overall results and comparisons with other stud-
ies are illustrated in Table 2 and 3. It is worth noting
that all results are from single models rather than
ensemble models.

To make a fair comparison on libri-trans cor-
pus, we list both tokenized and detokenized BLEU
scores in Table 2 and strive to distinguish the met-
ric of existing literature. Our transformer-based ST
model, which only applies ASR pre-training and
SpecAugment, achieves superior results versus re-
cent works about knowledge distillation (Liu et al.,
2019), curriculum pre-training (Wang et al., 2020c),
and LUT (Dong et al., 2021). Compared with the
counterpart ESPnet-ST, we also outperform by 0.5
BLEU, even though Inaguma et al. (2020) apply
additional techniques like speed perturbation, pre-
trained MT decoder, and CTC loss for ASR pre-

8https://github.com/mjpost/sacrebleu

Model NeurST ESPnet-ST

ST + ASR enc init. 16.5 15.5
+ MT dec init. 16.6 16.2

+ SpecAug. 17.2 16.7
ST + ASR enc init. + SpecAug. 17.2 -

Table 5: Case-insensitive detokenized BLEU scores on
libri-trans test set with difference setups.

Model NeurST ESPnet-ST

pure ST 18.6 -
+ ASR enc init. 21.9 21.8
+ MT dec init. 22.1 22.3
+ SpecAug. 23.3 22.9

ST + ASR enc init. + SpecAug. 22.8 -

Table 6: Case-sensitive detokenized BLEU scores on
MuST-C EN-DE tst-COMMON with difference setups.

training. The cascade baseline is slightly worse
than that of ESPnet-ST (-0.2 BLEU) because the
ASR+CTC can achieve lower WER (6.4)9 while
our pure end-to-end ASR obtains 8.8. We surpris-
ingly find that the end-to-end ST model exceeds the
cascade system by 0.4∼0.5 BLEU. We will discuss
this in detail in section 3.7. And as a supplemen-
tary benchmark, we present case-sensitive BLEU
scores in Table 4.

Table 3 illustrates the results on MuST-C tst-
COMMON. The results of our end-to-end ST model
are competitive with both fairseq-ST and ESPnet-
ST.

3.6 Ablation Study

Training a direct ST model is more complicated
than training an ASR or MT model. Our prelim-
inary experiment based on a pure end-to-end ST
model fails to converge on libri-trans corpus, which
can be the result of the data scarcity. To alleviate
this problem, pre-training some parts of the neural
network is the most effective way and has been
validated in all existing end-to-end ST studies. We
show our results in Table 5 and 6 as a reference
for future works. It turns out that we can obtain a
reasonable or even better BLEU score by simply
initializing the ST encoder with a pre-trained ASR
encoder. The improvement by MT decoder initial-
ization is relatively marginal in our setup. Further-
more, the SpecAugment technique can consistently
boost ST models.

9from https://github.com/espnet/espnet/
blob/master/egs/libri_trans/asr1/RESULTS.
md
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Model BLEU

large MT (w/ punc. & cased) 36.2
large MT (w/o punc.& lc) 34.3
large cascade ST 31.4
large end-to-end ST 29.7

Table 7: Case-sensitive detokenized BLEU scores on
MuST-C EN-DE tst-COMMON.

3.7 Cascade versus End-to-End

Previous experiments on libri-trans and MuST-C
NL/PT show that the end-to-end systems have out-
performed the cascade systems. Here we argue that
the performance of the cascade systems above is
hampered by a lack of quantitative data, and they
should take advantage of large amounts of ASR
and MT data separately. Hence, we further ex-
tended NeurST to large-scale scenarios and exper-
imented on the allowed datasets for IWSLT 2021
evaluation campaign10. We followed the practice
of Zhao et al. (2021) to build our large cascade
and end-to-end ST systems, which contains large-
scale back-translation (Sennrich et al., 2016a) and
pseudo labeling (also known as knowledge distil-
lation) technologies. The results are illustrated in
Table 7. As seen, there is a significant loss of
1.7 BLEU between end-to-end ST and cascade ST.
And the cascade system would have the potential
to narrow the gap to the pure MT system by intro-
ducing extra punctuation restoration and true-case
modules.

Though the cascade system is superior under
large data conditions, we believe future researches
on self-supervised learning, knowledge distillation,
and dataset construction would realize the potential
of end-to-end models.

4 Conclusion

We introduce NeurST toolkit for easily building
and training end-to-end speech translation models.
We provide straightforward recipes for audio data
pre-processing, training, and inference, which we
believe is friendly with NLP researchers. Moreover,
we report strong and reproducible benchmarks and
will continuously catch up on advanced progress us-
ing NeurST , which can be regarded as the reliable
baselines for the ST field.

10https://iwslt.org/2021/offline
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Abstract
With more than 7000 languages world-
wide, multilingual natural language process-
ing (NLP) is essential both from an academic
and commercial perspective. Researching ty-
pological properties of languages is fundamen-
tal for progress in multilingual NLP. Exam-
ples include assessing language similarity for
effective transfer learning, injecting inductive
biases into machine learning models or creat-
ing resources such as dictionaries and inflec-
tion tables. We provide ParCourE, an online
tool that allows to browse a word-aligned par-
allel corpus, covering 1334 languages. We
give evidence that this is useful for typologi-
cal research. ParCourE can be set up for any
parallel corpus and can thus be used for typo-
logical research on other corpora as well as for
exploring their quality and properties.

1 Introduction

While≈7000 languages are spoken (Eberhard et al.,
2020), the bulk of NLP research addresses English
only. However, multilinguality is an essential ele-
ment of NLP. It not only supports exploiting com-
mon structures across languages and eases mainte-
nance for globally operating companies, but also
helps save languages from digital extinction and
fosters more diversity in NLP techniques.

There are extensive resources that can be used
for massively multilingual typological research,
such as WALS (Dryer and Haspelmath, 2013), Glot-
tolog (Hammarstrm et al., 2020), BabelNet (Nav-
igli and Ponzetto, 2012) or http://panlex.org. Many
of them are manually created or crowdsourced,
which guarantees high quality, but limits coverage,
both in terms of content and languages.

We work on the Parallel Bible Corpus (PBC)
(Mayer and Cysouw, 2014), covering 1334 lan-
guages. More specifically, we provide a word-
aligned version of PBC, created using state-of-the-
art word alignment tools. As word alignments

Figure 1: Screenshot of the ParCourE interface. It pro-
vides a word-aligned version of the Parallel Bible Cor-
pus (PBC) spanning 1334 languages. Users can search
for sentences in any language and see their alignments
in other languages from MULTALIGN page. Alterna-
tively they can feed their parallel sentences to INTER-
ACTIVE view and see their word level alignments. They
can look up translations of words in other languages,
automatically induced from word alignments, from the
LEXICON view (This page is interconnected with MUL-
TALIGN). Statistics of the corpus is calculated and
shown in the Stats view.

themselves are only of limited use, we provide an
interactive online tool1 that allows effective brows-
ing of the alignments.

The main contributions of this work are: i) We
provide a word-aligned version of the Parallel Bible
Corpus (PBC) spanning 1334 languages and a total
of 20M sentences (‘verses’). For the alignment we
use the state-of-the-art alignment methods SimA-
lign (Jalili Sabet et al., 2020) and Eflomal (Östling
and Tiedemann, 2016a). ii) We release ParCourE,

1http://parcoure.cis.lmu.de/
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a user interface for browsing word alignments, see
the MULTALIGN view in Figure 1. We demon-
strate the usefulness of ParCourE for typological
research by presenting use cases in §6. iii) In addi-
tion to browsing word alignments, we provide an
aggregated version in a LEXICON view and com-
pute statistics that support assessing the quality of
the word alignments. The two views (MULTALIGN

and LEXICON views) are interlinked, resulting in a
richer user experience. iv) ParCourE has a generic
design and can be set up for any parallel corpus.
This is useful for analyzing and managing paral-
lel corpora; e.g., errors in an automatically mined
parallel corpus can be inspected and flagged for
correction.

2 Related Work

Word Alignment is an important tool for typolog-
ical analysis (Lewis and Xia, 2008) and annotation
projection (Yarowsky et al., 2001; Östling, 2015;
Asgari and Schütze, 2017). Statistical models
such as IBM models (Brown et al., 1993), Giza++
(Och and Ney, 2003), fast-align (Dyer et al., 2013)
and Eflomal (Östling and Tiedemann, 2016b) are
widely used. Recently, neural models were pro-
posed, such as SimAlign (Jalili Sabet et al., 2020),
Awesome-align (Dou and Neubig, 2021), and meth-
ods that are based on neural machine translation
(Garg et al., 2019; Zenkel et al., 2020). We use
Eflomal and SimAlign for generating alignments.

Resources. There are many online resources
that enable typological research. WALS (Dryer
and Haspelmath, 2013) provides manually created
features for more than 2000 languages. We pre-
pare a multiparallel corpus for investigating these
features on real data. http://panlex.org is an on-
line dictionary project with 2500 dictionaries cov-
ering 5700 languages and BabelNet (Navigli and
Ponzetto, 2012) is a large semantic network cover-
ing 500 languages, but their information is gener-
ally on the type level, without access to example
contexts. In contrast, ParCourE supports the explo-
ration of word translations across 1334 languages
in context.

Another line of work uses the Parallel Bible
Corpus (PBC) for analysis. Asgari and Schütze
(2017) investigate tense typology across PBC lan-
guages. Xia and Yarowsky (2017) created a mul-
tiway alignment based on fast-align (Dyer et al.,
2013) and extracted resources such as paraphrases
for 27 Bible editions. Wu et al. (2018) used align-

ments to extract names from the PBC.
One of the first attempts to index the Bible and

align words in multiple languages were Strong’s
numbers (Strong, 2009[1890]); they tag words with
similar meanings with the same ID. Mayer and
Cysouw (2014) created an inverted index of word
forms. Östling (2014) align massively parallel cor-
pora simultaneously. We use the Eflomal word
aligner by the same authorsostling2016efficient.

Finally, we review work on Word Alignment
Browsers. Gilmanov et al. (2014)’s tool supports
visualization and editing of word alignments. Ak-
bik and Vollgraf (2017) use co-occurrence weights
for word alignment and provide a tool for the in-
spection of annotation projection. Aulamo et al.
(2020)’s filtering tool increases the quality of
(mined) parallel corpora. Graën et al. (2017) rely
on linguistic preprocessing, target corpus and word
alignment exploration, do not show the graph of
alignment edges and do not provide a dictionary
view. While there is commonality with this prior
work, ParCourE is distinguished by both its func-
tionality and its motivating use cases: an important
use case for us are typological searches; linguis-
tic preprocessing is not available for many PBC
languages; ParCourE can be used as an interactive
explorer (but is not a fully-automated pipeline for
a specific use case); our goal is not annotation;
we use state-of-the-art word alignment methods.
However, much of the complementary functional-
ity in prior work would be useful additions to Par-
CourE. Another source of useful additional func-
tionality would be work on embedding learning
(Dufter et al., 2018; Kurfal and Östling, 2018) and
machine translation (Tiedemann, 2018; Santy et al.,
2019; Mueller et al., 2020) for PBC.

3 Features

ParCourE’s user facing functionality can be divided
into three main parts: MULTALIGN and LEXICON

views and interconnections between the two.

3.1 Multiparallel Alignment Browser:
MULTALIGN

ParCourE allows the user to search through the
parallel corpus and check word alignments in a
multiparallel corpus. An overview of MULTALIGN

is shown in Figure 2.
In the search field (a(1)), the user can enter a

text query and select (a(2)) multiple sentences for
alignment. For narrowing the search scope, the
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Figure 2: An overview of the MULTALIGN view. a)
Search field for selecting sentences [a(1)] and the list
of selected sentences [a(2)]. Any language can be used
for the source sentence – in this case, it is English. b)
Search bar for selecting the target languages. c) The
alignment graph for the selected sentences in the source
and the target languages. d) Switch button for simple
view / cluster view. e) Save and retrieve search results

language and edition of the text segment can be
specified in the beginning, e.g., by typing l:eng-
newworld2013. Similarly, v:40002017 specifies a
verse ID.

PBC has 1334, so showing alignments for all
translations of a sentence is difficult. We provide a
drop-down (b) to select a subset of target languages
for display.

For each sentence, a graph of alignment edges
between selected languages is shown (c). By hover-
ing over a word, the alignments of that word will be
highlighted. Above each alignment graph, there is
a button to switch between Simple view and Clus-
ter view (d). In the simple view, when hovering
over a word, only the alignment edges connected
to that word are highlighted; in the cluster view,
all words in a cluster (neighbors of neighbors) that
are aligned together will be highlighted. We do not
actually run any clustering algorithm on the align-
ment graph. Instead we simply highlight words that
are up to two hops away from the hovered word.
This helps spot a group of words across languages
that have the same meaning.

Creating queries for typology research can take
time. Thus, MULTALIGN allows the user to save
and retrieve (e) queries.

Figure 3: LEXICON view example: for the English
word “confusion”, there are five frequent translations in
German. “Unordnung” literally means “disorder” and
“Verwirrung” means “bewilderment”.

3.2 Lexicon View: LEXICON

The MULTALIGN view allows the user to focus on
word alignments on the sentence level and study the
typological structure of languages in context. The
LEXICON view focuses on word translations. The
user can specify a source language by selecting
the language code. This is to distinguish words
with the same spelling in different languages. The
user can search for one or multiple word(s) and
specify target language(s). A pie chart for each
target language depicting translations of the word
is generated. Figure 3 shows German translations
of “confusion” and the number of alignment edges
for each. Word alignments are not perfect, so pie
charts may also contain errors.

3.3 Interconnections

Both MULTALIGN and LEXICON views provide
important features to the user for exploring the par-
allel corpus. For many use cases (cf. §6), the user
may need to go back and forth between the views.
For example, if she notices an error in the word
alignment, she may want to check the LEXICON

statistics to see if one of the typical translations of
an incorrectly aligned word occurs in the sentence.

Thus, the two views are interconnected. In the
MULTALIGN view, the user will be transferred to
the LEXICON statistics of a word by clicking on
it. This will open the LEXICON view, showing the
search results for the selected word. Conversely,
if the user clicks on one of the target translations
in the LEXICON view, the MULTALIGN view will
show sentences where this correspondence is part
of the word alignment between source and target
translation.
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# editions 1758 # verses 20,470,892
# languages 1334 # verses / # editions 11,520

# tokens / # verses 28.6

Table 1: PBC corpus statistics

3.4 Alignment Generation View:
INTERACTIVE

The views mentioned so far provide the ability to
search over the indexed corpus. This is useful when
the main corpus of interest is fixed and the user has
generated its alignments.

The INTERACTIVE view allows the user to study
the alignments between arbitrary input sentences
that are not necessarily in the corpus. Since the
input sentences are not part of a corpus, INTERAC-
TIVE uses SimAlign to generate alignments for all
possible pairs of sentences. Similar to MULTAL-
IGN, the INTERACTIVE view shows the alignment
between the input sentences.

4 Experimental Setup

Corpus. We set up ParCourE on the PBC corpus
provided by Mayer and Cysouw (2014). The ver-
sion we use consists of 1758 editions (i.e., transla-
tions) of the Bible in 1334 languages (distinct ISO
639-3 codes). Table 1 shows corpus statistics. We
use the PBC tokenization, which contains errors
for a few languages (e.g., Thai). We extract word
alignments for all possible language pairs. Since
not all Bible verses are available in all languages,
for each language pair we only consider mutually
available verses.

PBC aligns Bible editions on the verse level by
using verse-IDs that indicate book, chapter and
verse (see below). Although one verse may contain
multiple sentences, we do not split verses into in-
dividual sentences and consider each verse as one
sentence.

Retrieval. Elasticsearch2 is a fast and scalable
open source search engine that provides distributed
fulltext search. The setup is straightforward using
an easy-to-use JSON web interface. We use it as the
back-end for ParCourE’s search requirement. We
find that a single instance is capable of handling the
whole PBC corpus efficiently, so we do not need a
distributed setup. For bigger corpora, a distributed
setup may be required. We created two types of
inverted indices for our data: an edge-ngram in-

2https://www.elastic.co/

dex to support search-as-you-type capability and a
standard index for normal queries.

Alignment Generation. SimAlign (Jalili Sabet
et al., 2020) is a recent word alignment method
that uses representations from pretrained language
models to align sentences. It has achieved bet-
ter results than statistical word aligners. For the
languages that multilingual BERT (Devlin et al.,
2019) supports, we use SimAlign to generate word
alignments. For the remaining languages, we use
Eflomal (Östling and Tiedemann, 2016a), an effi-
cient word aligner using a Bayesian model with
Markov Chain Monte Carlo (MCMC) inference.
The alignments generated by SimAlign are sym-
metric. We use atools3 and the grow-diag-final-and
heuristic to symmetrize Eflomal alignments.

Lexicon Induction. We exploit the generated
word alignments to induce lexicons for all 889,111
language pairs. To this end, we consider aligned
words as translations of each other. For a given
word from the source language, we count the num-
ber of times a word from the target language is
aligned with it. The higher the number of align-
ments between two words, the higher the probabil-
ity that the two have the same meaning. We filter
out translations with frequency less than 5%.

5 Backend Design

An overview of our architecture can be found in
Figure 4. The code is available online.4

Parallel Data Format. We use the PBC corpus
format (Mayer and Cysouw, 2014): each verse has
a unique ID across languages / editions, the verse-
ID. The verse-ID is an 8-digit number, consisting
of two digits for the book (e.g., 41 for the Gospel of
Mark), three digits for the Chapter, and two digits
for the verse itself. There are separate files for each
edition. In each edition file, a line consists of the
ID and the verse, separated by a tab.

Indexing. We identify a PBC verse using the
following format: {verse-ID}@{language-code}-
{edition-name}. We use this identifier to save and
retrieve sentences with Elasticsearch. In addition,
we store all metadata identifiers within Elastic-
search. Thus, we can search for a sentence by
keyword, sentence number (= verse-ID), language
code, or edition name.

ParCourE also supports the Corpus Alignment

3https://github.com/clab/fast_align
4https://github.com/cisnlp/parcoure
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Figure 4: Overview of the system architecture. We
use a standard front-end stack with d3.js for visual-
ization. The backend is written in Python, which we
use for computing alignments and performing analy-
ses such as lexicon induction. We use Elasticsearch
for search. The input is a multiparallel corpus for
which all alignments are precomputed. For speeding
up the system we use smart caching algorithms for our
analyses. Icons taken without changes from https:

//fontawesome.com/license.

Encoding (CES)5 format. One can download par-
allel corpora in CES format and use our tools to
adapt them to ParCourE’s input format.

Alignment Computation. Since Eflomal’s per-
formance depends on the amount of data it uses
for training, we concatenate all editions to create
a bigger training corpus for languages that have
more than one edition. If language l1 has two, and
language l2 three different editions, then the final
training corpus for this language pair will contain
six aligned edition pairs.

System Architecture. ParCourE is built on top
of modern open source technologies, see Figure 4.
The back-end uses the Flask web framework,6 Gu-
nicorn web server,7 and Elasticsearch.8 The front-
end utilizes the Bootstrap CSS framework,9 and
the d3 visualization library.10 Since all these tools
are free and open-source, there is no restriction on
setting up and releasing a new ParCourE instance.
To extract word alignments, one can use any tool,
such as Eflomal, fast align or SimAlign.

Performance Improvements. For good run-
time performance, we precompute the word align-
ments. Regarding LEXICON, given a query word
and a target language, ParCourE first looks for a
precomputed lexicon file; if it does not exist, Par-

5https://www.cs.vassar.edu/CES/
6https://flask.palletsprojects.com
7https://gunicorn.org/
8https://www.elastic.co/
9https://getbootstrap.com/

10https://d3js.org/

CourE obtains the translations for the query word
online. To accelerate the translation process, Par-
CourE employs Python’s multiprocessing library.
The number of CPU cores is decided online based
on the number of editions available for source and
target languages.

For a corpus with 1334 languages, we will end
up with 890,445 alignment files and the same num-
ber of lexicon files. We cache alignment / lexicon
files to speed up access. We use the Last Recently
Used (LRU) cache replacement algorithm.

6 ParCourE Use Cases

Languages differ in how they encode mean-
ings/functions. There are various aspects that make
such differences an interesting problem when deal-
ing with a dataset that has good coverage of the
entire variation of the world’s languages. (i) Many
such differences between languages are not widely
acknowledged in linguistic theory, so to document
the extent of variation becomes a discovery of sorts.
For example, the fact that interrogative words might
distinguish between singular and plural (Figure 6)
turns out to be a typologically salient differentiation
(Mayer and Cysouw, 2012). (ii) The variation of
linguistic marking is even stronger in the domain
of grammatical function, like the differentiation
between the interrogative and relative pronoun in
Figure 6. (iii) In lexical semantics, ParCourE sup-
ports the investigation of how languages carve up
the meaning space differently (cf. Figure 5), espe-
cially when it comes to the ≈1000 low-resource
languages covered in PBC. Massively parallel texts
are an ideal resource to investigate such variation
(Haspelmath, 2003).

Grammatical differences between languages,
like differences in word order, have a long his-
tory in research on worldwide linguistic variation
(Greenberg, 1966; Dryer, 1992). However, being
able to look at the usage of word order in specific
contexts (and being able to directly compare ex-
actly the same context across languages) is only
possible by using parallel texts. For example, spe-
cific orders of more than two elements can be di-
rectly extracted from the parallel texts, like the
order of demonstrative, numeral and noun “these
two commandments” in Figure 7 (Cysouw, 2010).

For lack of space, we describe four more use
cases only briefly: grammatical markers vs. mor-
phology as devices to express grammatical features
(Figure 8); differences in how languages use gram-
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Figure 5: Use case 1, lexical differentiation. French
“femme” has two different translations in English
(“wife” and “woman”) whereas German also conflates
the two different meanings.

Figure 6: Use case 2, grammatical differentiation. En-
glish “who” has three different translations in this Span-
ish example: relative pronoun (“que”), and singular
(“quién)” and plural (“quiénes”) interrogative pronoun.

matical case (Figure 9, ablative/dative in Latin can
correspond to five different cases in Croatian); and
exploration of paraphrases (Figure 10). See the
captions of the figures for more details.

7 Extension to Other Corpora

Our code is available on GitHub and can be generi-
cally applied: you can create a ParCourE instance
for your own parallel corpus. Parallel corpora are
essential for machine translation (MT); ParCourE’s
functionality is useful for analyzing the quality of
a parallel corpus and the difficulty of the transla-
tion problem it poses. We give three examples
i) Incorrect sentence alignments can be identified,
e.g., cases in which a target sentence is matched
with the merger of two sentences in the source:
cf. Figure 11 where a short sentence in English
is aligned with German and French sentences that
also contain a second sentence that is missing in
English. This functionality is particularly helpful
for mined parallel corpora that tend to contain er-

Figure 7: Use case 3, word order variation. The En-
glish order is demonstrative, numeral, noun whereas
Swahili has noun, demonstrative, numeral.

Figure 8: Use case 4, grammatical markers. In contrast
to English, Seychelles Creole does not inflect verbs for
tense and uses the past tense marker “ti” instead.

roneous sentence pairs. ii) Suppose an MT system
trained on the parallel corpus makes a lexical error
in a particular context c by mistranslating source
word ws with target word wt. The LEXICON view
can be consulted for ws and the user can then click
on the erroneous target word wt to get back to a
MULTALIGN view of aligned sentence pairs con-
taining ws and wt. She can then analyze why the
MT system mismatched c with these contexts. Ex-
amples of the desired translation are easy to find
and inspect to support the formation of hypotheses
as to the source of the error. iii) For multi-source
approaches to MT (Zoph and Knight, 2016; Fi-
rat et al., 2016; Libovický and Helcl, 2017; Crego
et al., 2010), ParCourE supports the inspection of
all input sentences together. The MT system output
can also be loaded into ParCourE for a view that
contains all input sentences and the output sentence.
Since any of the input sentences can be responsible
for an error in multi-source MT, this facilitates anal-
ysis and hypothesis formation as to what caused a
specific error.

7.1 Computing Infrastructure and Runtime

We did all computations on a machine with 48
cores of Intel(R) Xeon(R) CPU E7-8857 v2 with
1TB memory. In this experiment only one core was
used.

We created a corpus of 5 translations in 4 lan-
guages, with around 31k parallel sentences (over-
ally 155k sentences) and applied the ParCourE
pipeline to it. Runtimes for different parts of the
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Figure 9: Use case 5, morphology. The Latin ending
“ibus” in “fratribus” (dative/ablativ plural) corresponds
to five different cases in Croatian: accusative, loca-
tive/dative, nominative, genitive, instrumental (clock-
wise starting from “braću”).

Figure 10: Use case 6, paraphrases. PBC is a rich
source of paraphrases since high-resource languages
have several translations (32 for English). ParCourE
can be used to explore these paraphrases. Here, the
paraphrases “kill” and “murder” are correctly aligned,
“always ready” and “run quickly” are not.

pipeline are reported in Table 2. The installation
of the package is straightforward and as shown
in the table, it takes around 12 minutes to initiate
ParCourE on a small corpus with 4 languages.

Method Runtime

Conversion from CES to ParCourE format 153
Indexing with Elasticsearch 14
Alignment generation with Eflomal 537
Stats calculation 22

Overall 726

Table 2: Runtime in seconds for each part of the
pipeline to initiate a ParCourE instance on a corpus
with 4 languages and 31K parallel sentences.

8 Conclusion

Progress in multilingual NLP is an important goal
of NLP and requires researching typological prop-
erties of languages. Examples include assessing
language similarity for effective transfer learning,
injecting inductive biases into machine learning
models and creating resources such as dictionaries
and inflection tables. To serve such use cases, we

Figure 11: Use case 7, quality analysis. ParCourE
makes it easy to analyze the quality of the parallel cor-
pus. For this sentence, part of a Bible verse present in
German and French is missing in English. Note that
the alignment of holy, heiligen to French fraternel is
not discovered.

have created ParCourE, an online tool for browsing
a word-aligned parallel corpus of 1334 languages,
and given evidence that it is useful for typological
research. ParCourE can be set up for any other par-
allel corpus, e.g., for quality control and improve-
ment of automatically mined parallel corpora.
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9 Ethical Considerations

Word alignments and lexicon induction as tasks
themselves may not have ethical implications.
However, working on a biblical corpus requires
special consideration of the following issues.

i) The Bible is the central religious text of Chris-
tianity and the Hebrew Bible that of Judaism. It
contains strong opinions and world views (e.g., on
divorce and homosexuality) that are not generally
shared. We would like to emphasize that we treat
the PBC simply as a multiparallel corpus, and the
corpus does not necessarily reflect the opinions of
the authors nor of the institutions funding the au-
thors. ii) In a similar vein, while the PBC has great
language coverage and allows for typological anal-
ysis, we need to be aware that languages might not
be accurately and completely reflected in the PBC.
The language used in the PBC might be outdated
and is restricted to a relatively small subset of top-
ics and thus cannot be considered a balanced and
complete view of the language. iii) We also need to
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be aware of selection bias. The PBC only covers a
subset of the world’s languages. The selection cri-
teria are unknown and may be based on historical
and cultural biases that we are not able to assess.
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Abstract
We present MT-TELESCOPE, a visualization
platform designed to facilitate comparative
analysis of the output quality of two Machine
Translation (MT) systems. While automated
MT evaluation metrics are commonly used to
evaluate MT systems at a corpus-level, our
platform supports fine-grained segment-level
analysis and interactive visualisations that ex-
pose the fundamental differences in the per-
formance of the compared systems. MT-
TELESCOPE also supports dynamic corpus fil-
tering to enable focused analysis on specific
phenomena such as; translation of named en-
tities, handling of terminology, and the im-
pact of input segment length on translation
quality. Furthermore, the platform provides a
bootstrapped t-test for statistical significance
as a means of evaluating the rigor of the re-
sulting system ranking. MT-TELESCOPE is
open source1, written in Python, and is built
around a user friendly and dynamic web inter-
face. Complementing other existing tools, our
platform is designed to facilitate and promote
the broader adoption of more rigorous analysis
practices in the evaluation of MT quality.

1 Introduction

When developing MT systems or comparing exper-
iments across papers, it has been common practice
for researchers and developers to rely on automated
metrics such as BLEU (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005) as a means
of quantifying the relative performance difference
between two models. Commercial deployment
of systems and the establishment of state-of-the-
art in academia is often driven by these metrics
alone. Automated metrics have long been an es-
sential means for assessing quality improvements

1Code available at: https://github.com/
Unbabel/MT-Telescope and Demo video at:
https://youtu.be/MZOe1yX8mII

and driving progress in the field of MT. Recent
state-of-the-art metrics such as COMET (Rei et al.,
2020a), PRISM (Thompson and Post, 2020), and
BLEURT (Sellam et al., 2020), show much higher
levels of correlation with human judgement than
their predecessors.

Notwithstanding the strength of available met-
rics, when applied and reported at corpus-level,
they are only able to provide a general indication
of whether one system is superior, based on a single
score which in some cases is limited to an arith-
metic mean of segment-level score predictions (Rei
et al., 2020a). We contend that the broad defini-
tion of ‘improvement’ as an increase in a relevant
corpus-level score is insufficient, especially when
the relative difference between high-performing
MT systems is negligible. Exposure of the chang-
ing distribution of performance at segment-level on
targeted phenomena is fundamental to our under-
standing of translation quality. Manual inspection
at this level is often too time-consuming and in-
efficient to be done rigorously and on a regular
basis.

MT-TELESCOPE was inspired by other recent
work on developing holistic approaches for fine-
grained comparison of MT systems, such as
COMPARE-MT (Neubig et al., 2019) and MT-
COMPAREVAL (Klejch et al., 2015) and other more
general comparative tools such as VIZSEQ (Wang
et al., 2019). Despite the intention of such tools
in addressing the above problem, none have been
widely adopted as a standard method of evaluating
MT. MT-TELESCOPE was specifically developed
to leverage the best of existing approaches in a
manner that is as user friendly as possible, with
features specifically tailored to the MT use case.
The platform supports fine-grained segment-level
analysis and interactive visualisations that provide
relevant and informative quality intelligence. In
particular, the platform also supports focused anal-
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Figure 1: Segment comparison bubble plot.

ysis of MT-specific phenomena through interactive
corpus filtering.

MT-TELESCOPE is differentiated from existing
MT-specific tools by exposing features such as
named entities and glossary handling which play
a fundamental role in determining the suitability
of an MT system for a production environment.
Furthermore, the platform applies a bootstrapped
t-test for statistical significance (Koehn, 2004) as a
means of exposing the experimental rigor of system
comparisons. These features are not widely avail-
able in other tools and provide a uniquely tailored
solution to MT comparison that is highly informa-
tive and easy to use.

The fundamental goal of MT-TELESCOPE is to
widen access to state-of-art, robust MT compari-
son, to the benefit of the MT community at large.
MT-TELESCOPE is open source, written in Python
and uses a dynamic web interface implemented in
streamlit2. In this manner, MT-TELESCOPE pro-
vides a uniquely accessible framework that requires
little technical skill to operate and exposes infor-
mation about the critical differences between MT
outputs that is interactive, informative and highly
customizable.

2 MT-TELESCOPE: Features

In this section, we describe the main features and vi-
sualizations implemented in MT-TELESCOPE and
illustrate the user experience with examples:

2https://streamlit.io/

2.1 User input and data

MT-TELESCOPE is opened in a web browser and
takes four text (.txt) files as input; source and ref-
erence segments and one set of MT outputs for
each of the compared systems. Users drag and
drop these files directly onto the interface to be-
gin evaluation. COMET (Rei et al., 2020a) is pro-
vided as a default metric given its proven value in
the WMT Metrics Shared Task 2020 (Rei et al.,
2020b; Mathur et al., 2020). Optionally the user
can choose an alternate metric using a selection
box. Currently available metrics include BLEU,
METEOR and CHRF, and a selection of more re-
cently proposed metrics such as PRISM, BLEURT,
and BERTSCORE.

2.2 Visualizations

High-level results of the analysis are output in ta-
ble format with the corresponding system scores.
MT-TELESCOPE then exposes segment-level com-
parison in three primary visualizations:

First, a bubble plot (Figure 1) where the position
of bubbles show how scores between the two sys-
tems differ for each segment, notable differences
being highlighted with variations in bubble size
and color. This method of visualization of MT is
unique to MT-TELESCOPE in that it is fully inter-
active; by hovering the cursor over individual data
points the user can preview the segments and out-
put as well as relevant scores and the magnitude of
the difference between them (as depicted in Figure
1). This plot allows for interactive exploration of
the data which easily exposes differences in model
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Figure 2: Segment-level error bucket analysis plot. In this plot, we can compare the two systems side by side
according to the percentage of segments falling into 4 different category buckets: residual errors, minor errors,
major errors, critical errors. The thresholds for defining these buckets can be dynamically adjusted using the
sliders displayed above the plot.

behaviour at a glance. In particular, the distribution
of points along the diagonal of this plot is highly
informative; clustering along the diagonal indicates
that the systems have minor differences whereas
the contrary can indicate more dramatic change in
behavior which can be hidden by the corpus-level
mean.

Second, MT-TELESCOPE provides a bucketed
error analysis in the form of a stacked bar plot (Fig-
ure 2). This plot serves to isolate specific bands
of translation quality. These bands are highly cus-
tomizable but can serve as a means of evaluating
system utility; the plot can expose the extent to
which either model outputs critical error for exam-
ple. This is particularly useful in a commercial
setting where the utility of a production system is
inhibited by the presence of particular error types.

Segments are grouped into four buckets: resid-
ual errors, minor errors, major errors, and crit-
ical errors. The thresholds for each bucket can
be dynamically adjusted by the user with appro-
priate sliders and (as with many of the features of
MT-TELESCOPE) the plots are updated in real-time
to reflect adjustments. Defaults were determined
in line with suggestions outlined in the COMET

GitHub documentation and with distributions of
system-level scores from the WMT News Transla-
tion Shared Task 2020.

Residual Errors: The highest tier of quality
by default reflects scores greater than 0.70, which
generally equates to almost human-like translation
with only minor, inconsequential error.

Minor Errors: By default this band reflects
scores between 0.30 and 0.70 to reflect the division
of quartiles from the distribution of system-level
scores from the WMT News Translation Shared
Task 2020. In general the band is associated with
translation that is adequate but with minor flaws.

Major Errors: Translations scoring between
0.10 and 0.30 by default inhabit this band and are
generally inadequate due to more serious error.

Critical Errors: Any translation scoring under
0.10 here is considered to contain critical error.

These bands are intended as a guide and util-
ity of the default thresholds will vary according to
use case. Translation quality and the difference be-
tween adequate and inadequate translation is highly
subjective and language dependant; optimization
of these thresholds is a critical direction for future
work. Notwithstanding, we find that exposure of
the general shift in distribution of inadequate trans-
lation in general is potentially informative, particu-
larly given that corpus-level scores do not expose
this type of analysis.

Finally, MT-TELESCOPE provides a histogram
plot (Figure 3) for general evaluation of the distri-
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Figure 3: Segment-level histogram comparison.

bution of scores between models. We propose that
this kind of plot can potentially provide a high-level
overview of the shift in performance between mod-
els. A corpus-level score (particularly an arithmetic
mean) can mask variance between distributions of
scores.

2.3 Example evaluation

To demonstrate the utility of the MT-TELESCOPE

evaluation we expose analyses for the Online-G
and the PROMT (Molchanov, 2020) systems from
the WMT News Translation Shared Task 2020 (Bar-
rault et al., 2020) for Russian-English:

The Online-G system (System Y) achieves
a COMET score of 0.6081, outperforming the
PROMT system (System X) which only achieves
0.5972. We have isolated this example in partic-
ular as it represents a common occurrence of two
systems achieving fairly comparable scores.

Figures 1, 2 and 3 above show the output of MT-
TELESCOPE analysis on two sampled systems:

Figures 2 and 3 illustrate that the second system
(System Y) in general exceeds performance of the
first (System X). We can conclude from these plots
that the systems perform comparably with System
Y producing a higher percentage of adequate trans-
lations. In particular we note that System Y outputs
fewer critical errors, consistent with its general per-
formance gain.

Figure 1 illustrates isolation of an example where
System Y makes substantial gain over System X.

Here we note that both systems struggle to render
the named entity and the corresponding possessive,
but that System Y successfully produces the named
entity as reflected in the reference and adds a pro-
noun to at least give possessive flavor.

3 MT-TELESCOPE: Dynamic Corpus
Filtering

Given a test corpus, MT-TELESCOPE provides
functionality to dynamically evaluate sub-samples
of the system outputs as a means of focused anal-
ysis tailored to particular phenomena relevant to
MT. On selection of any of the available filtering
criteria, the MT-TELESCOPE Dynamic Corpus Fil-
tering feature (DCF) updates the output evaluation
in real-time to allow the user to ‘zoom in’ on rele-
vant data points.

Currently, MT-TELESCOPE supports filtering by
named entity, glossary and source segment length,
as well as an option to remove duplicates. When-
ever any of these options is selected, the interface
will output the size of the sub-sample as a percent-
age of the original test corpus.

3.1 DCF: Named Entities

Successful rendering of named entities is a known
challenge for even modern MT systems and can
lead to distortion of locations, organization and
other names (Koehn and Knowles, 2017; Mod-
rzejewski et al., 2020). Recently, several meth-
ods have been proposed to improve the translation
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Table 1: Example of named entity errors produced Online-G system in comparison to the PROMT system from
the WMT20 shared task.

COMET

Source Маругов врезался на мотоцикле в такси, которым управлял Акбаров.
Online-G Murugov crashed into a motorcycle taxi, which was ruled by Akbar. -0.1799
PROMT Marugov crashed into a taxi driven by Akbarov on a motorcycle. 0.5154
Reference Marugov crashed on a motorcyle into the taxi Akbarov was driving.

of named entities in Neural Machine Translation
(NMT) (Sennrich and Haddow, 2016; Ugawa et al.,
2018; Modrzejewski et al., 2020), but precise mea-
surement of translation quality improvements for
these techniques is inhibited by the fact that not
all sentences in traditional benchmark test sets (e.g.
WMT test sets) contain named entities and that
scores produced by automated evaluation metrics
are not sufficiently fine-grained to reflect this type
of variation. MT-TELESCOPE offers a potential
solution to this by applying the following filter:

We initially run the Stanza Named Entity Recog-
nition (NER) model (Stanza, Qi et al. 2020)3 over
the source test corpus to isolate segments that con-
tain named entities. If the source language (as spec-
ified by the user) is not supported by Stanza, we
run NER on the reference. MT-TELESCOPE will
then update the output analysis allowing focused
evaluation of the handling of segments containing
named entities by either MT system.

To illustrate the utility of DCF analysis on named
entities we again compare the outputs of the Online-
G and the PROMT (Molchanov, 2020) systems
from the Metrics Shared Task 2020 (Barrault et al.,
2020) as above:

Applying DCF for named entities, the Online-G
system COMET score drops to 0.5851 (previously
0.6081), while the PROMT system only drops
to 0.5888 (previously 0.5972). We also observe
that the percentage of critical segments from the
Online-G system in our bucketed analysis jumps
from 6.26% to 7.0%, while the corresponding per-
centage output by the PROMT system drops from
6.66% to 6.29%.

On the basis of the DCF analysis for named en-
tities we can conclude that whilst in general the
Online-G exhibits superior quality, it may be under-
performing with regard to named entities. Interest-
ingly, the system description paper for the PROMT
system (Molchanov, 2020) specifically details a tar-
geted approach to handling translation of named en-
tities, which may explain its stronger performance

3https://stanfordnlp.github.io/stanza/
ner.html

on the isolated sub-sample.
In Table 1 we illustrate an example of a transla-

tion in which the Online-G system produces critical
errors as a consequence of translating named en-
tities incorrectly, specifically isolated by the DCF
feature.

3.2 DCF: Terminology

Similarly to named entities, enforcing that MT sys-
tems use specific terminology during translation
is a challenging task with particular relevance in
commercial use cases. Measuring terminology ad-
herence typically involves relying on automated
metrics for MT as well as measuring the accuracy
of terminology output (Dinu et al., 2019; Exel et al.,
2020).

This approach presents two concrete problems:
a) applying terminology constraints typically re-
sults in only minimal variance between translations,
which limits the utility of using automated metrics
at the corpus level; and b) measuring accuracy in
terminology usage typically relies on exact string
matching between a translation hypothesis and its
respective reference, which implies that properly in-
flected translated terms often do not receive proper
credit.

MT-TELESCOPE offers a DCF Terminology fea-
ture which allows a user to optionally upload a
glossary by which to isolate a corresponding sub-
sample of the test corpus. We apply string match-
ing on the source and filter to only those segments
which contain a corresponding glossary match.

3.3 DCF: Segment Length

Another common weakness of some MT systems
is their inability to accurately translate long seg-
ments (Koehn and Knowles, 2017). In general,
corpus level evaluation on a distribution that in-
cludes very short segments can artificially inflate
performance, with substantial drops in scores be-
ing observed when these segments are specifically
excluded (Koehn and Knowles, 2017). In the same
manner, quality-based decisions regarding two sys-
tems can change when we consider segments of
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different lengths.
Using our example systems outlined above in

Section 3.1, when comparing the Online-G and the
PROMT systems using only the top 50% longest
segments, the PROMT system outperforms the
Online-G system according to COMET and CHRF
scores, changing the fundamental perception of
which system is ‘better’. With the above in mind,
MT-TELESCOPE also offers an option to filter by
segment length. This filter is adaptive to the distri-
bution of segment lengths in the test corpus. We
first build the distribution of the source segment
lengths (measured in terms of characters) for the en-
tire test set. Then, the user can select which part of
the distribution to analyse by adjusting the a and b
parameters of the density function P (a ≤ X ≤ b);
a and b being the minimum and maximum length
allowed, respectively.

3.4 DCF: Duplication

The removal of duplicates can be particularly im-
portant in situations where the test corpus sam-
ple contains repetition. Repeated segments in a
test sample can artificially inflate the corpus-level
score, particularly where that score results from
an average of segment-level scores. Whilst we ac-
knowledge that removal of duplicate segments is
fairly common in public data sets such as that used
in the WMT Shared Tasks and consequently our
example here, we propose that it is, nevertheless, a
useful tool when evaluating on random samples.

4 Statistical Significance Testing

By default, MT-TELESCOPE implements the boot-
strapped t-test for statistical significance promoted
for use in comparison of MT systems by Koehn
(2004). Specifically, we iteratively re-sample a por-
tion of the test set (of size P ) N times, compare
corpus-level results of each sub-sample and record
the comparative conclusions. The ratio of wins of a
single system is a reasonable proxy to the probabil-
ity that that system is better than the other. In other
words, if one system outperforms the other sys-
tem 95% of the time, we conclude that the former
is better with a significance of p = 0.05 (Koehn,
2004).

This is particularly useful in cases where the rel-
ative difference between systems is minimal and
acts as a measure of the robustness of any resulting
decision. In our implementation P is an optional
parameter which defaults to 0.5 (50%) or 500 seg-

ments, whichever is larger, to ensure reasonable
stability in the output conclusion. N is also user
defined and by default is set at 300 iterations.

5 Related Tools

MT-TELESCOPE is similar in spirit and largely
inspired by recently proposed tools such as
COMPARE-MT (Neubig et al., 2019), MT-
COMPAREVAL (Klejch et al., 2015), and
VIZSEQ (Wang et al., 2019). COMPARE-MT also
provides a holistic analysis comparing two MT
systems, although with different features. Us-
ing COMPARE-MT, the user can, for example,
look at performance according to n-gram fre-
quency and part-of-speech (POS) accuracy. MT-
COMPAREVAL also provides comparative analysis
of segment-level errors with highlighting of vari-
ant n-grams. The tool also provides some limited
aggregate analysis. Both of the above tools also
offer statistical significance testing in the form of a
bootstrapped t-test.

VIZSEQ (Wang et al., 2019), whilst only tan-
gentially related, is one of the only comparative
tools that offers a web-based interface. More-
over, VIZSEQ has impressive coverage in terms
of Natural Language Generation metrics. How-
ever, VIZSEQ was developed for multi-model com-
parison and is primarily focused at corpus-level.
Other tools such as PET (Aziz et al., 2012) and AP-
PRAISE (Federmann, 2012) are complementary to
MT-TELESCOPE in that they offer features which
leverage annotation and post-edition.

6 Conclusions and Future Work

MT-TELESCOPE is designed to provide robust and
insightful comparative analysis specific to the MT
use case with state-of-the-art metrics. Data visu-
alizations are dynamic, interactive and highly cus-
tomizable. The tools have been built specifically
with ease of use in mind, in the hope of expanding
access to high quality MT evaluation.

There is tremendous scope in the adaptation of
the DCF framework to target many other phenom-
ena and future work will be focused primarily in
this area. We envisage for example adding filters
for specific discourse phenomenon such as pro-
noun translation. Ideally such filter would allow
researchers to measure context usage in NMT with-
out having to rely only on contrastive evaluation
(Müller et al., 2018; Lopes et al., 2020) and/or hu-
man evaluation.
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We also plan to extend MT-TELESCOPE to han-
dle a (possibly empty) set of references. This will
bring more flexibility to the tool allowing more in-
formed decision when multiple references are avail-
able while also supporting Quality Estimation (Spe-
cia et al., 2018) when references are not available.
Finally we hope to implement exporting functional-
ity to allow saving of analysis output in commonly
used formats (e.g. json and PDF). Given that MT-
TELESCOPE is an open source platform, we are
excited to encourage other users to contribute to its
growth with suggestions and new features.
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Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1–55, Online. Association for Computational Lin-
guistics.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages

3063–3068, Florence, Italy. Association for Compu-
tational Linguistics.

Miriam Exel, Bianka Buschbeck, Lauritz Brandt, and
Simona Doneva. 2020. Terminology-constrained
neural machine translation at SAP. In Proceedings
of the 22nd Annual Conference of the European As-
sociation for Machine Translation, pages 271–280,
Lisboa, Portugal. European Association for Machine
Translation.

Christian Federmann. 2012. Appraise: An open-source
toolkit for manual evaluation of machine translation
output. The Prague Bulletin of Mathematical Lin-
guistics, 98:25–35.

Ondrej Klejch, Eleftherios Avramidis, Aljoscha Bur-
chardt, and Martin Popel. 2015. MT-ComparEval:
Graphical evaluation interface for Machine Transla-
tion development. The Prague Bulletin of Mathe-
matical Linguistics, 104.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388–
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

António Lopes, M. Amin Farajian, Rachel Bawden,
Michael Zhang, and André F. T. Martins. 2020.
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Abstract

Health professional regulators aim to protect
the health and well-being of patients and the
public by setting standards for scrutinising and
overseeing the training and conduct of health
and care professionals. A major task of such
regulators is the investigation of complaints
against practitioners. However, processing a
complaint often lasts several months and is par-
ticularly costly. Hence, we worked with in-
ternational regulators from different countries
(the UK, US and Australia), to develop the
first decision support tool that aims to help
such regulators process complaints more effi-
ciently. Our system uses state-of-the-art ma-
chine learning and natural language process-
ing techniques to process complaints and pre-
dict their risk level. Our tool also provides
additional useful information including expla-
nations, to help the regulatory staff interpret
the prediction results, and similar past cases as
well as non-compliance to regulations, to sup-
port the decision making.

1 Introduction

Nurses and midwives play important roles in the
healthcare system as they provide highly skilled
and often complex care in both hospitals and com-
munities. To protect and prioritise the safety of
the public from harmful practices, most countries
have specific health professional regulators to set
rules, monitor and shape the practice of nurses and
midwives. When concerns over a nurse or mid-
wife’s practice are raised, a formal complaint can
be submitted to the regulator, and investigations
will be performed to decide further actions (e.g.,
warnings to the nurse/midwife in question, or even
suspension of their practice). As the investigation
results have significant impact on the practition-
ers’ career and reputation, processing complaints
is highly time-consuming and costly (see (NMC,

2020), p49), hence, the need for effective tools to
support investigations is crucial.

In this paper, we present a decision support sys-
tem to improve the efficiency of complaints inves-
tigation for nursing and midwifery regulators, by
employing state-of-the-art machine learning and
natural language processing (NLP) techniques with
a human-in-the-loop. We worked closely with the
UK Nursing and Midwifery Council (NMC1), the
US Texas Board of Nursing (TBON2), and the Aus-
tralian Health Practitioner Regulation Agency (AH-
PRA3), to understand their requirements for the
system and collect data for training the machine
learning models. Fig. 1 illustrates the major com-
ponents and workflow of our proposed system. As
new cases arrive, the system processes the corre-
sponding complaints for each case and provides the
following results: (i) Risk level prediction: each
case is labelled as either high or low risk, along
with a confidence score, which allows regulators
to prioritise the new complaints. (ii) Explanations
of the risk prediction results, by highlighting the
most salient words in the complaint texts that led
to the prediction. (iii) Similar previous cases, so
that users can refer to relevant past cases to make
decisions on the current case. (iv) Entries in the
regulation code that a new complaint is most re-
lated to, that can help the regulators quickly link
the allegations in the complaints to relevant require-
ments in the regulation code.

A major challenge in developing the system is
data sparsity. Due to the sensitive nature of the
healthcare data and the strict data-sharing policies
of the regulators, we had access to a small amount
of data (initially 1.2k complaints, later 5.7k com-
plaints) to develop and test our system. To miti-
gate this problem, we use ensemble methods based

1https://www.nmc.org.uk/
2https://www.bon.texas.gov/
3https://www.ahpra.gov.au/
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Figure 1: Workflow of the proposed system.

on both classical and neural models, including an
adapted version of BERT (Devlin et al., 2019). In
addition, to ensure that the predictions made by our
system were gender unbiased, we pre-processed
the text appropriately and experimented with sev-
eral bias mitigation techniques. Experimental re-
sults show that the risk predictions made by the
system achieved an accuracy of 0.71. An expert
user evaluation, initially involving five regulatory
staff at one regulator, suggests that the highlighted
words and related regulation entries the system
provides can not only help the regulators better un-
derstand how the predictions are made, but also
allow them to provide better justifications for their
decisions.

To the best of our knowledge, this is the first
NLP system that supports complaints investigation
for nursing and midwifery regulators.

2 Related Work

Decision Support Systems. Many NLP systems
have been developed to process text data (such
as records, reports, scientific papers, and social
media posts) to assist in making highly critical de-
cisions, in domains like healthcare (Bampa and
Dalianis, 2020; Mascio et al., 2020; Feng et al.,
2020; Proux et al., 2009), finance (Kogan et al.,
2009; Wang et al., 2013), business and manage-
ment (Dong and Wang, 2015; Assawinjaipetch
et al., 2016; Filgueiras et al., 2019), and legislation
(Rabelo et al., 2019; Soh et al., 2019; Shaffer and
Mayhew, 2019). Our work proposes the first deci-
sion support system to process nursing/midwifery
complaints.

Model Selection & Adaptation. Data sparsity
is a common problem encountered by many NLP
decision support systems, due to the sensitive na-
ture of the data in certain domains and the high
cost of labelling them. Hence, large neural network
models do not always outperform classic feature-
rich models and careful model selection is often
necessary. For example, Filgueiras et al. (2019)
found that, in an economic activity classification
task, the SVM (Cortes and Vapnik, 1995) with TF-
IDF (Salton and Buckley, 1988) representations
performed better than an LSTM network (Hochre-
iter and Schmidhuber, 1997). On the other hand,
Assawinjaipetch et al. (2016) and Mullenbach et al.
(2018) showed that in complaint and clinical clas-
sification tasks, RNNs (Cho et al., 2014) or CNNs
(Kim, 2014) with pre-trained word2vec embed-
dings (Mikolov et al., 2013) outperformed the clas-
sic machine learning models with bag-of-words
representations. For each functionality in our sys-
tem, we consider both classic and state-of-the-art
neural network models and select the most appro-
priate one.

Another popular strategy to address data sparsity
is to adapt large pre-trained models to an applica-
tion domain. For example, BioBERT (Lee et al.,
2019) and ClinicalBERT (Alsentzer et al., 2019)
fine-tune BERT (Devlin et al., 2019) with biolog-
ical and clinical trial data, to adapt BERT to their
respective domains. Feng et al. (2020) performed
sepsis and mortality prediction by deploying a hier-
archical CNN-Transformer on top of BERT-based
models. In our system, we fine-tune BERT with
both nursing/midwifery complaints and other rel-
evant data (e.g., MedSTS (Wang et al., 2020)) for
downstream tasks (see §3).
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Explainability is a highly desirable feature for
decision support systems, especially in healthcare
applications. Different types of information can be
presented to users as explanations, including atten-
tion distributions (Mullenbach et al., 2018; Feng
et al., 2020), similar past cases (Agirre et al., 2012;
Rus et al., 2013; Cui et al., 2017; Tran et al., 2019),
and salient words in the input text (Ribeiro et al.,
2016; Lundberg and Lee, 2017). In the legal do-
main, to justify a verdict, relevant items in the law
are often provided as explanations (Rabelo et al.,
2020; Shaffer and Mayhew, 2019). Our method
provides explanations in all the aforementioned
forms except attention distributions, as it remains
unclear whether attention distributions can be reli-
ably used as explanations (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019).

Gender Debiasing can help detect and reduce
the decision support systems’ biases against certain
genders (Sun et al., 2019). Popular gender debias-
ing methods include gender swapping (Zhao et al.,
2018), gender-debiased word embeddings (Boluk-
basi et al., 2016; Manzini et al., 2019), adversarial
training (Zhang et al., 2018), and fine-tuning (Park
et al., 2018). To detect if there exists systematic
biases against certain genders and reduce these bi-
ases, we test different gender debiasing methods in
our system (see §5).

3 Our System

Initially, we used 1,241 real cases from one regula-
tor to develop and test our system. Each case i con-
sists of multiple fields, falling into three categories:
the complaint text ti, in which sensitive informa-
tion is replaced with its corresponding entity type,
e.g., all names are replaced with [PERSON]; meta
information of the case (ci1, ..., cik), e.g., status of
the case, and who submitted the complaint; and
the investigation results, including the risk level
yi of the case (high or low), and some additional
assessment results (ai1, ..., aim), e.g., whether se-
rious harm was caused to the patient or not. Table
1 presents some statistics of the dataset. Details of
all fields are in the Appendix.

We understand from our collaborating regulatory
agencies that the most essential functionality they
need is to be able to predict the risk level of the case,
as it allows them to prioritise the high-risk cases
and better manage the workload. Hence, we for-
mulated the problem as a binary classification task,
which takes a complaint ti and its meta-information

# High/low risk cases 766/475
# Words in each complaint max/min/avg: 5922/5/280
# Serious harm to patient 185
# Maternity related cases 17
# Patient death 75
# Serious harm to nurse 5

Table 1: Statistics of the dataset, which has 1,241 cases
received in 2019-20.

(ci1, · · · , cik) as input and predicts the risk level yi.
We developed an ensemble model to predict the
risk level (§3.1) and provided some additional in-
formation to further support the decision-making
process of the regulator and help them interpret the
prediction results (§3.2).

3.1 Risk Level Prediction

Due to the limited number of labelled examples,
we decided to use ensemble learning for risk classi-
fication, exploiting the benefits of different models,
both feature-rich and neural-based. In particular,
we used stacked generalisation (Wolpert, 1992)
with five base classifiers C1 – C5, detailed below.

(C1) Gradient boosting (Friedman, 2001), using
the average of word2vec embeddings of words in
the complaint text ti as input. (C2) Adaptive boost-
ing (AdaBoost) (Freund and Schapire, 1997) using
the same input as C1. (C3) CNN (Kim, 2014) with
ti as input and GloVe (Pennington et al., 2014) as
pre-trained word embeddings. We used the multi-
task learning setup to train the CNN model: the
model is trained to predict not only the risk lev-
els yi but also some additional assessment results
(ai1, ..., aim). Preliminary results show that, com-
pared to single-task learning (i.e., training the CNN
for predicting only yi), the multi-task learning
setup improved the accuracy by about two percent-
age points. (C4) BERT-base (uncased), which was
fine-tuned to predict the risk level. (C5) An ensem-
ble which takes case meta information (ci1, ..., cik)
as input and uses three base classifiers (gradient
boosting, AdaBoost, and linear SVM). Logistic
regression is then used as a meta-classifier of C5.

For the main stacking model in the ensemble, we
also used logistic regression, with the prediction
probabilities returned by C1 – C5 as input.

3.2 Additional Information

Besides risk level predictions, our system outputs
additional information to support the decision mak-
ing and help users interpret the prediction results.
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Confidence Scores are provided for each risk
level prediction. We used a conformal predictor
(Vovk et al., 2005) to produce the confidence scores.
When the train and test data are i.i.d., the conformal
predictor guarantees that the produced confidence
scores are valid: for example, among all predic-
tions with confidence score 0.6, the probability of
the prediction being correct is 60%. We applied
the conformal predictor to our ensemble model and
used 40% of complaints as the calibration set to
train the conformal predictor.

Explanations. To help regulators understand
why the system labels a case as high or low risk,
we used LIME (Ribeiro et al., 2016) to provide
explanations for each prediction. LIME is a model-
agnostic explanation method and does not need
additional data for training. It is well suited to our
system, which uses the ensemble classifier with dif-
ferent base models and only has access to a limited
amount of data. For each case, LIME identifies
the tokens that have the largest influence on the
prediction probabilities and highlights these tokens
as the explanations. Fig. 2 shows an example of the
LIME explanation. If the highlighted words agree
with the regulator’s understanding of the key words
in the text that could explain the risk prediction,
then the regulator trusts the prediction results. If
the regulator does not agree, then it is an indication
that the prediction may not be reliable and hence
the regulators need to investigate the case more
carefully.

Similar Past Cases. In applications for legal
decision-support, users often need to refer back to
similar past cases to make decisions for new cases
(see the Explainability paragraph in §2). To identify
the similar past cases, we first computed the tfidf-
cosine similarity scores of each of the past cases
with the new case and selected the top 10 past cases
with the highest similarity score. We then trained
the BERT-base with 800 complaint texts (224k to-
kens) to create a new language model, fine-tuned
the new model on two semantic similarity datasets,
STSb (Cer et al., 2017) and MedSTS (Wang et al.,
2020), and used the resulting model to further rank
the selected past cases.

Initial results showed that the above method was
very time-consuming, as, for the ranking, the fine-
tuned BERT model needs to compare each sen-
tence from the new case with each sentence from
every past case. To reduce the computation time,

we used summarisation models to generate a short
summary for each case, so we could measure the
similarity between cases by their summaries. We
used an extractive summarisation model based on
LSA (Ozsoy et al., 2011), which selects 1–3 rep-
resentative sentences from each case to build the
summary, and an abstractive summarisation model
T5 (Raffel et al., 2020), which generates a few new
sentences to summarise each case. We found that
T5’s summaries mostly focus on information from
the first few sentences in each case. This strategy
works well in summarising news articles but ig-
nores much of the useful information in complaints.
The LSA-based method, on the other hand, is not
biased by the position of sentences and performs
better and faster than T5, and hence we used it as
the summarisation model.

Non-Compliance to Regulations. To assist reg-
ulators to check if the practice of the nurse/midwife,
reported in the complaint complies with the regu-
lations or not, our system exploits pre-trained nat-
ural language inference (NLI) models to detect
non-compliance. Specifically, if we denote the en-
tries in the regulation code as R = {r1, r2, · · · , rn}
and a complaint as a set of sentences t =
{ts1, ts2, · · · , tsm}, then the task is to determine,
for each (ri, tsj) pair, i ∈ [1, n], j ∈ [1,m], if
ri contradicts tsj or not. We used RoBERTa
(Liu et al., 2019) fine-tuned on the MNLI dataset
(Williams et al., 2018) as the NLI model. To re-
duce the computation time, we again used the LSA-
based summarisation method to reduce the number
of sentences in each complaint. The regulation
entries R are from the latest NMC Code (NMC,
2015).

4 System Implementation

Backend. We used Flask 1.0.2, a Python
based web development framework, to de-
velop the backend of the system. We used
SQLite 3.34.0 to manage the database,
SQLAlchemy 1.2.6 for relational mapping,
Redis 3.5.3 for internal messaging and
caching, Nonconformist for conformal predic-
tion, and Wtforms 2.1 to manage forms. The
system receives new complaints in real time and
can make predictions either in real time or batch so
as to minimise the response time.

Frontend. The frontend of our web interface
is implemented with Bootstrap 4.1.3 and
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Model Accuracy Macro F1
Majority Baseline 0.617 ± 0.032 NA
C1: Gradient Boost. 0.671 ± 0.025 0.629 ± 0.025
C2: AdaBoost 0.646 ± 0.028 0.611 ± 0.034
C3: CNNMultiTask 0.668 ± 0.029 0.623 ± 0.035
C4: BERT-base 0.680 ± 0.038 0.658 ± 0.028
C5: Meta info 0.662 ± 0.029 0.591 ± 0.056
Ensemble model 0.708 ± 0.036 0.679 ± 0.032

Table 2: Performance (mean ± standard deviation) of
the risk classifiers, averaged over 10 random splits.

Charts.js 2.5.4. Functionalities like tool
traversal, event handling, and animation are imple-
mented using JQuery 3.5.1. Figure 2 shows
a screenshot of a result page for a specific com-
plaint using fictitious data. It depicts the complaint
text on the left and the predicted risk as well as
additional information on the right. The user can
provide feedback for the predictions (accept or re-
ject a prediction result, and provide reasons for the
same). They can also provide feedback about the
relevance of each similar case and regulation code,
suggested by the system, to the selected case.

5 System Evaluation

Risk Level Classification results are presented
in Table 2. All results were averaged over 10 runs
with different random seeds, and in each run the
data was randomly split into train, dev, and test
sets with ratio 800:200:241. We found that all
base models C1 – C5 significantly4 outperform the
majority baseline, in terms of both accuracy and
macro F1, and the ensemble of the base models sig-
nificantly outperforms all base models but BERT,
which achieves comparable macro F1. Given the
relatively small size of the data, we consider these
results promising and believe that in real deploy-
ment the risk prediction performance can be further
improved, as the model will have access to more
labelled data.

Gender Debiasing. We aimed to answer two
questions: (i) whether our risk prediction model is
biased against certain genders (e.g., always associ-
ating some gender terms with the high risk class),
and (ii) whether the gender biases can be reduced
by using some debiasing methods. The study of
ethnic biases will be conducted in the future, as
most cases in our current dataset do not include any
information about the ethnicity of the patients or
the practitioners.

4Throughout this paper, p-values are computed with paired
t-test and the significance level is 0.05.

Technique Training data Test data
Gender removing he→ φ he→ φ
Gender neutralising he→ they he→ they
Gender swapping he→ he, she he→ he

Table 3: Examples of three gender debias methods.

To measure to what extent a model is gender
biased, two widely used metrics are false posi-
tive equality difference (FPED) and false negative
equality difference (FNED) (Dixon et al., 2018).
The lower the FPED (FNED, respectively) val-
ues, it means the gaps between the model’s false
positive (false negative, respectively) rates in the
gender-specific and overall cases are smaller, hence
suggesting lower gender bias of the model. The
FPED and FNED values for our ensemble-based
risk prediction model are 0.189 and 0.117, respec-
tively (first row in Table 4). Since they are not zero,
it suggests that the model does have gender biases.

To reduce the gender bias, we experimented with
three methods to “clean” the data: gender removing,
which removes all gender words from both training
and test data; gender neutralising, which replaces
each gender word with a neutral word (e.g., dad
→ parent) in both the training and test data; and
gender swapping, which creates new training exam-
ples by swapping the genders (e.g., dad→ mum),
and train the model with both the original and the
new gender-swapped data. Table 3 illustrates these
gender debiasing methods. In addition to the above
methods, we also tested the use of gender-debiased
word embeddings (Bolukbasi et al., 2016), in base
models C1 and C2, to further reduce biases. Note
that, models C3 and C4 were not used as we did
not debias embeddings of GloVe and BERT in C3
and C4; including them may obscure the effect of
the debiased word2vec. Also, CNN and BERT are
too time-consuming to train and run for ten times
of the eight models.

Table 4 compares the performance of different
debiasing methods. With standard word embed-
dings (the upper part in Table 4), all three gender
debiasing methods managed to reduce gender bi-
ases, at the price of at most two percentage points
loss in accuracy. However, when the gender debi-
asing methods are used together with the gender-
debiased embeddings, the performance becomes
even worse. This reminds us of existing work that
questions the effectiveness of debiased embeddings
(Gonen and Goldberg, 2019). Some also argue
that it gets rid of more meanings beyond prejudice
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Figure 2: A screenshot of the result page for a fictitious complaint. The page consists of (1) the complaint text
(2) the predicted risk level, probability, and confidence (3) word importance scores provided as the explanation by
LIME (4) similar past cases (5) non-compliance to regulations (6) the final decision to be given by a case manager.

Debias Setting Accu-
racy

Macro
F1 FPED FNED

O
unchanged 0.718 0.688 0.189 0.117
remove 0.700 0.666 0.167 0.105
neutralise 0.709 0.677 0.129 0.085
swap 0.713 0.682 0.154 0.080

D

unchanged 0.705 0.674 0.186 0.117
remove 0.699 0.664 0.191 0.082
neutralise 0.707 0.675 0.190 0.101
swap 0.708 0.676 0.186 0.117

Table 4: Performance of different gender debias meth-
ods. “O” and “D” in the leftmost column stand for orig-
inal and gender-debiased embeddings, respectively.

rather than guiding the AI to act fairly (Caliskan
et al., 2017). Hence, in real deployment, our sys-
tem will only perform gender swapping and use the
resulting data to train the ensemble model.

Human Evaluation. We invited five regulatory
staff from NMC to use and evaluate our system.
Each case maanager was provided with four com-
plaints randomly sampled from our test set. They
were asked to use our system to assist them in their
investigation of the complaint. A questionnaire
was provided to them after the test was completed,
requesting their ratings (5-point Likert scores) and
comments on different aspects of the system.

All participants found the usability and respon-
siveness of the system highly satisfactory, with
average scores at 4.4 and 4.2, respectively. With
respect to the quality of the risk predictions, expla-
nations (i.e., the highlighted words), and the iden-
tified relevant regulations, participants provided
moderate ratings at 2.8 for each of them. However,
lower ratings (1.8) were given on the similar cases

found by the system: for example, a complaint
mentions that the nurse has a strong odour of alco-
hol on her breath and the experts want the system
to find other cases about nurses who are inebri-
ated or unfit to practice, but the system found cases
with words like alcohol or odour, even though the
words were used in very different contexts (e.g.,
used alcohol as disinfectant). We believe this is a
highly challenging task as it requires not only do-
main knowledge but also common sense knowledge
to capture the nuances in the complaints. We leave
further investigation of this problem to future work.

As for the explanations (i.e, words highlighted
by LIME), the participants reported that the high-
lighted words in the high-risk cases were often
sensible and useful, while the words highlighted in
the low-risk cases were sometimes stopwords and
hence difficult to interpret. We believe the reason
for this is that our models rely on the appearance of
certain keywords (e.g., injured, died) to identify the
high-risk cases, which are absent in the low-risk
cases and hence the model picks up some spurious
words to make the predictions. We note that, while
highlighting the stopwords makes it difficult for
the regulatory experts to interpret the explanations,
it helps the system designers and machine learn-
ing experts better understand the problems with
the system and hence allows them to improve the
system accordingly. In the next version, we plan
to hide stopwords highlighted by LIME from the
regulatory experts to avoid confusion, but we will
show them to system designers in order to help
them improve the model.
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6 Conclusion

In this work, we have presented the first system to
support complaints investigation for nursing and
midwifery regulators. The system exploits state-of-
the-art text classification, summarisation, semantic
similarity measurement and NLI techniques, and
provides different types of information to assist the
regulators, including risk level assessment, similar
past cases, and non-compliance to regulations. In
addition, explanations (in the form of highlighted
words) are provided to improve the transparency
of the system, and gender debiasing operations
are performed to reduce systemic gender biases.
Feedback received from domain experts confirmed
the system’s usefulness and potential.

We will continue our collaboration with the nurs-
ing and midwifery regulatory bodies and collect
more labelled data, e.g., relevant case pairs and non-
compliance to regulations; this data will help us
develop domain-specific sentence similarity mea-
surement and NLI models to further improve the
performance of the system. We are considering ex-
tending the system with additional functionalities,
for example, applying active learning (Klie et al.,
2018) to allow the system learn more efficiently
from human feedback and thus be constantly up-
dated online. We also plan to perform additional
experiments in control groups with domain experts
to test the effectiveness of the system, e.g., by com-
paring the average time consumed to process a case
with and without the use of our system.

Regulatory bodies in different jurisdictions face
similar problems (e.g., long processing time, high
cost, and an increase in the number of cases to
investigate) and have similar requirements on the
functionalities of the system (risk prediction, sim-
ilar past cases, non-compliance to regulations).
Hence, we hope this work will inspire more
AI/NLP-based decision support systems across dif-
ferent jurisdictions, and encourage more collabora-
tions between the NLP researchers and regulatory
bodies in the legal, financial and healthcare sectors.
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Ethical Impact Statements

As our system processed highly sensitive data and
its recommendations can have an impact on the per-
son under investigation, we describe the system’s
potential ethical impact in different aspects below.
Data Collection. All data were collected, redacted
and distributed by professionals from the regulatory
agencies, strictly following all the related regula-
tions in their respective countries.
Institutional Review. This project has been re-
viewed and approved by each participating institu-
tion, in line with their ethical approval process.
Expected Beneficiaries. The direct beneficiaries
are the regulatory agencies, as the system improves
the efficiency of their investigation and reduces the
cost. The nursing/midwifery community and the
patients will also benefit, as the waiting times will
be reduced. Moreover, it will reduce costs which
are often passed on to registrants via registration
fees.
Failure Modes. Our system provides confidence
scores and highlighted words to help users make
sense of the predictions. Hence, even in the “failure
cases” where the system provides imprecise predic-
tions, the users can quickly identify the problems
and reject the predictions (see §3). In terms of data
security, our system does not edit or modify the
original texts, and all texts have backup copies in
secure servers; hence, the risk of data contamina-
tion or loss is minimised.
Biases. We inspected different types of potential
biases and employed multiple techniques to min-
imise biases, as discussed in §5.
Misuse Potential. The system will be used by well-
trained users from the regulatory bodies strictly in-
side their organisations, following all guidelines
and requirements of the agencies. Hence, we be-
lieve that the potential for misuse is very low.
Potential Harm to Vulnerable Populations. Our
system learns from past decisions to make new
predictions. A potential risk is that, if the human
decisions on the past cases have strong biases or
systematic mistakes, the system may exploit those
biases in its decision making. We believe the expla-
nations produced by our system can be used to iden-
tify such systemic biases and mistakes. If users find
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that certain gender-related words are highlighted,
it suggests that the model heavily relies on those
words to make predictions, and the regulatory staff
can perform further investigations accordingly.
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Appendix

Hyperparameters Selection

Hyperparameters of our models are selected using
grid search on 250 randomly sampled cases; results
are presented below. For the CNN model (base
model C3 in the ensemble), we use three filter sizes
(2,3 and 4) and 15 filters for each size. For the
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multi-task training (base model C3), the loss func-
tion we use is Ly +2LA, where Ly and LA are the
cross-entropy losses for predicting the risk level
and additional assessment results, respectively. To
fine-tune BERT (base model C4), we use Adam as
the optimiser with fixed learning rate 2e-5, batch
size 8 and perform the training for 10 epochs.

Data Fields

Fields in the dataset are summarised in Table 5.

Category Data Fields

Meta Information
(ci1, ..., cik)

CreateDate (when the case was
created), CurrentStatus(closed, in
investigation, or await adjudication
hearing), Referrer (who submitted the
complaint)

Assessment
Results
(ai1, ..., aim)

RiskLevel (high or low),
RiskOfRepetition (True or False),
SeriousHarmToRegistrant (True of
False), SeriousHarmToPatient (True
of False) BreachOfOngoingRegulato-
ryIntervention (True or False),
MaternityRelated (True or False),
PatientDeath (True of False),
InvestigationResults (free text)

Table 5: Fields in the complaints dataset.
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Abstract
CogNet is a knowledge base that integrates
three types of knowledge: linguistic knowl-
edge, world knowledge and commonsense
knowledge. In this paper, we propose an
information extraction toolkit, called CogIE,
which is a bridge connecting raw texts and
CogNet. CogIE has three features: versatile,
knowledge-grounded and extensible. First,
CogIE is a versatile toolkit with a rich set
of functional modules, including named entity
recognition, entity typing, entity linking, re-
lation extraction, event extraction and frame-
semantic parsing. Second, as a knowledge-
grounded toolkit, CogIE can ground the ex-
tracted facts to CogNet and leverage different
types of knowledge to enrich extracted results.
Third, for extensibility, owing to the design
of three-tier architecture, CogIE is not only a
plug-and-play toolkit for developers but also
an extensible programming framework for re-
searchers. We release an open-access online
system 1 to visually extract information from
texts. Source code, datasets and pre-trained
models are publicly available at GitHub 2, with
a short instruction video 3.

1 Introduction

Knowledge bases (KBs) such as FrameNet (Baker
et al., 1998), DBpedia (Lehmann et al., 2015),
Wikidata (Vrandečić and Krötzsch, 2014), and Con-
ceptNet (Liu and Singh, 2004) are becoming pop-
ular for a variety of downstream tasks including
information retrieval, recommender system and di-
alog system. Wang et al. (2021) divide KBs into
three categories according to the type of knowl-
edge, respectively linguistic KBs (e.g., FrameNet),
world KBs (e.g., DBpedia, Wikidata) and common-
sense KBs (e.g., ConceptNet). Unlike most of the

1http://cognet.top/cogie
2https://github.com/jinzhuoran/CogIE
3https://youtu.be/csgnjU_F3Qs

above KBs which focus on a single type of knowl-
edge, CogNet (Wang et al., 2021) models linguistic,
world and commonsense knowledge using a unified
representation architecture for better knowledge in-
tegration.

To apply CogNet to downstream tasks, it is chal-
lenging to expand CogNet and ground raw texts to
CogNet automatically. For this target, information
extraction (IE) is an effective method, which aims
to extract entity, relation, event, and other factual
information from raw texts and link them to KBs.

With the rapid development of IE area, a few re-
markable open-source toolkits have been developed
in recent years. The mainstream toolkits can be
classified into two categories: task-specific toolkits
and task-agnostic toolkits. Task-specific toolkits
focus on one or a few specific tasks, such as FLAIR
(Akbik et al., 2019) for named entity recognition
(NER), BLINK (Ledell Wu, 2020) for entity link-
ing (EL), OpenNRE (Han et al., 2019) for relation
extraction (RE) and Open-SESAME (Swayamdipta
et al., 2017) for frame-semantic parsing. On the
other end of the spectrum, AllenNLP (Gardner
et al., 2017), OpenNMT (Klein et al., 2017) and
other task-agnostic toolkits are designed to provide
programming framework without the implementa-
tion of specific tasks.

As mentioned above, various toolkits have been
widely used, but they also suffer from several lim-
itations. First, most of the existing NLP toolk-
its only support one or a few IE functions, and
there is a lack of an integrated and efficient IE
toolkit. Second, very few IE toolkits can align
the extracted facts to KBs, which may cause the
extracted facts not to be applied directly to down-
stream tasks. Third, for an efficient and effective
toolkit, providing application program interfaces
(APIs) is as important as supporting the secondary
development. Still, only a few toolkits can do both
at the same time.
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Figure 1: Left: The three-tier architecture of CogIE. Right: The internal structure of each layer.

Therefore, it is highly desirable to have an open-
source toolkit that can implement and integrate
various IE tasks and can take advantage of the
knowledge resources in KBs to enrich the extracted
facts. Such a toolkit should achieve the equilibrium
among usability, extensibility and efficiency.

To this end, we propose CogIE, an IE toolkit
that bridges raw texts and CogNet, making it easy
to extract facts from texts as well as ground the ex-
tracted facts to CogNet. The toolkit supports both
English and Chinese, building upon PyTorch with
the same uniform design. Moreover, CogIE can
meet the requirements of function customizability
and model extensibility for researchers. CogIE also
provides APIs for developers to build applications
rapidly. We release an online CogIE system to
extract information from input texts with friendly
interactive interfaces and fast response speed.

In summary, the main features and contributions
are as follows:

• Versatile. We develop a professional and inte-
grated IE toolkit. CogIE can support high-
performance named entity recognition, en-
tity typing, entity linking, relation extraction,
event extraction and frame-semantic parsing.

• Knowledge-grounded. We build a bridge
between raw texts and CogNet. CogIE can
ground the extracted facts to CogNet and
leverage different types of knowledge to en-
rich results.

• Extensible. We contribute not just user-
friendly APIs, but an extensible programming
framework. Our goal in designing CogIE is
to provide a universal toolkit for all sorts of
users.

2 System Design and Architecture

In this section, we introduce the design choice and
system architecture of CogIE. Designing a power-
ful toolkit is challenging due to different types of IE
tasks and fast-growing new models. As illustrated
in Figure 1, we tackle the challenges by dividing
the main modules and components of CogIE into
three layers. Each layer in CogIE plays a unique
role separately.

2.1 Application Layer

The application layer acts as a mediator between
CogIE and users, including researchers and devel-
opers. Researchers pay more attention to internal
details and prefer a programming framework to sup-
port function customization and model construc-
tion. On the contrary, developers are more likely to
use the high-level functions provided by the toolkit
directly without knowing too many low-level de-
tails. Considering the different requirements of
both sides, we divide CogIE into two parts at the
application layer: (1) a programming framework
supporting NLP research; (2) APIs providing IE
functions.

NLP Programming Framework. The primary
design goal of CogIE is to make it easy to meet
some individual requirements with our experiment
paradigm. Specifically, we decouple NLP experi-
ments, forming three consecutive parts of Training
- Evaluation - Prediction. Thus, users can use the
programming framework to train new models, vali-
date performances and make predictions based on
the trained models.

IE APIs. We also implement a series of typical
models by the unified framework of CogIE. Co-
gIE provides APIs with multilingual support (En-
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Figure 2: The examples of main functions in CogIE.

glish and Chinese), including word segmentation,
named entity recognition, entity typing, entity link-
ing, relation extraction, event extraction and frame-
semantic parsing, etc. APIs take raw texts as input
and produce structured extraction results accurately
and quickly.

2.2 Module Layer

The module layer is based on the principle that
each module has a single function and contacts
with as few modules as possible. In this layer, Co-
gIE consists of three independent modules, namely
engineering module, research module and auxil-
iary module. In this way, users only need to focus
on core neural network models without writing
repetitive and complex engineering code, allowing
experiments easier and faster. The following is the
detailed design philosophy of each module.

Engineering Module. This module mainly inte-
grates the code with high repeatability in different
task scenarios. In this way, CogIE is less error-
prone and more time-saving by automating most of
the training loop and tricky engineering.

Research Module. To make code more concise
and extensible, we decouple the research module
from the engineering module. The research module
mainly includes the user-defined neural network
models, loss functions, etc., which are the core of

research.

Auxiliary Module. The auxiliary module is de-
signed to assist experiments by accelerating train-
ing, saving checkpoints, recording logs, and visu-
alizing results. For example, CogIE can support
16-bit precision to cut memory footprint by half
and use TensorBoard 4 to visualize experimental
parameters.

2.3 Code Layer

The code layer relates to the underlying design of
CogIE. This layer consists of three interdependent
parts: core code, model code and data code.

Core Code. In the core code, we develop a vari-
ety of ready-to-use components for users. Because
of the special Training - Evaluation - Prediction
experiment paradigm, Trainer, Tester and
Predictor class are the key components of core
code. In the case of Trainer class, users just
need to feed the expected components (e.g., model,
dataset, loss function, evaluation metric, configu-
ration file, etc.) into it, everything else is automati-
cally done.

Model Code. BaseModel class is the base
class of all models in CogIE. BaseModel class
organizes code into four sections: (1) forward

4https://github.com/lanpa/tensorboardX
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function for computation, (2) loss function for
train, (3) evaluate function for validation, and
(4) predict function for prediction. Model code
consists of two parts: encoder module (e.g., Pre-
trained Language Model, RNN, CNN, etc.) and
decoder module (e.g., CRF, FFN, etc.). By design-
ing model code this way, it is convenient to change
from one model to another by simply plugging in
and swapping out a single or few modules.

Data Code. The data code is built around the
notion of Datable which stores data in ta-
ble form. CogIE includes built-in Loader and
Processor class for lots of popular datasets and
provides easy-to-use data containers to encapsulate
all the steps needed to process data.

3 Core Functions

CogIE is designed for a series of IE functions, in-
cluding named entity recognition, entity typing,
entity linking, relation extraction, event extraction,
and frame-semantic parsing, etc. CogIE can also
align the extracted facts to CogNet via entity link-
ing, relation matching and frame matching. As
shown in Figure 2, we give some examples to illus-
trate these functions.

3.1 Named Entity Recognition
Named entity recognition (NER) is a task for locat-
ing and classifying certain occurrences of words
or expressions in unstructured texts into predefined
semantic categories. To achieve the function of
entity recognition, we adopt BERT as the textual
encoder and use CRF as the decoder. Up to now,
CogIE can not only recognize the common four
entity types: locations, persons, organizations, and
miscellaneous entities, but also support the recog-
nition of 54 entity types.

3.2 Entity Typing
Fine-grained entity typing aims to assign one or
more types to each entity mention given a certain
context and can provide valuable prior knowledge
for a wide range of NLP tasks, such as relation
extraction and question answering. To achieve
the function of entity typing, we adopt a two-step
mention-aware attention mechanism to enable the
model to focus on important words like Lin and
Ji (2019). Compared with NER, ET has finer and
richer entity labels with internal correlations (e.g.,
/person, /person/artist, /person/artist/actor), there
are 87 fine-grained entity lables in CogIE.

3.3 Entity Linking

Entity linking is the task to link entity mentions in
texts with their corresponding entities in a knowl-
edge base. To achieve the function of entity linking,
we use BLINK which adopts a two-stage approach
for entity linking based on fine-tuned BERT archi-
tectures. CogIE supports link entities to CogNet
and Wikidata, users can leverage multiple types
of knowledge obtained through EL to implement
knowledge base population (KBP) and knowledge
based question answering (KBQA).

3.4 Relation Extraction

Relation extraction aims at predicting semantic re-
lations between pairs of entities. More specifically,
after identifying entity mentions in texts, the main
goal of RE is to classify relations. To achieve the
function of relation extraction, we adopt BERT as
the textual encoder and use FFN as the decoder.
As CogIE implements relation extraction simul-
taneously, it also matches extracted relations to
Wikidata in the form as shown in Figure 2. We
train relation matching on T-REx (Elsahar et al.,
2018), which is a large-scale alignment dataset be-
tween free text documents and KB triples, there are
currently 500 relation classes in CogIE.

3.5 Event Extraction

Events are classified as things that happen or oc-
cur, and usually involve entities as their properties.
Event extraction need to identify events that are
composed of an event trigger, an event type, and a
set of arguments with different roles. To achieve
the function of event extraction, we realize DM-
CNN (Chen et al., 2015) and a joint model based
on BERT.

3.6 Frame-Semantic Parsing

Frame semantic parsing is the task of automati-
cally extracting semantic structures in plain texts
according the framework of FrameNet. Each frame
represents a kind of event, situation, or relationship,
and consists of a frame name, a list of lexical units
(LUs), and a set of frame elements (FEs). LU is a
word that plays the role of evoking the correspond-
ing frame. FE indicates different semantic roles
associated with the frame.

Frame-semantic parsing is usually performed as
a pipeline of tasks: target identification, frame iden-
tification and argument identification. To achieve
the function of argument identification, we add tar-

95



Tester LossProcessor

Loader

Datable

DatableSet

Model

Trainer Metrics

Optimizer

Transformer
RNN
CNN
...

MultiLabelMetirc
ClassifyMetric
SpanMetric
...

CrossEntropyLoss
FocalLoss
DiceLoss
...

SGD
Adam
AdamW
...

Dataset
Vocabulary
Config
...

Checkpoint
Log
Visualization 
...

Input

Output

# load dataset

loader = Loader()
train_data, dev_data, test_data 

= loader.load_all(’path of dataset’)
# process dataset
processor = Processor()
train_datable = processor.process(train_data)
train_dataset = DataTableSet(train_datable)
dev_datable = processor.process(dev_data)
dev_dataset = DataTableSet(dev_datable)
test_datable = processor.process(test_data)
test_dataset = DataTableSet(test_datable)

# create model, loss, metric, optimizer for training
model = Model()

metric = Metric()
loss = Loss()
optimizer = Optimizer(model.parameters(), lr=’learning rate’)

# train and test the model
trainer = Trainer(model, train_dataset, dev_dataset, loss,

optimizer, metric,  model_path=’path of checkpoint’)
trainer.train()
tester = Tester(model, test_dataset, metric)
tester.test()

Figure 3: The sample code of model training in CogIE.

get representation and position representation to
BERT encoder. CogIE currently supports to iden-
tify 749 frames and 816 FEs in FrameNet.

4 System Usage

Our goal of designing CogIE is to provide a user-
friendly toolkit for users by achieving the equilib-
rium among usability, extensibility and efficiency.

4.1 Interface Calls

CogIE’s APIs can be directly called by Toolkit
class, where the previous output is pipelined to
the following input. Considering APIs’ flexibility,
users need to specify different tasks, languages and
datasets, while pre-trained models can be down-
loaded and loaded to Toolkit class automati-
cally.

As shown in Figure 4, the code snippet shows a
pipelined usage of CogIE for tokenizing a sentence
into words, recognizing entities, and extracting re-
lations between entities:
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# load dataset

loader = Loader()
train_data, dev_data, test_data 

= loader.load_all(’path of dataset’)
# process dataset
processor = Processor()
train_datable = processor.process(train_data)
train_dataset = DataTableSet(train_datable)
dev_datable = processor.process(dev_data)
dev_dataset = DataTableSet(dev_datable)
test_datable = processor.process(test_data)
test_dataset = DataTableSet(test_datable)

# create model, loss, metric, optimizer for training
model = Model()

metric = Metric()
loss = Loss()
optimizer = Optimizer(model.parameters(), lr=’learning rate’)

# train and test the model
trainer = Trainer(model, train_dataset, dev_dataset, loss,

optimizer, metric,  model_path=’path of checkpoint’)
trainer.train()
tester = Tester(model, test_dataset, metric)
tester.test()

Figure 3: The sample code of model training in CogIE.

get representation and position representation to
BERT encoder. CogIE currently supports to iden-
tify 749 frames and 816 FEs in FrameNet.

4 System Usage

Our goal of designing CogIE is to provide a user-
friendly toolkit for users by achieving the equilib-
rium among usability, extensibility, and efficiency.

4.1 Interface Calls

CogIE’s APIs can be directly called by Toolkit
class, where the previous output is pipelined to
the following input. Considering APIs’ flexibility,
users need to specify different tasks, languages and
datasets, while pre-trained models can be down-
loaded and loaded to Toolkit class automati-
cally.

The following code snippet shows a pipelined us-
age of CogIE for tokenizing a sentence into words,
recognizing entities, and extracting relations be-
tween entities:

import cogie
# tokenize the text into words
token_toolkit =

cogie.TokenizeToolkit(language=’english’)
words = token_toolkit.run(’Ontario is the most

populous province in Canada.’)
# recognize the entities in the texts
ner_toolkit = cogie.NerToolkit(language=’english’)
ner_result = ner_toolkit.run(words)
# extract the relations between entities
re_toolkit = cogie.ReToolkit(language=’english’)
re_result = re_toolkit.run(words, ner_result)
print(re_result)

4.2 Model Training

The hallmark of any good toolkit is its extensibil-
ity. As a programming framework, CogIE supports

users to train their customized models without mod-
ifying the CogIE codebase. Figure 3 shows the
sample code of training a model, and one can use
only a tiny amount of code for data processing,
component initializing, model training, and model
evaluating.

To do this, users need to use Loader class to
load the dataset and process it into DatableSet
class by Processor class. Then, Model, Loss,
Metric, Optimizer class should be initialized
before added to Trainer class. And finally,
Trainer and Tester class can train and vali-
date the model while generating checkpoints, logs
and visualization results.

4.3 Online System

Figure 4: An example of the online system.

In addition to the toolkit, we also release an on-
line system with multilingual support (English and
Chinese) as shown in Figure 4. We train models for
different tasks and deploy pre-trained models for

Figure 4: The sample code of interface calls in CogIE.

4.2 Model Training
The hallmark of any good toolkit is its extensibil-
ity. As a programming framework, CogIE supports
users to train their customized models without mod-
ifying the CogIE codebase. Figure 3 shows the
sample code of model training, and one can use
only a tiny amount of code for data processing,
component initializing, model training, and model
evaluating.

To do this, users need to use Loader class to
load the dataset and process it into DatableSet
class by Processor class. Then, Model, Loss,
Metric, Optimizer class should be initialized
before added to Trainer class. And finally,
Trainer and Tester class can train and vali-
date the model while generating checkpoints, logs
and visualization results.

4.3 Online System

Figure 5: An example of the online system.

In addition to this toolkit, we also release an
open-access online system as shown in Figure 5.
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Task Corpus Language Types Metric Score

Word Segmentation MSRA Chinese - F1 91.2

Named Entity Recognition
CoNLL2003 English 4 F1 91.4
OntoNotes5.0 English 18 F1 85.6
OntoNotes4.0 Chinese 4 F1 80.0

Entity Typing BBN English 47 F1 75.5

Relation Extraction
KBP37 English 37 F1 69.9
DuIE Chinese 48 F1 93.0

Event Extraction

Trigger
ACE2005 English

33 F1 68.9
Argument 35 F1 46.4

Trigger
ACE2005 Chinese

33 F1 58.8
Argument 35 F1 52.8

Frame-Semantic Parsing
Frame

Frame 1.5 English
749 Acc 91.0

Element 816 F1 56.4

Table 1: Performance of each task. The datasets references are: MSRA (Emerson, 2005), CoNLL2003 (Sang
and De Meulder, 2003), OntoNotes5.0 (Pradhan et al., 2013), OntoNotes4.0 (Weischedel et al., 2011), BBN
(Weischedel and Brunstein, 2005), KBP37 (Zhang and Wang, 2015), DuIE (Li et al., 2019), ACE2005 (Walker
et al., 2006), and Frame 1.5 (Kabbach et al., 2018).

We train models for different tasks and deploy pre-
trained models for online access. The online sys-
tem can be directly used for extracting entities,
relations, events and frames from plain texts. Be-
sides, the extracted results can be linked to CogNet,
so users can further acquire external knowledge
through CogNet. We also visualize the extracted
results in the form of knowledge graphs to improve
the availability of the online system. Meanwhile,
open online APIs 5 can be called directly .

5 Experiment and Evaluation

In this section, we train and evaluate CogIE on sev-
eral datasets in different tasks. Each task’s perfor-
mance is shown in Table 1, all pre-trained models
are publicly downloadable.

For the NER component, we compare CogIE
against Stanza (v1.0), FLAIR (v0.4.5) and spaCy
(v2.2), we find that CogIE can achieve either higher
or close F1 scores when compared against other
toolkits. For the RE component, we compare
CogIE with two baselines: RNN+PI (Zhang and
Wang, 2015) and BERTEM (Soares et al., 2019),
we observe that CogIE can achieve comparable or
even better performance than them. For the frame-
semantic parsing component, we compare CogIE
against SimpleFrameId (Hartmann et al., 2017),
we find that CogIE can have better performance
than SimpleFrameId. For the other components,

5http://cognet.top/cogie/api.html

we also compare CogIE with a series of baselines
and toolkits, and the evaluation results show that
CogIE can provide powerful IE functions.

6 Conclusion and Future Work

In this paper, we propose CogIE, an information ex-
traction toolkit for bridging texts and CogNet. We
have shown that CogIE is a plug-and-play toolkit
and an extensible programming framework due to
its Application - Module - Code three-tier archi-
tecture design. Moreover, as an integrated and
professional IE toolkit, CogIE can extract informa-
tion from texts while aligning the extracted facts to
CogNet and other KBs. We conduct experiments
on several datasets in different tasks, and the evalu-
ation results demonstrate the models implemented
by CogIE are efficient.

In the future, we consider the following points
during improvement: (1) To use CogIE on any
device, we will further optimize model sizes and
speed up computation in CogIE while striking a
balance between accuracy and efficiency; (2) For
making models robust to the texts of different do-
mains and styles, we plan to utilize various sources
of consistent data to train a universal model; (3) We
will build an open-source community for CogIE so
that all researchers can contribute their models and
participate in long-term maintenance.
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Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web.

Shuangjie Li, Wei He, Yabing Shi, Wenbin Jiang, Hai-
jin Liang, Ye Jiang, Yang Zhang, Yajuan Lyu, and
Yong Zhu. 2019. Duie: A large-scale chinese dataset
for information extraction. In Proc. of NLPCC.

Ying Lin and Heng Ji. 2019. An attentive fine-grained
entity typing model with latent type representation.
In Proc. of EMNLP.

Hugo Liu and Push Singh. 2004. Conceptnet—a practi-
cal commonsense reasoning tool-kit. BT technology
journal.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. Proc. of
CoNLL.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proc. of
CoNLL.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. In Proc. of ACL.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A. Smith. 2017. Frame-Semantic Parsing with
Softmax-Margin Segmental RNNs and a Syntactic
Scaffold. ArXiv:1706.09528.
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Abstract

We present fastHan, an open-source toolkit
for four basic tasks in Chinese natural lan-
guage processing: Chinese word segmenta-
tion (CWS), Part-of-Speech (POS) tagging,
named entity recognition (NER), and depen-
dency parsing. The backbone of fastHan is
a multi-task model based on a pruned BERT,
which uses the first 8 layers in BERT. We
also provide a 4-layer base model compressed
from the 8-layer model. The joint-model is
trained and evaluated on 13 corpora of four
tasks, yielding near state-of-the-art (SOTA)
performance in dependency parsing and NER,
achieving SOTA performance in CWS and
POS. Besides, fastHan’s transferability is also
strong, performing much better than popular
segmentation tools on a non-training corpus.
To better meet the need of practical applica-
tion, we allow users to use their own labeled
data to further fine-tune fastHan. In addition
to its small size and excellent performance,
fastHan is user-friendly. Implemented as a
python package, fastHan isolates users from
the internal technical details and is convenient
to use. The project is released on Github1.

1 Introduction

Recently, the need for Chinese natural language
processing (NLP) has a dramatic increase for many
downstream applications. There are four basic
tasks for Chinese NLP: Chinese word segmenta-
tion (CWS), Part-of-Speech (POS) tagging, named
entity recognition (NER), and dependency pars-
ing. CWS is a character-level task while others are
word-level tasks. These basic tasks are usually the
cornerstones or provide useful features for other
downstream tasks.

However, the Chinese NLP community lacks an
effective toolkit utilizing the correlation between

∗Corresponding author
1https://github.com/fastnlp/fastHan

the tasks. Tools developed for a single task cannot
achieve the highest accuracy, and loading tools for
each task will take up more memory. In practical,
there is a strong correlation between these four ba-
sic Chinese NLP tasks. For example, the model will
perform better in the other three word-level tasks if
its word segmentation ability is stronger. Recently,
Chen et al. (2017a) adopt cross-label to label the
POS so that POS tagging and CWS can be trained
jointly. Yan et al. (2020) propose a graph-based
model for joint CWS and dependency parsing, in
which a special ”APP” dependency arc is used to
indicate the word segmentation information. Thus,
they can jointly train the word-level dependency
parsing task and character-level CWS task with the
biaffine parser (Dozat and Manning, 2016). Chen
et al. (2017b) explore adversarial multi-criteria
learning for CWS, proving more knowledge can be
mined through training model on more corpora. As
a result, there are many pieces of research on how
to perform multi-corpus training on these tasks and
how to conduct multi-task joint training. Zhang
et al. (2020) show the joint training of POS tagging
and dependency parsing can improve each other’s
performance and so on. Results of the CWS task
are contained in the output of the POS tagging task.

Therefore, we developed fastHan, an efficient
toolkit with the help of multi-task learning and pre-
trained models (PTMs) (Qiu et al., 2020). FastHan
adopts a BERT-based (Devlin et al., 2018) joint-
model on 13 corpora to address the above four tasks.
Through multi-task learning, fastHan shares knowl-
edge among the different corpora. This shared
information can improve fastHan’s performance on
these tasks. Besides, training on more corpora can
obtain a larger vocabulary, which can reduce the
number of times the model encounters characters
outs of vocabulary. What’s more, the joint-model
can greatly reduce the occupied memory space.
Compared with training a model for each task, the
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joint-model can reduce the occupied memory space
by four times.

FastHan has two versions of the backbone model,
base and large. The large model uses the first eight
layers of BERT, and the base model uses the The-
seus strategy (Xu et al., 2020) to compress the large
model to four layers. To improve the performance
of the model, fastHan has done much optimization.
For example, using the output of POS tagging to
improve the performance of the dependency pars-
ing task, using Theseus strategy to improve the
performance of the base version model, and so on.

Overall, fastHan has the following advantages:

Small size: The total parameter of the base model
is 151MB, and for the large model the number
is 262MB.

High accuracy: The base version of the model
achieved good results in all tasks, while the
large version of the model approached SOTA
in dependency parsing and NER, and achieved
SOTA performance in CWS and POS.

Strong transferability: Multi-task learning al-
lows fastHan to adapt to multiple criteria, and
a large number of corpus allows fastHan to
mine knowledge from rare samples. As a re-
sult, fastHan is robust to new samples. Our
experiments in section 4.2 show fastHan out-
performs popular segmentation tools on non-
training dataset.

Easy to use: FastHan is implemented as a python
package, and users can get started with its
basic functions in one minute. Besides, all
advanced features, such as user lexicon and
fine-tuning, only need one line of code to use.

For developers of downstream applications, they
do not need to do repetitive work for basic tasks
and do not need to understand complex codes like
BERT. Even if users have little knowledge of deep
learning, by using fastHan they can get the re-
sults of SOTA performance conveniently. Also,
the smaller size can reduce the need for hardware,
so that fastHan can be deployed on more platforms.

For the Chinese NLP research community, the
results of fastHan can be used as a unified prepro-
cessing standard with high quality.

Besides, the idea of fastHan is not restricted to
Chinese. Applying multi-task learning to enhance
NLP toolkits also has practical value in other lan-
guages.

Figure 1: Architecture of the proposed model. The in-
puts are characters embeddings.

2 Backbone Model

The backbone of fastHan is a joint-model based
on BERT, which performs multi-task learning on
13 corpora of the four tasks. The architecture of
the model is shown in Figure 1. For this model,
sentences of different tasks are first added with
corpus tags at the beginning of the sentence. And
then the sentences are input into the BERT-based
encoder and the decoding layer. The decoding layer
will use different decoders according to the current
task: use conditional random field (CRF) to decode
in the NER task; use MLP and CRF to decode
in POS tagging and CWS task; use the output of
POS tagging task combined with biaffine parser to
decode in dependency parsing task.

Each task uses independent label sets here, CWS
uses label set Y = {B,M,E, S}; POS tagging
uses cross-labels set based on {B,M,E, S}; NER
uses cross-labels set based on {B,M,E, S,O};
dependency parsing uses arc heads and arc labels
to represent dependency grammar tree.

2.1 BERT-based feature extraction layer

BERT (Devlin et al., 2018) is a language model
trained in large-scale corpus. The pre-trained
BERT can be used to encode the input sequence.
We take the output of the last layer of transformer
blocks as the feature vector of the sequence. The at-
tention (Vaswani et al., 2017) mechanism of BERT
can extract rich and semantic information related to
the context. In addition, the calculation of attention
is parallel in the entire sequence, which is faster
than the feature extraction layer based on LSTM.
Different from vanilla BERT, we prune its layers
and add corpus tags to input sequences.
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Layer Pruning: The original BERT has 12 lay-
ers of transformer blocks, which will occupy a lot
of memory space. The time cost of calculating for
12 layers is too much for these basic tasks even
if data flows in parallel. Inspired by Huang et al.
(2019), we only use 4 or 8 layers. Our experiment
found that using the first eight layers performs well
on all tasks, and after compressing, four layers are
enough for CWS, POS tagging, and NER.

Corpus Tags: Instead of a linear projection layer,
we use corpus tags to distinguish various tasks and
corpora. Each corpus of each task corresponds to
a specific corpus tag, and the embedding of these
tags needs to be initialized and optimized during
training. As shown in Figure 1, before inputting
the sequence into BERT, we add the corpus tag to
the head of the sequence. The attention mechanism
will ensure that the vector of the corpus tag and the
vector of each other position generate sufficiently
complex calculations to bring the corpus and task
information to each character.

2.2 CRF Decoder
We use the conditional random field (CRF) (Laf-
ferty et al., 2001) to do the final decoding work in
POS tagging, CWS, and NER tasks. In CRF, the
conditional probability of a label sequence can be
formalized as:

P (Y |X) =
1

Z(x; θ)
exp(

T∑

t=1

θ>1 f1(X, yt)+

T−1∑

t=1

θ>2 f2(X, yt, yt+1)) (1)

where θ are model parameters, f1(X, yt) is the
score for label yt at position t, f2(X, yt, yt+1) is
the transition score from yt to yt+1, and Z(x; θ) is
the normalization factor.

Compared with decoding using MLP only, CRF
utilizes the neighbor information. When decod-
ing using the Viterbi algorithm, CRF can get the
global optimal solution instead of the label with the
highest score for each position.

2.3 Biaffine Parser with Output of POS
tagging

This task refers to the work of Yan et al. (2020).
Yan’s work uses the biaffine parser to address both
CWS and dependency parsing tasks. Compared
with the work of Yan et al. (2020), our model will
use the output of POS tagging for two reasons.

First, dependency parsing has a large semantic and
formal gap with other tasks. As a result, sharing
the parameter space with other tasks will reduce its
performance. Our experimental results show that
when the prediction of dependency parsing is inde-
pendent of other tasks, the performance is worse
than that of training dependency parsing only. And
using the output of POS, dependency parsing can
get more useful information, such as word segmen-
tation and POS tagging labels. More importantly,
users have the need to obtain all information in one
sentence. If running POS tagging and dependency
parsing separately, the word segmentation results
of the two tasks may conflict, and this contradiction
cannot be resolved by engineering methods. Even
if there is error propagation in this way, our experi-
ment shows the negative impact is acceptable with
high POS tagging accuracy.

When predicting for dependency parsing, we
first add the POS tagging corpus tag at the head of
the original sentence to get the POS tagging output.
Then we add the corpus tag of dependency parsing
at the head of the original sentence to get the feature
vector. Then, using the word segmentation results
from POS tagging to split the feature vector of
dependency parsing by token. The feature vectors
of characters in a token are averaged to represent
the token. In addition, embedding is established for
POS tagging labels, with the same dimension as the
feature vector. The feature vector of each token is
added to the embedding vector by position, and the
result is input into the biaffine parser. During the
training phase, the model uses golden POS tagging
labels. The premise of using POS tagging output is
that the corpus contains both dependency parsing
and POS tagging information.

2.4 Theseus Strategy

Theseus strategy (Xu et al., 2020) is a method to
compress BERT, and we use it to train the base
version of the model. As shown in Figure 2, after
getting the large version of the model we use the
module replacement strategy to train the four-layer
base model. The base model is initialized with the
first four layers of the large model, and its layer i is
bound to the layer 2i− 1 and 2i of the large model.
They are the corresponding modules. The training
phase is divided into two parts. In the first part, we
randomly choose whether to replace the module
in the base model with its corresponding module
in the large model. And we make the choice for
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Figure 2: This diagram explains the replacement strat-
egy when using Theseus method. When training the
base model, we randomly replace the layer of base
model with corresponding layers of large model. The
red arrows and yellow arrows represent two possible
data paths during training.

Figure 3: An example of segmentation of sequence
(c1, c2, c3, ...) combined with a user lexicon. Accord-
ing to the segmentation result of the maximum match-
ing algorithm, a bias will be added to scores marked in
red.

each module. We freeze the parameters of the large
model when using gradients to update parameters.
The replacement probability p is initialized to 0.5
and decreases linearly to 0. In the second part, We
only fine-tune the base model and don’t replace the
modules anymore.

2.5 User Lexicon

In actual applications, users may process text of
specific domains, such as technology, medical.
There are proprietary vocabularies with high re-
call rates in such domains, and they rarely appear
in ordinary corpus. It is intuitive to use a user lex-
icon to address this problem. Users can choose
whether to add or use their lexicon. An example
of combining a user lexicon is shown in Figure 3.
When combined with a user lexicon, the maximum
matching algorithm (Wong and Chan, 1996) is first
performed to obtain a label sequence. After that, a
bias will be added to the corresponding scores out-
put by the encoder. And the result will be viewed
as f1(X, yt) in CRF in section 2.2. The bias is

Figure 4: The workflow of fastHan. As indicated by the
yellow arrows, data is converted between various for-
mats in each stage. The blue arrows reveal that fastHan
needs to act according to the task being performed cur-
rently.

calculated by the following equation:

bt = (max(y1:n)− average(y1:n)) ∗ w (2)

where bt is the bias on position t, y1:n is the scores
of each labels on position t output by the encoder,
and w is the coefficient whose default value is 0.05.
CRF decoder will generate the global optimal so-
lution considering the bias. Users can set the co-
efficient value according to the recall rate of their
lexicon. A development set can also be applied to
get the optimal coefficient.

3 fastHan

FastHan is a Chinese NLP toolkit based on the
above model, developed based on fastNLP2 and
PyTorch. We made a short video demonstrating
fastHan and uploaded it to YouTube3 and bilibili4.

FastHan has been released on PYPI and users
can install it by pip:

pip install fastHan

3.1 Workflow
When FastHan initializes, it first loads the pre-
trained model parameters from the file system.
Then, fastHan uses the pre-trained parameters to
initialize the backbone model. FastHan will down-
load parameters from our server automatically if it
has not been initialized in the current environment
before. After initialization, FastHan’s workflow is
shown in Figure 4.

In the preprocessing stage, fastHan first adds a
corpus tag to the head of each sentence according
to the current task and then uses the vocabulary
to convert the sentence into a batch of vectors as
well as padding. FastHan is robust and does not
preprocess the original sentence redundantly, such

2https://github.com/fastnlp/fastnlp
3https://youtu.be/apM78cG06jY
4https://www.bilibili.com/video/

BV1ho4y117H3
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Figure 5: An example of using fastHan. On the left is the code entered by the user, and on the right is the
corresponding output. The two sentences in the figure mean ”I like playing football” and ”Nanjing Yangtze River
Bridge”. The second sentence can be explained in a second way as ”Daqiao Jiang, mayor of the Nanjing city”, and
it is quite easy to include a user lexicon to customize the output of the second sentence.

as removing stop words, processing numbers and
English characters.

In the parsing phase, fastHan first converts the
label sequence into character form and then parses
it. FastHan will return the result in a form which is
readable for users.

3.2 Usage

As shown in Figure 5, fastHan is easy to use. It
only needs one line of code to initialize, where
users can choose to use the base or large version of
the model.

When calling fastHan, users need to select the
task to be performed. The information of the three
tasks of CWS, POS, and dependency parsing is in
an inclusive relationship. And the information of
the NER task is independent of other tasks. The
input of FastHan can be a string or a list of strings.
In the output of fastHan, words and their attributes
are organized in the form of a list, which is conve-
nient for subsequent processing. By setting param-
eters, users can also put their user lexicon into use.
FastHan uses CTB label sets for POS tagging and
dependency parsing tasks, and uses MSRA label
set for NER.

Besides, users can call the set device function
to change the device utilized by the backbone
model. Using GPU can greatly accelerate the pre-
diction and fine-tuning of fastHan.

3.3 Advanced Features

In addition to using fastHan as a off the shelf
model, users can utilize user lexicon and fine-
tuning to enhance the performance of fastHan. As
for user lexicon, users can call the add user dict
function to add their lexicon, and call the
set user dict weight function to change the
weight coefficient. As for fine-tuning, users can
call the finetune function to load the formatted
data, make fine-tuning, and save the model param-
eters.

Users can change the segmentation style by call-
ing the set cws style function. Each CWS corpus
has different granularity and coverage. By chang-
ing the corpus tag, fastHan will segment words in
the style of the corresponding corpus.

4 Evaluation

We evaluate fastHan in terms of accuracy, transfer-
ability, and execution speed.

4.1 Accuracy Test
The accuracy test is performed on the test set of
training data. We refer to the CWS corpora used by
(Chen et al., 2015; Huang et al., 2019), including
PKU, MSR, AS, CITYU (Emerson, 2005), CTB-6
(Xue et al., 2005), SXU (Jin and Chen, 2008), UD,
CNC, WTB (Wang et al., 2014) and ZX (Zhang
et al., 2014). More details can be found in (Huang
et al., 2019). For POS tagging and dependency
parsing, we use the Penn Chinese Treebank 9.0
(CTB-9) (Xue et al., 2005). For NER, we use
MSRA’s NER dataset and OntoNotes.

We conduct an additional set of experiments to
make the base version of fastHan trained on each
task separately. The final results are shown in Ta-
ble 1. Both base and large models perform satis-
factorily. The result shows that multi-task learn-
ing greatly improves fastHan’s performance on all
tasks. The large version of fastHan outperforms
the current best model in CWS and POS. Although
fastHan’s score on NER and dependency parsing
is not the best, the parameters used by fastHan are
reduced by one-third due to layer prune. FastHan’s
performance on NER can also be enhanced by a
user lexicon with a high recall rate.

We also conduct an experiment about user lexi-
con on 10 CWS corpus respectively. With each cor-
pus, a word is added to the lexicon once it has ap-
peared in the training set. With such a low-quality
lexicon, fastHan’s score increases by an average
of 0.127 percentage points. It is feasible to use
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Model CWS Dependency Parsing POS NER MSRA NER OntoNotes
F Fudep, Fldep F F F

SOTA models 97.1 85.66, 81.71 93.15 96.09 81.82

fastHan base trained separately 97.15 80.2, 75.12 94.27 92.2 80.3
fastHan base trained jointly 97.27 81.22, 76.71 94.88 94.33 82.86
fastHan large trained jointly 97.41 85.52, 81.38 95.66 95.50 83.82

Table 1: The results of fastHan’s accuracy result. The score of CWS is the average of 10 corpora. When training
dependency parsing separately, the biaffine parser use the same architecture as Yan et al. (2020). SOTA models are
best-performing work we know for each task. They came from Huang et al. (2019), Yan et al. (2020), Meng et al.
(2019), Li et al. (2020) in order. Li et al. (2020) uses lexicon to enhance the model.

user lexicon to enhance fastHan’s performance in
specific domains.

4.2 Transferability Test

Segmentation Tool Weibo Test Set

jieba 83.58
SnowNLP 79.65
THULAC 86.65
LTP-4.0 92.05
fastHan 93.38
fastHan(fine-tuned) 96.64

Table 2: Transfer test for fastHan, using span F metric.
We use the test set of Weibo, which has 8092 samples.
For LTP-4.0, we use the base version, which has the
best performance among their models.

For an NLP toolkit designed for the open do-
main, the ability of processing samples not in the
training corpus is very important. We perform the
transfer test on Weibo (Qiu et al., 2016), which
has no overlap with our training data. Samples
in Weibo5 come from the Internet, and they are
complex enough to test the model’s transferabil-
ity. We choose to test on CWS because nearly all
Chinese NLP tools have this feature. We choose
popular toolkits as the contrast, including Jieba6,
THULAC7, SnowNLP8 and LTP-4.09. We also per-
form a test of fine-tuning using the training set of
Weibo.

The results are shown in Table 2. As a off the
shelf model, FastHan outperforms jieba, SnowNLP,
and THULAC a lot. LTP-4.0 (Che et al., 2020) is
another technical route for multi-task Chinese NLP,
which is released after the first release of fastHan.
However, FastHan still outperforms LTP with a

5https://github.com/FudanNLP/
NLPCC-WordSeg-Weibo

6https://github.com/fxsjy/jieba
7https://github.com/thunlp/THULAC
8https://github.com/isnowfy/snownlp
9https://github.com/HIT-SCIR/ltp

much smaller model (262MB versus 492MB). The
result proves fastHan is robust to new samples, and
the fine-tuning feature allows fastHan to better be
adapted to new criteria.

4.3 Speed Test

Models Dependency Parsing Other Tasks
CPU, GPU CPU, GPU

fastHan base 25, 22 55, 111
fastHan large 14, 21 28, 97

Table 3: Speed test for fastHan. The numbers in the
table represent the average number of sentences pro-
cessed per second.

The speed test was performed on a personal
computer configured with Intel Core i5-9400f +
NVIDIA GeForce GTX 1660ti. The test was con-
ducted on the first 800 sentences of the CTB CWS
corpus, with an average of 45.2 characters per sen-
tence and a batch size of 8.

The results are shown in Table 3. Dependency
parsing runs slower, and the other tasks run at about
the same speed. The base model with GPU per-
forms poorly in dependency parsing because depen-
dency parsing requires a lot of CPU calculations,
and the acceleration effect of GPU is less than the
burden of information transfer.

5 Conclusion

In this paper, we presented fastHan, a BERT-based
toolkit for CWS, NER, POS, and dependency
parsing in Chinese NLP. After our optimization,
fastHan has the characteristics of high accuracy,
small size, strong transferability, and ease of use.

In the future, we will continue to improve the
fastHan with better performance, more features
and more efficient learning methods, such as meta-
learning (Ke et al., 2021).
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Abstract
In this paper, we present Tintful, an NLP anno-
tation software that can be used both to manu-
ally annotate texts and to fix mistakes in NLP
pipelines, such as Stanford CoreNLP. Using a
paradigm similar to wiki-like systems, a user
who notices some wrong annotation can easily
fix it and submit the resulting (and right) entry
back to the tool developers. Moreover, Tint-
ful can be used to easily annotate data from
scratch. The input documents do not need to
be in a particular format: starting from the
plain text, the sentences are first annotated
with CoreNLP, then the user can edit the an-
notations and submit everything back through
a user-friendly interface.

A video showing Tintful and its feature is avail-
able on YouTube.1

1 Introduction

In the last years, NLP tools are being more and
more used in tasks such as textual inference, ma-
chine translation, hate speech detection (Socher
et al., 2012). Most of these tasks rely on machine
learning systems trained on large amounts of data,
which have been manually labeled by annotators,
often domain experts. In particular, recent deep
learning algorithms are more accurate, but they
need more data for training, making the data col-
lection a major challenge for the NLP community.

When the annotation task does not require a spe-
cialised competence, one can use a platform such as
Amazon Mechanical Turk (AMT),2 that enables the
distribution of low-skill but difficult-to-automate
tasks to a network of humans, who could work in
parallel, when and where they prefer.

However, not all NLP assignments can be solved
by non-experts because they may require back-
ground knowledge or linguistic expertise. For these

1https://youtu.be/iFDCbtfWdTg
2http://www.mturk.com/

tasks, expert annotators should be hired and receive
a specific training, which is time-consuming and
can become costly.

A similar problem arises when a known task
has to be ported to another domain, and existing
tools turn out to have a poor accuracy, because the
original training data does not include annotated in-
stances from that domain (Ben-David et al., 2007).
For example, the performance of standard NLP
tools (part-of-speech taggers, dependency parsers,
and so on) is severely degraded on tweets for this
very reason (Ritter et al., 2011). One of the solu-
tions to this set of problems would be to make NLP
tools more similar to wiki-like systems, where a
user who notices some wrong annotation can eas-
ily fix it and submit the resulting (and right) entry
back to the tool developers, so that they can add the
instance to the training examples and re-generate
the model.

This is basically the paradigm already used for
active learning (Settles, 2011) which uses “humans
in the loop” to increase the accuracy of a system,
by including in the workflow a targeted correction
of instances that are misclassified (Fan et al., 2017).
As someone said way back in 1969: “Computers
are incredibly fast, accurate and stupid. On the
other hand, a well trained operator as compared
with a computer is incredibly slow, inaccurate and
brilliant”. (Various Authors, 1969)

To obtain a seamless integration between auto-
matic classification and human correction, we need
to develop NLP tools that are accessible through
a user-friendly interface (Holzinger, 2013), easing
the interaction between non-technical persons and
the underlying technology.

In this paper, we present Tintful, a working ex-
ample of the described paradigm, an interface that
combines the output of Stanford CoreNLP (Man-
ning et al., 2014) with a newly created annotation
tool that allows the user to edit and fix the output
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data, in a wiki-like style. The user (registered or
not) can edit the tokens, the lemmas, the parts of
speech, the dependency trees and the named en-
tities (persons, locations, organizations). Thanks
to an API released with the web interface, the re-
sulting annotation can be stored for later use (for
example, the software retraining), so that users can
contribute to improving the system performance on
specific tasks or domains of interest.

Compared to other similar tools (see Section 2),
Tintful has some main strengths:

• There is no need to pre-process the data one
wants to annotate. The user can easily enter
the raw text into the system and directly edit
the output annotation.

• There is no need for an expert to setup the
environment. Just install the tool and start to
annotate.

• “Casual” users can contribute to the annota-
tion by submitting their anonymous annota-
tions to the system.

• The annotated data is immediately available
just by querying the database, and can be used
in an incremental learning framework (Schlim-
mer and Fisher, 1986).3

We believe that this paradigm may foster the
adoption of NLP tools in domains and settings that
so far have not taken full advantage of text process-
ing. For example, social scientists or humanities
scholars would have the possibility to correct the
output of a parser or NER trained on news, which
may perform poorly on other types of texts, directly
through the tool interface, making it easier to adapt
the model to new domains and genres.

Finally, the whole tool is released open source
and available on Github (see Section 7).

2 Related work

Some of the available programs for the manual an-
notation of texts are generic and can be configured
and used for a great variety of tasks. These are
usually powerful but need some work for config-
uration. Some other, on the contrary, have been
developed for a particular purpose, and usually are
easier to launch and configure.

3This part is not included in Tintful out-of-the-box, yet.
For now, it can be done by external tool by a machine learning
expert. We plan to add a feature to make it easy also for
non-expert users in the future, see Section 8.

WebAnno4 (Eckart de Castilho et al., 2016) is
a general purpose web-based annotation tool for a
wide range of linguistic annotations and belongs to
the former category. It is multi-user and supports
different roles to guarantee a quality check of the
annotated data.

INCEpTION5 (Klie et al., 2018) is an open-
source and multi-user text annotation platform de-
veloped at the Technische Universität Darmstadt.
It is general-purpose and can be configured to per-
form a number of annotation tasks.

Similarly, Doccano6 (Nakayama et al., 2018)
provides annotation features for text classification,
sequence labeling and sequence to sequence tasks.

Regarding specifically the annotation of depen-
dency graphs, there several tools that help re-
searchers to manage complex output formats such
as CoNLL-U.7 For instance, ConlluEditor8 (Hei-
necke, 2019) is an actively maintained tool which
facilitates the editing of syntactic relations and mor-
phological features of files in CoNLL-U format.
Similarly, UD-Annotatrix9 (Tyers et al., 2018) is a
language-independent tool for editing dependency
trees according to the guidelines established by the
Universal Dependencies project. TrUDucer10 (Hen-
nig and Köhn, 2017) is a software for transforming
dependency treebanks from one schema to another,
especially to CoNLL-U.

Finally, Arborator11 is an annotation tool for
dependency trees that allows users to perform col-
laborative work. The tool has a specific focus on
HCI aspects, since most of the actions can be done
using mouse drag and drop.

In this paper, we propose a tool that is different
from all the ones described above. With Tintful
the user does not need the data to be in a particular
format: starting from the plain text, the sentences
are first annotated with Stanford CoreNLP, then the
user can edit the annotations and submit everything
back to the server.

4https://webanno.github.io/
5https://inception-project.github.io/
6https://github.com/doccano/doccano
7https://universaldependencies.org/

format.html
8https://github.com/Orange-OpenSource/

conllueditor
9https://github.com/jonorthwash/

ud-annotatrix
10http://nats.gitlab.io/truducer/
11https://arborator.ilpga.fr/
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Figure 1: A graph representation of the Tintful archi-
tecture.

3 Existing components

Tintful is mainly based on two existing pieces of
software: Stanford CoreNLP and Brat.

3.1 Stanford CoreNLP
Stanford CoreNLP (Manning et al., 2014) is an
open-source framework written in Java that pro-
vides most of the common Natural Language Pro-
cessing tasks out-of-the-box for several languages.
The framework provides also an easy interface
to extend the annotation to new tasks and/or lan-
guages.

Tintful is agnostic w.r.t. the language. One can
use the plain Stanford CoreNLP software with Tint-
ful if they need to annotate texts in English, Ger-
man, Spanish, and so on. We processed Italian
texts and therefore used TINT (Palmero Aprosio
and Moretti, 2018), a language-specific extension
whose output is compatible with CoreNLP.

3.2 BRAT
The BRAT Rapid Annotation Tool12 (Stenetorp
et al., 2012) is a web-based tool for text annota-
tion and is developed at University of Manchester.
Although its last version is quite old (November
2012), a large number of research organization still
uses it, since it is very intuitive and can be used
also for visualization-only (the official demo pages
of Stanford Stanza13 (Qi et al., 2020) and CoreNLP
both use it). In Tintful, Brat is used for the graphi-
cal annotation of the syntactic dependencies. The

12http://brat.nlplab.org/
13http://stanza.run/

main issue of this library is that it is not responsive,
meaning that it is not optimized for mobile phones
and tablets. Therefore, we slightly modified it to
make Tintful usable on most devices.

4 Tintful architecture

The architecture of Tintful is represented in Fig-
ure 1.

1. First, the user inserts a text (a) in the Tintful
interface (Figure 6).

2. The NLP pipeline (Stanford CoreNLP or com-
patible variants) is then launched, using the
text as input.

3. The resulting JSON is parsed by Tintful and
shown in the UI (b). In this screen, the user
can browse through all the annotation layers
(tokens, lemma, POS, dependency parsing,
NER, and so on). See Figure 7. Additional
modules not included in CoreNLP are shown,
if the corresponding annotation is present in
the JSON file. Among these modules, the
Tint readability module (Palmero Aprosio and
Moretti, 2018), that estimates the difficulty
level of the document and calculates some
indexes, such as lexical density, semantic rich-
ness, Flesch score (Gulpease for Italian), and
so on.

4. If the annotation contains one or more mis-
takes, the user can enter the edit mode (c)
to fix them; otherwise, the annotation can be
saved as is (go to step 6). See, for example,
Figure 2.

5. The edit screen shows the parsing results to
the user sentence by sentence. One can edit
every aspect of the annotation: tokens, lemma,
POS, dependency labels, dependency tree hi-
erarchy, NER).

6. Once the editing is finished, the user can save
the resulting annotation, that is stored in the
server (d).

7. If the user is logged in when submitting the
edited data, they can recover the annotation
and edit/delete it (Figure 8).

8. Finally, the annotated data can be exported
and downloaded in CoNLL-U format.
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Figure 2: The syntactic dependency editing inter-
face using Brat. Figure 3: The editing interface for POS.

Figure 4: Interface for editing named entities. Figure 5: Editing the text information using a tabu-
lar view.

Figures 2, 3, 4, and 5 show some screenshots of
the annotation interface. Manual annotations can
be performed both by occasional and registered
users, so that the administrator knows which data
belongs to whom.

5 Additional features

5.1 Modular structure

When running Tintful, one can edit everything that
normally is included in the CoNLL-U format (see
Section 2): token, lemma, POS, morphological
features, syntactic dependency hierarchy and labels.
There is also room for the miscellaneous data (last
field of the CoNLL-U file) and the named entities,
that are not included in the format but can be added
with our interface. It can happen that the casual
user only edits some parts of the text (for example,
the POS or the NER, without even touching the
syntactic tree). When saving the data, Tintful select
only the parts where the user did some edits. If
a sentence is already correct and therefore is not
edited by the user, no information is sent to the
server. The user can manually force the sending,

by clicking the ”already correct” button (see, for
instance, Figures 2, 3, and 5.

5.2 User management

The administrator can create users (with login and
password), so that the data sent by that user can be
identified. In addition, the registered user can re-
trieve the annotated sentences and edit them again.
When multiple submissions occur, the server will
merge the different parts in a smart way. For in-
stance, if the user first edits the syntactic tree of
sentence 5 and then it loads it again editing only
the POS, the system will merge the edited POS into
the syntactic structure. If the same user only edit
POS for sentence 2, only the POS information is
saved, ignoring the syntactic tree.

5.3 Contextual help

Since Tintful is meant to be used by non-expert
users, every screen of the tool provides information
buttons, where a quick documentation on how to
use that screen is provided (see Figure 10).
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Figure 6: The input text screen of Tintful (light and
dark). Figure 7: Visualization interface for an English text.

Figure 8: The edit history of Tintful. Figure 9: An example of the editing interface for an
English text.

5.4 Language independence

Tintful is agnostic with respect to the language
of the texts. The whole architecture is based (for
now, see Section 8) on the Stanford CoreNLP json
output. A developer can easily adapt the inter-
face to work with any pipeline that work on top of
CoreNLP or that can give the same format.

6 User experience

In developing Tintful, a particular attention has
been paid to the interface, given that annotators
performing linguistic tasks need to be focused and
typically spend a lot of time interacting with the
tool.

6.1 Human-Computer interaction

Some tools for linguistic annotations are very
generic and can be configured for a potentially in-
finite set of guidelines. As a side effect of that
flexibility, they sometime suffer from slowness in
the practical use.

Tintful, instead, is optimized for a small list of
possible annotations (syntactic tree, NER, part-of-
speech), and therefore the interaction with the user
is optimized, to spend as little time as possible for
the annotation.

As an example, the NER annotation can be per-
formed just by clicking on the word and looping

between the different labels. Since there are only
four possibility (PER, LOC, ORG, O), this action
can be done very quickly.

On the contrary, the list of tags for part-of-
speech is very long, therefore an intermediate
modal screen with a dropdown menu is more prac-
tical.

6.2 Design and accessibility

The design is inspired by Material,14 a set of guide-
lines, components, and tools developed by Google
that support the best practices of user interface de-
sign.

The interface also satisfies the most common
accessibility guidelines and it is responsive, there-
fore all the annotation steps can be performed on a
tablet or a smartphone.

6.3 Dark mode vs. light mode

The high density of the data in the interface may
lead to eyestrain, therefore we add a button that
switches the interface between dark and light. The
dark mode makes it more comfortable for users to
use their devices outside the light hours or in envi-
ronments with bad lighting conditions (Eisfeld and
Kristallovich, 2020; Kim et al., 2019). In addition,
reading white text from a black screen or tablet

14https://material.io/
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Figure 10: An example of contextual help.

may be a way to inhibit myopia (Aleman et al.,
2018). When there is enough light, instead, one
can have better reading performances on a white
background (Piepenbrock et al., 2013). For all
these reasons, users can switch independently be-
tween the two modes using the button in the Tintful
interface. Figure 6 shows an example of the input
screen of Tintful in light and dark mode.

6.4 Flat interface

Although in general there is criticism around using
flat design for everything (Burmistrov et al., 2015),
past studies showed that flat design allows expert
users to execute their task faster (Spiliotopoulos
et al., 2018). On the contrary, skeuomorphism15

visually distracts users from intended targets. We
therefore decide to use a flat design interface for
Tintful: on one side, we want our interface to be
as simple as possible; on the other side, NLP is a
specialized discipline and we expect our users to
have confidence with such tools.

7 Tintful release

The web interface of Tintful is written using
VueJS.16 and the structure of the website is built
with Tailwind CSS.17 The API is written in php
and needs a machine with at least version 7 of the
interpreter and MySQL server installed. It must be
configured to work in a web server (such as Apache
or Nginx).

The whole Tintful package is available on
GitHub18 and released under the Apache license.

15In graphical user interface design, skeuomorphism is the
term describing interface objects that mimic their real-world
counterparts in how they appear and how the user can interact
with them.

16https://vuejs.org/
17https://tailwindcss.com/
18https://github.com/dhfbk/tintful

8 Conclusions and Future Work

In this paper, we present Tintful, an NLP annotation
software that can be used both to annotate texts
from scratch and to fix mistakes in NLP pipelines.
Differently from other similar tools, data do not
need to be in a particular format: starting from plain
text, the sentences are first annotated with Stanford
CoreNLP, then the user can edit the annotations
and submit everything back to the server.

In the future, we will extend the tool to accept
more input formats, so that Tintful can work with
software different from CoreNLP, such as SpaCy
(Honnibal et al., 2020) and UDPipe (Straka, 2018).

In addition, we want to improve the user man-
agement part, by creating an admin interface to
simplify the user creation. We also want to add
the login through external services, such as Google,
Github, Facebook, and so on. For registered users,
this means that they do not need to remember the
password. For casual users, this allows them to
review already submitted annotations.

Finally, we are integrating Tintful with the
CoreNLP scripts that perform the training of the
models (in particular for part-of-speech, depen-
dency parsing and named-entities recognition),
to obtain a fullly automatic incremental learning
pipeline.
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Abstract

We introduce Explainable Scientific Research
Assistant (ESRA), a literature discovery plat-
form that augments search results with rele-
vant details and explanations, aiding users in
understanding more about their queries and
the returned papers beyond existing literature
search systems. Enabled by a knowledge
graph we extracted from abstracts of 23k pa-
pers on the arXiv’s cs.CL category, ESRA pro-
vides three main features: explanation (for
why a paper is returned to the user), list of facts
(that are relevant to the query), and graph vi-
sualization (drawing connections between the
query and each paper with surrounding related
entities). The experimental results with hu-
mans involved show that ESRA can accelerate
the users’ search process with paper explana-
tions and helps them better explore the land-
scape of the topics of interest by exploiting the
underlying knowledge graph. We provide the
ESRA web application at http://esra.cp.
eng.chula.ac.th/.1

1 Introduction

Existing literature search platforms mostly present
metadata of papers as search results, and this re-
quires users to read the entire abstracts to under-
stand the brief contents of the returned papers. The
users then need to reflect on the knowledge of the
papers themselves so as to decide which keywords
they should search next. Therefore, it is time-
consuming to gradually expand their understanding
of the field using existing platforms.

Meanwhile, research on analyzing scientific lit-
erature has been getting more attention due to the
extremely large number of new papers published
every day (Williams et al., 2014; Khan et al., 2017).

∗ Equal contributions
† Corresponding author

1A brief demo of ESRA is available at https://youtu.
be/2RC6d4IFgIw

Also, many of them are freely accessible online and
the number is still rising (Munroe, 2013). These
lead to several frameworks that aim for extracting
knowledge (i.e., scientific concepts and their rela-
tions) from scientific documents and representing
them as a Knowledge Graph (KG) (Luan et al.,
2018; Eberts and Ulges, 2019). However, to the
best of our knowledge, most of the existing liter-
ature platforms have not yet leveraged such ex-
tracted knowledge graphs, but only the graph of
metadata and hierarchical topics (Ammar et al.,
2018; Sinha et al., 2015). So, they are not aware
of relations among scientific entities in the papers
(e.g., methods, models, and materials) resulting in
an inability to provide insightful knowledge beyond
a list of papers and abstracts.

In this paper, we develop Explainable Scientific
Research Assistant (ESRA) – a literature discov-
ery platform that utilizes a knowledge graph and
modern Natural Language Processing (NLP) mod-
els to augment user experience. ESRA has three
main features built around our extracted knowledge
graph as illustrated partly in Figure 1. First, “the
explanation feature” explains how the query and
each returned paper are related. Second, “the fact
list feature” suggests top-related keywords with
their relationships to the query supporting explo-
ration of related scientific concepts. Third, “the
graph visualization feature” provides a subgraph il-
lustrating related knowledge around the query and
the returned papers. These features aim to help
researchers quickly discover and understand a col-
lection of literature they are looking for.

The strengths of the main features are demon-
strated through a use case in Figure 1. Suppose
users want to know about “BERT”, they initially
enter “BERT” as the search query. On the top of the
result page, there is a fact list displayed along with
the graph visualization, showing facts (keywords)
related to BERT such as “BERT is a subtype of
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Figure 1: Searching scenario on the keyword “BERT” containing (left) the main result page, (middle top) routing to
another keyword by clicking on the node, (middle bottom) meta data section of the paper page, (right) knowledge
graph section of the paper page (continued from the middle bottom)

pre-trained language model” and “BERT is used
for transfer learning”. Users can navigate to pages
of the related keywords conveniently by clicking
the node names as shown in Figure 1 (middle-top).
From the middle to the bottom of that page, there
is a list of returned papers containing their meta-
data and explanations. For example, the explana-
tion for the paper of RoBERTa (Liu et al., 2019)
is “We present a replication study of BERT pre-
training (Devlin et al., 2019) that carefully mea-
sures the impact of many key hyperparameters and
training data size. We find that BERT was sig-
nificantly undertrained, and can match or exceed
the performance of every model published after
it.” Users can click the paper title in order to redi-
rect to the specific paper page which consists of all
available metadata, knowledge graph visualization,
references, and citations of the paper. With these
features, users can quickly learn about the search
query, check out related papers of their interest, and
navigate to relevant concepts more conveniently.

2 Related Work

In this section, we present an overview of exist-
ing work related to ESRA along two topics, i.e.,
scientific knowledge extraction frameworks and
scientific literature discovery platforms.

2.1 Scientific Knowledge Extraction
Frameworks

In the past, research on information extraction (IE)
for scientific texts focused mainly on citation re-

lations (Sim et al., 2012; Kas, 2011) and unsuper-
vised extraction (Gábor et al., 2016). With the
arrival of the SemEval shared tasks 2017 and 2018
(Augenstein et al., 2017; Gábor et al., 2018), the
associated datasets enabled the research on super-
vised and semi-supervised learning for entity and
relation extraction task for scientific papers. Since
then, many research papers on supervised scientific
IE have emerged. For example, SpERT (Eberts
and Ulges, 2019) performs entity extraction and
relation extraction jointly using pre-trained Trans-
formers. DyGIE++ (Wadden et al., 2019) also
jointly addresses the two tasks with the event ex-
traction task. Besides, Luan et al. (2018) added
the coreference resolution task into their IE frame-
work, called SciIE, and created the SciERC dataset
to support coreference resolution between cross-
sentence entities for more detailed relations. Our
framework combines SpERT and SciIE to cover
both entity/relation extraction and coreference res-
olution, i.e., using SpERT for the former task and
SciIE for the latter task.

2.2 Scientific Literature Discovery Platforms

There are various modern literature discovery
platforms such as ACM Digital Library2, IEEE
Xplore3, Google Scholar4, Microsoft Academic5

2https://dl.acm.org/
3https://ieeexplore.ieee.org/
4https://scholar.google.com/
5https://academic.microsoft.com/
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Feature / Platform
Microsoft Semantic

ORKG AceMap
ESRA

Academic Scholar (ours)
Scientific Knowledge Graph 7 3 7 7 3

Metadata Graph 3 3 3 3 3

Explanation 7 7 7 7 3

Fact List 7 7 7 7 3

Graph Visualization 7 7 3 3 3

Table 1: A feature comparison of existing graph-based literature platforms and our ESRA system

(Sinha et al., 2015), AceMap6 (Tan et al., 2016),
ORKG7 (Jaradeh et al., 2019), and Semantic
Scholar8 (Ammar et al., 2018). Most platforms
are using the metadata of academic papers to rank
and return results to their users. To the best of our
knowledge, only Semantic Scholar uses scientific
knowledge graph in their system. Table 1 compares
prominent features of existing graph-based litera-
ture platforms to our ESRA system. We can see
that the existing platforms focus on returning paper
metadata as the search results without explaining
why the papers are related to the query. In contrast,
our ESRA system fills this gap by providing the
explanations together with related scientific knowl-
edge (via the fact list and the graph visualizations)
to help the users better understand the query.

Besides the mentioned platforms, in the biomed-
ical domain, there are many efforts to integrate
knowledge bases into literature analysis systems.
Similar to our fact list feature, Life-iNet (Ren et al.,
2017) and BioTextQuest+ (Papanikolaou et al.,
2014) are platforms that focus on exploring factual
knowledge of a queried entity in the knowledge
base and providing a list of supported documents.
DeepLife (Ernst et al., 2016) and SetSearch+ (Shen
et al., 2018) are entity-aware literature search en-
gines that broaden results by expanding the query
with related entities in the knowledge base. How-
ever, these platforms lack the ability to explain the
relationship between the search query and the re-
sults. Our system uses the explanation and graph
visualization feature to show the users how the
query and the returned papers are related.

3 Explainable Scientific Research
Assistant (ESRA)

Our goal is to create a scientific literature discov-
ery platform that is explainable to users and helps

6https://www.acemap.info/
7https://www.orkg.org/
8https://www.semanticscholar.org/

them explore and expand knowledge more conve-
niently. This leads to the ESRA system with the
following three main features, all of which leverage
a knowledge graph we extracted from abstracts of
the papers in our system.

Explanation: The explanation attached to each
search result enables users to understand the rea-
sons behind the recommendation of the system,
i.e., why the paper is selected. The generated ex-
planations for the same paper are dissimilar given
different queries, making the explanations become
specific to what the users want to know.

Fact list: For each query, ESRA displays related
knowledge facts from the knowledge graph as a list
for the users to explore. The goal of this feature
is to aid users in having a better understanding of
their search queries.

Graph visualization: Visualization gives users
an understanding of the big picture of the relevant
knowledge. In both the search result page and indi-
vidual paper pages, the web application visualizes a
subgraph of knowledge that is related to the search
keyword and the papers, respectively.

To enable these three features, we implemented
two main engines underlying ESRA as shown in
Figure 2, including (1) a knowledge graph construc-
tion engine and (2) a web application engine. We
will explain them and the overall system develop-
ment in the next subsections.

3.1 Knowledge Graph Construction

Figure 2(a) shows the pipeline for extracting re-
lations from scientific texts and constructing our
knowledge graph. Given input texts (i.e., paper
abstracts in our case), the pipeline works in three
steps.

Step 1: Extraction The input abstracts are fed
into an extractor which returns a list of extracted
triples. The extractor consists of two models which
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Figure 2: The two pipelines of ESRA: (a) Knowledge Graph Construction (section 3.1) and (b) Paper Searching
for web application (section 3.2).

are SciIE (Luan et al., 2018) and SpERT (Eberts
and Ulges, 2019). SciIE is a multi-task model
that can perform named-entity recognition, relation
extraction, and coreference resolution, whereas
SpERT can only do the first two tasks but with
better performance. Therefore, we combine the
two models to be our extractor, using SciIE for
coreference resolution and SpERT for entity and
relation extraction, so as to achieve better perfor-
mance across all the tasks.

Step 2: Post-processing The triples are then
post-processed to clean duplicates and/or uninfor-
mative entities and relations to get the cleaned
triples which form a local knowledge graph for
each abstract. The post-processing includes (i)
merging entities from the same coreference cluster,
(ii) split entities with conjunction, (iii) converting
plurals to singulars, (iv) relating abbreviations to
the corresponding entities, (v) removing meaning-
less entities and relations and (vi) detecting con-
flicts against the knowledge graph ontology.

Step 3: Merging We insert the cleaned triples
into the main knowledge graph and detect conflicts
again to ensure that all comply with the ontology
(e.g., no self-cycle or insensible relations). If the
triple to be inserted already exists, its weight in the
graph is then updated.

We use this pipeline to extract scientific knowl-
edge from paper abstracts in the arXiv dataset

(Clement et al., 2019), particularly in the Compu-
tation and Language category (cs.CL). At the end,
our knowledge graph contains 242k entities and
1.67M relations. It consists of eight entity types
and eleven relation types, the statistics of which are
displayed in Table 2 and 3, respectively. Most of
the entity types (excluding Abbreviation, Author,
and Paper) and relation types (excluding appear in,
cite, related to, and refer to) are adopted from the
SciERC dataset (Luan et al., 2018).

Note that this pipeline is optimized for a sce-
nario with AI-related texts because the extraction
models were initially trained on the SciERC dataset
containing only AI-related documents (Luan et al.,
2018). To extend this pipeline to other domains,
we need to use an extractor that can effectively
recognize entities and relations tailored for those
domains. For example, to work on the life science
domain, we should use an extractor that recognizes
concepts of drugs and diseases rather than tasks
and methods (Ren et al., 2017).

3.2 Web Application: Search, Rank, Explain,
and Visualize

As shown in Figure 2(b), after receiving an input
query from a user, we perform query expansion by
using entity names from our knowledge graph that
are similar to the user query according to the simi-
larity score given by sentence-BERT embeddings
(Reimers and Gurevych, 2019). Then, the system
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Figure 3: The process of the explanation generation us-
ing the conditional text summarization technique. The
query keywords are highlighted as yellow and the re-
lated keywords are highlighted as green. Some sen-
tences without important keywords are ignored by re-
placing them with ‘(...)’.

passes the query to Elasticsearch9 for searching
and ranking papers.

We retrieve the papers whose title or abstract
contains an exact query, all of the keywords regard-
less of the orders, and some of the keywords. The
results from each category will be sorted using a
combination of (i) normalized Elasticsearch score
and (ii) normalized citation count per day, before
concatenated to be the final search results.

To provide a short explanation for why each
paper is returned, we propose a technique called
“Conditional text summarization”, as illustrated in
Figure 3. We start by collecting the related key-
words, i.e., the entities along the knowledge graph
paths (of length 1 or 2) from the query to the pa-
per. Then, to form the input of the summarization,
the query and those keywords are used to select
important sentences in the paper abstract with the
sentences containing more than one keyword be-
ing repeated twice. After that, we use T5 (Xiong
et al., 2017), a pre-trained sequence-to-sequence
model, to summarize the filtered abstract to be the

9https://www.elastic.co/elasticsearch/

explanation. With this method, ESRA can gener-
ate different explanations for the same paper given
different queries. For example, Table 4 shows the
three different explanations for the BERT paper
(Devlin et al., 2019) in response to the three queries
– BERT, Transformer, and SQuAD.

For the fact list feature, we choose a group of
facts from our knowledge graph that is connected
to the user’s query nodes and show them along
with the search results. In addition, ESRA provides
visualizations of three subgraphs of our knowledge
graph to the users. Firstly, the fact graph visualizes
facts related to search keywords. In other words, it
is the graphical view of the fact list. Secondly and
thirdly, the paper graph and the keyword-to-paper
graph visualize all nodes and relations that appear
in the returned paper and relate the paper to the
search keywords, respectively.

3.3 System Development

Users can interact with our platform, ESRA, via
http://esra.cp.eng.chula.ac.th/. We devel-
oped the web application using React and Django
frameworks for front-end and back-end services,
respectively. The back-end also connects to (1)
a knowledge graph manager which is responsible
for searching and retrieving data from the graph
database (Neo4j) and (2) a relational database
(SQLite) that stores metadata. All the deep learning
models used by ESRA are based on PyTorch.

4 Results and Evaluation

We evaluate ESRA in two ways. First, empirical
evaluation concerns the effectiveness of knowledge
graph extraction. Second, human evaluation targets
the three main features of ESRA – explanation, fact
list, and graph visualization.

4.1 Knowledge Graph Construction

According to section 3.1, our extractor combines
SpERT (Eberts and Ulges, 2019) and SciIE (Luan
et al., 2018) for achieving the three IE tasks in
Table 5. Due to the lack of information extrac-
tion ground truth on the arXiv dataset, we decided
to use the SciERC dataset (Luan et al., 2018) to
evaluate the extractor instead. We compared our
extractor to SpERT, SciIE, and DyGIE++ (Wadden
et al., 2019). The results in Table 5 show that our
extractor can retain the performance of SpERT on
the first two tasks (entity and relation extraction),
while it slightly sacrifices the performance of SciIE
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Statistics Quantity
#Method 57,762
#OtherScientificTerm 56,553
#Author∗ 34,449
#Task 34,365
#Material 27,766
#Paper∗ 23,111
#Metric 4,992
#Abbreviation∗∗ 3,066
Total 242,064
∗ Obtained from arXiv metadata
∗∗ Obtained during post-processing

Table 2: Entity statistics

Statistics Quantity
#appear in∗∗ 715,948
#cite∗ 438,161
#used for 190,386
#author of 172,388
#hyponym of 40,800
#evaluate for 38,110
#compare 15,366
#related to∗∗ 15,136
#feature of 14,970
#part of 14,398
#refer to∗∗ 11,472
Total 1,667,135
∗ Obtained from arXiv metadata
∗∗ Obtained during post-processing

Table 3: Relation statistics

for coreference resolution due to the difference be-
tween recognized named entities of both models
(SpERT and SciIE).

4.2 Human Evaluation

We recruited 32 human participants who have been
studying or working in the area of Computer Sci-
ence and Engineering to evaluate ESRA. 14 out
of the 32 participants identified that they special-
ize in NLP. Each participant was asked to evaluate
the three main features of ESRA along three main
dimensions – usefulness, understandability, and
visual appeal – using a scale from 1 to 5 where
the numbers mean strongly disappointed, disap-
pointed, neutral, satisfied, and strongly satisfied,
respectively. The results are reported in Table 6.
The average score from all participants on each
dimension falls within the range between 3.6 and
4.2, meaning that our system could reasonably sat-

BERT: A language representation model called BERT is
designed to pre-train deep bidirectional representations
from unlabeled text. The pre-trained model can be fine-
tuned with just one additional output layer to create
state-of-the-art models for a wide range of tasks.

Transformer: We introduce a new language representa-
tion model called BERT, which stands for Bidirectional
Encoder Representations from Transformers.

SQuAD: It obtains new state-of-the-art results on eleven
natural language processing tasks. It includes pushing
the GLUE score to 80.5% (7.7% point absolute improve-
ment), MultiNLI accuracy to 86.7% (4.6% absolute im-
provement) and SQuAD v1.1 question answering Test
F1 to 93.2.

Table 4: Explanations for the BERT paper (Devlin
et al., 2019) given three different queries: BERT, Trans-
former, and SQuAD.

Model
F1 (on SciERC)

NER RE CR
SciIE 64.20 39.30 48.20

DyGIE++ 67.50 48.40 -
SpERT 70.33 50.84 -

SpERT+SciIE (Ours) 70.33 50.84 45.87

Table 5: Evaluation of knowledge extraction models on
three tasks: named-entity recognition (NER), relation
extraction (RE), and coreference resolution (CR).

isfy users with some room for further improvement.
Apart from the satisfaction scores, we also col-
lected users’ opinions on feature-specific questions
and let them give us free-text comments where the
results are discussed next.

Explanation: Overall, the participants re-
sponded that the generated explanations have
an appropriate length (score 4.44 / 5) and they
are easy to understand (4.25 / 5). Moreover, the
explanations help the participants screen papers
faster (4.22 / 5). However, the score for usefulness
of this feature is relatively low (3.94 / 5) because
usually the output from T5 is not much different
from the abstract. We believe that adding more
contents apart from the filtered abstract to the
summarizer’s input would help mitigate this issue.

Fact list: The displayed facts are helpful for non-
NLP-specialized users (4.07 / 5), probably because
they can jump and explore related concepts in the
list. However, NLP-specialized users gave a lower
average score (3.78 / 5). Some comments sug-
gested that the displayed facts are redundant. For
example, “recall” and “recall value” should be
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Dimension/Feature
Average score (1-5)

Expla- Fact Graph
nation list viz.

Usefulness 3.94 3.91 3.88
Understandability 4.25 3.69 3.94

Visual appeal 3.81 3.81 3.81

Table 6: Human evaluation on the three main features

merged into one concept. This problem is a com-
mon weakness of automatic knowledge graph con-
struction which could be alleviated by knowledge
graph refinement (Paulheim, 2017).

Graph visualization: Some participants found
that the graph visualization help them gather im-
portant points from the paper quickly such as eval-
uation metrics used in the paper. However, most of
the comments noted that the graph is quite difficult
to read, so they suggested the system show the full
name of each graph node and adjust the layout for
more readability.

5 Conclusion

Our literature discovery platform, ESRA, uses a
scientific knowledge graph to enhance user’s expe-
rience. Based on the human evaluation, ESRA can
help users screen through papers faster using the
generated explanations and capture important facts
about the query and the papers using the fact list
and the graph visualization. In the future, we aim
to expand the coverage of our knowledge graph by
extracting facts from the full documents to enhance
the quality of ESRA results.
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Abstract

An essential operation in web corpus construc-
tion consists in retaining the desired content
while discarding the rest. Another challenge
finding one’s way through websites. This ar-
ticle introduces a text discovery and extrac-
tion tool published under open-source license.
Its installation and use is straightforward, no-
tably from Python and on the command-line.
The software allows for main text, comments
and metadata extraction, while also providing
building blocks for web crawling tasks. A
comparative evaluation on real-world data also
shows its interest as well as the performance of
other available solutions.

The contributions of this paper are threefold: it
references the software, features a benchmark,
and provides a meaningful baseline for similar
tasks. The tool performs significantly better
than other open-source solutions in this evalu-
ation and in external benchmarks.

1 Introduction

1.1 Gathering texts from the Web
As useful monolingual text corpora across lan-
guages are highly relevant for the NLP community
(Caswell et al., 2020), web corpora seem to be a
natural way to gather language data. Corpus con-
struction usually involves “crawling, downloading,
‘cleaning’ and de-duplicating the data, then linguis-
tically annotating it and loading it into a corpus
query tool” (Kilgarriff, 2007). However, although
text is ubiquitous on the Web, drawing accurate
information from web pages can be difficult. In ad-
dition, the vastly increasing variety of corpora, text
types and use cases makes it more and more diffi-
cult to assess the usefulness and appropriateness of
certain web texts for given research objectives. As
a result, content adequacy, focus and quality need
to be evaluated after the downloads (Baroni et al.,
2009).

A significant challenge lies in the ability to ex-
tract and pre-process web data to meet scientific
expectations with respect to text quality. An es-
sential operation in corpus construction consists
in retaining the desired content while discarding
the rest, a task carrying various names referring to
specific subtasks or to pre-processing as a whole:
web scraping, boilerplate removal, web page seg-
mentation, web page cleaning, template extraction,
or content extraction. This step is sometimes over-
looked although it involves a series of design de-
cisions and turning points in data processing. De-
pending on the purpose of data collection, adequate
filtering and quality assessment can be crucial. It
has a significant impact on a wide range of down-
stream applications like text analysis, information
retrieval, link analysis, page adaptation to other ter-
minals and screens, and especially natural language
processing pipelines.

Another challenge is how to find one’s way
through the Web, notably as linguistic data are
gathered by running targeted web crawlers (Scan-
nell, 2007). As web crawling involves discarding
much of the downloaded content (Olston and Na-
jork, 2010), especially link filtering and prioritiza-
tion can prove to be tricky for contexts in which
data collection is just the first step of a project, so
that time resources for this task are scarce. Data
collection approaches using the CommonCrawl1

have flourished as they allow for faster download
and processing by skipping (or more precisely out-
sourcing) the crawling phase. Barring the fact that
finding one’s “own” way through the Web can be
preferable, such data should not be used without
forethought and exhaustive filtering. Beside the dis-
covery of relevant websites, a major issue consists
in selecting appropriate content after download and
processing (Schäfer et al., 2013), which can be com-

1https://commoncrawl.org
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plex due to unexpected machine-generated flaws
and biases.

Finally, depending on the project’s jurisdiction,
legal aspects of retrieving and granting access
to web documents can be unclear or restrictive.
Boundaries of copyright law are not clear when it
comes to corpus building (De Clercq and Perez,
2010) so that some corpus infrastructure projects
leave it to users to decide what to do from a copy-
right standpoint (Benko, 2016). Copyright and
intellectual property rights usually do not apply
to resources such as language models or n-grams
(Buck et al., 2014), so are shuffled sentences (Bie-
mann et al., 2007). Web corpora focusing on man-
ually selected sources under Creative Commons
licenses have been built (Brunello, 2009; Lyding
et al., 2014), although only a very small propor-
tion of websites use them (Barbaresi and Würzner,
2014). Corpora based on machine-checked licenses
have also been developed (Habernal et al., 2016), as
well as systems to merge annotation with web parts
from the CommonCrawl (Schäfer, 2016). Consid-
ering the progresses of annotation tools, is can be
easier to retrieve documents directly from the Web
or from archives and to process them to one’s taste.

1.2 Research context
This effort is part of methods to derive informa-
tion from web documents in order to build text
databases for a lexicographic information plat-
form (Geyken et al., 2017). Extracting and pre-
processing web texts to the exacting standards of
scientific research turned out to be a substantial
challenge where existing open-source solutions
were not entirely convincing in terms of accuracy,
versatility, and ease of use. The current tool fol-
lows from earlier work on news and blog articles
extraction (Barbaresi, 2015, 2016). Its packaging
into a directly re-usable format generalizes the pro-
cess and makes it available to the community, with
thorough testing it has also become much more
robust and versatile.

1.3 Contributions
Distinguishing between a whole page and the
page’s essential parts can help to alleviate many
quality problems related to web text processing, no-
tably by dealing with the noise caused by recurring
elements (headers and footers, ads, links/blogroll,
etc.). This can be particularly useful to de-duplicate
recurring language samples. Tasks related to con-
tent extraction and language modeling also benefit

from a cleaner text base. In the concrete case of
linguistic and lexicographic research, it allows for
content queries on meaningful parts of the docu-
ments.

The remainder of this article introduces a text
extraction and web navigation tool published un-
der open-source license. Its installation and use is
straightforward, notably from Python and on the
command-line. The software makes it easier to ex-
tract the main text, comments and metadata, while
also providing building blocks for text discovery
tasks such as web crawling. The following also
entails a comparative evaluation of text extraction
on real-world data. The contributions of this paper
are thus threefold as it references the software, fea-
tures a benchmark, and provides a fast, meaningful
baseline for similar tasks.

2 State of the art

2.1 “A difficult IE problem”
Even before the “Web 2.0” paradigm with web
pages assembling information from and for a va-
riety of sources (notably the advertising industry),
web pages have been known for their lack of focus
on directly usable text content. Despite the quantity
of pages following an article format where there is
a main text to be found, web pages now accessible
through archives cannot be expected to be easy to
process: “Articles published on the WWW often
contain extraneous clutter. Most articles consist
of a main body which constitutes the relevant part
of the particular page. [...] Identifying the main
body of a web page in a general robust manner is
a difficult information extraction problem.” (Finn
et al., 2001)

Web pages come in different shapes and sizes
mostly because of the wide variety of platforms
and content management systems, and not least be-
cause of varying reasons to publish and diverging
goals followed during web publication. Web page
structure is also constantly evolving from the per-
spective of standards. HTML 5 was first released in
2008 to provide support for multimedia and graph-
ical elements. This standard streamlined syntax
while retaining backward-compatibility. Web con-
tent extraction is also an active field of research in
user experience, resulting from the need for higher
download and rendering speeds as well as from a
growing amount of “Web bloat” requiring the de-
velopment of “reader modes” and “distillers”2 for

2https://chromium.googlesource.com/chromium/dom-
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web browsers (Ghasemisharif et al., 2019).

2.2 Wrappers

Data extraction has first been based on “wrappers”
(now called “scrapers”) which were mostly rely-
ing on manual design and tended to be brittle and
hard to maintain (Crescenzi et al., 2001). These
extraction procedures have also been used early
on by blogs search engines (Glance et al., 2004).
Since the genre of “web diaries” was established
before the blogs in Japan, there have been attempts
to target not only blog software but also regular
pages (Nanno et al., 2004), in which the extraction
of metadata also allows for a distinction based on
heuristics. Regarding metadata extraction for pages
in article form and blogs in particular, common
targets include the title of the entry, the date, the
author, the content, the number of comments, the
archived link, and the trackback link (Glance et al.,
2004); they can also aim at comments specifically
(Mishne and Glance, 2006).

2.3 Generic web content extraction

Generic extraction techniques ground on Document
Object Model (DOM) examination. An earlier,
language-independent approach uses entropy mea-
sures applied to features, links, and content in order
to discriminate among parts of a web page (Kao
et al., 2004). Another notable technique, Visual
Page Segmentation, applies heuristics to find vi-
sually grouped blocks (Cai et al., 2003). Other
methods are based on style tree induction, that is
detection of similarities of DOM trees on site-level
(Yi et al., 2003; Vieira et al., 2006). Overall, efforts
made to automatically generate wrappers have been
centered on three different approaches (Guo et al.,
2010): wrapper induction (e.g. building a grammar
to parse a web page), sequence labeling (e.g. la-
beled examples or a schema of data in the page),
and statistical analysis. This approach combined to
the inspection of DOM tree characteristics (Wang
et al., 2009; Guo et al., 2010) is a common ground
to the information retrieval and computational lin-
guistics communities, with the categorization of
HTML elements and linguistic features (Ziegler
and Skubacz, 2007) for the former and boilerplate
removal for the latter.

The DOM considers a given HTML document as
a tree structure whose nodes represent parts of the
document to be operated on. Text, tag and/or link

distiller

density have proven to be good indicators in order
to select or discard content nodes, using the cu-
mulative distribution of tags (Finn et al., 2001), or
with approaches such as the content extraction via
tag ratios (Weninger et al., 2010) and the content
extraction via text density algorithms (Sun et al.,
2011). Statistical selection of informative nodes
through a combination of both methods proved
more efficient on comparable datasets (Qureshi and
Memon, 2012). The large majority of DOM-based
approaches try to leverage semantic information
conveyed by HTML tags, notably paragraphs (p) on
which text-to-tag ratios are calculated (Carey and
Manic, 2016), or tag ratios and semantic features
from id and class attributes (Peters and Lecocq,
2013).

Machine learning approaches have also been
used, whose interest generally consists in lever-
aging advances in classification tasks by treating a
HTML document as a series of blocks to be classi-
fied. Relevant algorithms include conditional ran-
dom fields learning header, text, and noisy blocks
with markup-based, content-based, and document-
related features (Spousta et al., 2008), support vec-
tor machines trained on linguistic, structural and
visual features (Bauer et al., 2007), Naive Bayes
(Pasternack and Roth, 2009), multi-layer percep-
tron based on paragraph-level features (Schäfer
and Bildhauer, 2012), or logistic regressions (Pe-
ters and Lecocq, 2013). More recently, deep learn-
ing has also been used for similar classifications,
e.g. the Web2Text system is based on convolutional
neural networks learning combinations of DOM-
based features (Vogels et al., 2018).

Despite the number of article on this topic, very
few systems are open-source or freely available
(Alarte et al., 2019).

2.4 Corpus linguistics and NLP

There are few comparable projects coming from
the linguistics or natural language processing com-
munities and focused on making software publicly
available and usable. Boilerpipe uses shallow text
features like word counts and link density with
decision tree and SVM classifiers (Kohlschütter
et al., 2010). JusText is based on length heuristics
as well as link and stop word densities (Pomikálek,
2011). Both algorithms have been prevalent since
their release and are now mostly used through their
subsequent forks, as software needs to be kept up-
to-date. More recent initiatives explicitly targeting
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corpus creation feature the Corpus Crawler3 or
Texrex4 (Schäfer, 2017), neither of which appears
to be actively maintained.

An evaluation and discussion following from the
Cleaneval initiative (Baroni et al., 2008) would put
the topic back into focus, as content processing on
the Web is affected by both time and geography.
This benchmark could be elaborated on, results are
not consistent in different languages and metrics
sometime fail to capture the variable influence of
extractors on downstream modules (Lejeune and
Zhu, 2018). Often, tools are developed with partic-
ular page styles in mind, mostly from the English-
speaking world (Barbaresi and Lejeune, 2020). For
certain projects, customized scrapers which are ad-
justed to each website remain feasible (Krasselt
et al., 2020). A generic approach can really save
human time and resources, albeit at a certain cost
in terms of accuracy depending on the context.

3 Introducing the Trafilatura tool

3.1 Features

Trafilatura is a web scraping tool for text discovery
and retrieval which seamlessly downloads, parses,
and scrapes web page data. It can crawl and dis-
cover texts within a website and process them ac-
cordingly. The extractor focuses on metadata, main
body text and comments while preserving parts
of the text formatting and page structure. It aims
to be precise enough in order not to miss texts or
to discard valid documents, as it must be robust
but also reasonably fast. With these objectives in
mind, Trafilatura is designed to run in production
on millions of web documents.

The software features parallel online and offline
processing: URLs, HTML files or parsed HTML
trees can be used as input. Although straight out-
put of Python variables is possible, conversion to
various common output formats makes the soft-
ware more versatile: plain text (minimal format-
ting), CSV (with metadata, tab-separated values),
JSON (with metadata), XML and XML-TEI (for
metadata and structure). The latter support for TEI
format (following the recommendations of the Text
Encoding Initiative) also includes a validator for
Python which can be used apart from the extraction.
The scraping and conversion parts also work with
existing archives, Raw HTML documents can be

3https://github.com/google/corpuscrawler
4https://github.com/rsling/texrex

retrieved from sources such as the CommonCrawl5

or the Internet Archive6.
In addition, download utilities are included, no-

tably using a multi-threaded but “polite” processing
of URL queues, i.e. time restrictions based on do-
main names. Persistent connections are managed
by a connection pool, thus maintaining connec-
tions with websites to be scraped. The tool also
entails web crawling capacities which provide ac-
cessible and fail-safe ways to gather data based on
a series of target sites. First, support for sitemaps
(XML and TXT formats) according to the sitemap
protocol. Second, support for web feeds (ATOM,
RDF and RSS formats) which make it possible to
build a seamless news crawler. Third, crawling
components to discover content. It can also manip-
ulate URL lists, including filtering and prioritiza-
tion based on site characteristics or language-aware
heuristics based on internationalization.

The package provides a relatively light-weight
and modular architecture, letting users choose the
components they wish to include. It has been tested
on Linux, MacOS and Windows, and can be used
with Python, on the command-line, with R (us-
ing the reticulate adapter package), and through a
graphical user interface. The package documenta-
tion also acts as a manual on web text collection.7

3.2 Extraction process

The extraction combines two acknowledged li-
braries, readability-lxml8 and jusText9, which are
used as safety nets and fallbacks. Trafilatura’s own
extraction algorithm is based on a cascade of rule-
based filters and content heuristics:
(1) Content delimitation is performed by XPath ex-
pressions targeting common HTML elements and
attributes as well as idiosyncrasies of main content
management systems, first in a negative perspec-
tive with the exclusion of unwanted parts of the
HTML code (e.g. <div class=”nav”>) and next
by centering on the desirable content (e.g. <section
id=”entry-content”>). The same operations are
performed for comments in case they are part of
the extraction. The selected nodes of the HTML
tree are then processed, i.e. checked for relevance
(notably by element type, text length and link den-
sity) and simplified as to their HTML structure.

5https://commoncrawl.org/
6https://archive.org/
7https://trafilatura.readthedocs.io/
8https://github.com/buriy/python-readability
9https://github.com/miso-belica/jusText
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(2) If fallbacks are selected and triggered by a pos-
sibly faulty extraction, the other algorithms are run
as a backup. Since they proceed differently their
approach is complementary. They notably apply
heuristics based on line length, text-to-markup ra-
tio, and position/depth of elements in the HTML
tree. If applicable, the output of these generic algo-
rithms is compared to the “homegrown” extraction
and heuristics are applied to determine the most
efficient extraction, mostly in terms of extraction
length (all algorithms are fairly reliable, so much
longer is better) and “impurities” (e.g. no media
elements).
(3) In case nothing worked, a baseline extraction is
run in order to look for “wild” text elements that
most probably have been missed, which implies to
discard unwanted parts and to look for any element
which may contain useful text content (e.g. div
elements without paragraphs).

The extraction is designed to be robust and mod-
ular and provides a trade-off between precision
and recall in most settings. As a result, main texts
and potential comments are returned, with optional
preservation of structural elements (paragraphs, ti-
tles, lists, quotes, code, line breaks, in-line text for-
matting). Extraction of metadata is also included,
that is by descending frequency title, site name,
author, date, categories and tags. For date extrac-
tion the library acts like a wrapper around htmldate
(Barbaresi, 2020), a module specifically developed
for this task.

An optional language detection can be run on
the extracted content, currently using the Compact
Language Detector v3 (CLD3)10, which can be
subject to accuracy issues depending on text length
and language modeling (Caswell et al., 2020).

4 Evaluation

4.1 Benchmark
The evaluation focuses on the ability to retain ap-
propriate text spans and discarded unwanted clutter,
a functionality shared by many tools. Text discov-
ery and conversion utilities are not evaluated here
as most solutions do not include them. The bench-
mark is run on a collection of 500 documents which
are either typical for Internet articles (news outlets,
blogs) or non-standard and thus harder to process.
Some contain mixed content (lists, tables) and/or
non-standard, not fully valid HTML code. They
were selected from large collections of web pages

10https://github.com/google/cld3

in German, for the sake of completeness a few doc-
uments in other languages are added (notably En-
glish, French, other European languages, Chinese
and Arabic). The evaluation is reproducible, the
needed script and instructions are available from
the project repository.11

Target of the extraction is the main content,
which is usually the part displayed centrally, with-
out the left or right bars, the header or the footer,
but including potential titles and (optionally) com-
ments. This task is also known as web scraping,
boilerplate removal, DOM-based content extrac-
tion, main content identification, or web page clean-
ing.

Decisive document segments of a few words
each are singled out, about three per webpage are
manually annotated as being part of the main text
or unwanted boilerplate. They represent parts of
the documents which are of high significance in
the perspective of working with the texts, most
notably beginnings and endings, left/right columns,
additional header, author or footer information such
as imprints or addresses, as well as affiliated and
social network links.

Raw text segments are expected as a way to eval-
uate extraction quality without markup, i.e. HTML
to TXT in itself, which avoids indirectly factoring
in how the systems deal with markup. The chosen
segments are included in a single HTML element
span and they do not imply trimming or normaliz-
ing spaces, which makes the output strings directly
comparable. Due to the language diversity of the
sample the documents entail different text encod-
ings. Since not all packages deal with them in a
similar way, the given input string is in Unicode
format.

4.2 Tools
The benchmark focuses on the Python program-
ming language, reportedly the most popular pro-
gramming language in academia and one of the
most popular overall.12 A few algorithms have
been ported from other languages such as Java and
JavaScript, which contributes to giving an exhaus-
tive yet incomplete panorama of available solutions
overall. In case software packages are not actively
maintained the most prominent usable fork is used.

First, these packages are provided for reference
as they keep the structure intact but do not focus

11https://github.com/adbar/trafilatura/
12https://spectrum.ieee.org/computing/software/the-top-

programming-languages-2019
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on main text extraction:

• html2text13 converts HTML pages to Markup
language

• html text14 converts HTML code to plain text

• inscriptis15 converts HTML to text with a par-
ticular emphasis on nested tables

The following packages are strictly comparable
as they focus on main text extraction:

• boilerpy316 is a Python version of the boiler-
pipe algorithm (Kohlschütter et al., 2010) for
boilerplate removal and fulltext extraction

• dragnet17 features machine-learning and com-
bined approaches (Peters and Lecocq, 2013)
but requires more dependencies and poten-
tially fine-tuning: it is used with its default
training data

• goose318 can extract information for embed-
ded content but doesnt preserve markup

• jusText19 is designed to preserve mainly text
containing full sentences along with some
markup, it has been explicitly developed to
create linguistic resources (Pomikálek, 2011)

• newspaper20 is mostly geared towards news-
paper texts, provides additional functions but
no structured text or comment extraction

• news-please21 is a news crawler that extracts
structured information (Hamborg et al., 2017)

• readability-lxml22 cleans the page and pre-
serves some markup

The tools are compared to the raw page source
and to a meaningful baseline also provided by Trafi-
latura which consists in extracting all the text con-
tained in JSON data or paragraph, code or quoting
elements.

Two variants of Trafilatura are evaluated, first
using its own algorithm and second including its
fallback mechanisms based on external libraries.

13https://github.com/Alir3z4/html2text
14https://github.com/TeamHG-Memex/html-text
15https://github.com/weblyzard/inscriptis
16https://github.com/jmriebold/BoilerPy3
17https://github.com/dragnet-org/dragnet
18https://github.com/goose3/goose3
19https://github.com/miso-belica/jusText
20https://github.com/codelucas/newspaper
21https://github.com/fhamborg/news-please
22https://github.com/buriy/python-readability

4.3 Results

The results are listed in Table 1. Baseline extrac-
tion is simple and fast, it beats a few systems, show-
ing its interest. JusText is highly configurable and
tweaking its configuration leads to better perfor-
mance than its generic settings, that is why it has
been done here. The only solid conclusions which
can be drawn for execution times are that goose3
and newspaper are slower than the rest while news-
pleases execution time isn’t comparable because of
operations unrelated to text extraction. The news-
paper and boilerpy3 modules do not work without
errors on every HTML file in the test set, probably
because of malformed HTML, encoding or parsing
bugs.

It turns out that rule-based approaches such as
Trafilatura’s own algorithm (“fast” option) obtain
balanced results despite a lack of precision. Al-
though the library in itself is already above the rest,
it performs significantly better than the other tested
solutions when combined with generic algorithmic
approaches.

4.4 External evaluations

A few external evaluations are already available,
they ground on early releases of the software dur-
ing its development. A previous version of Trafi-
latura is the most efficient open-source library in
ScrapingHub’s article extraction benchmark.23 Sig-
nificantly better results are also reported in the case
of French and Swedish for a previous version (Laip-
pala et al., 2020), as well as the best overall macro-
mean on the multilingual and manually-annotated
DANIEL corpus comprising about 1,600 web-
pages in five different languages (Lejeune and Bar-
baresi, 2020). In a further context, the tool has
proven to be efficient on main text extraction to
create Russian-Turkic parallel corpora (Khusainov
et al., 2020).

4.5 Discussion

In some cases, no text is returned, but there is no
way to return text at all costs without impacting pre-
cision. Trafilatura as a whole is currently made for
users aiming for better text quality. While rule-
based approaches are both easier to use and to
parameterize and could be more efficient in the
long-run (Barbaresi and Lejeune, 2020), extrac-
tion presets would be useful in order to make the

23https://github.com/scrapinghub/article-extraction-
benchmark
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Python Package Precision Recall Accuracy F-Score Diff.
naive baseline: raw HTML 0.527 0.878 0.547 0.659 0
html2text 2020.1.16 0.488 0.714 0.484 0.580 8.9x
html text 0.5.2 0.526 0.958 0.548 0.679 1.9x
inscriptis 1.1 0.531 0.958 0.556 0.683 2.4x
justext 2.2.0 (custom) 0.870 0.584 0.749 0.699 6.1x
newspaper3k 0.2.8 0.921 0.574 0.763 0.708 12.9x
boilerpy3 1.0.2 (article mode) 0.851 0.696 0.788 0.766 4.8x
goose3 3.1.9 0.950 0.644 0.806 0.767 18.8x
trafilatura baseline 0.746 0.804 0.766 0.774 1x
dragnet 2.0.4 0.906 0.689 0.810 0.783 3.1x
readability-lxml 0.8.1 0.917 0.716 0.826 0.804 5.9x
news-please 1.5.21 0.924 0.718 0.830 0.808 60x
trafilatura 0.8.2 (fast) 0.925 0.868 0.899 0.896 3.9x
trafilatura 0.8.2 0.934 0.890 0.914 0.912 8.4x

Table 1: Benchmark on 500 documents, 1487 text and 1496 boilerplate segments.

tool more adaptable to research contexts, such as
precision-based settings where discarding more el-
ements is paramount or recall-based settings where
empty or nearly empty documents are a concern
(Gao et al., 2020).

Even if text encoding detection is performed at
least as well and possibly better than the competi-
tion, a compromise has to be found between speed
and accuracy. This issue impedes results to a vari-
able extent, as character sequences are improperly
recognized or completely skipped.

5 Conclusions and outlook

The variety of contexts and text genres leads to
important design decisions impacting web corpora:
could and should the tooling be adapted to par-
ticular sources that are targeted or should the ex-
traction be as generic as possible to provide op-
portunistic ways of gathering information? Due
to corpus size or limited resources, the second op-
tion is often best. The software package introduced
here can help facilitate text data collection and en-
hance corpus quality. It can answer two research
questions related to web corpus construction: How
can an accessible generic extraction be run on web
pages? And how can text content be found given a
list of websites? In the evaluation, Trafilatura per-
forms significantly better than other open-source
solutions, which is corroborated by external bench-
marks. The article also provided a fast and mean-
ingful baseline which can be used in similar extrac-
tion tasks.

Most scraping tools are developed considering

particular page styles, whereas linguistic and ge-
ographic factors are most probably reflected in
HTML structure diversity. In addition, different
eras of web development result in diverging “HTM-
Lects”. These discrepancies deeply affect extrac-
tion processes and can lead to diverging perfor-
mances. Trafilatura tries to mitigate these biases
but cannot bridge all potential gaps. While some
large-scale natural language processing and lan-
guage modeling algorithms can be expected to
smooth out irregularities to a certain extent, uses
requiring a low margin of error and close reading
approaches can greatly benefit from refinements
during construction and processing of corpora. As
this tool has been released under an open-source
license and field-tested by users, feedback loops
and collaborative work will hopefully be carried on
and foster further improvements.

Although the extraction parameters are config-
urable, recall- and precision-oriented settings will
be made available to make major extraction set-
tings more convenient. Presets corresponding to
different usage scenarios could be developed. Com-
ment extraction still has to be evaluated although
most libraries do not offer this functionality. Forth-
coming additions include refinements of navigation
functions, notably further work on a spider in order
to be able to derive links from websites which do
not provide sitemaps or web feeds.
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DODRIO: Exploring Transformer Models with Interactive Visualization
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A.Dependency View

B. Semantic Attention Graph C.Attention Head Overview

Figure 1: The DODRIO user interface showing user exploration of connections between attention weights from
a fine-tuned BERT model and syntactic dependencies as well as semantic saliency scores on the SST2 dataset.
(A) Dependency View enables users to hover over a word from the input sentence to highlight its associated
dependency directed links as orange arcs (lighter is source; darker is target). (B) Semantic Attention Graph
highlights the word’s related tokens and their attentions; nodes are tokens (darker means more salient); a directed
edge encodes attention weight between two tokens. (C) Attention Head Overview shows all attention heads in a
multi-layer and multi-head model as a grid of circles, each head is (D) colored based on its linguistic knowledge
in the model (more red→more semantic-aligned, more blue→more syntactic-aligned; darker→more aligned), and
sized based on its importance score in the model (larger→more important).

Abstract

Why do large pre-trained transformer-based
models perform so well across a wide variety
of NLP tasks? Recent research suggests the
key may lie in multi-headed attention mecha-
nism’s ability to learn and represent linguistic
information. Understanding how these models
represent both syntactic and semantic knowl-
edge is vital to investigate why they succeed
and fail, what they have learned, and how they
can improve. We present DODRIO, an open-
source interactive visualization tool to help
NLP researchers and practitioners analyze at-
tention mechanisms in transformer-based mod-
els with linguistic knowledge. DODRIO tightly
integrates an overview that summarizes the
roles of different attention heads, and de-

tailed views that help users compare attention
weights with the syntactic structure and seman-
tic information in the input text. To facilitate
the visual comparison of attention weights and
linguistic knowledge, DODRIO applies differ-
ent graph visualization techniques to represent
attention weights scalable to longer input text.
Case studies highlight how DODRIO provides
insights into understanding the attention mech-
anism in transformer-based models. DODRIO
is available at https://poloclub.github.
io/dodrio/.

1 Introduction

The rise of transformer-based models have brought
dramatic performance improvements across many
NLP tasks (Wang et al., 2019). In particular,
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BERT (Devlin et al., 2019) has demonstrated that
transformer-based models pre-trained on large-
scale corpora can be effectively fine-tuned for a
wide variety of downstream tasks, such as senti-
ment analysis, question answering, and text summa-
rization. However, how these language models gen-
eralize text representations learned from an unsu-
pervised training process to downstream sentence
understanding tasks remains unclear. There is a
growing research body in interpreting transformer-
based models, as understanding what these models
have learned and why they succeed and fail is vital
for NLP researchers to develop better models, and
critical for decision makers to trust these models.

The current approach on interpreting
transformer-based models focuses on prob-
ing and attention weight analysis (Hewitt and
Liang, 2019). There is an active discussion on
whether attention weights are explanations (Jain
and Wallace, 2019), but more recent work has
shown that they do provide insights on what the
models have learned (Atanasova et al., 2020). In
particular, research has shown that transformer-
based models have learned to represent semantic
knowledge and lexical structure in text (Rogers
et al., 2020). Furthermore, interaction visualization
systems have shown great potential in explaining
complex deep learning models (Hohman et al.,
2018; Wang et al., 2020). Some visualization
tools have been developed for transformer-based
models (Vig, 2019; Hoover et al., 2020; DeRose
et al., 2021). However, these systems usually focus
on visualizing and analyzing attention weights,
instead of visually connecting them to linguistic
knowledge that is crucial to investigate why
transformer-based models work so well across
different tasks (Rogers et al., 2020).

To address this research challenge, we present
DODRIO (Figure 1), an interactive visualization
tool to help NLP researchers and practitioners
analyze and compare attention mechanisms with
linguistic knowledge. For a demo video of DO-
DRIO, visit https://youtu.be/qB-T9j7UTgE. In
this work, our primary contributions are:

1. DODRIO, a novel interactive visualization
system that helps users better understand the
attention mechanisms in transformer-based mod-
els by linking attention weights to semantic and
syntactic knowledge.

2. Novel interactive visualization design of DO-
DRIO, which integrates overview + detail, link-

ing + brushing, and graph visualizations that si-
multaneously summarizes a complex multi-layer
and multi-head transformer model, and provides
linguistic context for users to interpret attention
weights at different levels of abstraction.

3. An open-source1 and web-based implementa-
tion that broadens the public’s access to modern
deep learning techniques. We also provide thor-
ough documentations to encourage users to ex-
tend DODRIO to their own models and datasets.

2 Background

Attention heads are comprised of weights incurred
from words when calculating the next represen-
tation of the current word (Clark et al., 2019),
which are known as attention weights. Easily inter-
pretable, using attention to understand model pre-
dictions across domains is a very popular research
area (Xu et al., 2015; Rocktäschel et al., 2016). In
NLP, there has been a growing body of research on
attention used as a tool for interpretability across
many language tasks (Wiegreffe and Pinter, 2019;
Vashishth et al., 2019; Kobayashi et al., 2020).

Existing visualization systems and techniques
do not visually connect attention mechanisms to
linguistic knowledge (Tenney et al., 2020; DeRose
et al., 2021), we propose novel visualization ap-
proaches that foster exploration across semantically
and syntactically significant attention heads in com-
plex model architectures. For example, for every
attention head in the 144 heads of BERT, the entry
Ai,j in the attention map A, represents the attention
weight from token i to token j. With 144 × num-
ber of tokens× number of tokens attention weights
in BERT for each input instance, it is challenging
to systematically analyze these attention weights
without abstraction and linguistic context. DODRIO

aims to address this challenge by applying novel
interactive visualization techniques.

3 Interface

3.1 Attention Head Overview

As a user explores the attention weights, the At-
tention Head Overview (Figure 1C) serves as a
guide to effectively navigate the remaining views
of the interface. With visual linking and brush-
ing (McDonald, 1988), we unify attention head
selection with the state of the remainder of the
interface. This view of a grid of attention heads

1https://github.com/poloclub/dodrio
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guides the user to inspect semantically and syntacti-
cally important heads. Attention heads are encoded
as circles where color encodes the head’s linguis-
tic alignment (more red→more semantic-aligned,
more blue→more syntactic-aligned; darker→more
aligned), and sized represents its importance score
in the model (larger→more important) (Figure 1B).

We calculate the semantic score m by comput-
ing the cosine similarity between the sum of at-
tentions received for each token at a given head,
and the sentiment score of each token. If the senti-
ment score is not available in a dataset, we use the
saliency score for each token instead. The saliency
score of a token measures how important that token
contributes to the final model prediction (Barredo
Arrieta et al., 2020), and it is shown to correlate
with word semantics (Atanasova et al., 2020).

Following Clark et al. (2019)’s framework, we
use the source token’s most-attended token as its
predicted dependency target. For each existing
dependency relationship, we compute each head’s
average accuracy across all instances. Finally, we
calculate the head’s syntactic score n by taking
the maximum of its average accuracy across all
existing dependency relationships (ground truth or
generated by a parser).

There are multiple metrics to measure the im-
portance of a given attention head. By default,
we calculate the importance score c of an atten-
tion head by the average of its maximum attention
for all instances in the dataset (Voita et al., 2019).
DODRIO also supports using the sum of absolute
gradients of attention weights in an attention head
as its importance score c (Clark et al., 2019).

After computing these three scores, we create a
linear color scale and a linear size scale to encode
them in the Attention Head Overview (Figure 1C,
D). We use the Hue-chroma-luminance (HCL)
color space to represent colors in DODRIO. The
HCL color space is designed to better align with hu-
man perception of colors, so that interpolations in
this space is smoother and more consistent (Zeileis
et al., 2009). We use the hue value (H) in the HCL
color space to encode m− n with range [-1, 0, 1]
as [blue, purple, red]; the luminance value (L) to
encode max (m,n) (range [0, 1]); and the size of
circles to encode c (range [0, 1]). With our color
and size encoding, the Attention Head Overview
(Figure 1C and Figure 2) provides an accurate and
efficient summarization of attention heads.

In the Attention Head Overview, users can also

Semantic Syntactic

Figure 2: The expanded Attention Head Overview pro-
vides a preview of all attention heads for the input sen-
tence. Attention heads are represented as a grid of
rings (right) where their attention weights are shown
in the middle. Each ring’s color and size encode the at-
tention head’s linguistic knowledge alignment and im-
portance score (red→semantic; purple→semantic and
syntactic; blue→syntactic; larger→more important).
Users can click an attention head to inspect its atten-
tion weights in detail in a radial layout window (left).

click a button to show the expanded Attention Head
Overview (Figure 2) that additionally provides a
preview of the attention pattern in each attention
head through the Radial Layout visualization. Hov-
ering over one attention head displays its linguistic
and importance information.

3.2 Syntactic Dependencies

Word relations in a sentence are important features
to understand the lexical makeup of a sentence,
which can help users further deduce model deci-
sions in the context of sentence structure. In DO-
DRIO, a user can explore an attention head with
input sentence’s dependency relationships.

Dependency View (Figure 1A). We visualize
true dependency relations, if available, or relations
tagged by the CoreNLP pipeline (Manning et al.,
2014) linked with the Semantic Attention Graph
for users to investigate syntax-sensitive behavior
at different attention heads. The user can further
explore the dependency representation in a hierar-
chical structure by filtering dependency relations.

Comparison View (Figure 3). Understanding
raw attention weights are best interpreted relative
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B1

B3

A

B

B2

Figure 3: The Comparison View allows users to compare multiple attention heads and explore the connection be-
tween attention weights and the syntactic structure of the input sentence. (A) The top rectangular arc diagram visu-
alizes dependencies generated by a parser (lighter is source; darker is target). (B) Each attention head is represented
as a row of tokens where (B1) the top curved arc diagram and (B2) the radial layout window display the selected
head’s attention weights on demand. (B3) The rectangular arc diagram below the tokens shows the dependencies
predicted using attentions. Hovering over one token highlights all associated attentions and dependency links.

to the attention weights at other attention heads in
the model. The Comparison View enables users to
examine the dependencies predicted by attention
heads (Figure 3-B3). A user can select additional
attention representations under each attention head
label within this view to supplement their analysis
of attention with respect to the grammatical struc-
ture of the sentences. By viewing the attention
edges drawn above the tokens, which encode at-
tention weight magnitude with opacity in the Arc
Layout (Figure 3-B1), a user can maintain word-
order context in the sentence, while the attention
representation utilizing a Radial Layout (Figure 3-
B2) of attention edges allows for a clearer interpre-
tation the attention distribution. The edge linking
with interaction between this view and the Depen-
dency View further reinforces the syntax-sensitive
behavior present in attention heads

3.3 Semantic Attention Graph

The attention map at each head can be interpreted
as an adjacency matrix, which can be visualized
using different graph visualization techniques (Fig-
ure 4). Users can primarily use this interactive
graph view to inspect semantically significant atten-
tion heads, as defined the Attention Head Overview.
Since the node color encodes the saliency score,
linked to word’s semantics (Li et al., 2016), the
behavior of the attention mechanism in the model
can be evaluated from a semantic perspective.

Similarly to representations in the Comparison
View, the Semantic Attention Graph representa-
tions can be customized with interaction to allow

A Force Layout

Figure 4: The Semantic Attention Graph employs three
graph visualization techniques to show the attention
weights. (A) The force layout allows users to flexibly
change token positions; (B) the grid layout enhances
the readability of input sentence; (C) the radial layout
compactly highlights attention patterns.

for detailed attention inspection for selected tokens
(Figure 4A), preserve token-order context in the
Grid Layout (Figure 4B), or allow for clear atten-
tion analysis in the Radial Layout (Figure 4C). Ad-
justing graph parameters in the side panel of this
view encourages the user to customize the graph
representation to ease attention analysis (eg. adjust-
ing the edge threshold parameter will only show
attention weights with a greater magnitude) (Fig-
ure 4-A left). We utilize linking to allow the user
to interpret tokens in the context of their attention
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weights and dependence relations simultaneously
as both nodes and edges are highlighted when a
user hovers over a node in either the Semantic At-
tention Graph or the Dependency View.

3.4 Instance Selection View

For a robust understanding of the attention mech-
anisms in Transformers, it is important to explore
the behavior of attention across interesting compo-
nents of a sentence (eg. coreferences, word sense,
etc.) present in various instances in a dataset.

The Embedding View (Figure S1-A) uses
UMAP (McInnes et al., 2018) to project text in-
stance’s model representation computed by con-
catenating the last four hidden state layers of BERT
to a 2D space and visualizes it with a scatter plot.

The Table View (Figure S1-B) allows for in-
stance selection while providing the user with in-
stance’s true and predicted labels. Users can hover
over a dot in the Embedding View to view the sen-
tence text, and click a dot or a row in the Table
View to change DODRIO’s input sentence.

4 Case Study

4.1 Understanding Sentiment in BERT

How does a Transformer handle conflicting senti-
ment in opinionated phrases when resolving coref-
erences? In DODRIO, we can explore the attention
mechanism within a text instance from a movie
review dataset, SST2 (Socher et al., 2013), such
as “A coming-of-age film that avoids the cartoon-
ish clichés and sneering humor of the genre as it
provides a fresh view of an old type.” Using this
sentence, we can explore the concept of sentiment
consistency as proposed by (Ding and Liu, 2010)
in the context of coreference resolution.

When interpreting the sentence above, it is clear
to us that “it” refers to the “film” because the first
half of the sentence expresses positive sentiment to-
wards the “film” and negative towards the “genre,”
while the second half of the sentence represents a
positive opinion on the “film.” We can deduce that
“it” refers to the “film” as sentiment is expressed in
a consistent manner as discussed by (Ding and Liu,
2010). By exploring the Attention Head Overview
of DODRIO (Figure S3), we can select an attention
head that conveys semantically significant informa-
tion as indicated by the 2D color scale (eg. layer 1,
head 7). As we begin to analyze the Semantic At-
tention Graph (Figure S3-left), we can hover over
the node representing “it” to visualize the atten-

tion behavior. “It” attends highly to “film,” which
validates the coreference resolution policy that we
discussed above (Figure S3-right). Users are en-
couraged to explore other attention heads as well to
compare the behavior of the attention mechanism
across various linguistic features.

4.2 Penn Treebank Analysis
Understanding attention across natural language
tasks is pivotal for a systematic understanding
of the attention mechanism as it relates to inter-
pretability (Vashishth et al., 2019). If we visualize
BERT on a text corpus with annotated syntactic sen-
tence structure, like Penn Treebank (Marcus et al.,
1993), can attention accurately predict syntactic
heads, and what patterns will we observe?

To investigate these ideas, we navigate to the
Dependency View within DODRIO. Beginning in
the Dependency View, we observe edges of human
annotated dependency relations connecting each to-
ken to its syntactic head, rather than part of speech
(POS) tagging and dependency parsing annotations
by the CoreNLP pipeline (Manning et al., 2014)
when human annotations are not provided. To iden-
tify whether some attention heads more accurately
attend to the syntactic heads of each token, we will
enter the Comparison View (Figure 3) by clicking
the Show Comparison button in the toolbar.

As we see in Figure 3-B3, DODRIO highlights
correct syntactic head predictions by attention with
a gradient edge, which is linked with the true depen-
dencies in the Dependency View. After exploring
various instances, we begin to understand patterns
of certain attention heads. For example, we observe
that attention head 9 in layer 3 attends to nominals
(group of nouns and adjectives: obj, nmod, obl,
etc.) across unique instances (Figure S2). This
behavior highlights the syntax-aware attention that
exists in BERT as discussed by (Clark et al., 2019).
Visualizing consistent behavior by attention heads
in Transformers outlines how the attention mecha-
nism lends itself to model interpretability.

4.3 Exploring DistilBERT
The computational barrier to achieve state-of-the-
art performance on natural language tasks with
large pre-trained Transformers like BERT (Devlin
et al., 2019) was lowered when DistilBERT (Sanh
et al., 2019), a smaller version of BERT, was pre-
sented. DistilBERT is 40% smaller and retains
up to 97% performance compared to BERT with
half as many self-attention layers. With DODRIO,
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A.DistilBERT

B.BERT-Base

Figure 5: The Attention Head Overview showing at-
tention head roles for two transformer-based models.
(A) All heads in DistilBERT are important and heads in
early layers tend to have stronger linguistic alignment.
(B) Attention heads in earlier layers tend to be more
important and more semantic-aligned in BERT-Base.

we can analyze attention mechanisms at various
attention heads in DistilBERT to understand how
attention compares to its larger version, BERT.

Using the Attention Head Overview from DO-
DRIO to visualize DistilBERT (Figure 5), we im-
mediately notice that all radial attention head rep-
resentations have the same diameter, unlike in the
case of BERT. Upon further inspection, we see that
all attention heads have a confidence score that
is very close to one via the tooltip present when
hovering over an attention head, which indicates
that every attention head has highly attended to
tokens on average. As we continue to explore the
attention heads, we recognize a similar pattern of
syntactic and semantic attention heads, but in the
later layers the attention head rings have a much
higher luminance in DistilBERT than they did in
BERT. According to the 2D color scale (Figure 1D),
this represents a lower overall score meaning that
these attention heads neither attend to primarily
text semantics of grammatical structure. It might
imply that DistilBERT has learned some other lin-
guistic knowledge beyond simple word semantics

and syntactice dependencies. We can then con-
duct quantitative experiment to test this hypothesis
formed by using DODRIO.

5 Discussion

DODRIO aims to help NLP researchers and
practitioners to explore attention mechanisms in
transformer-based models with linguistic knowl-
edge. With overview + detail, linking + brushing,
graph visualization techniques, DODRIO enables
the users to investigate attention weights with dif-
ferent levels of abstraction in a context with both
semantic and syntactic information. Through use
cases, we demonstrate that DODRIO not only helps
users validate existing research results regarding
the connections between attention weights with lin-
guistic information, but also inspires the users to
form hypothesis regarding the behavior and roles
of attention heads across different models.

We acknowledge that there is an active discus-
sion on whether attention weights can help peo-
ple interpret transformer-based models (Jain and
Wallace, 2019) and whether the attentions can be
directly linked to the corresponding tokens in in-
terpretation tasks (Brunner et al., 2020). Our work
joins the growing research body in NLP inter-
pretability and human-centered NLP, highlighting
novel visualization designs that can be generalized
to other interactive NLP systems. Despite the in-
creasing popularity of applying Human-computer
Interaction techniques to help people from various
fields interact with complex NLP systems, little
work have been done to evaluate how effective
these tools are (Wang et al., 2021). To fill this re-
search gap, we plan to run a user study to evaluate
the usability and usefulness of DODRIO.

6 Conclusion

We present DODRIO, an interactive visualization
system that fosters the exploration of the atten-
tion mechanism in transformer-based models with
linguistic knowledge. Through analysis from the
model to the attention head level, users can explore
how attention differs across a complex, state-of-the-
art architecture over any instance within a dataset.
Our tool runs in modern web browsers and is open-
sourced, broadening the public’s access to mod-
ern AI techniques. We hope our work will inspire
further research in understanding attention mecha-
nisms and development of visualization tools that
help people interact with complex NLP models.
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7 Broader Impact

We designed DODRIO with good intentions — to
help researchers and practitioners more easily ex-
plore attention weights in transformer-based mod-
els and investigate why their models succeed and
fail. However, bad actors could exploit this knowl-
edge of whether and how the models may perform
under different situations for malevolent purposes,
such as manipulating the model prediction by in-
jecting arbitrary keywords (Kurita et al., 2020).
The potential vulnerability warrants further study.
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8 Appendix

Table ViewA

Embedding ViewB

Figure S1: The Instance Selection View within DODRIO encourages users to explore sentences with interesting
linguistic features to understand how various attention heads throughout a model attend to them. (A) Table View
presents all text instances in a tabular format with other dataset and task-specific information as well with sortable
columns for efficient instance browsing. (B) Embedding View motivates users to inspect text clustered by dataset
label to explore semantically interesting phrases. These views are linked, so that clicking an instance in either view
will update the state of the other view, while setting the instance will update the global state of the entire interface.

Penn Treebank
Dependency

Layer 3 Head 9
Dependency Prediction

Penn Treebank
Dependency

Layer 3 Head 9
Dependency Prediction

Penn Treebank
Dependency

Layer 3 Head 9
Dependency Prediction

Figure S2: The Comparison View visualizes syntactic relationships on the Penn Treeback dataset. It highlights at-
tention head (Layer 3 Head 9) that can accurately predict the nominal relationships (group of nouns and adjectives:
obj, nmod, obl, etc.) across multiple unique instances.
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Figure S3: The Attention Head Overview (left) helps users identify interesting attention heads (e.g., more
semantic-aligned and important heads), and then the Semantic Attention Graph (right) quickly visualizes the
attention weight pattern of the selected head on the current input sentence, allowing users to rapidly validate their
hypothesis regarding attention head’s linguistic knowledge.
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Abstract

This paper presents REM, a novel tool for the
semi-automated real-time moderation of large
scale online forums. The growing demand for
online participation and the increasing number
of user comments raise challenges in filtering
out harmful and undesirable content from pub-
lic debates in online forums. Since a manual
moderation does not scale well and pure auto-
mated approaches often lack the required level
of accuracy, we suggest a semi-automated
moderation approach. Our approach maxi-
mizes the efficiency of manual efforts by tar-
geting only those comments for which human
intervention is needed, e.g. due to high clas-
sification uncertainty. Our tool offers a rich
visual interactive environment enabling the ex-
ploration of online debates. We conduct a pre-
liminary evaluation experiment to demonstrate
the suitability of our approach and publicly re-
lease the source code of REM.

1 Introduction

Online forums have become an integral part of
many domains to facilitate participation and delib-
eration; particularly in online journalism (Mano-
sevitch and Walker, 2009). More and more news
sites enable users to participate in public debates
around their reporting. Users regularly share their
feedback, personal stories, and opinions about jour-
nalistic content (Häring et al., 2018). While online
forums present a valuable space for deliberation
and an information source for news organizations
(Loosen et al., 2018), news sites are increasingly
confronted with inappropriate and toxic content
such as hate-speech (Davidson et al., 2017; Kol-
hatkar and Taboada, 2017) and spam (Chen and
Chen, 2015; Martens and Maalej, 2019). Ethical
and legal policies put pressure on news organiza-
tions to ensure lawful and netiquette compliant par-
ticipation.

The expanding volume and velocity of user par-
ticipation makes it increasingly difficult and expen-
sive to rapidly detect and remove undesirable posts
(Sood et al., 2012; Gillespie, 2020). Fully auto-
mated Machine Learning (ML) approaches for text
classifications have shown remarkable improve-
ments over the last years. However, ML models
still lack user acceptance and applicability (Brunk
et al., 2019; Gillespie, 2020). Fully automated ap-
proaches are known to be error-prone (Scharkow,
2013) and rarely reach the level of accuracy re-
quired to be applied in real-word settings.

We seek to overcome these limitations of fully
automated approaches by letting humans manually
correct and confirm artificial predictions. However,
looping humans into supervised learning tasks is
time consuming and cost intensive and does not
scale well with larger workloads. The question
arises which instances, i.e. forum posts, should
better be assessed by humans. A common way to
guide human moderation is to focus on instances
where the ML model is unable to provide a reliable
prediction (Pavlopoulos et al., 2017).

This paper introduces REM, a new user-centric
tool for the semi-automated moderation of online
forums, with a particular focus on online journal-
ism. Our tool combines the fields of Human-in-the-
Loop (HiL) (Holzinger, 2016) and Visual Analyt-
ics (Keim et al., 2008) to enable a more accurate,
efficient, applicable, and transparent moderation
process. Since the manual moderation of large
datasets is tedious and cost intensive, we seek to
minimize human efforts by focusing the manual
moderation on instances which are most likely clas-
sified wrongly. We accomplish an efficient semi-
automated moderation by relying on predictive un-
certainty (Der Kiureghian and Ditlevsen, 2009).

Uncertainty estimates enable us to deal with
instances a classifier can probably not infer cor-
rectly (known unknowns). However, classification
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models can also provide misclassifications where
a model does not know that its labelling might
be wrong (unknown unknowns) (Attenberg et al.,
2011). To deal with unknown unknowns, REM
provides a rich visual-interactive interface to facili-
tate the exploratory analysis and labelling of forum
discussions. We follow a user-centric moderation
process, where moderators can correct arbitrary
inferred labels. The uncertainty of predictions is
visualized to support and guide moderation deci-
sions. Further, we implement a novel moderation
approach to reduce the amount of human effort
required to reach a desired accuracy level. In a pre-
liminary ML experiment, we evaluate the suitabil-
ity and effectiveness of our moderation approach.
The goal of REM is to:

• Support an efficient moderation of online fo-
rums.

• Facilitate overviewing online debates in news
discussions.

• Plan of manual moderation efforts to reach a
desired level of accuracy.

The remainder of the paper is structured as fol-
lows. Section 2 introduces our novel modera-
tion approach implemented in REM. Section 3 de-
scribes the system design. Then, Section 4 presents
our user-interface. In Section 5 we shortly describe
the results of the preliminary ML experiment to
demonstrate the suitability of our moderation ap-
proach as the core feature of our tool. Section 6
discusses related work, while Section 7 concludes
the paper and outlines further work.

2 Content Moderation with
Human-in-the-Loop

Content moderation in online forums is a typical
labelling task. It refers to ”the governance mecha-
nisms that structure participation in a community
to facilitate cooperation and prevent abuse” (Grim-
melmann, 2015). Usually, ethical guidelines, mod-
eration policies, or legal constraints are used to
guide moderation decisions.

Our tool implements the Human-in-the-Loop
(HiL) paradigm in order to achieve a more accu-
rate and accepted moderation compared to fully
automatic approaches. HiL describes a computa-
tional paradigm that is characterized by humans
continually providing feedback, e.g. correcting
artificial models in order to obtain a better predic-
tive behaviour (Holzinger, 2016; Zanzotto, 2019).

We aim to efficiently involve human moderators by
only consulting them when artificial predictions are
too unreliable to be trusted. For this, we use the pre-
dictive uncertainty (Der Kiureghian and Ditlevsen,
2009; Gal and Ghahramani, 2016) of an ML model
to guide human involvement. Recent uncertainty
quantification techniques are capable to identify
likely-to-be-wrong predictions, which are worth
being checked manually (Hendrycks and Gimpel,
2016).

Every moderation strategy is a trade-off be-
tween accuracy improvements and manual efforts.
Generally, higher accuracy requires larger work-
loads. Since highly uncertain predictions are
over-proportionally wrong (Hendrycks and Gimpel,
2016), the accuracy improvements are expected to
saturate and get less rewarding. To the best of
our knowledge, REM is the first tool to explicitly
use the expected model behaviour evaluated on
a representative dataset for providing guidelines
about how much manual effort is needed to reach
a desired level of accuracy. Section 5 reports on a
preliminary evaluation of our moderation approach.

In addition, uncertainty quantification tech-
niques are generally unable to detect all misclas-
sifications, in particular those where the classifier
is mistakenly assuming with a high certainty that
they are correct (i.e. unknown unknown) (Atten-
berg et al., 2011). Therefore, our tool additionally
relies on the exploratory visualization and analysis
of the data (Keim et al., 2008). As in interactive-
learning (Höferlin et al., 2012), we support the
user-centred moderation of any instance. Using a
visual-interactive interface, we assume that humans
moderators are able to extract useful information
to actively moderate model outcomes. Visual An-
alytics (Keim et al., 2008) enables moderators to
better know and understand their data and thus to
become capable to detect outliers, which are poten-
tially misclassified by the model or are prone to a
derailment, e.g., toxic users and topics which are
prone to rudeness and require special care. Visual
Analytics combines the strengths of humans’ visual
perception and reasoning along with the computa-
tional power of machines during the moderation
process.

Figure 1 shows the HiL-workflow implemented
in REM. New forum comments 1 get immediately
classified and enriched with uncertainty informa-
tion 2 . Our tool follows a holistic moderation
approach, which builds on top of a binary classi-
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Figure 1: Human-in-the-Loop workflow of REM.

fier. Each comment is either classified as blocked
or valid. Comments can also be marked as uncer-
tain 3 if their inferred labelling is too unreliable
to reach a desired level of accuracy. Then, human
moderators are asked to provide new and more reli-
able labels for uncertain comments 4 . However,
we also allow moderators to correct false-positives
and false-negatives which are not marked as un-
certain. Moreover, our approach integrates an ac-
tive learning component (Lewis, 1995). Human
labelled instances 5 are added to the training data
6 and used to continually re-train the model 7 .

Previous studies indicate that such an active
learning inspired approach is able to improve the
accuracy of existing models (Arnt and Zilberstein,
2003). Since a continuous re-training is inefficient
when moderators work in parallel, we implement
active learning in batch mode (Hoi et al., 2009).
The resulting incremental update of the model
weights is particularly important since a model’s
accuracy is prone to decay over time due to data
shifts (Moreno-Torres et al., 2012), i.e. statistical
differences in training and operational data.

3 System Design

The components of our tool are depicted in the
deployment diagram shown in Figure 2.

The access point of our tool is a web application
served by a Node.js1 server building on top of mul-
tiple micro-services. In our prototype, we obtain
real-time data by frequently crawling the online fo-
rum of a large German news organization. We col-
lect nearly 9,000 user comments daily, distributed
across 20 news departments. To ensure a scalable

1https://nodejs.org/en/
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Figure 2: Main components of the semi-automated
moderation tool REM.

processing of large volume and volatile real-time
data, we implement an ML-pipeline based on the
Kappa-Architecture (Kreps, 2014).

We use Apache Kafka (Kreps et al., 2011) as a
message broker and the Structural Streaming API
of Apache Spark (Zaharia et al., 2010) to imple-
ment the data stream processing. In the stream
processing pipeline, we first check if comments
are already classified with the current version of
the model to save computational resources. For
non-duplicates, we run text preprocessing steps
such as stop word removal and lemmatization. We
then apply a neural network based classification
model. Then we use Monte Carlo Dropout (Gal
and Ghahramani, 2016) to calculate uncertainty es-
timates. The ML model is built with Tensorflow
(Abadi et al., 2016). Model training is performed
offline. Finally, the data is persisted and served via
MongoDB2.

4 User Interface

Figure 3 shows the main page of our tool. The user
interface consists of three views, which we describe
in the following. We share the source code3 of our
prototype together with a video that showcases the
tool’s main features.4

4.1 Context-View

The Context-View provides an overview of the com-
ments distribution according to the time-dimension
and journalistic entities such as topics, articles, and
users (comment writers). The upper bar chart dis-
plays the distribution of comments over time. The
x-axis represents the time-dimension and the y-axis
the total number of comments. Each bar repre-
sents a comment label with a three-colour scheme.
Blocked comments (e.g. inappropriate, violating

2https://www.mongodb.com/
3https://github.com/jsandersen/REM
4https://youtu.be/cA92Io_xr6Q
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Figure 3: The main page of REM showing the Context-View (left) and the Moderation-View (right).

ect.) are marked as red, valid (none-blocked) com-
ments are green, and uncertain comments are high-
lighted as grey.

Since the moderation of online forums is a real-
time task, the tool focuses on recently added com-
ments. The granularity of the time dimension can
be changed through the button group on the top.
Possible intervals are minutes, hours, and days.
Moderators can select whether to show comments
from the last 72 hours to only the last hour.

The lower part of the Context-View shows the
distribution of comments with regard to journal-
istic entities, which are topics such as politics or
economics and the articles identified by the titles.
The second chart depicts the comment behaviour
of the users. Each chart can be sorted according
to the number of uncertain, blocked, valid, and all
comments. All visualizations in the Context-View
are responsive to filter operations. These can be
triggered by clicking on the bars. Specific entities
can also be searched over a text-field. Multiple
filters can be chained to enable a flexible visual
analysis.

4.2 Moderation-View

The Moderation-View shown in Figure 3 provides
a detailed overview of the selected comments from
the Context-View. All selected comments are listed
here. Each entry on the list consists of the com-
ment’s text and additional meta information such
as its corresponding topic, the posting user, and the
number of recommendations given by other users.

Similar to the colour scheme used in the Context-
View, the colour of each cell represents the current
label of the comment. The pie chart visualizes the
model’s conditional label probability for Blocked
and Valid. In highly uncertain predictions, both
class outcomes would be nearly equal. If a com-
ment is already labelled by a human, a ”human”-
icon is shown instead of the pie chart. The list can
be filtered to only show uncertain, valid, or blocked
comments. Further, the entries can be sorted ac-
cording to the timestamp or uncertainty. Most un-
certain data must be moderated in our approach.
Comments that are already manually moderated
can also be hidden to enable a faster overview.

The detailed information about a selected com-
ment is shown in the upper part of the view. Addi-
tional information about the corresponding article
is also provided, followed by the text of the com-
ment. The selected comment is highlighted with a
blue box in the comments list. The actual modera-
tion is performed via the buttons down below. An
uncertain comment can be blocked or marked as
valid. Predictions can also be corrected, e.g. a com-
ment classified as valid can be manually blocked
by the moderator. Additionally, the moderator can
agree on artificial predictions to provide more train-
ing data for the active learning process. Corrections
and additional labels are directly synchronized with
the database of the training data.
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Figure 4: The Control-View of REM for managing the
moderation strategy.

4.3 Control-View

The Control-View is dedicated to steer the moder-
ation process. The view can be activated via the
button ”Moderation-Strategy” on the main page.
As described in Section 2, we implement a novel
approach to provide guidelines for how much man-
ual effort is needed to efficiently reach a desired
level of accuracy. The expected accuracy of the
underlying classifier, when a certain amount of the
most uncertain predictions are manually validated,
is displayed by the line chart shown on Figure 4.
On the right a user can select different moderation
strategies which are also highlighted in the line
chart. For each strategy the expected accuracy and
the needed effort is depicted. A user can select a
predefined moderation strategy or define a custom
strategy by hovering and clicking on a point in the
line chart. A moderation strategy affects the num-
ber of predictions, which are marked as uncertain.
The currently applied strategy is shown above.

Since the efficiency of the moderation is ex-
pected to decrease with larger workloads, a point
might be reached where further moderation efforts
only lead to marginal accuracy improvements. To
inform users of such inefficiencies, REM provides
a recommended moderation strategy which seeks to
optimize human moderation efforts with regard to
the accuracy gain. We calculate the recommended
moderation effort as the natural point of satura-
tion (Satopaa et al., 2011). Inefficient workload is
highlighted by the grey area in the line chart.

Usually, not every moderator should be able to
change the moderation strategy and thus the tar-
get accuracy of forum moderation. Therefore, the
Control-View can be secured by assigning specific
roles like an administrator.

5 Preliminary ML Experiment

We conduct a preliminary experiment to demon-
strate that our semi-automated ML approach is ca-
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Figure 5: Balanced accuracy in term of moderation ef-
fort: uncertainty-based vs. randomly-sampled selec-
tion of instances to be moderated.

pable of efficiently improving the accuracy of a
model during its operational use. For our exper-
iment, we use the dataset provided by Davidson
et al. (2017), which consists of 24.782 Twitter com-
ments either labelled as offensive, hate-speech, or
neither of them. In our experiment, we classify the
comments into blocked (offensive and hate-speech)
(83.2% of total) and valid comments (16.8% of to-
tal). Since the data is highly imbalanced, we use
the balanced accuracy (Brodersen et al., 2010) to
measure the performance of the classifier. We split
the data into a training and validation set (7868
: 7868) for model training and a test set (9046)
to evaluate our approach. The source-code of our
experiment is part of our replication package.

We use Sentence-Bert (Reimers and Gurevych,
2019) to compute text encodings. These are used
as the input for a feed forward neural network. Fur-
ther, we apply Monte Carlo Dropout to estimate
the uncertainty of the classifications. Our trained
classifier reaches a balanced-accuracy of 78.48%.
Figure 5 shows the balanced accuracy when a cer-
tain percentage of the most uncertain instances of
the test data is moderated manually. In our experi-
ment, we simulate manual moderation by selecting
the ground truth labels. A workload of 100% cor-
responds to manually checking 9046 comments,
which matches the daily amount of the expected
comments in our application scenario. The bal-
anced accuracy of a moderated classifier is com-
puted based on the inferred and manually corrected
labels. The results show that an uncertainty based
moderation is more efficient than a random mod-
eration strategy, where instances to be labelled are
randomly sampled. For instance, moderating 25%
of the data based on their uncertainty leads to a
balanced accuracy of 96.08%. In comparison, a
random moderation strategy requires a moderation
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effort of 81.8% to reach the same accuracy and is
thus far less efficient.
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Figure 6: Normalized confusion matrix of the initial
classifier (left) and the same classifier when 25% of the
most uncertain predictions where moderated (right).

The confusion matrix of the initial and moder-
ated classifier is depicted in Figure 6. The fully
automated classifier obviously has difficulties to
correctly detect valid comments. Only 59.01% of
the valid comments were correctly identified. By
moderating only 25% of the data, the detection of
valid comments can be increased to 92.30%. As
shown in Figure 5, the accuracy of the moderated
classifier can be further improved by increasing the
amount of human involvement. Thus, our approach
is capable of improving the accuracy of a model
with a reasonable manual effort.

6 Related Work

There have been previous attempts to efficiently
coordinate human involvement to improve the ac-
curacy of ML classifiers. Previous tools mainly
focus on the task of interactive model building, also
known as active learning (Settles, 2009) and heav-
ily rely on multidimensional projections (Endert
et al., 2012). Generally, HiL annotation tools pro-
vide a visual-interactive interface to guide human
involvement (Höferlin et al., 2012; Bernard et al.,
2018). However, tools based on point-visualization
are limited in scalability, since data-points will
overlap, causing visual clutter. Neves and Ševa
(2019) presented a general review of annotation
tools for documents.

HiL labelling tools: Seifert and Granitzer
(2010) introduce a basic user-centered active learn-
ing tool, where humans sequentially select and la-
bel instances for the next training iteration. Similar
to our approach, the authors utilize the predictive
uncertainty to guide human involvement. However,
they do not integrate a Visual Analytics component.
Heimerl et al. (2012) present a user-centered visual-
interactive active learning tool for text documents.
Annotators can re-train models in batches and are

able to inspect statistics about the model’s perfor-
mance. However, the authors do not consider un-
certainty thresholds. The tool provided by Höferlin
et al. (2012) enables annotators to manipulate the
underlying model directly. This approach requires
annotators to be Machine Learning experts, which
does not hold for forum moderators e.g. in domains
like online journalism. The HiL labelling tool pro-
posed by Choi et al. (2019) facilitates an attention
mechanism to explain predictions to annotators.
They aim to reduce the time needed to perform
annotation decisions and further increase the effi-
ciency of labelling. Our tool might be improved
by their findings. Link et al. (2016) introduce a
similar semi-automated process for the moderation
of social media content. Beside relying on the pre-
dictive uncertainty, they also define untrustworthy
sources which need additional care. Similar to our
approach, human moderation is requested when
a prediction does not satisfy a certain confidence
level. In contrast, they do not focus on optimizing
the moderation in terms of reaching a desired level
of accuracy and human efforts needed. Riehle et al.
(2020) propose a platform for the semi-automated
moderation of online discussions. Similar to our ap-
proach, comments are automatically pre-moderated
and human moderators can correct or agree on the
predicted labels. However, moderators are neither
guided to identify comments that require manual
attention nor do they assess the effect of the moder-
ation process.

7 Conclusion and Future Work

We introduce a novel tool for the semi-automated
moderation of large scale online forums to support
content moderators during their daily work. Our
tool combines methods from the field of Human-
in-the-Loop and Visual Analytics to enable an effi-
cient and more accurate moderation process. We
implement a unique approach to reduce and opti-
mize human efforts, building on top of the predic-
tive uncertainty of models. Further, we present a
rich uncertainty aware visual-interactive interface
to facilitate moderation via exploratory data anal-
ysis. Built on top of a big data architecture, our
tool is designed to be highly scalable and to enable
real-time moderation. A preliminary experiment
indicates that our moderation approach is capable
of improving the accuracy of a hate and offensive
language classifier from 78.48% to 96.08% by only
moderating 25% of a test dataset.
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REM can be adapted to more generic use-cases,
where annotators need to efficiently improve the
accuracy of binary classifiers while also making
use of active learning. Future work should focus
on evaluating our approach regarding its usability,
acceptance and usefulness in supporting the mod-
eration of online forums.
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Abstract
Novel neural architectures, training strategies,
and the availability of large-scale corpora
haven been the driving force behind recent
progress in abstractive text summarization.
However, due to the black-box nature of neu-
ral models, uninformative evaluation metrics,
and scarce tooling for model and data analy-
sis, the true performance and failure modes
of summarization models remain largely un-
known. To address this limitation, we intro-
duce SUMMVIS, an open-source tool for vi-
sualizing abstractive summaries that enables
fine-grained analysis of the models, data, and
evaluation metrics associated with text sum-
marization. Through its lexical and seman-
tic visualizations, the tools offers an easy en-
try point for in-depth model prediction explo-
ration across important dimensions such as fac-
tual consistency or abstractiveness. The tool
together with several pre-computed model out-
puts is available at https://summvis.com.

1 Introduction

The field of Natural Language Processing has seen
substantial progress in recent years driven by the
availability of large-scale corpora (Brown et al.,
2020; Raffel et al., 2020), developments in neural
architectures (Vaswani et al., 2017; Zaheer et al.,
2020) and training strategies (Devlin et al., 2019;
Zhang et al., 2020a). Despite the promising results
on benchmarks and recent findings in model anal-
ysis, the true performance, generalizability, and
failure modes of modern neural models are not yet
fully understood, due to the black-box nature of
neural models and the unmanageable scale of re-
cent datasets for manual analysis. Software tooling
for NLP research provides a plethora of mature
and easy-to-use libraries for model development,
such as PyTorch (Paszke et al., 2019) or Transform-
ers (Wolf et al., 2020a), but offers disproportion-
ately fewer tools for visual analysis and debugging,
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Is the generated 
summary abstractive, 
factually consistent?
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Is the reference 
summary abstractive, 
factually consistent?
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Figure 1: SUMMVIS supports fine-grained comparison
between (a) source document and generated summary,
(b) source document and reference summary, and (c)
generated summary and reference summary, enabling
analysis of models, data, and evaluation metrics.

which further hinders the understanding of model
performance.

Within NLP, Automatic Text Summarization is a
task that aims to convert long documents into short
textual snippets that contain the most important
information from the source document. To suc-
cessfully summarize documents, models must first
build an understanding of the source text that will
allow them to evaluate the saliency of presented
facts and then select only the most important de-
tails for the output summary. In case of abstractive
approaches, the neural networks are also expected
to paraphrase the selected content to generate novel
sentences that fuse together the facts extracted from
different sections of the document into coherent
and factually consistent text.

Progress in the field is measured primarily using
automatic metrics, such as ROUGE (Lin, 2004) or
BERTScore (Zhang et al., 2020b), which quantify
the lexical and semantic overlap between reference
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Figure 2: Warning: Contains factually incorrect information. SUMMVIS interface showing the first example
from the CNN/DailyMail validation split. Interface components: (a) configuration panel, (b) source document (or
reference summary, depending on configuration), (c) generated summaries (and/or reference summary, depending
on configuration), (d) scroll bar with global view of annotations. Colored underlines align n-grams between source
document and the selected summary (BART); colors are determined by the position of the containing sentence in
the summary. Novel words in the summary that do not appear in the source document are bolded, while novel
entities are bolded in red. Stopwords are grayed out and are not used in the matching algorithms. . . . . . . . .Dotted . . . . . . . . . . . .underlines
indicate tokens that are semantically similar to a token in the source document (above the threshold specified in the
configuration panel). The user may hover over a token to see the most semantically similar tokens in the source
document (see inset image), or click on the token to auto-scroll the source document to the most similar token.

and generated summaries. While automatic met-
rics are convenient for model evaluation, they have
been shown to be mismatched with human judge-
ments (Fabbri et al., 2020) and only offer high-level
insights while failing to pinpoint particular short-
comings of models. In-depth debugging across
the different modes of analysis (Fig. 1) must be
conducted through expensive and time-consuming
human-based studies, where the substantial length
of texts makes such efforts more labor-intensive.

Recent work in summarization analysis has
looked at the problems of the field in isolation,
focusing on: models (Kedzie et al., 2018; Kryś-
ciński et al., 2019, 2020), data (Zhong et al., 2019;
Jung et al., 2019), and evaluation (Fabbri et al.,
2020; Steen and Markert, 2021). However, these
modes of analysis are strongly interconnected and
isolating them could skew the broader view of the
current state of the task and delay progress.

To address the mentioned challenges, we intro-
duce SUMMVIS, an open-source interactive visu-

alization tool for analyzing text summarization.
SUMMVIS was designed to offer fine-grained in-
sights into the models, data, and evaluation metrics,
both in isolation and jointly, thus compensating
for the shortcomings of automatic evaluation met-
rics and shortage of dedicated debugging tooling.
SUMMVIS scaffolds human analysis by offering
clear visual indicators of the semantic and lexical
relationships between texts and intelligent naviga-
tion within text. The tool comes pre-loaded with
a set of state-of-the-art model predictions for a
quick starting point for model analysis and com-
parison and offers out-of-the-box integration with
the HuggingFace Dataset API for custom use-cases.
Through a case study of state-of-the-art summariza-
tion models we show how SUMMVIS can be used
to quickly conduct non-trivial analysis, debugging,
and comparison of model performance across im-
portant dimensions such as factual consistency or
abstractiveness. A video demonstration of the tool
is available at https://vimeo.com/540429745.
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2 SUMMVIS

In this section, we present SUMMVIS, an interac-
tive visualization tool that provides rich text com-
parison in summarization systems, enabling fine-
grained analysis of models, data, and evaluation
metrics. It comes pre-loaded with model outputs
for state-of-the-art models over common bench-
mark datasets, as well as scripts for loading data
for any dataset provided by the Datasets API (Wolf
et al., 2020b) and any HuggingFace-compatible
model.

2.1 Analysis Modes
SUMMVIS supports three modes of analysis, de-
pending on the type of text being compared:

1. Model Analysis (Fig. 1a). By comparing the
source document with generated summaries,
SUMMVIS provides insights into a model’s abil-
ity to abstract and faithfully retain information
present in the document.

2. Data Analysis (Fig. 1b). By comparing the
source document with the reference summary,
SUMMVIS helps determine the degree to which
the reference summary itself is abstractive and
factually consistent with the source document.

3. Evaluation Analysis (Fig. 1c). By comparing
the reference summary with the generated sum-
mary, SUMMVIS surfaces the word- and phrase-
level relationships that form the basis of auto-
mated evaluation metrics such as ROUGE and
BERTScore.

These analyses are interdependent with one an-
other; for example, the behavior of a model depends
on the data on which it was trained. By providing
a unified interface for all modes of analyses, the
user may also draw conclusions about the relation-
ships between model, data, and evaluation, as we’ll
demonstrate in Section 3.

2.2 Text Comparison
Understanding abstractive summaries requires com-
paring not only surface similarities but also build-
ing a semantic understanding of the source docu-
ment and summaries. Therefore SUMMVIS incor-
porates similarity measures based on both lexical
and semantic overlap, as described below.
Lexical Overlap. The ability to quickly compare
the lexical form of source document and summary
is an important first step in analyzing a generated
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Figure 3: Taxonomy of textual relationships across lex-
ical and semantic dimensions.

summary. For example, it is well known that many
abstractive reference summaries are in fact largely
extractive, copying long spans of text from the
source document (Grusky et al., 2018). Other sum-
maries might contain significant hallucinations, in-
cluding words that are not found in the source docu-
ment (Kryściński et al., 2020; Maynez et al., 2020).
In order to identify these phenomena, SUMMVIS

provides a lexical alignment based on shared n-
grams between the two texts, which is also the
basis for many automated metrics such as ROUGE.
Semantic Overlap. Lexical overlap is incomplete
as a measure of similarity between texts since it
only considers the surface form of words. For ex-
ample, a summary that is highly abstractive may
share few common words with the source article,
despite having a similar meaning. To address such
limitations, the tool also identifies semantically-
related tokens by computing the cosine similarity
between word embeddings, with the option of using
static word embeddings provided by spaCy (Hon-
nibal et al., 2020), or contextual embeddings from
a pretrained RoBERTa (Liu et al., 2019) model. In
the later case, we apply the same default embed-
dings1 used in BERTScore, a common evaluation
metric for abstractive summarization systems that
correlates strongly with human evaluations (Zhang
et al., 2020b). As we’ll discuss in Section 3, the
visualized semantic similarities can also help to
interpret BERTScore values. We note that the
BERTScore library2 used in the tool also supports
other models of semantic similarity, for example,
models trained on scientific or non-English text.
Taxonomy. Considering both lexical and semantic
measures of similarity provides a natural way to

1RoBERTa-large layer 17
2https://github.com/Tiiiger/bert_score

152



chart out summarization datasets for further analy-
sis. By comparing a source document to any sum-
mary along these two dimensions, four quadrants
of behavior can be mapped out (Fig. 3):
1. Extraction: high lexical and high semantic sim-

ilarity. The summary quotes text from the docu-
ment verbatim.

2. Abstraction: low lexical and high semantic
similarity. The summary consolidates and para-
phrases information from the document.

3. Hallucination: low lexical and low semantic
similarity. The summary is factually inconsis-
tent, and includes information that is absent in
the document.

4. Misinterpretation: high lexical and low seman-
tic similarity. The summary misinterprets and
uses information from the document, such as
misunderstanding homonyms.

Examples of such cases will be discussed in the
following sections.

2.3 Interface
The main components of the SUMMVIS interface
are described in detail in Figure 2. The interface
supports analysis of the model, data, and evaluation
(Sec. 2.1) based on which types of text are selected
by the user for comparison (Figs. 2b, 2c). The
annotations provided by the tool highlight both
lexical and semantic relations between the text
(Sec. 2.2) and are designed to be lightweight, allow-
ing users to quickly grasp the relationship between
texts while still being able to clearly read the text.

The joint lexical and semantic annotations en-
able the user to understand the summaries accord-
ing to the taxonomy in Figure 3. Examples of
extraction, abstraction, and hallucination are high-
lighted in Figure 2. Since measures of semantic
similarity may be unreliable, the tool also enables
users to hover over tokens for additional details
on the semantically matched tokens in the source
document, which are highlighted based on their
semantic similarity scores (Fig. 2, inset image).
Additionally the score of the closest match is dis-
played, following the BERTScore algorithm, which
computes the maximum semantic similarity score
for each token before averaging the results over the
full text. These features enable users to manually
assess whether the tokens are in fact semantically
similar.

The tool supports two additional features to ac-
commodate long source documents: a global view

and auto-scrolling functionality. The global view,
embedded in the scroll bar region of the source
document (Fig. 2d), displays a compressed view of
the full document’s annotations that is visible even
when the document exceeds the viewable region.
The user may also directly navigate to matched por-
tions of the source documents not currently visible
by clicking on related annotations in the summary.

2.4 System Architecture

The interface is implemented as a Streamlit3 appli-
cation with a highly customized HTML/JavaScript
component that handles most interactions in the
tool. The custom component enables a much richer
interaction than a vanilla Streamlit app, while the
Streamlit infrastructure allows for adapting or ex-
tending some components in the tool without nec-
essarily writing additional HTML or JavaScript.

We provide pre-processing scripts to generate
and cache all data required by SUMMVIS to ensure
fast response times in the interface. These scripts
are implemented using Robustness Gym (Goel
et al., 2021) and integrate with the HuggingFace
Datasets API (Wolf et al., 2020b) so that any sum-
marization dataset available in the dataset repos-
itory or provided by the user as a jsonl file
may be viewed in the tool. We additionally in-
clude scripts for caching outputs for any Hug-
gingFace summarization model, and share pre-
computed outputs of state-of-the-art summariza-
tion models: PEGASUS (Zhang et al., 2020a)
and BART (Lewis et al., 2020). To increase the
variaty of outputs, we chose model checkpoints
fine-tuned on multiple popular summarization
datasets: CNN/DailyMail (Hermann et al., 2015),
XSum (Narayan et al., 2018), Newsroom (Grusky
et al., 2018), and MultiNews (Fabbri et al., 2019),
and decoded on the validation splits of two bench-
mark datasets: CNN/DailyMail and XSum.

3 Case Study: Debugging Hallucination

As discussed earlier, SUMMVIS supports joint
analysis of the model, data, and evaluation metrics.
We now demonstrate how we can draw from all
three modes of analysis to study the problem of hal-
lucination in summarization systems. Through the
unified view of SUMMVIS, we analyze the example
shown in Figure 4 and demonstrate the existence of
hallucination, suggest a possible cause, and show

3https://github.com/streamlit/streamlit
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Figure 4: SUMMVIS snapshot of an example from CNN/DailyMail, showing the source document (left) and the
reference summary along with generated summaries from four different models (right). The first two models are
trained on CNN/DailyMail, while the last two are trained on XSum. Red text highlights entities in the summaries
that are not present in the source document.

how a common evaluation metric prefers halluci-
nated entities over faithful descriptors in this case.

Model Analysis. SUMMVIS supports analysis of
the model by visualizing the relationship between
each generated summary and the source document.
For the example in question (Fig. 4), this visualiza-
tion reveals that three of the four models generate
names of people that are absent from the source
document. The XSum-trained models generate the
names in the context of the phrase “In our series
of letters from African-American journalists, film-
maker and columnist <person_name> reflects on
...”. suggesting that the hallucinations for these two
models may be related to artifacts in the shared
XSum training set that both models have memo-
rized. On the other hand, the summary generated
by the version of PEGASUS that was trained on
CNN/DailyMail is largely extractive, copying sev-
eral sentences, but then also inserting the name
“David Wheeler”, which is absent from the source
document. We now show how artifacts in the refer-
ence summaries may explain this hallucination.

Data Analysis. We now turn to the visualization
comparing source document and reference sum-
mary (Fig. 4, top right). We see that the reference
summary also contains an entity that is missing
from the source document (“Timothy Winslow”).
This may be due to the name appearing in metadata

such as author name that was available to the per-
son writing the summary, but was not included in
the dataset. If this pattern occurs in similar types of
examples in the training set (e.g., first-person writ-
ten articles), then it may effectively teach the model
to hallucinate, providing a possible explanation for
the model behavior described earlier.

Evaluation Analysis. One remaining question is
how state-of-the-art models can hallucinate but still
perform well on benchmark datasets according to
standard evaluation metrics. Of course, one reason
is that the models only hallucinate on some frac-
tion of examples in the dataset. However, there
is also the question of how the evaluation metrics
score hallucinated content. While lexical overlap
metrics such as ROUGE are well-defined, seman-
tic similarity metrics like BERTScore are less well
understood as they depend on embeddings from
black-box neural network models.

SUMMVIS supports fine-grained analysis of eval-
uation metrics through its comparison of generated
and reference summaries. In particular, the token-
level semantic similarity scores visualized in the
tool use the same similarity measure as BERTScore
(Sec. 2.2). By inspecting these token-level relation-
ships, we can better understand how hallucinated
tokens contribute to the overall BERTScore, which
is computed by aggregating token-level scores.
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Figure 5: Snapshot from SUMMVIS showing the reference summary on the left and two of the generated summaries
on the right. In the first example, the user has hovered over “man” in the generated summary, which causes the
tool to highlight the most semantically similar word in the reference summary, “Timothy”, with a similarity score
of 0.21. A second occurrence of “man” has an even lower semantic similarity score of just 0.02 (not shown). In
the second example, the user hovers over “David”, revealing that this word is also most semantically similar to
“Timothy”, but with a higher similarity score (0.28).

Figure 5 shows the comparison between the ref-
erence summary and two of the generated sum-
maries, revealing that the factually correct “man”
has a lower maximum semantic similarity score
compared to the hallucinated “David”. The same
is true for the corresponding hallucinated last name
“Wheeler” (similarity: 0.28), and this disparity with
“man” is even more pronounced for the halluci-
nated name “Don McCullagh” (Similarity: 0.34,
0.31) generated by the last model shown in Fig-
ure 4. Thus BERTScore does not discriminate fac-
tual consistency of proper names in this example,
consistent with anecdotal evidence for other types
of entities (Zhang et al., 2020b). Note that the hal-
lucinated name “Farai Sevenzo” (Fig. 4, 4th row)
has maximum similarity scores that are negative
(-0.43, -0.12). This disparity may relate to name
biases in word embeddings (Caliskan et al., 2017).

4 Related Work

Text Summarization requires models to be adept
at both natural language understanding (NLU) and
natural language generation (NLG). A gap in either
of these areas has consequences on the progress
of summarization as a whole. An example of this
is the lack of meaningful metrics in NLG for high
entropy tasks (Steen and Markert, 2021). Several
recent works have realized the need for evolving
benchmarks and evaluations (Goel et al., 2021;
Gehrmann et al., 2021; Khashabi et al., 2021).

Existing tools support some forms of text com-

parison for summarization models. The Newsroom
dataset visualization tool (Grusky et al., 2018) high-
lights n-grams in the summary that overlap with the
source article. The LIT tool (Tenney et al., 2020)
highlights words or characters that differ between
reference and generated texts. However neither tool
aligns (Yousef and Janicke, 2021) the matched text.
The CSI framework (Gehrmann et al., 2019) and
the Seq2SeqVis (Strobelt et al., 2019) tool align
the source document and summary, but use model-
specific attention mechanisms. SUMMVIS on the
other hand supports a model-agnostic comparison
between source document, reference summary, and
generated summary, and aligns text along lexical
and semantic dimensions.

5 Conclusion

In this work we introduced SUMMVIS, an interac-
tive visualization tool for analyzing text summa-
rization models, datasets, and evaluation metrics.
Through a case study we showed that our tool can
be used to efficiently identify the shortcomings
and failure modes of state-of-the-art summariza-
tion models and datasets. Together with the tool
we released a set of pre-computed model outputs to
enable easy, out-of-the-box use. We hope this work
will positively contribute to the ongoing efforts in
building tools for model evaluation and analysis
and enable a deeper understanding of the perfor-
mance of summarization models and the intricacies
of datasets and metrics.
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6 Ethics Statement

To the best of our knowledge, there is no work on
ethical bias in automated text summarization. The
news summarization datasets currently used by the
NLP community are mainly crawled from Western
news outlets and therefore are not representative of
a majority of geographies. There are also biases
in news reporting that can distill into parameters
of models trained on such biased datasets and may
even be further amplified in the generated model
outputs. All datasets are in English, and all models
are trained on English datasets.

SUMMVIS uses spaCy for entity detection and
because we did not stress test the detector, there
might be biases in the system that have percolated
into our tool. Similarly, the text similarity metrics
used in our tool including the BERTScore and the
word-embeddings carry biases of the data they were
trained on. For example, they have been known to
have bias associating professions with a particular
gender. We request our users to be aware of these
ethical issues that might affect their analyses.
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Abstract

Much past work has focused on extracting in-
formation like events, entities, and relations
from documents. Very little work has focused
on analyzing these results for better model un-
derstanding. In this paper, we introduce a cura-
tion interface that takes an Information Extrac-
tion (IE) system’s output in a pre-defined for-
mat and generates a graphical representation
of its elements. The interface supports edit-
ing while curating schemas for complex events
like Improvised Explosive Device (IED) based
scenarios. We identify various schemas that
either have linear event chains or contain par-
allel events with complicated temporal order-
ing. We iteratively update an induced schema
to uniquely identify events specific to it, add
optional events around them, and prune unnec-
essary events. The resulting schemas are im-
proved and enriched versions of the machine-
induced versions.

1 Introduction

Understanding events, how they progress, and who
is involved in them is fundamental to our knowl-
edge of the world and our ability to anticipate future
events. Human beings have mental representations
of typical scenarios at various levels of granular-
ity. Defining such scenarios or templates for use in
information extraction, knowledge base construc-
tion, and narrative prediction has a long history.
As these fields have progressed, the complexity of
the events and sequences being represented has in-
creased. Any machine-readable format capable of
representing multiple events, tracking their partici-
pants across the events, and delineating the tempo-
ral and causal relations between the events will be
extremely difficult for a person to read and review.
Because the extraction and construction of such
complex schemas has accelerated in recent years
(Li et al., 2020; Zhang et al., 2020), the need for a

way for people to easily review them has increased.
In this paper we will describe a tool designed to
take complex event schemas in a json format and
render them graphically for human review and re-
vision.

The complex schemas handled by our tool in-
clude multiple levels of intersecting information.
For example, imagine a typical emergency medi-
cal intervention. We know this includes a Victim
who is injured or ill and usually begins with com-
munication by the Victim or a Bystander to an
emergency Dispatcher, then progresses to commu-
nication from the Dispatcher to Medical Personnel,
travel by Medical Personnel to the Victim, immedi-
ate medical assessment of the Victim, and, finally,
possible transportation of the Victim to a Medical
facility. A more complete schema would include
some alternative or parallel events, such as the pos-
sibility of Medical personnel already being on site
or the death of the Victim at any point in the se-
quence of subevents. As we will describe in more
detail, the tool uses distinctive nodes and edges to
represent these subevents and participants and their
relationships to each other. Left to right progres-
sion of subevents across the visual field represents
temporal progression, and types of edges further in-
dicate specific temporal and causal relations. Users
can zoom in to specific subevents to see participants
and their relations. In addition, our tool allows for
simultaneous visualization of a complex schema
and direct revision of the underlying json file.

Our paper begins by describing the background
and motivation for our schema editing tool in Sec-
tion 2. Section 3 gives detailed description of the
tool implementation, while Sections 4 and 5 pro-
vide examples of its use, and discuss general issues
with respect to editing schemas. We conclude in
Section 6.
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2 Background

The idea of typical event scenarios being stored
by people as abstract mental frames or schemas
with slots for particular participants has a long his-
tory in psychology (Bobrow and Norman, 1975),
linguistics (Fillmore, 1976) and artificial intelli-
gence (Schank and Abelson, 2013). Prototypical
sequences of events, such as the medical interven-
tion sequence described above, can be made ex-
plicit in scripts that detail the usual subevents, their
typical sequence, the people and objects generally
involved in those events, and the progression of
those participants through the subevents.

Proving useful for both linguistic analysis and
natural language processing, repositories of de-
fined schemas and event representations were man-
ually developed, such as FrameNet (Fillmore et al.,
2002), PropBank (Kingsbury and Palmer, 2002)
and VerbNet (Kipper et al., 2008). Most long-
standing repositories of such frames or scripts were
built at the level of single events and their partic-
ipants, although some have made sparse connec-
tions between these simple event descriptions (e.g.,
FrameNet’s Uses and Precedes relations). The de-
sire to extend these event representations to include
more complex relations led to the development of
systems of temporal, causal and other semantic re-
lations, such as TimeML (Pustejovsky et al., 2005),
Richer Event Descriptions (O’Gorman et al., 2016),
Reference Event Ontology (Brown et al., 2017),
and Abstract Meaning Representations (Banarescu
et al., 2013).

Because of the substantial effort involved in
manually creating schemas, automatically inducing
schemas from textual and visual data has become
a priority. Automatically generated schemas have
advanced from schemas for single events (Bala-
subramanian et al., 2013; Chambers and Jurafsky,
2009; Chambers, 2013; Cheung et al., 2013; Huang
et al., 2016; Nguyen et al., 2015) to complex, multi-
step schemas (Li et al., 2020; Zhang et al., 2020)
However, for optimal usefulness, these generated
schemas still benefit from human revision. To our
knowledge, no open-source interface for complex
schema visualization and editing has previously
been developed.

One large-scale effort to create a repository of
complex event schemas is the DARPA Knowlege-
directed Artificial Intelligence Reasoning Over
Schemas (KAIROS) program. KAIROS relies on
the assumption discussed above, that humans make

sense of events by organizing them into frequently
occurring narrative structures that in this context
are called schemas. The goal of the program is to
develop schema-based AI systems that can iden-
tify, link and temporally sequence complex events
and their subsidiary elements and participants. The
program is set up with separate tasks. Task 1 in-
volves inducing schemas from large amounts of
text, followed by careful hand curation, with the
goal of creating a schema library. Task 2 is aimed
at finding schema instances that match schemas
from the schema library in streaming news feeds.
In order to evaluate system performance for both
of these tasks, a common, agreed upon KAIROS
Schema Format is needed. This also allows one
DARPA team to try to instantiate schemas from an-
other team’s Schema Library and vice versa. The
KAIROS Schema Format (KSF) stores represen-
tations of real-world complex events in a system-
atic JSON-LD format containing primitive events,
their participants, possible entities acting as the par-
ticipants, and the relations between these events
and entities. Our tool takes these JSON files as
input and assumes that all the schemas are vali-
dated and tested for format consistency before use.
An additional complexity in this beginning phase
of the program is a restriction against hierarchical
schemas, in which subschemas could be collapsed
into a single parent node. The schemas are order-
ings of all individual events, that can therefore get
quite lengthy.

3 Schema Curation Interface

The Schema Curation Interface12 is a web applica-
tion designed for interpreting induced schemas. It
provides a visual representation of the schema to
understand the underlying structure, reflects rela-
tions between events and entities, and allows cor-
rection of potential flaws. The interface accepts
KSF-validated schemas as input, extracts the events
and participants as nodes and relations as edges,
and visualizes them as a graph on a canvas. These
graphs, in turn, can be corrected at the discretion
of the curators. The interface is an open-source
project that is accessible from ’cu-clear’ GitHub
repository.

We use React.js and Flask for designing the
web application. React.js is a JavaScript library
to build interactive user interfaces (UI). It allows

1GitHub: https://github.com/cu-clear/schema-interface
2Demo: https://youtu.be/J9yox50gZUU

160



encapsulated component building and easy debug-
ging, which makes new features easy to integrate.
Flask is a micro web framework written in Python
that acts as the web server for receiving requests
from the user and sending a response. React passes
the schema, uploaded by a user, to the Flask web
server, which in turn extracts the possible nodes
and edges between them and returns them to the
UI for rendering. Cytoscape.js (Franz et al., 2015)
uses these nodes and links to generate the graph
on a canvas. Cytoscape.js is a fully featured graph
library written in JavaScript that allows users to
display and manipulate rich, interactive graphs. In
the curation interface, it controls the positioning
and layout. Explicit configuration constrains Cy-
toscape.js to orient the representation from left to
right within the canvas, which preserves any pos-
sible temporal ordering and parallel events. It also
has standard gestures like dragging and zooming
on desktops as well as touch devices. Besides the
canvas, a JSON-viewer provides a JSON view of
the uploaded schema. It allows the user to edit the
schema and dynamically update the graph structure.
Add, edit, and delete are the three operations the
“react-json-view” library allows for manipulating
schemas. “react-json-view” is a React component
for displaying and editing JavaScript arrays and
JSON objects.

The interface is currently accessible from the
web using Google Cloud Platform (GCP). We use
Docker and Kubernetes in this process. Docker
enables the packing, shipping, and running of our
application as a portable and self-sufficient con-
tainer, which can run virtually anywhere. Kuber-
netes runs and coordinates these containerized ap-
plications across a cluster of machines, automating
the deployment, scaling, and management process.
Kubernetes’ load balancing configuration keeps at
least one instance always available to a user. Since
the user count is small, six replicas serve the pur-
pose. But as the users increase, we can scale it up.
A separate log server keeps track of any issue or
error that occurs while parsing the schemas using
RabbitMQ. It helps in debugging and analyzing the
usage of the interface.

The representation consists of nodes and edges.
The nodes signify an event (referred to in the
schema as “step”), entity (as “participant” or
“slot”), or filler (as “value” for the mentioned “par-
ticipant”). Shapes like ellipse, round-rectangle, and
round-pentagon distinguish one node type from

another. The edges signify temporal relations be-
tween any two events, an entity’s participation in
an event, or co-reference between two entities.

The current implementation allows a dual-layer
view. The first (default) view (Figure 2) shows
only the representation of events and their temporal
relations. Selecting an event opens the second view
(Figure 3), consisting of entities and values for that
event. As a result, all the entities and fillers remain
hidden in the default view and reduce the clutter in
the visualization, increasing readability.

While the dual-layer view allows a cleaner vi-
sualization of schemas, having many events in a
schema (currently constrained to not make use of
hierarchical structure) can still clutter the repre-
sentation. Since the layout is from left to right,
a complex event with a long sequential chain of
events becomes partially hidden on reaching the
screen width. Cytoscape.js reacts by zooming out
the canvas to keep the graph in view as much as
possible. However, in doing so, the schema graph
becomes illegible. The only solution is manually
arranging the nodes so they are in the scope and
are using an appropriate zoom setting.

4 Interface Use

Approximately 10 people collaborating across
three institutions used the interface heavily to in-
duce schemas and manually curate them. The
schemas were induced from shared data using infor-
mation extraction systems. After evaluating a sys-
tem’s output, the inducers shared the schema draft
with the human curators for editing. The interface
facilitated the interpretation of the schemas and
simplified the identification of needed changes to
events, entities, values, or relations between them.
We then created a new set of visualizations for com-
parison with the pre-curated version. The schema li-
brary inducers, after discussion, used these curated
sets of schemas for improved inductions, which
were passed back for further curation. We repeated
this process until we reached a version where the
schema had the highest coverage over the data for
each complex event.

The human curators worked with two sets of
automatically induced schemas, from two differ-
ent institutions. One set of schemas consisted of
events in a linear chain, lacking parallel events.
The other set contained parallel events with more
complex temporal ordering. By comparing the vi-
sualizations of these schemas, curators were able to
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identify which schemas covered similar events and
could select the best parts of each to create a sin-
gle, comprehensive schema. In addition, we aimed
to include all possible events in a scenario from
planning stages to results. Every induced schema
was missing events or had extraneous events, which
were easy to identify and fix with the curation in-
terface. However, the greatest improvement to cu-
ration came from the ease of visualizing parallel
and optional events and of tracking entities across
multiple subevents, all of which are obscured in the
necessarily linear presentation of a JSON file.

Figure 1: Life.Die Event Primitive

KAIROS Event Primitives are the backbone of
the schemas. KAIROS has defined event primitives
to be elemental single events that are unlikely to be
decomposed into subevents, but could themselves
form crucial elements of more complex events. The
event primitives are comprised of the event defini-
tion, the roles associated with the event and their
corresponding constraints, as well as temporal in-
formation about the event. Figure 1 provides an
example of a Life.Die Event Primitive.

Events in the schema are automatically gener-
ated in temporal order from left to right in the cu-
ration interface. Parallel events originate from the
same source and can occur simultaneously or in-
dependently of the sibling events. A gray rectan-
gle labeled START indicates the beginning of the
schema. Individual events are green ellipses. The
general attack schema (Figure 2) can be used to
represent any attack. We include a demonstration
event as an instigating event that could motivate
an attack. Alternative instigating events will be
added in future work. After the instigating event,
the attack event happens, leading to three simul-
taneously occurring parallel events - death, injury,
and damages due to the attack, and one indepen-
dently occurring parallel event - an investigation.
Events related to medical intervention, an arrest, a
trial, and sentencing follow.

By clicking on individual events, the event’s ar-
guments are revealed, along with various relation-
ships between them. The entity nodes are peach-
colored pentagons. Coreference relationships are
indicated using the relation “Same as.” In Figure 3,
these coreference relations indicate that the attacker
is the same as the agent of the Death event and of
the Damage event. On the right side of the schema,
the interface shows the schema in the JSON format
(see Figure 2), which is directly editable. There-
fore, if one sees that the order of events is wrong,
or deletion or addition of events is necessary, these
changes can be made within the interface.

We can also see details of the events and partici-
pant entities more legibly on the screen’s left side
by right-clicking on any specific event or entity, as
shown in Figure 3.

The Drone IED (Figure 4) is an expansion of the
general attack schema. We added more events spe-
cific to Drone IED’s, such as buying drones, buying
parts to make an IED, moving both to a common
place, and assembling them. We added options like
a drone crash, and a detonate event in place of the
attack event from the general attack schema. We
also added more event primitives related to damage
and destruction. All other events are similar to the
general attack schema.

5 Iterative Schema Updates

As mentioned above, there were several rounds
of schema curation. One of our goals was iden-
tifying distinctive schema events. For example,
in a drone-based IED schema, acquiring a drone
is an essential step; and in a vehicle-based IED
schema, acquiring a vehicle is an essential step.
The final step was checking the proper temporal
ordering between the events. We went through
several wiki articles about various IED attacks to
determine generic event types and the correct tem-
poral ordering for all the steps. The visualization
in the interface facilitated these tasks by allowing
us to see generalities across schemas and to easily
spot gaps in the temporal ordering.

In the subsequent rounds, we focused on ro-
bustness. We introduced new optional events to
schemas, such as an acquittal event, which better
encompassed the possible outcomes of a trial. We
also introduced additional phases to the schemas,
such as instigating events like conflict between the
terrorist organization and a government. We also
introduced retaliatory events to describe what ac-
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Figure 2: Editable JSON for schema curation

Figure 3: Entity associated to event Attack

tions were taken after the attack happened, such as
demonstrations against the IED attacks or retalia-
tory actions taken by the army.

To demonstrate a typical editing task, the fol-
lowing example walks through the steps needed to
make a new temporal connection between events.
This example is also illustrated in our demo video.

In Figure 5a, there is a missing link between the
events Injury and Medical Intervention. To add
the link, we get the IDs of the Injury and Medi-
cal Intervention events by right-clicking on these
events, and then create a new entry in the order key
provided in the JSON editor on the right side of the
screen by clicking on the plus sign next to the or-

der key. This creates a new order step with NULL
value. As shown in Figure 5b, within this box, we
write the ID of the Injury event as the value to the
“before” key, and the ID of the Medical Intervention
event as the value to the “after” key. This signifies
that an injury event needs to happen before medical
intervention. We can also add flags like optional
or precondition. The flag name is displayed on the
arrow connecting the events. If no flags are given,
“Before” is displayed on the arrow. We also need
to provide a unique ID to this order step. After
saving the JSON, the changes are automatically
reflected in the visualization. Figure 5c shows the
curated schema, with a link present between the
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Figure 4: Drone IED

(a) No temporal link between
Injury and Medical Intervention

(b) Editing JSON (c) Temporal Link Added

Figure 5: Schema Curation Demo

Injury and Medical Intervention Event. Similarly,
we can delete the events or link them. An event
can be deleted by removing it from the step key in
the JSON, and links can be deleted by deleting the
order ID containing the mentioned events.

6 Conclusion and Future Work

In this paper, we introduced an interface that as-
sists human curators in refining induced schemas.
These schemas contain events, entities, and the rela-
tions between them. The curation interface extracts
these elements in the form of nodes and edges and
represents them in a graphical structure. The visual-
ization enables the curators to better understand the
ordering of events and the relations between enti-
ties, resulting in an improved and enriched schema.

We also discussed leveraging the attributes of two
structurally different induced schemas to design
a single unified schema. This schema captures
the salient events from its parents while reducing
the schema size. We explored various IED-based
schemas, General Attack, Medical Intervention,
and Disease outbreak schemas using the curation
interface.

The schemas currently include a small set of
primitive events, limiting the scope of an induced
complex event. In the future, a schema can have a
hierarchical composition, meaning a combination
of complex and primitive events within a single
schema. Future work will focus on improving the
handling of hierarchical schemas, provide dynam-
icity to the visualization, and comparison of two
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schemas. It will also allow changes, like editing or
deleting nodes and edges, on the graph beside the
JSON editor.
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Abstract
TEXTOIR is the first integrated and visualized
platform for text open intent recognition. It
is composed of two main modules: open in-
tent detection and open intent discovery. Each
module integrates most of the state-of-the-art
algorithms and benchmark intent datasets. It
also contains an overall framework connecting
the two modules in a pipeline scheme. In addi-
tion, this platform has visualized tools for data
and model management, training, evaluation
and analysis of the performance from different
aspects. TEXTOIR provides useful toolkits
and convenient visualized interfaces for each
sub-module1, and designs a framework to im-
plement a complete process to both identify
known intents and discover open intents2.

1 Introduction

Analyzing user intents plays a critical role in
human-machine interaction services (e.g., dialogue
systems). However, many current dialogue systems
are confined to recognizing user intents in closed-
world scenarios, and they are limited to handle the
uncertain open intents. As shown in figure 1, it is
easy to identify specific purposes, such as Flight
Booking and Restaurant Reservation. Nevertheless,
as the user intents are varied and uncertain, pre-
defined categories may be insufficient to cover all
user needs. That is, there may exist some unrelated
user utterances with open intents. It is valuable
to distinguish these open intents from known in-
tents, which is helpful to improve service qualities,
and further discover fine-grained classes for mining
potential user needs.

We divide open intent recognition (OIR) into
two modules: open intent detection and open in-
tent discovery. The first module aims to identify

∗ These authors contributed equally to this work.
† Hua Xu is the corresponding author.

1Toolkit code: https://github.com/thuiar/TEXTOIR
2Demo code: https://github.com/thuiar/TEXTOIR-DEMO

Figure 1: An example for Open Intent Recognition.

n-class known intents and detect one-class open in-
tent (Yan et al., 2020; Lin and Xu, 2019; Shu et al.,
2017). It can identify known classes but fail to
discover specific open classes. The second module
further groups the one-class open intent into multi-
ple fine-grained intent-wise clusters (Vedula et al.,
2020; Lin et al., 2020; Perkins and Yang, 2019).
Nevertheless, the adopted clustering techniques are
not able to identify known categories.

The two modules have achieved huge progress
with various advanced methods on benchmark
datasets. However, there still exist some issues,
which bring difficulties for future research. Firstly,
there are no unified and extensible interfaces to inte-
grate various algorithms for two modules, bringing
challenges for further model development. Sec-
ondly, the current methods of the two modules lack
convenient visualized tools for model management,
training, evaluation and result analysis. Thirdly,
the two modules both have some limitations for
OIR. That is, neither of them can identify known
intents and discover open intents simultaneously.
Therefore, OIR remains at the theoretical level, and
it needs an overall framework to connect the two
modules for finishing the whole process.

To address these issues, we propose TEXTOIR,
the first integrated and visualized text open intent
recognition platform. The platform has the follow-
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Figure 2: The architecture of the TEXTOIR platform.

ing features:

(1) It provides toolkits for open intent detection
and open intent discovery, respectively. The toolk-
its contain flexible interfaces for data, configura-
tion, backbone and method integration. Specifi-
cally, it integrates a series of advanced models for
two modules. Each module supports a complete
workflow, including data and backbone preparation
with different assigned parameters, training, and
evaluation. It provides standard and convenient
modules to add new methods. More detailed in-
formation can be found on https://github.com/

thuiar/TEXTOIR.

(2) It designs an overall framework combining
two sub-modules naturally, achieving a complete
OIR process. The overall framework integrates the
advantages of two modules, which can automat-
ically identify known intents and discover open
intent clusters with recommended keywords.

(3) It provides a visualized surface for utiliza-
tion. Users can leverage the provided methods
or add their datasets and models for open intent
recognition. We provide the front end interface for
the two modules and the pipeline module. Each
of the two modules supports model training, eval-
uation and detailed result analysis of different
methods. The pipeline module leverages both the
two modules and shows the complete text OIR re-
sults. More detailed information can be found on
https://github.com/thuiar/TEXTOIR-DEMO.

2 Open Intent Recognition Platform

Figure 2 shows the architecture of the proposed
TEXTOIR platform, which contains four main
modules. The first module integrates a series of
standard benchmark datasets. The second and third
modules have toolkits for both open intent detec-
tion and open intent discovery. Besides, it visual-
izes the whole process (including model manage-
ment, training, evaluation and result analysis) of
two modules. The last module leverages the two
modules in a pipeline framework to finish open
intent recognition.

2.1 Data Management

Our platform supports standard benchmark datasets
for intent recognition, including CLINC (Larson
et al., 2019), BANKING (Casanueva et al., 2020),
SNIPS (Coucke et al., 2018), and StackOver-
flow (Xu et al., 2015). They are all split into train-
ing, evaluation and test sets.

As shown in Figure 3, we provide unified data-
processing interfaces. It supports preparing data in
the format of two modules. For example, it samples
known intents and labeled data with the assigned
parameters for training and evaluation. Besides
these labeled data, the remaining unlabeled data are
also leveraged for open intent discovery. Users can
see detailed statistics information from the front-
end webpage and manage their datasets.
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Figure 3: The architecture of Open Intent Recognition.

2.2 Models

Our platform integrates a series of advanced and
competitive models for two modules, and provides
toolkits with standard and flexible interfaces.

2.2.1 Open Intent Detection

This module leverages partial labeled known in-
tent data for training. It aims to identify known
intents and detect samples that do not belong
to known intents. These detected samples are
grouped into a single open intent class during test-
ing. We divide the integrated methods into two cat-
egories: threshold-based and geometrical feature-
based methods.

The threshold-based methods consist of
MSP (Hendrycks and Gimpel, 2017), DOC (Shu
et al., 2017), and OpenMax (Bendale and Boult,
2016). These methods are first pre-trained under
the supervision of the known intent classifica-
tion task. Then, they leverage the probability
threshold for detecting the low-confidence open
intent samples. The geometrical feature-based
methods include DeepUnk (Lin and Xu, 2019) and
ADB (Zhang et al., 2021a). DeepUnk adopts the
metric-learning method to learn discriminative
intent features, and the density-based methods to
detect the open intent samples as anomalies. ADB
further uses the boundary loss to learn adaptive
decision boundaries.

2.2.2 Open Intent Discovery

This module uses both known and open intent sam-
ples as inputs, and aims to obtain intent-wise clus-
ters by learning from similarity properties with clus-
tering technologies. As suggested in (Zhang et al.,
2021b; Lin et al., 2020), the integrated methods are
divided into two parts, including unsupervised and
semi-supervised methods.

The unsupervised methods include K-Means
(KM) (MacQueen et al., 1967), agglomerative clus-
tering (AG) (Gowda and Krishna, 1978), SAE-KM,
DEC (Xie et al., 2016), and DCN (Yang et al.,
2017). The first two methods adopt the Glove (Pen-
nington et al., 2014) embedding, and the last three
methods leverage stacked auto-encoder to extract
representations. These methods do not need any la-
beled data as prior knowledge and learn structured
semantic-similar knowledge from unlabeled data.

The semi-supervised methods include KCL (Hsu
et al., 2018), MCL (Hsu et al., 2019), DTC (Han
et al., 2019), CDAC+ (Lin et al., 2020) and
DeepAligned (Zhang et al., 2021b). These methods
can further leverage labeled known intent data for
discovering fine-grained open intents.

2.2.3 Interfaces

We provide a series of interfaces for the two mod-
ules. Firstly, the backbones are flexible and uni-
fied. For example, the primary backbone is the
pre-trained BERT (Devlin et al., 2019) model, and
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Figure 4: The pipeline framework of open intent recognition.

it supports adding new bert-based models with dif-
ferent downstream tasks. The open intent discovery
module also supports other backbones for unsuper-
vised clustering. Secondly, each module has the
common data-loaders following the needed formats
of the adopted backbones. They encode unified
data vectors from the prepared data as mentioned
in section 2.1. Thirdly, the parameter configura-
tions are convenient. We extract common param-
eters (e.g., known intent ratio, dataset, etc.) for
each module and support adding different sets of
hyper-parameters for tuning each method. Finally,
each approach integrates standard components of
training, evaluation, and other specific functions.

3 Pipeline Framework

The two modules of open intent detection and dis-
covery are closely related. However, there lacks
an overall framework to successively invoke the
two modules for both identifying known intents
and discovering open intents. TEXTOIR addresses
this issue with a proposed pipeline framework, as
shown in Figure 3 and Figure 4.

The pipeline framework first processes the origi-
nal data for two modules. Then, it feeds the labeled
known intent data to the open intent detection mod-
ule and trains the selected model by the users. As
there is still a mass of unlabeled data containing
both known and open intents, it leverages the well-
trained open intent detection model to predict the
unlabeled training data. The evaluated results on

training data contain identified known intents and
the detected open intent. We use the predicted
known intent data, detected open intent and orig-
inal labeled data as the inputs of the open intent
discovery module. In this case, the discovery mod-
ule benefits from the detection module to obtain the
augmented inputs for training. Next, the preferred
clustering method selected by the users is trained
to obtain the open intent clusters.

After training the two modules, they are used
to perform open intent recognition on unlabeled
data. Specifically, the well-trained open intent de-
tection method is first used to predict the identified
known intents and detected open intent. Then, the
open intent discovery method is utilized to predict
the detected open intent data to obtain the fine-
grained open intent clusters. Finally, the KeyBERT
toolkit (mentioned in section 4.2.2) is leveraged to
extract keywords for each open intent cluster with
similar-intent sentences. Therefore, our framework
identifies known intents and discovers open intent
samples in group with keywords as recommended
labels.

4 Visualization

4.1 Training and Evaluation
Our platform provides visualized surfaces for
model training and evaluation. For each method,
users can change the main hyper-parameters to tune
the model. When training starts, it automatically
creates a record for the training process, which state
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Figure 6: Visualization of the intent representations.

can be monitored by the users. When the training
process finishes successfully, the trained model and
related parameters are saved for further utilization.

For model evaluation, the predicted results are
observed from different views. Firstly, the overall
performance is shown with the number of correct
and false samples for each intent class. On this
basis, the number of fine-grained false-predicted
classes is further shown to analyze the easily-
confused intents regarding the ground truth. Sec-
ondly, the influences of the known intent ratio and
labeled ratio are correspondingly shown with line
charts. Users can observe the results on different
selected datasets and evaluation metrics.

4.2 Result Analysis

4.2.1 Open Intent Detection
This module shows the results of identified known
intent samples and detected open intent samples.
For threshold-based methods, it visualizes the dis-
tribution of known and open intents with different
confidence scores, which may be helpful for se-
lecting suitable probability threshold, as shown in
Figure 5.
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Figure 7: Intent center distribution.

For geometrical-based methods, it visualizes the
intent representations on the two-dimension plane.
Specifically, t-SNE (Maaten and Hinton, 2008) is
applied to the high-dimension features to achieve
the dimensionality reduction. Moreover, we show
some auxiliary information of each point (e.g., the
centre and radius of ADB), as shown in Figure 6.

4.2.2 Open Intent Discovery
For unsupervised and semi-supervised clustering
methods, it shows the geometric positions of each
produced cluster center with corresponding labels.
These centers are categorized into the known and
open classes, as shown in Figure 7. Users can mine
the similarity relations of both known and open
intents from observation of center distribution.

As the labels of clusters are not applicable in
real scenarios, we adopt the KeyBERT 3 toolkit to
extract keywords for open intents in the sentence-
level and cluster-level. Furthermore, it calculates
the confidence scores of the keywords in the cosine
similarity space. The top-3 keywords are recom-
mended for each discovered open intent with re-
spective confidence scores, as shown in Figure 4.

5 Experiments

We use four intent benchmark datasets mentioned
in section 2.1 to verify the performance of our TEX-
TOIR platform. The known intent ratios are varied
between 25%, 50% and 75%. The labeled propor-
tions are varied between 50% and 100%. To evalu-

3https://github.com/MaartenGr/keyBERT/
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ADB + DeepAligned CLINC BANKING SNIPS StackOverflow

KIR LR Known Open Known Open Known Open Known Open

25% 50% 89.65 86.53 84.61 63.50 87.68 32.05 82.60 45.48
25% 100% 90.88 87.71 89.08 63.67 94.79 48.89 84.13 38.87
50% 50% 91.56 87.03 84.08 69.25 94.60 61.23 80.40 55.00
50% 100% 93.42 87.80 87.50 70.61 93.83 65.84 81.73 52.37
75% 50% 91.31 86.90 83.23 68.73 95.13 63.47 79.93 48.44
75% 100% 92.80 89.21 87.89 69.83 96.10 69.11 81.24 49.78

Table 1: The open intent recognition results of ADB+DeepAligned on four datasets. ”KIR” and ”LR” mean the
known intent ratio and labeled ratio respectively. ”Known” denotes the accuracy score on known intents, and
”Open” denotes the NMI score on open intents.

ate the fine-grained performance, we calculate the
accuracy score (ACC) on known intents and the
Normalized Mutual Information (NMI) score on
open intents. We use two state-of-the-art methods
of open intent detection and discovery (ADB and
DeepAligned) as the components of the pipeline
framework. The results are shown in Table 1.

The pipeline framework successfully connects
two modules, and achieves competitive and robust
results in different settings. It essentially over-
comes the shortcoming of two modules, and uses
the first module to identify known intents, the sec-
ond module to discover open intents.

6 Related Work

6.1 Open Intent Detection

Open intent detection has attracted much attention
in recent years. It aims to identify known intents
while detecting the open intent. The threshold-
based methods use an assigned threshold to detect
the open intent. For example, MSP (Hendrycks
and Gimpel, 2017) computes the softmax confi-
dence score of each known class and regards the
low-confidence samples as open. OpenMax (Ben-
dale and Boult, 2016) uses the Weibull distribution
to produce the open class probability. (Shu et al.,
2017) replaces the softmax with the sigmoid ac-
tivation function and fits Gaussian distribution to
the outputs for each known class. ODIN (Liang
et al., 2018) adopts temperature scaling and in-
put preprocessing technologies to obtain further
discriminative probabilities for detecting open in-
tent. The geometrical feature-based methods use
the characteristics of intent features to solve this
task. For example, DeepUnk (Lin and Xu, 2019)
first uses the margin loss to learn the discriminative
features. Then, it adopts a density-based algorithm,
LOF (Breunig et al., 2000) to discover the anomaly
data as the unknown intent. ADB (Zhang et al.,

2021a) learns the adaptive decision boundary for
each known class among Euclidean space. How-
ever, all these methods mentioned above fail to
discover fine-grained open classes.

6.2 Open Intent Discovery

Open intent discovery leverages clustering meth-
ods to help find fine-grained clusters as open in-
tents. Unsupervised clustering methods include
traditional partition-based method K-Means (Mac-
Queen et al., 1967), hierarchical method Agglom-
erative Clustering (Gowda and Krishna, 1978), and
density-based method (Ester et al., 1996). There
are also clustering methods based on deep neu-
ral networks, such as Deep Embedded Clustering
(DEC) (Xie et al., 2016), joint unsupervised learn-
ing (JULE) (Yang et al., 2016), and Deep Cluster-
ing Network (DCN) (Yang et al., 2017).

As unsupervised methods may not work well
on open settings (Lin et al., 2020), researchers try
to leverage some prior knowledge to improve the
performance. Some methods use pairwise con-
straints to guide the clustering process, such as
KCL (Hsu et al., 2018), MCL (Hsu et al., 2019)
and CDAC+ (Lin et al., 2020). DTC (Han et al.,
2019) extends DEC with temporal and ensemble
information. DeepAligned (Zhang et al., 2021b)
leverages clustering information to obtain aligned
targets for self-supervised feature learning. How-
ever, all these clustering methods fail to identify
the specific known intent classes.

7 Conclusion

We propose the first open intent recognition plat-
form TEXTOIR, which integrates two complete
modules: open intent detection and open intent
discovery. It provides toolkits for each module
with common interfaces and integrates multiple
advanced models and benchmark datasets for the
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convenience of further research. Additionally, it
realizes a pipeline framework to combine the ad-
vantages of two modules. The overall framework
achieves both identifying known intents and discov-
ering open intents. A series of visualized surfaces
help users to manage, train, evaluate, and analyze
the performance of different methods.
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Abstract

There is a long history of research related to
automated story generation, dating back as far
as the 1970s. Recently, the rapid development
of pre-trained language models has spurred
great progresses in this field. Equipped with
GPT-2 and the latest GPT-3, AI Dungeon has
been seen as a famous example of the power-
ful text generation capabilities of large-scale
pre-trained language models, and a possibil-
ity for future games. However, as a game,
AI Dungeon lacks incentives to players and
relies entirely on players to explore on their
own. This makes players’ enthusiasm decline
rapidly. In this paper, we present an open-
ended text adventure game in Chinese, named
as KuiLeiXi1. In KuiLeiXi, players need to
interact with the AI until the pre-determined
plot goals are reached. By introducing the
plot goals, players have a stronger incentive
to explore ways to reach plot goals, while
the AI’s abilities are not abused to generate
harmful contents. This limited freedom allows
this game to be integrated as a part of a ro-
mance simulation mobile game, Yu Jian Love2.
Since KuiLeiXi was launched, it has received
a lot of positive feedbacks from more than
100,000 players. A demo video is available at
https://youtu.be/DyYZhxMRrkk.

1 Introduction

The past few years have seen a significant improve-
ment in the capabilities of neural networks for text
generation(Radford et al., 2019; Brown et al., 2020;
Zhang et al., 2020b). Large-scale pre-trained lan-
guage models with tens of billions of parameters
are capable of producing human-like text. This
capability has spawned a range of revolutionary ap-
plications(Roller et al., 2020; Zhang et al., 2020a;

∗ Equal contribution
† Corresponding Author

1http://yujian.163.com/klx-silk/redirect.html
2https://yujian.163.com

Guan et al., 2020). AI Dungeon is a typical ex-
ample of them. It is an open-ended text adventure
game, where players are allowed to create their
own adventures in any way they like. The original
AI Dungeon is based on GPT-2 large, fintuned on a
dataset of text adventures collected online3. Since
the launch of its Colab version, AI Dungeon has
gained a lot of attention on social networks.

However, from the point of view of game devel-
opers, AI Dungeon suffers from several problems,
hindering it from becoming mainstream gaming.
The first problem is that it relies entirely on players
to explore on their own. The lack of incentives
may lead to a rapid decline of players’ enthusiasm.
The second problem is the boundaryless nature of
generated contents. Every game is associated with
a certain series of world settings where the stories
take place. To integrate AI Dungeon-like technol-
ogy in a game, considerable adaptation works are
necessary. On the other hand, in the absence of
necessary guidance and restraints, players tend to
abuse AI Dungeon to create malicious or offensive
contents4. In areas with more conservative values,
it is of high risk to launch an AI Dungeon-like
feature in a commercial product.

Considering the problems described above, we
extended the original AI Dungeon so that it could
be accommodated in a commercial game. When
playing AI Dungeon, depending on the player’s
choice of different topics, the AI will generate a
story beginning, and then the player is free to ex-
plore the development of the story. Unlike AI Dun-
geon, in our game, players need to play a fixed
character of their choice and interact with the AI
to develop the story according to the pre-defined
story background until they reach the specified plot
goal to obtain the mission rewards. Multiple plot

3https://chooseyourstory.com/
4https://www.wired.com/story/ai-fueled-dungeon-game-

got-much-darker/
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goals are contained in a story script. By elaborately
design the plot goals, the difficulty of game and the
freedom of players to create could be manipulated.
The game supports multiplayer, scripts are created
both by the game developers and by the players
themselves. Because in the gaming process, the
player seems to be maninulating the puppet of the
character, we figuratively call this game KuiLeiXi,
which refers to the puppetry in the Song Dynasty.

Deploying a neural text generation model for
many players is quite expensive. So we adopted
a range of methods to reduce the cost, including
layer drop and knowledge distillation. In addition,
we implemented a highly optimized transformer in
CUDA for inference. After applying these methods,
the inference speed of the model is increased by
10 times, the throughput is increased by 20 times,
greatly reducing the deployment cost.

KuiLeiXi has been launched as a part of Yu Jian
Love. Yu Jian Love is a mobile romance simulation
game where players can role play as a girl that lives
in the era of Northern Song Dynasty and develop ro-
mantic relationship with different handsome male
characters. Since launched, it received a lot of posi-
tive feedbacks from players and industry. We hope
KuiLeiXi could inspire fellow game developers and
NLP researchers to bring more NLP capabilities
into games and make game content more dynamic
and personalized.

2 Architecture

In this section, we will describe the implementa-
tion and optimization of KuiLeiXi in detail. As
seen in Figure 1, the system consists of three com-
ponents: Input Processor, Story Generator and
Candidates Ranker. As both the Story Genera-
tor and Candidates Ranker are based on our in-
house pre-trained language model, we will firstly
describe the pre-training details. Then we will
present the implementation details of the three com-
ponents in order. Finally, we will introduce the
optimization details for deployment.

2.1 Pre-training

Our in-house pre-trained language model for story
generation is based on GPT-2 large. It has 36 layers,
1280 hidden size, 20 self-attention heads, and 725
million parameters. It is pre-trained on a dataset
consisted of around 30 gigabytes of Chinese web-
novels collected online. The vocabulary size is
13762 and the context length is 1024. In addition,

we pre-trained a Roberta-large(Liu et al., 2019)
based bidirectional transformer model(Vaswani
et al., 2017) on the same dataset. It has 24 layers,
1024 hidden size, 16 self-attention heads and 317
million parameters. We used fairseq5 for training
of the models.

2.2 Input Processor
The input text of a player will firstly be checked
by a toxicity detection service6 to avoid potential
risks. It is then processed by a semantic similar-
ity detection model to determine if it is too se-
mantically close to the plot goal. This is to avoid
making it too easy for players to reach the plot
goal. The semantic similarity detection model is
based on Sentence-Bert(Reimers and Gurevych,
2019), trained on the combination of several Chi-
nese NLI datasets(Bowman et al., 2015; Williams
et al., 2018; Hu et al., 2020). The virtual adversar-
ial training(Zhu et al., 2020) is also adopted. This
approach improves the generalization of the model
by adding small perturbations to the input embed-
dings. For every plot goal, at least three textual
descriptions of that goal should be prepared. The
input text will be compared with all the textual
descriptions of current plot goal. If any of the simi-
larity scores is above a certain threshold, the player
will receive a message telling the player to input
again. After the input text has passed the toxicity
detection and semantic similarity detection, it will
be concatenated to the context to form the input for
story generation.

2.3 Story Generator
The story generator is in charge of generating con-
sistent and fluent story contents based on the con-
text and player input. In below we will describe in
detail how the story generator is implemented.

2.3.1 Finetuning
Because KuiLeiXi is supposed to be launched as
a part of Yujian Love, the generated text needs to
be consistent with the original stories of the game
in terms of language style and backdrop. There-
fore, the game’s existing story scripts are critical
for finetuning. However, these scripts only con-
tain approximately 2 million tokens, barely enough
for effective finetuning. So we carefully selected
10 online novels with similar language styles and
backdrops to form an augmented dataset along with

5https://github.com/pytorch/fairseq
6https://dun.163.com/locale/en
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Figure 1: Architecture of KuiLeiXi. The user input is first passed through the input processor module, which
detects whether it contains toxic content and whether it is too semantically similar to the current plot goal; after the
processing, the user input is concatenated to the existing context and truncated to ensure that the length is within
the context length of the story generation model; the story generation model generates a series of candidate stories
that are then sent to the candidate ranker for ranking; the ranker contains a filter that removes inappropriate stories
based on multiple rules, and the remaining candidate stories are ranked based on their overlapping with the context
and how smoothly they connect to the plot goal, with the highest ranked being output to the player as the final
result.

in-game story scripts. For scripts from the game,
we assign every line a label indicating if it is dia-
logue or narrative content, as seen in Figure 2. It
is easy because the dialogues and narratives are
naturally separated in different lines in the scripts
and the dialogues are with double quotation marks.
This allows the finetuned model to control the gen-
erate subsequent story contents to be dialogue or
narrative content. In addition, the label can guide
the model to generate more consistent content with
the story’s background similar to (Keskar et al.,
2019).

2.3.2 Inference
Input Truncation: At inference, the generation
model receives a concatenation of the player input
and the previous context as the input. As game
continues, the input length will easily exceed the
context length 1024. So we need to design a trun-
cation strategy. Naively keeping the latest story
context is not feasible in this application, as the
pre-written story beginning corresponding to the
current plot goal is neccessary to keep the story
unfold without straying too far from the current
plot goal. Therefore, we keep the pre-written story
beginning corresponding to the current plot goal
along with the latest story context as the input.
Decoding Strategy: We use the top-k sam-
pling(Fan et al., 2018) for decoding. Sampling
temperature and k are set to 0.8 and 8 respectively.
We observed that the model tend to copy from the

input. To alleviate this issue, we adopt the penal-
ized sampling technique(Keskar et al., 2019; See
et al., 2019). In general, penalty sampling penal-
izes words that occur throughout the context by
default, reducing their sampling probability. How-
ever, we argue that this is inappropriate, especially
for penalizing words that are far from the decod-
ing position. The reasons are twofold. Firstly we
observed that, the model tends to copy from words
closer to the decoding position, rather than a very
distant context, like contents with more than 200
words away from the decoding position. Secondly,
we conducted statistics in the webnovel corpus, and
the probability of the next word appearing in the
previous 800 words reached 75%, indicating that
copying from context is also common in real world
texts. In summary, if the probability of words oc-
curring in very distant contexts is also penalized
at inference, the distribution of the generated text
will be significantly different from the real world
text distribution, which may reduce the generation
performance. Therefore, we only penalize the prob-
ability of words that have appeared in previous 200
words prior to the decoding position.

Given the input tokens G[1, 2, .., t] and the con-
text window size c, the probability distribution pi
for the next token is defined as:

pi =
exp(xi/(I(i ∈ g[(t− c) : t]))∑
j(exp(xj/(I(j ∈ g[(t− c) : t])))

(1)

I(e) = θ if e is True else 1 (2)
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Figure 2: A story fragment from the preprocessed story dataset.

We set θ to 1.2, which makes a balance between
generated text quality and elimination of duplica-
tion.

2.4 Candidates Ranker

For each player input, we generate 5 candidate
stories for re-ranking. The candidate stories are
then sent to the ranker to select the best one to
return to the user.

To ensure the quality, we developed a series of
filtering rules to remove inappropriate candidates
in the stories. Firstly, if a candidate story contains
a character name that does not appear in Yujian
Love, the story will be moved out of the candidates.
Secondly, candidate stories that contain a lot of con-
tent copied from context will be removed. Thirdly,
stories with inappropriate content detected by tox-
icity detection service will be removed. Fourthly,
if a character described in a story behaves incon-
sistently with his or her gender, that story will also
be removed. We trained a discriminator model to
detect whether a character in the story behaves in-
consistently with his/her gender. The training data
is generated automatically. We use the original text
as a positive sample and the text after the charac-
ter name replacement as a negative sample. When
replacing character names, a character is replaced
with the name of a character having the other gen-
der.

For the remaining stories, we rank them based
on the weighted sum of two metrics. The first is the
overlapping score, which is calculated based on the
overlapping of tokens in the generated story and
context. Generally, when the overlapping score is
higher, repetition is heavier and will hurt the text
quality. The second is the goal matching score,
which measures how likely a story entails the cur-

rent plot goal. Given the list of context tokens C,
the list of generated story tokens G and the length
l of G, the overlapping score is defined below:

Scoreoverlap =

∑
i I(i ∈ G)

l
(3)

I(i) = 1 if i in G else 0 (4)

Determining whether a story contains a speci-
fied plot is a typical textual entailment problem.
However. because players can create story scripts
and submit them to the game community, it is in-
tractable to create a dataset dealing with numerous
possible plot goals. So we had to approach the
problem from a different angle. We argue that it
is easier to solve this problem by transforming it
into a problem similar to Next Sentence Prediction
(NSP), i.e., determining whether a plot goal can
be coherently connected to a generated story. It is
well known that the original NSP task proposed in
BERT(Devlin et al., 2019) is too easy, many lat-
est pre-trained language models have abandoned
it(Liu et al., 2019; Lan et al., 2019). We argue
that discriminating the randomly sampled negative
examples is relatively easy so we adopt a novel
strategy to enhance the difficulty of NSP. When
generating the training dataset, in addition to the
randomly sampled sentences, we also take the next
sentence of next sentence as a negative sample with
a certain probability. We finetuned the pre-trained
Roberta-large based model as described in Section
2.1 on this generated dataset. The finetuned model
is then used as a discriminator to detect whether
the plot goal can be smoothly connected to the
generated story.
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(a) Script selection interface (b) Character selection interface

Figure 3: The script and character selection interfaces

(a) (b)

Figure 4: The screenshot at the beginning of the game. The right figure is the English translation of the left figure.
Text in the orange box shows the story background. Text in red box shows the current plot goal. Text in the white
boxes are the players’ inputs. Text in the purple boxes are the generated stories.
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(a) (b)

Figure 5: The screenshot when a plot goal is reached. The right figure is the English translation of the left figure.

2.5 Optimization

Our original story generation model is of 36 layers
and 725 millions of parameters. It takes around
10 seconds to generate a piece of story with one
RTX 2080ti, which is totally unacceptable. To im-
prove the inference speed, we need to compress the
original model. We firstly adopted the layerdrop
technique(Fan et al., 2020), reducing the number
of layers to 20. We then used the knowledge dis-
tillation technique(Hinton et al., 2015) to distill
this 20-layer model. Finally, we finetuned the dis-
tilled model over the story dataset.Our experiments
showed that combining layerdrop and knowledge
distillation performs better than directly perform-
ing knowledge distillation.

In addition, we optimized the incremental de-
coding implementation in fairseq to reduce com-
putation overhead. We developed custom CUDA
kernels for better support of long sequence and
large hidden size. We also developed an inference
server supporting dynamic batching and variable
input length. After applying these methods, the in-
ference speed is increased by 10 times, the through-
put is increased by 20 times. We have integrated
these optimization techniques into a python library
named as Easy and Efficient Transformer(?). It has
been opensourced at https://github.com/NetEase-
FuXi/EET.

3 Demonstration

In this section, we demonstrate how to play
KuiLeiXi.

First, we demonstrate how to start a game. After
entering the game, if there is no ready game for
joining, you can click the create stage button to
start a new game. You then need to pick a story
script from the candidates, as demonstrated in Fig-
ure 3a. The scripts are both created by game de-
velopers and players. Scripts submitted by players
will be voted by all players and the winners be-
come playable. After picking the script, you need
to choose the character you want to play, as demon-
strated in Figure 3b. The playable characters in
each script are different. Wait for other players
joining your game until the number of players ex-
ceeds the minimum player limit. Then you could
either start the game or wait for other players join-
ing as additional characters or audience.

After the game starts, all players can see the story
background as well as the first plot goal. Players
will play in order. The order is randomly decided
at the start of the game and does not change during
the game. When it is your turn to play, you can
choose to write a dialogue with your character or
describe a narration. Figure 4a shows the situation
at the beginning of the game. Overall, you need to
consider the development of the current story, the
persona of the character you play and the plot goal.
After completing the input, the AI will generate the
corresponding story to unfold based on the input,
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so on and so forth until the current plot goal is
reached. Once the current plot goal is reached, the
AI will show a pre-written storyline, as well as a
new plot goal, as seen in the Figure 5a. Usually a
script has multiple plot goals. When the final plot
goal is reached, players win and are rewarded with
game props. The whole process of playing will be
saved in the database, and players can share it with
their friends or make it public on social networks.

4 Conclusion

In this paper, we demonstrate KuiLeiXi, an open-
ended text adventure game in Chinese. In order
for it to be released as part of a commercial game,
we have made many innovations based on AI Dun-
geon. We believe that the current advances in NLP
technology can not only reduce the cost of game
content development to a certain extent, but also
make the game world more dynamic and person-
alized. We hope our work will be of interest to
fellow game developers and NLP researchers. In
future work, we will further explore the genera-
tion of game quests and ambient dialogues with
up-to-date NLP techniques.
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5 Appendices

In the figures below, we present a complete game-
play record of KuiLeiXi.

Figure 6: The first part of the game play.
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Figure 7: The second part of the game play. Figure 8: The third part of the game play.
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Figure 9: The fourth part of the game play.
Figure 10: The fifth part of the game play.

184



Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 185–193, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

CRSLab: An Open-Source Toolkit for Building Conversational
Recommender System

Kun Zhou1,3 †, Xiaolei Wang2 †, Yuanhang Zhou1,3, Chenzhan Shang1, Yuan Cheng4,
Wayne Xin Zhao2,3 ∗, Yaliang Li5, and Ji-Rong Wen1,2,3

1School of Information, Renmin University of China
2Gaoling School of Artificial Intelligence, Renmin University of China

3Beijing Key Laboratory of Big Data Management and Analysis Methods
4School of Statistics, Renmin University of China

5Alibaba Group

Abstract

In recent years, conversational recommender
systems (CRSs) have drawn a wide attention in
the research community, which focus on pro-
viding high-quality recommendations to users
via natural language conversations. How-
ever, due to diverse scenarios and data for-
mats, existing studies on CRSs lack unified
and standardized implementation or compar-
ison. To tackle this challenge, we release
an open-source toolkit CRSLab, which pro-
vides a unified and extensible framework with
highly-decoupled modules to develop CRSs.
Based on this framework, we collect 6 com-
monly used human-annotated CRS datasets
and implement 19 models that include ad-
vanced techniques such as graph neural net-
works and pre-training models. Besides, our
toolkit provides a series of automatic evalu-
ation protocols and a human-machine inter-
action interface to evaluate and compare dif-
ferent CRS methods. The project and doc-
uments are released at https://github.
com/RUCAIBox/CRSLab.

1 Introduction

Recent years have witnessed remarkable progress
in recommender systems, which aim to present
items (e.g., products or movies) of potential in-
terests to users based on their preferences (Sarwar
et al., 2001; Rendle et al., 2012). Traditional rec-
ommender systems mainly leverage the user his-
torical behavior data (e.g., click or purchase) to es-
timate user preferences implicitly. Recently, with
the rapid development of human-machine conver-
sation techniques (Shang et al., 2015; Zhang et al.,
2018a; Lee et al., 2019), conversational recom-
mender systems (CRSs) (Christakopoulou et al.,
2016; Sun and Zhang, 2018; Gao et al., 2021) is

†† Equal contribution.
∗∗ Corresponding author, Email: batmanfly@gmail.com.

gaining increasing attention in recent years. It re-
lies on multi-turn natural language conversations
to clarify explicit user preferences and generate
more appropriate recommendations.

To build an effective CRS, researchers have pro-
posed several datasets (Li et al., 2018; Kang et al.,
2019; Liu et al., 2020) and models (Liao et al.,
2020; Lei et al., 2020; Xu et al., 2020). However,
due to their diverse scenarios (e.g., E-commerce
or movie recommendation) and data formats (e.g.,
historical utterances or interacted items), it is chal-
lenging for users to quickly set up reasonable
baseline systems and compare their performances.

To alleviate the above issues, we have devel-
oped CRSLab, an open-source CRS toolkit for
research purpose. In CRSLab, we offer a uni-
fied and extensible framework to develop CRSs.
Based on this toolkit, users are able to quickly
train and evaluate CRS models via a few lines of
code, and easily design new CRS models using
the provided interfaces. To implement the overall
framework, we design six highly-decoupled mod-
ules (e.g., data module and model module), each
module provides clear interfaces for specific func-
tions. Besides, we encapsulate useful procedures
and common functions shared by different mod-
ules for users to add new datasets or develop new
models using our toolkit.

Based on the framework, we integrate com-
prehensive benchmark datasets and models in
CRSLab. So far, we have incorporated
6 commonly used human-annotated datasets
and implemented 19 models, including ad-
vanced techniques such as graph neural networks
(GNN) (Schlichtkrull et al., 2018; Chen et al.,
2019) and pre-training models (Devlin et al., 2019;
Zhou et al., 2020b). To support these mod-
els, we perform necessary preprocessing (e.g., en-
tity linking and word segmentation) on included
datasets, and release the processed version. Be-
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sides, CRSLab supports both configuration files
and command-line instructions, which facilitate
running, comparing and testing models on differ-
ent datasets.

Furthermore, CRSLab provides a series of auto-
matic evaluation protocols for testing and compar-
ing different methods, covering commonly used
metrics in existing works. It makes our work use-
ful for the standardization of evaluation protocols
for conversational recommendations. In addition,
CRSLab provides a human-machine interactive in-
terface to perform quantitative analysis, which is
helpful for users to deploy their systems and con-
verse with the systems via graphical interfaces.

Our contributions are as follows:
• To the best of our knowledge, CRSLab is the

first open-source CRS toolkit covering 6 human-
annotated datasets and 19 models.
• CRSLab provides a unified and extensible

framework consisting of highly-decoupled mod-
ules, which helps users run and develop different
CRS models.
• CRSLab contains commonly used automatic

evaluation metrics and a human-machine interac-
tive interface for users to test CRS performance
from different perspectives.

2 Background

As aforementioned, the various scenarios and in-
put formats in earlier works lead to inconvenience
when applying existing CRS models on different
datasets. By surveying previous CRS works (Sun
and Zhang, 2018; Li et al., 2018; Lei et al., 2020),
we summarize two basic tasks and an auxiliary
task, namely recommendation task, conversation
task and policy task.

Given the dialog context (i.e., historical utter-
ances) and other useful side information (e.g., user
historical behaviors and knowledge graphs), the
recommendation sub-task is defined as predict-
ing user-preferred items (e.g., movies or prod-
ucts), and the conversation sub-task is to gener-
ate a proper response for conversing with the user.
In existing works, the recommendation and the
conversation sub-tasks are considered as the pri-
mary objective of the CRS. As a complementary
sub-task, policy sub-tasks are proposed by recent
works (Sun and Zhang, 2018; Lei et al., 2020;
Liu et al., 2020) to better control the overall CRS.
It usually focuses on selecting appropriate sys-
tem actions (e.g., recommendation or conversa-

Configuration

Data Model Evaluation

Utility …

Configuration File Command Line

Dataset

Evaluator

Model

SystemDataLoader

Metrics

Scheduler MultiGPUBeamSearchLayers

Figure 1: The overall framework of CRSLab.

tion) or tracking dialog states (topic prediction or
goal tracking) to proactively guide the conversa-
tion.

3 CRSLab

The overall framework of our toolkit CRSLab is
presented in Figure 1. The configuration mod-
ule provides a flexible interface for users to easily
set up the experiment environment (e.g., datasets,
models and hyperparameters). The data, model
and evaluation modules are built upon the config-
uration module, which forms the core part of our
toolkit. The bottom part is the utility module, pro-
viding auxiliary functions and interfaces for reuse
in other modules (e.g., Layers and Scheduler). In
the following part, we briefly present the design of
the above modules. More details can be found in
the toolkit documents.

3.1 Configuration Module

In CRSLab, we design the configuration module
for users to conveniently select or modify the ex-
periment settings (e.g., training data and hyperpa-
rameters). Specifically, we design the class Config
to store all the configuration settings, which spec-
ify the data, model, hyperparameters and other
necessary settings of a given experiment. To avoid
complicated command line parameters, we trans-
fer most of them into YAML configuration files,
while other commonly used ones (i.e., file path
and debug mode) are provided as command line
instructions. In this way, users can build and eval-
uate a variety of CRSs with only a few modifica-
tions in the configuration files.

3.2 Data Module

For extensibility and reusability, we design an
elegant data flow that transforms raw dataset
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Dataset Dialog Utterance Domain Policy Task Entity KG Word KG

ReDial (Li et al., 2018) 10,006 182,150 Movie – DB CNet
OpenDialKG (Moon et al., 2019) 13,802 91,209 Movie, Book Path Generation DB CNet

GoRecDial (Kang et al., 2019) 9,125 170,904 Movie Action Prediction DB CNet
DuRecDial (Liu et al., 2020) 10,200 156,000 Movie, Music Goal Planning CN-DB HNet

INSPIRED (Hayati et al., 2020) 1,001 35,811 Movie Strategy Prediction DB CNet
TG-ReDial (Zhou et al., 2020c) 10,000 129,392 Movie Topic Prediction CN-DB HNet

Table 1: The collected datasets in CRSLab. DB and CN-DB stand for the entity-oriented knowledge graph DBpedia
and CN-DBpedia, respectively. CNet and HNet stand for the word-oriented knowledge graph ConceptNet and
HowNet, respectively.

into the model input as follows: raw public
dataset−→ preprocessed dataset−→Dataset−→
DataLoader −→ System. Next, we detail the de-
sign of each component.

Data Preprocessing Since raw datasets vary in
formats and features, we preprocess them to sup-
port unified interfaces in data modules. Based on
the task description in Section 2, we first prepro-
cess CRS datasets to match the input and output
formats. Exactly, we organize the dialog contexts
and side information as the input, and extract the
recommended items, dialog actions and responses
as the output of recommendation, policy and con-
versation tasks, respectively. To support some ad-
vanced models (e.g., graph neural networks and
pre-training models), we incorporate useful side
data (e.g., knowledge graph) and conduct specific
data preprocessing (e.g., entity linking and BPE
segmentation).

As shown in Table 1, we collect 6 commonly
used human-annotated datasets and release the
preprocessed version with side data in CRSLab.
Besides, we also release the pre-trained word em-
beddings and other associated files, which ease the
use of integrated datasets and reduce the time cost.

Dataset Class To decouple the implementation
of data preparation in CRSLab, we design the
class Dataset for integrating the model-agnostic
data processing functions, while the rest functions
are implemented within the class DataLoader. In
this way, Dataset only focuses on processing the
input data into a unified format (i.e., a list of
python.dict), without considering specific mod-
els. In CRSLab, we design the class BaseDataset
which includes some common attributes (e.g.,
configurations and data paths) and basic functions
(e.g., data loading) of Dataset. Users can inherit
BaseDataset with very few modifications to intro-
duce new datasets.

DataLoader Class To support different input for-
mats, DataLoader further transforms data from the
Dataset module to support various models. It fo-
cuses on selecting input data from the processed
data to form tensor data (i.e., torch.Tensor) in a
batch or mini-batch, which can be directly used
for training or testing. To implement it, we design
the class BaseDataLoader to integrate commonly
used attributes and functions, and inherit it to pro-
duce new DataLoader for corresponding models.

3.3 Model Module
Based on the task descriptions and the above data
modules, we reorganize the implementations of
different CRSs in the model module. Existing
works either integrate specific models to accom-
plish the recommendation, conversation and pol-
icy task, respectively (Chen et al., 2019; Zhou
et al., 2020a), or only focus on one of the above
tasks (Kang and McAuley, 2018; Hayati et al.,
2020). Therefore, we divide commonly used mod-
els into four categories, namely CRS models (con-
taining several sub-models to complete the cor-
responding tasks), recommendation models, con-
versation models and policy models. Besides,
we also consider some classic heuristic methods
(e.g., Popularity and PMI) and several popular
models which can be utilized to solve one of the
above tasks, such as TextCNN (Kim, 2014) and
BERT (Devlin et al., 2019). As illustrated in Ta-
ble 2, we have implemented 19 models in the first
released version, including some advanced mod-
els such as graph neural networks and pre-training
models.

For implementation of these models, we de-
velop the model class to provide functions and
interfaces of specific models for corresponding
tasks. In the model class, we focus on provid-
ing a basic structure and highly-decoupled useful
functions or procedures for further development.
In detail, we unify the basic attributes and func-
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Category Model GNN PTM Reference

CRS model

ReDial × × (Li et al., 2018)
KBRD

√ × (Chen et al., 2019)
KGSF

√ × (Zhou et al., 2020a)
TG-ReDial × √

(Zhou et al., 2020c)

Recommendation model

Popularity × × –
GRU4Rec × × (Hidasi et al., 2016)
SASRec × × (Kang and McAuley, 2018)
TextCNN × × (Kim, 2014)
R-GCN

√ × (Schlichtkrull et al., 2018)
BERT × √

(Devlin et al., 2019)

Conversation model
HERD × × (Serban et al., 2016)

Transformer × × (Vaswani et al., 2017)
GPT-2 × √

(Radford et al., 2019)
INSPIRED × √

(Hayati et al., 2020)

Policy model

PMI × × –
MGCG × × (Liu et al., 2020)

Conv-BERT × √
(Zhou et al., 2020c)

Topic-BERT × √
(Zhou et al., 2020c)

Profile-BERT × √
(Zhou et al., 2020c)

Table 2: The implemented models in CRSLab. The CRS models integrate several sub-models to complete the over-
all conversational recommendation process, while recommendation, policy and conversation models only focus on
one individual task. GNN and PTM stand for the graph neural networks and pre-training models, respectively.

tions of various models (e.g., parameter initializa-
tion and model loading) into the class BaseModel.
A user can inherit BaseModel and implement a
few functions to design and develop new models.
In this way, we re-implement the above models in
our toolkit and unify the implementation of com-
monly used layers and components into the Utility
Module for future usage. For all the implemented
models, we have tested their performance on sev-
eral datasets, and invited a code reviewer to ex-
amine the correctness of implementation. In the
future, more methods will be incorporated along
with regular updates.

3.4 System Module

In the system module, we build, train and evalu-
ate contained models for accomplishing the over-
all conversational recommendation task. We aim
to integrate the dataloader, model and evaluator
modules into a complete system. To support flex-
ible architectures for CRSs at the system level,
we devise the system class with several func-
tions for various usage. In detail, we design the
class BaseSystem to unify the structures and inter-
faces, where we develop basic attributes and func-
tions in the process. Among them, we develop
the init () function to set up the required dat-
aloader, contained models and evaluation proto-
cols, which can be implemented by users for build-
ing new systems. Besides, we also implement a se-

ries of useful functions, such as optimizer initial-
ization, learning ratio adjustment and early stop
strategy. These functions and tiny tricks ease the
developing process of a new system and greatly
improve the user experience with our toolkit.

Based on the above settings, we design the fit()
and step() functions in BaseSystem. The fit()
function is used to train the whole system and then
conduct evaluation, in which users need to devise
the overall training process of all the models in
the system, including data distribution, training or-
ders and so on. In the step() function, users im-
plement the detailed learning process for specific
models, and functions within the corresponding
models can be utilized to optimize model parame-
ters.

3.5 Evaluation Module

The evaluation module implements the evaluation
protocols for CRSs. In CRSLab, we implement
some commonly used automatic evaluation met-
rics, and design a human-machine interactive in-
terface for users to perform an end-to-end qualita-
tive analysis.

Automatic Evaluation Since the CRS task is di-
vided into three sub-tasks, we develop automatic
evaluation metrics for each one. All the supported
metrics are summarized in Table 3.

For the recommendation task, following exist-
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Category Metrics

Recommendation
Metrics

Hit@{1,10,50}, MRR@{1,10,50},
NDCG@{1,10,50}

Conversation
Metrics

Perplexity, BLEU-{1,2,3,4}, Em-
bedding Average/Extreme/Greedy,
Distinct-{1,2,3,4}

Policy Metrics Accuracy, Hit@{1,3,5}

Table 3: The implemented automatic evaluation met-
rics in CRSLab.

ing CRSs (Sun and Zhang, 2018; Zhang et al.,
2018b), we develop ranking-based metrics (i.e.,
Hit, MRR and NDCG) to measure the ranking
performance of the generated recommendation
lists. For the conversation task, CRSLab supports
both relevance-based (i.e., BLEU (Papineni et al.,
2002) and embedding-based metrics (Liu et al.,
2016)) and diversity-based evaluation metrics (i.e.,
Distinct-{1,2,3,4} (Li et al., 2016)). For the policy
task, we implement commonly used metrics (i.e.,
Accuracy and Hit@K) for evaluation.

Similarly, we design the class BaseEvaluator
with common attributes and functions. Then,
we inherit this class to implement RecEvaluator,
ConvEvaluator and PolicyEvaluator for evalu-
ating recommendation, conversation and policy
tasks, respectively. Note that we implement the
report() function in these classes. With this, users
can print and monitor the performance of models
evaluating on validation or test set.

Human-Machine Interaction Interface To eval-
uate CRSs qualitatively, CRSLab offers a human-
machine interaction interface to help perform an
end-to-end evaluation. The human-machine inter-
action interface is implemented within the system
module, where the interaction strategy can be eas-
ily adapted to a specific policy model. In this way,
a user can converse with a CRS or diagnose the
system, which provides a direct approach to eval-
uating the overall performance of a CRS. Besides,
the interaction interface enables users to correct
errors by modifying intermediate results.

For end-to-end evaluation, users first need to set
up the background of a simulated user (e.g., in-
teraction history and user profile), then freely chat
with the CRS through the interface. During a con-
versation, the dialog history and the output of each
component (e.g., the recommended items and gen-
erated responses) are stored within a dictionary
(i.e., python.dict), helping users get a better un-

derstanding of how the system works.

3.6 Utility Module

To facilitate the usage of our toolkit, we design the
utility module to include a series of useful func-
tions (e.g., layers() and scheduler()). We collect
commonly used functions in various models (e.g.,
CNN, RNN and Transformer layers) to constitute
Layers, which can be easily used to develop new
CRSs. Besides, we also decouple commonly used
functions or procedures in other modules to form
the utility file (i.e., utils.py) for reuse.

Another particularly useful function is
scheduler(), which provides a set of strategies for
training large-scale models, such as warming-up
strategy and weight decay. In addition, we also
implement other functions to enhance user ex-
periences, such as BeamSearch() to improve the
inference performance, MultiGPU() for parallel
training, logger() to print and monitor the running
process, save model() and load model() to store
and reuse the pre-trained models.

4 System Demonstration

In this section, we show how to use our CRSLab
with code examples. We detail the usage descrip-
tions in two parts, namely running an existing
CRSs in our toolkit and implementing a new CRS
based on the interfaces provided in our toolkit.

4.1 Running an Existing CRS

Our CRSLab enables quickly building a CRS with
a few lines of code. Figure 2 presents a gen-
eral procedure for running an existing CRS in our
toolkit. To begin with, the whole procedure relies
on the configurations to prepare the dataset and
build the system. In the configurations, the user
selects a dataset to use and specifies the tokenizer.
Then, the Dataset class will automatically down-
load the dataset and perform necessary process-
esing steps (e.g., tokenization and converting to-
kens to IDs) based on the configurations. This pro-
cedure is executed by the function get dataset().
Based on the processed datasets, users can use
the function get dataloader() to generate training,
validation and test sets, in which the configura-
tions specify the batch size and other necessary
parameters for data processing. After that, the
function get system() can be adopted to leverage
the prepared data for building a CRS. Similarly,
the configurations specify the hyperparameters of
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import ... #import necessary modules

#Get configs from file and command line
args, _ = parser.parse_known_args()
config = Config(args.config)

#Build dataset, get processed side data and vocab
Dataset = get_dataset(config, config['tokenize'])
side_data = Dataset.side_data
vocab = Dataset.vocab

#Build train/valid/test dataloader
train_loader = get_dataloader(config, Dataset.train_data, vocab)
valid_loader = get_dataloader(config, Dataset.valid_data, vocab)
test_loader = get_dataloader(config, Dataset.test_data, vocab)

#Build CRS system
CRS = get_system(config, train_loader, valid_loader, 

test_loader, vocab, side_data)

#Train and evaluate CRS system
CRS.fit()

Get Configuration

Build DataLoader

Build Dataset

Build System

Command lineConfig file

Initialize 
model

Valid 
Dataloader

Side dataDataset Vocab

Train 
Dataloader

Test
Dataloader

Build 
model

Evaluate 
model

Train 
model

Figure 2: An illustrative usage flow of our CRSLab.

models and set up the training and evaluation pro-
cedures. Finally, users can start the running pro-
cess by the function System.fit().

4.2 Developing a New CRS

Based on our toolkit, it is convenient to implement
a new CRS with the provided interfaces. Users
only need to inherit a few basic classes and im-
plement some interface functions. In this part, we
will introduce the detailed implementation process
of adding a new dataset and model, respectively.

4.2.1 New Dataset
To add a new dataset, users need to inherit
BaseDataset to design a new Dataset class for
preparing the dataset into a unified format. In
Dataset, the following functions are required
to be implemented: init (), load data() and
data preprocess().

In init (), users set up parameters and links
for downloading data. In load data(), the train-
ing, validation, test data and other side data are
loaded from corresponding files. If users follow
our naming protocol, all they need is to reuse the
functions from the Dataset class. The function
data preprocess() is to prepare the loaded data,

and we have integrated useful functions in the util-
ity module to ease the implementation.

4.2.2 New Model
To add a new model, users should inherit
BaseModel to design a new Model class, in which
they need to implement the build model() and
forward() functions. In build model(), users build
the model, initialize the parameters and set up the

loss function, while in forward() users use the
model to predict the result or calculate the loss
given the input data. Indeed, users can leverage the
encapsulated layers and functions from Layers or
the utility files to implement these two functions.

4.3 Performance Evaluation

To evaluate CRSLab, we train and test var-
ious implemented models on the TG-ReDial
dataset (Zhou et al., 2020c), and compare their
performance on recommendation, conversation
and policy tasks. In our experiments, we have
tuned the hyperparameters of these models to
achieve their best performance on this dataset.
Due to the space limit, we present the results in our
GitHub page 1. As we can see, our toolkit provides
a possibility to compare the performance of vari-
ous CRS models under different evaluation proto-
cols. Among them, GNN-based models and pre-
training methods achieve consistent and remark-
able performance on the above tasks. These results
are compatible with our expectations.

5 Conclusion

In this paper, we released a toolkit called
CRSLab, which is the first open-source conver-
sational recommender systems (CRSs) toolkit for
research purpose. In CRSLab, we offered a unified
and extensible framework with highly-decoupled
modules to develop CRSs. Based on this frame-
work, we have incorporated 6 datasets and im-
plemented 19 models in our toolkit. Besides, we
also provided extensive automatic evaluation pro-

1https://github.com/RUCAIBox/CRSLab
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tocols and a human-machine interactive interface
in CRSLab, to help evaluate and compare differ-
ent CRSs. For demonstration, we illustrated how
to run or implement a CRS using our toolkit.

With this toolkit, we expect to help users
quickly run existing CRSs, ease the development
of new CRSs, and set up a benchmark framework
for the research of CRSs. In the future, we will
make continuous efforts to add more datasets and
models. We will also consider adding more utili-
ties for improving the usage of our toolkit, such as
result visualization and algorithm debugging.
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Abstract

Probing (or diagnostic classification) has be-
come a popular strategy for investigating
whether a given set of intermediate features is
present in the representations of neural models.
Probing studies may have misleading results,
but various recent works have suggested more
reliable methodologies that compensate for the
possible pitfalls of probing. However, these
best practices are numerous and fast-evolving.
To simplify the process of running a set of
probing experiments in line with suggested
methodologies, we introduce Probe-Ably: an
extendable probing framework which supports
and automates the application of probing meth-
ods to the user’s inputs.

1 Introduction

Recent interest in investigating the intermediate
features present in neural models’ representations
has led to the use of structural analysis methods
such as probing.

At its simplest, probing1 is the training of an ex-
ternal classifier model (a “probe”) to determine the
extent to which a set of auxiliary target feature la-
bels can be predicted from the internal model repre-
sentations. For example, probing studies have been
carried out to determine whether word and sentence
representations generated by models such as BERT
(Devlin et al., 2019) capture intermediate syntactic
and semantic features such as parts of speech and
dependency labels (Hewitt and Manning, 2019b;
Tenney et al., 2019b) and lexical relations (Vulić
et al., 2020).

Various problems can arise when performing
probing experiments (Hewitt and Liang, 2019),

∗Equal contribution, presented in alphabetical order.
1The term “probing” has also been used describe stress-test

style analyses, but we mean “probing” in the sense of diag-
nostic classification as in (Alain and Bengio, 2018; Pimentel
et al., 2020b).

such as achieving a high probing accuracy without
being due to a high mutual information between the
representation and the auxiliary task labels. This
has prompted much recent work on establishing
more reliable methodologies for probing (Hewitt
and Liang, 2019; Voita and Titov, 2020; Pimentel
et al., 2020b,a).

These approaches introduce various steps such
as controlling and varying model complexity and
structure, including randomized control tasks and
incorporating more informative metrics such as
selectivity (Hewitt and Liang, 2019) and minimum
description length (Voita and Titov, 2020).

To make these methods more accessible and
quick to implement for any user wishing to probe
the representations of their neural models in line
with the evolving suggested methodologies, we in-
troduce Probe-Ably: an extendable probing frame-
work which supports and automates the application
of suggested best practices for probing studies.

2 Probe-Ably

Probe-Ably2 is a framework designed for PyTorch3

to support researchers in the implementation of
probes for neural representations in a flexible and
extendable way.

The core facility provided by Probe-Ably is the
encapsulation of the end-to-end experimental prob-
ing pipeline. Specifically, Probe-Ably provides a
complete implementation of the core tasks neces-
sary for probing neural representations, starting
from the configuration and training of heteroge-
neous probe models, to the calculation and visual-
ization of metrics for the evaluation.

The probing pipeline and the core tasks oper-
ate on a set of abstract classes, making the whole

2Video demonstration:
https://youtu.be/lE3O_BENBxk

3https://pytorch.org/
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Figure 1: An overview of Probe-Ably. The core facility provided by Probe-Ably is the encapsulation of an end-
to-end experimental probing pipeline. The framework offers a complete implementation and orchestration of the
main tasks required for probing, together with a suite of standard probe models and evaluation metrics.

framework agnostic to the specific representation,
auxiliary task, probe model, and metrics used in the
concrete experiments (see Fig 1). This architectural
design allows the user to:

1. Configure and run probing experiments on
different representations and auxiliary tasks
in parallel;

2. Automatically generate control tasks for the
probing, allowing the computation of inter-
model metrics such as selectivity;

3. Extend the suite of probes with new models
without the need to change the core probing
pipeline;

4. Customize, implement and adopt novel evalu-
ation metrics for the experiments.

2.1 Probing Pipeline
In this section we describe the core components
implemented in Probe-Ably.

A probing pipeline is typically composed of the
following sub-tasks:

1. Data Processing: This task consists in data
preparation and configuration of the probe
models for the subsequent training task. For
each representation to be probed and each
auxiliary task, a requirement in this stage is

the generation of a control task (Hewitt and
Liang, 2019), along with the selection of dis-
tinct hyperparameter configurations for the
probe models. Generally, the control task can
be either designed by researchers or automat-
ically constructed by randomly assigning la-
bels to the examples in the auxiliary task. On
the other hand, the hyperparameter selection
is crucial for the interpretation of the probing
results, and has to guarantee a large coverage
of the configuration space to allow for a signif-
icant comparison of the representations under
investigation. Common methods for hyperpa-
rameter selection adopt a combination of grid
search and random sampling techniques.

2. Training Probes: This task consists in train-
ing a set Φ of probe models. In particular, for
each representation and each auxiliary task,
researchers need to train probe models of dif-
ferent types (e.g., linear models, multi-layer
perceptrons) and distinct hyperparameter con-
figurations (e.g., hidden size, number of lay-
ers). Therefore, the number of probe mod-
els to be trained can rapidly increase with
the number of representations, auxiliary tasks,
and possible configurations. Let n be the num-
ber of representations to be probed, m the
number of auxiliary tasks, z the number of
probe models, and k the number of selected
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hyperparameter configurations for each probe.
The total cardinality of Φ is generally equal to
|Φ| = n×m×z×k. Thus, because of the po-
tentially large space of models and configura-
tions, the training task typically represents the
most demanding and time-consuming stage in
the overall probing pipeline.

3. Evaluation: The evaluation stage consists in
calculating a set of metrics for assessing the
performance and quality of the probes on the
auxiliary tasks. The most common metrics
adopted for probing evaluation are accuracy
and selectivity. Generally, these quantities are
plotted against the complexity of the probe
models and are used to compare the trend in
the performance of different neural represen-
tations on a given auxiliary task.

Probe-Ably provides a complete implementa-
tion and orchestration of the aforementioned tasks,
which are integrated by a component named Prob-
ing Flow (see Fig. 1).

The Probing Flow is ready to use for configur-
ing and running standard probing experiments in-
cluding hyperparameters selection via grid search.
Moreover, the flow can be flexibly adapted to new
models and metrics if necessary by extending the
appropriate abstract classes and configuration files
(additional details are described in section 3). We
provide a pre-implemented suite of probe models
and metrics whose details are described in sections
2.2 and 2.3.

In order to configure and run a new probing ex-
periment, the user has to provide the following
input:

• Probing Configuration: a JSON file describ-
ing the components and parameters for the
probing experiments. This file allows speci-
fying the concrete probe models to train on
each auxiliary task, along with pre-defined
training parameters such as batch-size, num-
ber of epochs and number of different hyper-
parameter configurations to test. Additionally,
the probing configuration file can be used to
indicate the metrics to use for the final evalua-
tion.

• Auxiliary Task: a TSV file containing the
data and labels composing the auxiliary task.
Probe-Ably allows the user to configure ex-
periments that run on more than one auxiliary
task in parallel.

• Control Task (Optional): a TSV file contain-
ing the labels composing a control task. The
control tasks are automatically generated for
each auxiliary task during the data process-
ing stage. If not provided, we assign random
labels to the example in the auxiliary tasksfor.

• Representation: a TSV file containing the
pre-trained embeddings for each example in
the auxiliary task (e.g. BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019)). Similarly
to the auxiliary tasks, Probe-Ably can run ex-
periments on more than one representation in
parallel.

2.2 Available Models
A common theme in probing studies is the use
of structurally simple classifiers: two common
choices are linear models and multi layer percep-
trons4.

Following works such as (Hewitt and Manning,
2019a) and (Pimentel et al., 2020a), each instanti-
ated model comes with some approximate appro-
priate complexity. This is varied in a controlled
way in order to include results for a range of model
complexities: this mitigates the possible confound-
ing effect of overly expressive probes which might
be “memorizing” the task (Hewitt and Liang, 2019;
Pimentel et al., 2020a).

For linear models ŷ = Wx + b, we mimic (Pi-
mentel et al., 2020a) in using the nuclear norm

||W||∗ =

min(|T |,d)∑

i=1

σi(W).

of the matrix W as the approximate measure of
complexity. The rationale here is that the nuclear
norm approximates the rank of the transformation
matrix. The rank may be used instead in situations
where there is a large number of class labels, but
as it is limited by this number the nuclear norm
presents a wider range of values. The nuclear norm
is included in the loss (weighted by a parameter λ)

−
n∑

i=1

log p(t(i) | h(i)) + λ · ||W||∗

and is thus regulated in the training loop.
Multi-layer perceptrons are the only non-linear

models currently included. Their flexibility and
4The hyperparameters of all implemented models are con-

figurable, but we use the same default hyperparameter ranges
as (Pimentel et al., 2020b).
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Figure 2: Probe-Ably is integrated with a front-end visualization service, which supports researchers in consulting
and plotting the results of their experiments.

simplicity has made them popular choices in prob-
ing studies. We use the number of parameters as an
estimation of model complexity. Since sufficiently
large MLP models could be prone to “fitting” noise
in the data, it is especially important to monitor the
selectivity when using this class of probes.

2.3 Available Metrics

Certain probing metrics are not tied to the output of
a specific probe, but to two or more probes or train-
ing runs. As such, we have chosen to distinguish
between intra-model and inter-model metrics.

Intra-Model Metrics. Individual model results
and losses fall into this category. This includes the
usual suspects such as cross-entropy loss and accu-
racy. Intra-model metrics can be used for training,
model-selection and reporting purposes.

Inter-Model Metrics. An important component
of assessing the reliability of a probe’s result is the
selectivity metric (Hewitt and Liang, 2019): for a
fixed probe architecture and hyperparameter con-
figuration, the auxiliary task accuracy is compared
to the accuracy on a control task, hence incorporat-
ing the results of two trained models. This is our
primary example of an inter-model metric, but this
format could be useful for other probing metrics
such as minimum description length (online code
version) (Voita and Titov, 2020) or pareto hypervol-
ume (Pimentel et al., 2020a), which incorporate the
results of multiple models or training runs. These

are only used for reporting purposes, as they are
external to each model’s training loop.

2.4 Front-end Visualization

Probe-Ably is integrated with a front-end visualiza-
tion service. The front-end is used to plot the re-
sults of each probing experiment in a user-friendly
way. The service is designed to be accessible via
standard web browsers, and support researchers in
analysing and comparing the probing performance
of each representation on different auxiliary tasks.

An example of plots included in the front-end
visualization is shown in Figure 2. Each plot can
be downloaded in a pdf format to be stored locally
or integrated in a LaTeX project.

3 Customized Probing Experiments

Probe-Ably can be flexibly adapted and extended
to run experiments on different representations,
novel probe models and evaluation metrics. The
following sections provide an overview of how
researchers and users can customize their exper-
iments via configuration files or implementation of
new concrete classes.

For a complete guide on how to extend and cus-
tomize Probe-Ably, please consult the documenta-
tion56.

5Documentation:
https://ai-systems.github.io/Probe-Ably/

6Repository: https://github.com/
ai-systems/Probe-Ably/
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3.1 Configuration
Although default configurations are ready to use
to run a basic set of experiments, the details of
the latter can be customized according to specific
needs, using the apposite probing configuration file.
This pertains to aspects such as probe model choice,
number of experiments, auxiliary tasks labels, input
representations and custom control labels.

Therefore, the settings can be modified by pro-
viding or editing the values of the attributes in the
configuration file which specifies details about aux-
iliary tasks, probing model/s and training regime,
including paths to any custom metrics or models.

The structure of the probing configuration file is
as follows:

• tasks (list)

– task name (attr)
– representations (list)

* representation name (attr)

* file location (attr)

* control location (attr)

• probing setup (dict)

– train size (attr)
– dev size (attr)
– test size (attr)
– intra metric (attr)
– inter metric (attr)
– probing models (list)

* probing model name (attr)

* batch size (attr)

* epochs (attr)

* number of models (attr)

3.2 Adding a Probe Model
Custom probe models can be introduced by ex-
tending the abstract ProbeModel class (Fig. 1).
This class inherits the methods and attributes of
a nn.Module in PyTorch. To extend Probe-
Ably with a new probe model, the user needs to
implement two methods, namely forward and
get complexity.

The forward method is inherited from Py-
Torch and is adopted to compute the predictions
of the probe models along with their loss func-
tion. On the other hand, the get complexity
method has to return a complexity measure for the
model (e.g., nuclear norm, number of parameters).
This method is internally used by the Probing Flow

for setting up and executing the probing pipeline,
and creating the right visualization for the results.

In order to make a customized probe model avail-
able for new experiments, the user needs to specify
a model configuration file (JSON format) contain-
ing the path to the concrete class, together with
the parameters required for its instantiation. The
model configuration file is organized as follows:

• model class (attr)

• params (list)

– name (attr)
– type (attr)
– options (attr)

3.3 Adding an Evaluation Metric
Similarly to probe models, it is possible to
extend Probe-Ably with new evaluation met-
rics. In order to add a new metric, the
user can extend one of the available ab-
stract classes (i.e., IntraModelMetric or
InterModelMetric).

In this case, it is not necessary to specify a
configuration file for the metrics, and the user
only needs to implement the apposite function,
calculate metrics, that performs the appro-
priate computation. Subsequently, the user can
adopt the new metric in a probing experiment by
editing the apposite attribute in the probing config-
uration file.

4 Interpreting Results

We provide the following list of guidelines for in-
terpreting results:

• Regions of low selectivity indicates a less
trustworthy auxiliary task accuracy result. As
accuracy increases with model complexity,
keep an eye on the selectivity value: if it starts
to drop again, this indicates that the probe is
expressive enough to fit the randomized con-
trol task (and thus high expressivity and over-
fitting may be responsible for a high auxiliary
task accuracy).

• We recommend a focus on comparison of
trends between models/representations rather
than probe performance on any fixed set of
representations.

• These comparisons are more convincing if
they are consistent across a range of probe
complexities.
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(a) Linear Model Accuracy.

(b) Linear Model Selectivity.

Figure 3: Probing results for different layers of BERT on the Part-Of-Speech task using the control task presented
in (Hewitt and Liang, 2019), implemented and executed through Probe-Ably (see Section 5). The results are
consistent with observations in (Tenney et al., 2019a), which note that syntactic features (such as part of speech
tags) are more prevalent in earlier layers of BERT.

• Note that any given probe architecture im-
poses a structural assumption. For example,
linear probes may only attain a high accu-
racy if the representation-target relationship
is linear. We recommend that these assump-
tions/probe model choices be guided by prior
visualizations and hypothesized relationships.

• As far as possible, stick to comparing rep-
resentations of the same sizes. Lower-
dimensional representations may reach their
maximum accuracy at lower probe complexity
values; as such they may give the “appearance”
of superior probe accuracy scores to larger
representations. For this reason, it is also im-

portant that you investigate a sufficiently large
range of model complexities.

5 Case Study

To demonstrate the Probe-Ably system, we include
an implementation of a Part-Of-Speech tagging
auxiliary task based on the Penn Treebank corpus
(Marcus et al., 1993). It has been used multiple
times in works on probing methodology (Hewitt
and Liang, 2019; Voita and Titov, 2020; Pimentel
et al., 2020b). We use the custom control task from
(Hewitt and Liang, 2019). Using linear models
as probes, we compare the probing results for dif-
ferent layers of BERT (bert-base-uncased)
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pre-trained on the masked language modelling task
(Devlin et al., 2019), across 50 probing runs. The
results are consistent with observations in (Tenney
et al., 2019a), which note that syntactic features
(such as part of speech tags) are more prevalent in
earlier layers of BERT. This case study is available
as a ready-to-run example.

6 Related Work

Previous interpretability tools for neural models
have focused on gradient-based methods (Wallace
et al., 2019), the visualization of attention weights
(Vig, 2019) and other tools focusing on NLP model
explainability and interpretability (Wexler et al.,
2020; Tenney et al., 2020).

The ongoing discussion on probing, auxiliary
tasks and the surrounding best practices can be
traced back to the early definitions in (Alain and
Bengio, 2018), where it was first described as diag-
nostic classification. Early probing studies in NLP
include (Zhang and Bowman, 2018) and (Tenney
et al., 2019c), the former being an early example
of the importance of comparing with randomized
representations or labels. Further discussion has
introduced control tasks and the selectivity met-
ric (Hewitt and Liang, 2019), formalized notions
of ease of extraction (Voita and Titov, 2020) and
described other strategies for taking model com-
plexity into account (Pimentel et al., 2020a).

7 Conclusion

While probing can be used to explore hypotheses
about linguistic (or general) features present in
model representations, there are various pitfalls that
can lead to premature or incorrect claims. Much
progress has been made in establishing better prac-
tices for probing studies, but these involve running
large systematic sets of experiments employing
recently-developed metrics and correctly interpret-
ing results. Probe-Ably is designed to simplify
and encourage the use of emerging methodological
developments in probing studies, serving as a task-
agnostic and model-agnostic platform for auxiliary
diagnostic classification for high-dimensional vec-
tor representations.
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Abstract

We present the first end-to-end, transformer-
based table question answering (QA) system
that takes natural language questions and mas-
sive table corpus as inputs to retrieve the most
relevant tables and locate the correct table cells
to answer the question 1. Our system, CLTR,
extends the current state-of-the-art QA over ta-
bles model to build an end-to-end table QA ar-
chitecture. This system has successfully tack-
led many real-world table QA problems with
a simple, unified pipeline. Our proposed sys-
tem can also generate a heatmap of candi-
date columns and rows over complex tables
and allow users to quickly identify the cor-
rect cells to answer questions. In addition, we
introduce two new open-domain benchmarks,
E2E WTQ and E2E GNQ, consisting of 2,005
natural language questions over 76,242 ta-
bles. The benchmarks are designed to validate
CLTR as well as accommodate future table re-
trieval and end-to-end table QA research and
experiments. Our experiments demonstrate
that our system is the current state-of-the-art
model on the table retrieval task and produces
promising results for end-to-end table QA.

1 Introduction

Tables are widely used in digital documents across
many domains, ranging from open-domain knowl-
edge bases to domain-specific scientific journals,
enterprise reports, to store structured information in
tabular format. Many algorithms have been devel-
oped to retrieve tables based on given queries (Ca-
farella et al., 2008, 2009; Sun et al., 2019; Bhaga-
vatula et al., 2013; Shraga et al., 2020a; Chen et al.,
2021). The majority of these solutions exploit tradi-
tional information retrieval (IR) techniques where
tables are treated as documents without consider-
ing the tabular structure. However, these retrieval

1System page: https://github.com/IBM/row-column-
intersection

methods often result in an inferior quality due to
a major limitation that most of these approaches
highly rely on lexical matching between keyword
queries and table contents. Recently, there is a
growing demand to support natural language ques-
tions (NLQs) over tables and answer the NLQs
directly, rather than simply retrieving top-k rel-
evant tables for keyword-based queries. Shraga
et al. (2020c) introduce the first NLQ-based table
retrieval system, which leverages an advanced deep
learning model. Although it is a practical approach
to better understand the structure of NLQs and ta-
ble content, it only focuses on table retrieval rather
than answering NLQs. Lately, transformer-based
pre-training approaches have been introduced in
TABERT (Yin et al., 2020), TAPAS (Herzig et al.,
2020), and the Row-Column Intersection model
(RCI) (Glass et al., 2020). These algorithms are
very powerful at answering questions on given ta-
bles; however, one cannot apply them over all ta-
bles in a corpus due to the computationally expen-
sive nature of transformers. An end-to-end table
QA system that accomplishes both tasks is in need
as it has the following advantages over separated
systems: (1) It reduces error accumulations caused
by inconsistent, separated models; (2) It is easier
to fine-tune, optimize, and perform error analysis
and reasoning on an end-to-end system; and (3)
It better accommodates user needs with a single,
unified pipeline. Hence, we propose a table re-
trieval and QA over tables system in this paper,
called Cell Level Table Retrieval (CLTR). It first
retrieves a pool of tables from a large table corpus
with a coarse-grained but inexpensive IR method.
It then applies a transformer-based QA over tables
model to re-rank the table pool and finally finds the
table cells as answers. To the best of our knowl-
edge, this is the first end-to-end framework where a
transformer-based, fine-grained QA model is used
along with efficient coarse-grained IR methods to
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Figure 1: The overview of the end-to-end table QA architecture of CLTR.

retrieve tables and answer questions over them. Our
experiments demonstrate that CLTR outperforms
current state-of-the-art models on the table retrieval
task while further helping customers find answers
over returned tables.

To build such a Table QA system, an end-to-
end benchmark is needed to evaluate alternative
approaches. Current benchmarks, however, are
not designed for such tasks, as they either focus
on the retrieval task over multiple tables or QA
task on a single table. To address the problems,
we propose two new benchmarks: E2E WTQ and
E2E GNQ. The details of these benchmarks and
more discussions are provided in Section 4.1.

The specific contributions of this paper are sum-
marized as follows:

• A transformer-based end-to-end table QA
system: We build a novel end-to-end table
QA pipeline by utilizing a transfer learning
approach to retrieve tables from a massive
table corpus and answer questions over them.
The end system outperforms the state-of-the-
art approaches on the table retrieval task.

• Creating heatmaps over complex tables:
To highlight all relevant table columns, rows,
and cells, CLTR generates heatmaps on tables.
Following a pre-defined color code, the high-
lighted columns, rows, and cells are ranked ac-
cording to their relevance to the questions. Us-
ing the heatmap, users can efficiently glance
through complex tables and accurately locate
the answers to the questions.

• Two new benchmarks for the end-to-end
table QA evaluation: We propose and re-
lease two new benchmarks, E2E WTQ and
E2E GNQ, extending two existing bench-

marks, WikiTableQuestions and GNQtables,
respectively. The benchmarks can be used to
evaluate systems for table retrieval and end-
to-end table QA.

2 Overview

The Architecture The architecture of our end-
to-end table QA system, CLTR, is illustrated in
Figure 1. This system aims to solve the end-to-
end table QA task by generating a reasonable-sized
subset of relevant tables from a massive table cor-
pus, and employs the transformer-based approach
to re-rank them based on their relevance to the user
given NLQs, and finally answer the given NLQs
with cells from these tables.

CLTR possess an abundant number of tables
generated from documents of various knowledge
sources to form a large table corpus. The system
has two components: an inexpensive tf-idf (Salton
and McGill, 1986) based coarse-grained table re-
trieval component and a fine-grained RCI-based
table QA component. CLTR first takes as input
any user given NLQs and processes the questions
and the table corpus with the inexpensive BM25
algorithm to generate a set of relevant tables, which
is relatively large and contains noise (i.e., irrelevant
tables). Here we use BM25 to efficiently narrow
down the table candidates from a massive table cor-
pus and highly reduce the execution time and com-
putational cost for CLTR. The output of this coarse-
grained table retrieval component is later fed into
the more expensive but accurate, transformer-based
RCI to learn probability scores for table columns
and rows, respectively. The scores produced by
RCI indicate how likely the given question’s fi-
nal answer exists within a table column or row.
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With the probability scores, CLTR re-ranks the ta-
bles and produces two outputs to the users: (1) a
heatmap over top-ranked tables that highlights the
most relevant columns and rows with a color code;
(2) the table cells that contain the answers to the
NLQs.

The applications Figure 2 presents the user in-
terface of an application of the CLTR system. In
this example, we apply the system to table QA
over an aviation-related dataset, a domain-specific
dataset on tables in aviation companies’ annual re-
ports. This user interface consists of two major
sections, with Tag A and Tag B point to the user
input and the system output sections, respectively.
Under Tag A and B, the CLTR pipeline is employed
to support multiple functionalities. Users can input
any NLQs, such as “When is the purchase agree-
ment signed between Airbus and Virgin America?”
in this example, into the text box at Tag D and
click the Search button at Tag C to query the pre-
loaded table corpus. Users may select to reset the
system for new queries or re-train a new model
with a new corpus. In the system output sections,
a list of tables similar to the table at Tag F is gen-
erated and presented to users. For each table, the
system output includes: (a) the surrounding text
of the table from the original PDF (Tag E); (b)
the pre-processed table in a clean, human-readable
format with a heatmap on it, indicating the most
relevant rows, columns, and cells (Tag F); (c) an
annotation option, where the users can contribute
to refining the system with feedback (Tag G). In
addition, the CLTR architecture has been widely ap-
plied to datasets from many other domains, varying
from finance to medical. The system is also vali-
dated with open-domain benchmarks, with more
details discussed in Section 4.

3 The RCI-based Table QA

Traditional approaches solve the table QA problem
with two consecutive steps: retrieval of the most
relevant tables for a given NLQ and locating the
correct answers out of the cells with the help of
a QA over tables model. These steps are usually
studied separately. Our proposed system, CLTR,
unifies the two-step table QA with a single pipeline
by leveraging the novel RCI model. RCI is the
state-of-the-art approach for locating answers over
tables (Glass et al., 2020); however, it is not de-
signed to retrieve tables out of large table corpus.
In this section, we describe how we build an end-

to-end table QA system combining the strength of
inexpensive IR methods and the RCI model.

3.1 The Row-Column Intersection Model
We first briefly introduce the Row-Column Intersec-
tion model (RCI), which supports the fine-grained
table retrieval component of our system. The RCI
model decomposes table QA into its two com-
ponents: projection, corresponding to identifying
columns, and selection, identifying rows. Every
row and column identification is a binary sequence-
pair classification. The first sequence is the ques-
tion and the second sequence is the row or column
textual sequence representation. We use the in-
teraction model of RCI that concatenates the two
sequences, with standard separator tokens, as the
input to a transformer.

The RCI interaction model uses the sequence
representation which is later appended to the ques-
tion with standard [CLS] and [SEP ] tokens to de-
limit the two sequences. This sequence pair is fed
into a transformer encoder, ALBERT (Lan et al.,
2020). The final hidden state for the [CLS] token is
used in a linear layer followed by a softmax to clas-
sify if the column or row containing the answer or
not. Each row and column is assigned with a prob-
ability of containing the answer. The RCI model
outputs the top-ranked cell as the intersection of the
most probable row and the most probable column.

Figure 3 gives a sample question fed into the
transformer architecture along with the column and
row representation of a table.

3.2 The End-to-End Table QA with RCI
To tackle the table retrieval problem, we exploit an
inexpensive IR method together with the state-of-
the-art RCI model. Unlike the traditional methods
treating tables as free text, a set of features, or
multi-modal objects, CLTR treats tables as a set of
columns and rows and re-rank the tables based on
cell-level RCI scores.

As we previously mentioned in Section 2, CLTR
first processes the question and table corpus with
the inexpensive BM25 algorithm to generate a pool
of highly relevant tables. Later, the RCI model
is used to produce probability scores for every
column and row for tables in the pool. There-
fore, for every table t with n columns and m rows
in the table pool T , we have two set of scores,
Pcolumn = {pc1 , pc2 , pc3 , ..., pcn} for columns and
Prow = {pr1 , pr2 , pr2 , ..., prm} for rows. We cal-
culate the overall probability score for each ta-
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Figure 2: The application of CLTR on an aviation corpus
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E[SEP]…
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ble by taking the maximum cell-level score, us-
ing Pt = max(Pcol) + max(Prow). Our experi-
ments prove the advantages of this method over
the other algorithms (e.g., taking the averaged cell-
level scores).

CLTR re-ranks the tables within the table pool
T using the maximum cell-level scores. Once the
re-ranking is done, the top-k tables out of T are
returned to the users. The correct cells on the top-k
tables are later identified by locating the intersec-
tion of the most relevant columns and rows discov-
ered by the RCI model.

4 Experiments

4.1 Data
Proposed Benchmarks: Existing table retrieval
and QA benchmarks focus on either answering
NLQs on a single table or the retrieval of mul-
tiple tables for a keyword query. A comprehen-
sive comparison of existing benchmarks with their
limitations is listed in Table 1. WikiSQL (Zhong
et al., 2017) and WikiTableQuestions (Pasupat and
Liang, 2015) are widely used to evaluate table QA

systems. More recently, they have been used by
TAPAS (Herzig et al., 2020) and TABERT (Yin
et al., 2020) where transformer-based models for
QA over tables have been introduced. However,
these benchmarks are not created to be used as part
of an end-to-end table retrieval and QA pipeline.
On the other hand, WikiTables was created based
on the corpus introduced by Bhagavatula et al.
(2015) and used in many recent table retrieval stud-
ies (Zhang and Balog, 2018a; Deng et al., 2019;
Shraga et al., 2020b,c). Despite its popularity, the
WikiTables benchmark has two major limitations.
First, the query set is fairly limited, containing only
100 keyword-based queries. Many recent studies
use this small set of queries for a learning-to-rank
(LTR) task with 5-fold cross-validation, potentially
causing overfitting issues for the proposed table
retrieval models. Second, the query set includes
only keyword-based queries, which do not repre-
sent the NLQs customers are expected to ask to get
answers over tables. To solve the aforementioned
issues and create an end-to-end table QA bench-
mark with NLQs, we introduce two new bench-
marks, E2E WTQ and E2E GNQ, inspired by Wik-
iTableQuestions and GNQtables.

The WikiTableQuestions (Pasupat and Liang,
2015) benchmark is originally designed for find-
ing answer to questions from given tables. It con-
sists of complex NLQs and tables extracted from
Wikipedia. We filter the benchmark following
Glass et al. (2020) to generate a subset of 1,216
questions with 2,108 tables.

The GNQtables dataset, introduced in Shraga
et al. (2020c), extends the Google Natural Ques-
tions (NQ) benchmark (Kwiatkowski et al., 2019).
It contains 789 NLQs and a large table corpus of
74,224 tables. For each question, the ground truth
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# of tables # of queries Retrieval task QA task Reference
WikiSQL 24,241 80,654 7 3 (Zhong et al., 2017)
TabMCQ 68 9,092 7 3 (Jauhar et al., 2016)

WikiTableQuestions 2,108 22,033 7 3 (Pasupat and Liang, 2015)
WikiTables 1.6M 100 3 7 (Bhagavatula et al., 2015)
GNQtables 74,224 789 3 7 (Shraga et al., 2020c)
E2E WTQ 2,108 1,216 3 3
E2E GNQ 74,224 789 3 3

Table 1: Comparison of table QA and retrieval benchmarks

only points to the most relevant table (with a binary
grade 1 indicates relevant), while all other tables in
the table corpus are considered irrelevant (grade 0).
GNQtables is the only table retrieval benchmark
using NLQs, which makes it possible to adapt it to
end-to-end table QA. To create the E2E GNQ, we
manually annotate and enhance GNQtables with
additional ground truth data for each question: (1)
the table cells containing the correct answers; (2)
the index of the target columns; (3) the index of the
target rows.

Experimental Data: We experiment with
E2E WTQ to test the portability of CLTR, in
which we fine-tune the RCI model with two other
table QA benchmarks. We utilize an open-domain
benchmark, WikiSQL (Zhong et al., 2017), and a
domain-specific benchmark, TabMCQ (Jauhar
et al., 2016). The WikiSQL dataset has 80,654
questions on 24,241 Wikipedia tables, while the
TabMCQ is a much smaller dataset, with only
68 hand-crafted tables and 9,092 multiple-choice
questions.

4.2 Experimental Setup

Overall Setup: We test our system under two ex-
perimental settings for table retrieval: (1) We test
CLTR without task-specific training on E2E WTQ
and fine-tune the RCI model with WikiSQL and
TabMCQ; (2) To fairly compare against the state-
of-the-art, we follow the experimental setup in
Shraga et al. (2020c) and fine-tune CLTR with
E2E GNQ. We implement 5-fold cross-validation
on E2E GNQ, where 80% of data is used for fine-
tuning and 20% is used for validation. For both
E2E GNQ and E2E WTQ, we use BM25 as our
baseline model, which is widely used in industry-
scale IR systems. We test the end-to-end table QA
capability of CLTR with our newly proposed bench-
marks. Since we are the first publicly accessible
end-to-end table QA system, we do not have a base-
line to fairly compare to for our end-to-end table
QA experiments.

We implement the coarse-grained table retrieval

with the BM25 algorithm embedded in the Elas-
ticSearch python API for all of our experiments.
This API can be accessed at https://elasticsearch-
py.readthedocs.io/en/master/. Each table is indexed
as a single text document with the embedded En-
glish analyzer. For each question, we generate a
pool of 300 tables with the highest BM25 similar-
ity scores. Following the current state-of-the-art
model in Shraga et al. (2020c), we set k1 = 1.2
and b = 0.7. The tables in the pool are later pro-
cessed with the RCI model.

Our experiments employ the RCI model with
ALBERT XXL version (Lan et al., 2020). The RCI
model is fine-tuned for different benchmarks with
the following configurations: (1) training batch size
= 128; (2) Number of epochs = 2; (3) Learning rate
= 2.5e-5; and (4) maximum sequence length = 512.

The model and data for the experiments with
CLTR are available at https://github.com/IBM/row-
column-intersection.

Evaluation metrics: For table retrieval evalua-
tion, we use the three metrics from previous work
(Zhang and Balog, 2018b; Shraga et al., 2020c)
for the top-k retrieved tables, namely precision
(P) with k ∈ {5, 10}, normalized discounted gain
(NDCG) with k ∈ {5, 10, 20}, and the mean av-
erage precision (MAP). For the end-to-end table
QA tasks, we evaluate our proposed model follow-
ing Glass et al. (2020) with two commonly used
metrics in the IR community, accuracy at top 1 re-
trieved answer (Hit@1) and the mean reciprocal
rank (MRR).

All experimental results are evaluated with
the TREC standard evaluation tool (Voorhees
and Harman, 2005). The source code of
the TREC evaluation tool can be found at
https://trec.nist.gov/trec eval/.

4.3 Experimental Results
We experimentally compare CLTR against the
BM25 baseline and the current state-of-the-art
model on table retrieval in this section. Further-
more, we test CLTR with our proposed benchmarks
on the end-to-end table QA task.
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P@5 P@10 N@5 N@10 N@20 MAP
BM25 0.5938 0.6587 0.5228 0.5356 0.5359 0.4704
CLTR 0.7437 0.8735 0.6915 0.7119 0.7321 0.5971

(a) E2E WTQ
P@5 P@10 N@5 N@10 N@20 MAP

BM25 0.0413 0.0242 0.1650 0.1764 0.1852 0.1601
MTRpoint 0.1460 0.0767 0.6227 0.6349 0.6359 0.5920
MTRpair 0.1826∗ 0.0990∗ 0.6945∗ 0.7198∗ 0.7220∗ 0.6328∗

CLTR 0.2203 0.1660 0.7235 0.7402 0.7458 0.7176

(b) E2E GNQ

Table 2: A comparison of CLTR and the baselines (* indicates the current state-of-the-art numbers).

Table Retrieval: We present the experimental
results for table retrieval without task specific train-
ing on E2E WTQ in Table 2a. Since the MTR
model (Shraga et al., 2020c) is not available to us
and this dataset has never been used in any pub-
lished table retrieval work, we only compare our
results to the coarse-grained BM25 baseline. The
results indicate our proposed model outperforms
the BM25 baseline with average improvements of
29.12%, 33.94% and 26.93% on precision, NDCG,
and MAP, respectively. The results on E2E WTQ
also indicate that pre-trained CLTR can be adapted
to new datasets without task-specific training.

The experimental results for E2E GNQ are
shown in Table 2b, comparing against BM25 and
the current state-of-the-art, the two MTR mod-
els, MTRpoint (with point-wise training) and
MTRpair (with pair-wise training) in Shraga et al.
(2020c). The comparison shows that our proposed
model outperforms the current best MTRpair

model on all metrics, with an average improve-
ment of 28.73% on precision, 3.43% on NDCG,
and 13.40% on MAP. The experimental results in-
dicates CLTR is the new state-of-the-art system for
table retrieval. Moreover, CLTR can further locate
cell values to answer NLQs after table retrieval.

MRR Hit@1
E2E WTQ 0.5503 0.4675
E2E GNQ 0.4067 0.2699

Table 3: Model evaluation for end-to-end table QA

End-to-End Table QA: To further validate
CLTR, we implement the end-to-end Table QA
evaluation with E2E WTQ and E2E GNQ. The
only existing end-to-end table QA model, Sun et al.
(2016), and its dataset are not publicly available.
Therefore, we do not have any baseline models to
compare to. Our experimental results are reported
in Table 3. As the first attempt for an end-to-end ta-
ble QA system with transformer-based architecture
on complex table benchmarks, we show that our ap-
proach is able to achieve promising and consistent

performance. Our results indicate CLTR performs
better for the first benchmark, E2E WTQ, where
the table corpus mainly contains well-structured
tables. On the other hand, we expect the results for
E2E GNQ to be worse due to the amount of poorly
formatted tables in the table corpus.

Qualitative Analysis: The experiments indicate
CLTR outperforms all baselines, as well as the
current state-of-the-art models on table retrieval. It
also produces promising results for the end-to-end
table QA task. We further demonstrate the high-
portability of CLTR with pre-trained models using
unseen benchmarks.

The system performance is much better for
E2E WTQ based on the experimental results. After
a thorough investigation, we notice that the original
GNQtables contains a large amount of noisy tables
which do not have tabular structures. A consider-
able amount of tables in GNQtables are Wikipedia
InfoBoxes, which may have multiple column/row
headers and are difficult to process by machines
accurately. Although table quality is crucial for
table QA models, CLTR proves its advantageous
by producing state-of-the-art results with noisy ta-
ble corpus. Furthermore, the example shown in
Figure 2 demonstrates the effectiveness of CLTR
when applied to real-world data.

5 Related Work

Table Retrieval A majority of the table retrieval
methods proposed in the literature treat tables as in-
dividual documents without taking the tabular struc-
ture into consideration (Pyreddy and Croft, 1997;
Wang and Hu, 2002; Liu et al., 2007; Cafarella
et al., 2008, 2009). More recent approaches utilize
features generated from queries, tables, or query-
table pairs. For example, Zhang and Balog (2018b)
introduces an ad-hoc table retrieval method, re-
trieving tables with features such as #query term,
#columns, #null values, etc. Similar work includes
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Sun et al. (2019), Bhagavatula et al. (2013), and
Shraga et al. (2020a). The current state-of-the-art
model is introduced in Shraga et al. (2020c), where
tables are treated as multi-modal objects and re-
trieved with a neural ranking model. We compare
CLTR with this approach in Section 4.

Table QA Models Early table QA systems typi-
cally convert natural language questions into SQL
format to answer questions over tables (Yu et al.,
2018; Guo and Gao, 2020; Lin et al., 2019; Xu
et al., 2018). In Jiménez-Ruiz et al. (2020),
the authors promote the idea of matching tabu-
lar data to knowledge graphs and create the Se-
mantic Web Challenge on Tabular Data to Knowl-
edge Graph Matching (SemTab), which provide
a new solution for table understanding and QA
related tasks. Recently, TAPAS (Herzig et al.,
2020) and TABERT (Yin et al., 2020) introduce the
transformer-based approaches for this task. The
RCI (Glass et al., 2020) model is the state-of-the-
art model for QA over tables. It utilizes a transfer
learning based framework to independently clas-
sify the most relevant columns and rows for a given
question and further identify the most relevant cells
as the intersections of top-ranked columns and
rows.

End-to-End Table QA Models To the best of
our knowledge, the table cell search framework
published in Sun et al. (2016) is the only existing
end-to-end Table QA system. This work leverages
the semantic relations between table cells and uses
relational chains to connect queries to table cells.
However, the proposed model only works for well-
formatted questions containing at least one highly
relevant entity to link tables to the questions. In
addition, the model and the data are not publicly
available for comparison.

6 Conclusion

This paper proposes an end-to-end solution for ta-
ble retrieval and finding answers for NLQs over
tables. To the best of our knowledge, this is the first
system built where a transformer-based QA model
is used for locating answers over tables while im-
proving the ranking of tables out of a table pool
formed by inexpensive IR methods. To evaluate
the efficacy of this system, we introduce two bench-
marks, namely E2E WTQ and E2E GNQ.

The experimental results indicates that the pro-
posed system, CLTR, outperforms the baselines

and the current state-of-the-art model on the ta-
ble retrieval task. Furthermore, CLTR produces
promising results on the end-to-end table QA task.
In real-world applications, CLTR can be applied
to create a heatmap over tables to assist users in
quickly identifying the correct cells on tables.
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Abstract

Domain experts often need to extract struc-
tured information from large corpora. We ad-
vocate for a search paradigm called “extrac-
tive search”, in which a search query is en-
riched with capture-slots, to allow for such
rapid extraction. Such an extractive search
system can be built around syntactic struc-
tures, resulting in high-precision, low-recall re-
sults. We show how the recall can be improved
using neural retrieval and alignment. The
goals of this paper are to concisely introduce
the extractive-search paradigm; and to demon-
strate a prototype neural retrieval system for
extractive search and its benefits and potential.
Our prototype is available at https://spike.
neural-sim.apps.allenai.org/ and a
video demonstration is available at https://
vimeo.com/559586687.

1 Introduction

In this paper we demonstrate how to extend a
search paradigm we call “extractive search” with
neural similarity techniques.

The increasing availability of large datasets calls
for search tools which support different types of
information needs. Search engines like Google
Search or Microsoft Bing are optimized for surfac-
ing documents addressing information needs that
can be satisfied by reviewing a handful of top re-
sults. Academic search engines (Semantic Scholar,
Google Scholar, Pubmed Search, etc) address also
information needs targeting more than a handful of
documents, yet still require the user to read through
the returned documents.

However, some information needs require ex-
tracting and aggregating sub-sentence information
(words, phrases, or entities) from multiple docu-
ments (e.g. a list of all the risk factors for a specific
disease and their number of mentions, or a com-
prehensive table of startups and CEOs). These

typically fall outside the scope of search engines
and instead are classified as Information Extraction
(IE), entailing a research project and a dedicated
team per use-case, putting them well beyond the
abilities of the typical information seeker.

In contrast, we advocate for a complementary
search paradigm: extractive search, which com-
bines document selection with information extrac-
tion. The query is extended with capture slots:
these are search terms that act as variables, whose
values should be extracted (“captured”).1 The user
is then presented with the matched documents, each
annotated with the corresponding captured spans,
as well as aggregate information over the captured
spans (e.g., a count-ranked list of the values that
were captured in the different slots). The extrac-
tive search paradigm is currently implemented in
our SPIKE system.2 Aspects of its earlier versions
are presented in Shlain et al. (2020); Taub-Tabib
et al. (2020). One way of specifying which slots
to capture is by their roles with respect to some
predicate, semantic-frame, or a sentence. In par-
ticular, the SPIKE system features syntax-based
symbolic extractive search—described further in
section 2—where the capture slots correspond to
specific positions in a syntactic-configuration (i.e.,
“capture the subject of the predicate founded in the
first capture slot, and the object of the predicate
in the second capture slot”). These are specified
using a “by-example” syntax (Shlain et al., 2020),
in which the user marks the predicate and capture
slots on a provided example sentence, and the syn-
tactic configuration is inferred.

While such parse-based matching can be very
effective, it also suffers from the known limita-
tions of symbolic systems: it excels in precision
and control, but often lacks in recall. In this work,

1Capture-slots can be thought of as being analogous to
captures in regular-expressions.

2https://allenai.github.io/spike/
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Figure 1: Results of neural extractive search. The neural results are based on the syntactic query:
SomethingARG1

is a drug extracted from plantsARG2
(underlines denote named capture slots, and bold text de-

notes an exact lexical match). The results show linguistic and lexical diversity w.r.t to the initial query, and highlight
also spans corresponding toARG1 andARG2 (in light blue and yellow). The right box contains an aggregate view
of the captured spans over many results.

we demonstrate how the symbolic system can be
combined with the flexibility of neural semantic
similarity as induced by large pre-trained language
models. Figure 1 presents an overview of the sys-
tem, containing a query with capture slots, the de-
rived syntactic query, the returned (neural) results
with marked spans, and an aggregate summary of
the extracted pairs.

By allowing fuzzy matches based on neural sim-
ilarity search, we substantially improve recall, at
the expense of some of the precision and control.

The incorporation of neural similarity search re-
quires two stages: retrieval of relevant sentences,
and locating the roles corresponding to the capture-
spans on each sentence. We use standard dense
passage retrieval methods for the first part (section
3), and present a neural alignment model for the
second part (section 4). The alignment model is
generic: it is designed to be pre-trained once, and
then applied to every query in real time. This al-
lows to provide an interactive search system which
returns an initial response in near real-time, and
continues to stream additional responses.

The purpose of this paper then is twofold: first,
it serves as a concise introduction of the extractive-
search paradigm. Second, and more importantly, it
demonstrates an incorporation of neural similarity
techniques into this paradigm.

2 Symbolic Extractive Search

We introduce the extractive search paradigm
through usage examples.

Boolean Extractive Search. Consider a re-
searcher who would like to compile a list of
treatments to Bacteremia (bloodstream infection).
Searching Google for “Bacteremia treatment”
might lead to a Healthline article discussing a hand-
ful of treatments.3, which is not a great outcome.
A similar query in PubMed Search leads to over
30,000 matching papers, not all are relevant and
each including only nuggets of relevant informa-
tion. Compare this with the extractive boolean
query:

Bacteremia treatment :entity=CHEMICAL

in SPIKE-PubMed (Taub-Tabib et al., 2020), a
search system over PubMed abstracts. “en-
tity=CHEMICAL” indicates that we are interested
in spans that correspond to chemicals, and the pre-
ceding colon (“:”) designate this term as a capture.
The query retrieves 1822 sentences which include
the word Bactermia, the word treatment (added
to establish a therapeutic context) and a CHEMI-
CAL entity. The user interface also displays the
ranked list of 406 different chemicals captured by
the query variable. The researcher can click each
one to inspect evidence for its association with
Bacteremia, quickly arriving at a clean list of the
common therapeutic compounds.

Syntactic Extractive Search (“by example”).
In the previous example, the capture slot was based
on pre-annotated span level information (“named
entities”). While very effective, it requires the en-
tity type of interest to be pre-annotated, which

3https://www.healthline.com/health/bacteremia
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will likely not be the case for most entity types.
Additionally, the search is rather loose: it iden-
tifies any chemical in the same sentence of the
terms “Bactermia” and “treatment”, but without
establishing a semantic connection between them.
What can we do when the entity type is not pre-
annotated, or when we want to be more specific
in our extraction target? One option is to define
the capture slots using their syntactic sentential
context. For example, consider a researcher in-
terested in risk factors of stroke. An example of
this relation is given in the syntactic configuration:

We can search for sentences that match this pat-
tern,4 and extract the information which aligns with
the capture node.5 However, such syntactic pat-
terns require expertise to specify and are challeng-
ing to master. To counter this, Shlain et al. (2020)
introduced to SPIKE the notion of query by ex-
ample: the user enters a sentence which demon-
strates the configuration: “something is a risk fac-
tor of stroke”, marks which words are essential
and should match exactly (risk, factor, stroke), and
which correspond to capture slots (something), re-
sulting in the query:6

somethingARG is a risk factor for stroke

The system then derives the corresponding syntac-
tic query (see (Shlain et al., 2020) for the details),
returning results like: “These cases illustrate that
PXE is a rare but significant risk factor for small
vessel disease and stroke in patients of all age
groups.”, with the top aggregate terms being Hyper-
tension, Artial fibrillation, AF, Diabetes, Obesity
while less frequent terms include VZV reactivation
and palmitic acid. By modifying the query such
that stroke is also marked as a capture slot:

somethingARG1 is a risk factor for strokeARG2

one could easily obtain a table of risk factors for
various conditions.

4Potentially with additional restrictions such as the occur-
rence of other words, phrases or patterns in the document

5This mode of operation is facilitated also by, e.g., the
open-source toolkit Odinson (Valenzuela-Escárcega et al.,
2020), and similar workflows are discussed by Akbik et al.
(2013); Hoffmann et al. (2015).

6In this paper, we avoid the exact SPIKE syntax, and use
underlines to indicate named capture slots, and bolded words
to indicate exact matches. The corresponding SPIKE query
would be “〈〉ARG:something is a $risk $factor for $stroke”.

3 Neural Extractive Search

The syntactic search by example lowers the barri-
ers for IE: it easy to specify, accurate and effective.
However, it is also limited in its recall: it consid-
ers only a specific configuration (both in terms of
syntax and lexical items), and will not allow for
alternations unless these are explicitly expressed
by the user. Neural models, and in particular large
pre-trained language models (Devlin et al., 2019;
Beltagy et al., 2019), excel at this kind of fuzzier,
less-rigid similarity matching. We show how to
incorporate them in the extractive search paradigm.
This requires two stages: first, we need to match
relevant sentences for a given query. Second, we
need to identify the relevant capture spans in the
returned sentences. Crucially, this needs to be done
in a reasonable time: we do not have the luxury
of re-training a model for each query, nor can we
afford to run a large neural model on the entire
corpus for every query. We can afford to run a
pre-trained model on the query sentence(s), as well
as over each of the sentences in the result set (simi-
lar to neural-reranking retrieval models (Guo et al.,
2020)). We operate under these constraints.

The final system enables the user to search for
specified information with minimal technical exper-
tise. We demonstrate this approach on the CORD
corpus (Wang et al., 2020), a collection of research
papers concerning the COVID-19 pandemic.

3.1 ‘By-example” neural queries
The core of the system is a “by-example” query,
where the user enters a simple sentence express-
ing the relation of interest, and marks the desired
capture roles on the sentence. To facilitate effec-
tive neural search based on the short example, we
perform symbolic (syntactic) search that retrieves
many real-world sentences following the syntac-
tic pattern. The result is a list of sentences that
all satisfy the same relation, which are then com-
bined and used as query to the neural retrieval sys-
tem. At neural alignment model is then used to
align the role marking on the syntactically-retrieved
sentences, to corresponding roles on the neurally-
retrieved sentences.

3.2 Pipeline
Our system pipeline is summarized in Figure 2. It
includes the following steps.

Index Construction. Given a corpus D =
{s1, s2, . . . , sn} of n sentences, we calculate a vec-
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Figure 2: The proposed pipeline, presented from top left clockwise. Top: A simple symbolic query with two
argument marks is provided. The query is executed, yielding accurate results that suffer from low recall. Those
are encoded by BERT and used for k-NN query over a large set of pre-indexed vectors. Bottom: The k-NN neural
similarity search results in a diverse set of relevant sentences. An alignment model then predicts and annotates
argument spans over the retrieved sentences, based on the symbolic query results.

tor representation M(si) for each sentence using a
neural model M , and index them to allow efficient
search.7

Symbolic Query Encoding. We use the
syntactic-query capabilities of the SPIKE system
to retrieve examples of natural sentences that
convey the meaning the user aims to capture: we
collect the first 75 results of a simple “by-example”
syntactic query as described in §2—which
often contain lexically-diverse, but semantically
coherent, sentences—and average their BERT
representations in order to get a single dense query
vector ~hq. The averaging helps focus the model on
the desired semantic relation.

Neural retrieval and ranking. We perform
dense retrieval for the query hq, with a k-NN
search over the pre-indexed sentence representa-
tions. These results are substantially more diverse
than the initial set returned by the syntactic query.

Argument Identification. We encode each re-
trieved sentence using (Sci)BERT, and use the
alignment model described in Section 4 to align
spans over the retrieved sentences to the captured
spans in the symbolic result set. The alignment

7Concretely, we encode each sentence in the CORD-19
corpus using the pre-trained SciBERT model (Beltagy et al.,
2019), a BERT-based model (Devlin et al., 2019) trained on
scientific text. We do not finetune the pre-trained model. We
represent each sentence by the [CLS] representation on layer-
12 of the model, and perform PCA to retain 99% of the vari-
ance, resulting in 601-dimensional vectors. To allow efficient
search over the approximately 14M resulting dense vectors,
we index them with FAISS (Johnson et al., 2017).

process operates over contextualized span represen-
tations, hopefully capturing both entity type and
semantic frame information.

The system returns a syntactically and lexically
diverse set of results, with marked capture spans.

4 Argument-identification via Alignment

The dense neural retrieval over the averaged query
vector results in topically-related sentences. To ob-
tain the full benefit of extractive search, we need to
provide span annotations over the sentences. This
is achieved via a span alignment model which is
trained to align semantically corresponding spans
across sentences. At query time, we apply this
model to align the marked spans over the first
syntactic-query result, to spans over the neurally-
retrieved sentences.

The alignment model is pre-trained over a di-
verse set of relation, with the intent of making it
a general-purpose alignment model. We describe
the model architecture, training data, and training
procedure.

The argument-alignment task. The user
marked in the query q a two spans, denoted as
ARG1 and ARG2. Given a sentence (a dense
retrieval result) with n tokens s = w1, ..., wn,
we seek a consecutive sequence of tokens wi:j

corresponding to ARG1, and another consecutive
sequence of tokens wk:` corresponding to ARG2.
For example, consider the query:

virusARG1 infection causes a conditionARG2
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In which the span ARG1 corresponds to a kind of
infection, and ARG2 corresponds to the outcome
of the infection.
The syntactic query may return a result such as:
The infection of SARS-CoV-2ARG1 causes
feverARG2 .

While a neural result might be:

It has been noted that headaches are one side
effect of Flu infection.

We would like to align Flu to ARG1 (SARS-COV-
2) and headaches to ARG2 (fever).

Training and evaluation data creation. To
train an alignment model in a supervised setting,
we need a training set that consists of pairs of
sentences, both corresponding to the same rela-
tion, with arguments marked only on the first sen-
tence. We use SPIKE for the generation of this
dataset. We introduce a resource that contains 440
manually-curated SPIKE queries in the biomedical
domain, divided into 67 unique relations, s.t. each
relation is expressed via at least 2 syntactically-
distinct queries. For instance, for the relation
molecules and their chemical derivatives, we in-
clude the following patterns, among others:

- SomethingARG1 , a PurineARG2 derivative.
- SomethingARG1 , a derivative of PurineARG2 .
- PurineARG1 derivative such as somethingARG2 .

We ran each SPIKE query, collect the results, and
then construct a dataset that consists of randomly-
sampled pair of results (sR1 , sR2 ) for each relation
R of the 62 relations. This process resulted in a
training set of 95,000 pairs of sentences, and a de-
velopment set of 15,000 pairs of sentences, where
each sentence has marked argument spans.8

Model architecture and training. We adopt a
contrastive finetuning approach for the argument
alignment task (Figure 3). In training, the model is
fed with two sentences s1 and s2, belonging to the
same relation. On one of the sentences, we mark
the argument spans using special ARG tokens. We
derive contextualized representations of all consec-
utive spans of tokens, and contrastively train the
matching spans to be more similar to each other
than to any other span.

8We focused our efforts on maintaining high syntactic di-
versity alongside high topical relevance for each relation, and
aimed for the patterns to cover a large set of biomedical re-
lations. The relations in the development set are randomly
chosen subset of all relations, and are disjoint from the rela-
tions included in the training set.

Figure 3: Illustration of the argument-alignment model.
We choose corresponding arguments (“many disorders”
and “cytokine storm”) from the two sentences. We rep-
resent all possible spans of words, and choose the neg-
ative example to be the closest wrong span under eu-
clidean distance (here, “heart damage”). The triplet ob-
jective encourages the corresponding argument to be
closer to each other than to the wrong span.

We begin with the pretrained SciBERT model,
with an additional linear layer that maps the repre-
sentations to dimensionality of 64. On each train-
ing iteration we feed to the model the two sentences
with arguments marked on one of them, and collect
the last-hidden-layer-representations of all tokens.

Then, we construct the representations of the two
arguments in the first sentence, ~hs1arg1 and ~hs1arg2 , by
averaging the BERT representations of the tokens
included in those spans. We similarly construct
representations of all possible consecutive spans of
tokens up to length 9 in the second sentence. The
“hardest” negative spans are identified: those are

the two representations ~hs2,−arg1 and ~hs2,−arg2 , which do
not correspond to the captures in the first sentence,
yet are most similar to them by euclidean distance.
Those are pushed away using a triplet loss objective
(Schultz and Joachims, 2003; Chechik et al., 2010):

L = max(0, ||~hs1arg1−~hs2arg1||−||~hs1arg1− ~hs2,−arg1||+α)

And similarly for arg2. This objective encourages
the gold span in s1 to be closer to the gold span
s2 than to any other span, with a margin of at least
α; we take α = 1 and train for 50 epochs with the
Adam optimizer (Kingma and Ba, 2015).

In inference time, we take s1 to be an arbitrary
(single) result of the syntactic query, and take s2
to be any of the neural search results. For each s2,
we collect the spans having the least distance to the
spans in s1 (as provided by the SPIKE system).

5 Evaluation

Retrieval quality. To simulate a real-world ex-
traction scenarios, we randomly chose 11 types
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Relation % Relevant
Disease-duration 25.000
Lacunas in knowledge 100.000
Conditions without risk 77.273
Isolation place 100.000
Percentage asymptomatic 9.091
Symptoms 85.000
Potential treatment 95.455
Immunutherapies and diseases 86.364
Persistence-place 82.609
Pretreatments 54.545
Involved organs 77.273

Table 1: Relevance scores (manual) by relation type.

of relation not included in the training set, with
one randomly-selected syntactic pattern per rela-
tion. We augmented those patterns, and collected
the 10 top-ranked augmented results, as well the 10
results ranked in places 90-100. We manually eval-
uated the relevancy of the 20 results per relation,
resulting in 240 test sentences in total. In case they
were relevant, we also marked the capture spans.

Results. Overall, 72.2% of the results were rel-
evant to the relation, with 75.0% relevant in the
top-10 group and 69.5% relevancy in the sentences
ranked 90-100. In Table 1 with provide the re-
sults per relation. Relevancy is not uniform across
relations: certain relations focusing on numerical
information – such as duration of a disease and
percentage of asympotatmic cases in a disease had
very low accuracy: the results often focused on
similar but different numerical information such as

“The median time to the onset of the infection was
95 days” for duration of a disease, and “Between
10 % and 20 % of the world population is infected
each year by the influenza virus” for percentage
of asympotatmic cases. In contrast, for the others
relations, many of the results are relevant, and are
characterized by high syntactic diversity, general-
izing beyond the syntactic structure of the original
symbolic query.

Alignment quality. To evaluate the quality of
the alignment, we generate a test set from the 240
manually-annotated sentences mentioned above,
by randomly sampling 1,240 pairs of sentences
that belong to the same relation, and are both rele-
vant. We keep the gold argument marking on the
first sentence, omit it from the second, and have
the model predict the corresponding captures. As
evaluation measure, we calculate the percentage of
cases where the gold argument are a subset of the
predicted arguments, or vice verca.

SPIKE Neural Extractive Search
#Caputres %Accuracy #Caputres %Accuracy

spreads by 5 83% 40 96%
potential treatment 14 80% 55 67.6%
risk factor 57 89% 44 83%

Table 2: Comparing result count and accuracy between
symbolic and neural extractive search

Results. In total, 73.8% of the arguments are
aligned correctly. When considering only cases
where both arguments were correctly aligned as a
success, accuracy drops to 58%. Note, however,
that the captures are often multi-word expressions,
and the choice of span boundaries is somewhat
arbitrary, and does not take into account conjunc-
tions or cases where possible distinct spans can
be regarded as corresponding to a capture in the
first sentence, and multiple valid captures that often
exist within a single sentence.

Comparison with symbolic extractive search.
How do the results of the neural extractive search
differ from the results of directly applying a sym-
bolic rule based solution? To compare the systems
we choose another 3 development relations, “is a
risk factor for COVID-19”, “COVID-19 spreading
mechanisms” and “potential treatment for COVID-
19”. For each of these relations we try out 2-3
syntactic SPIKE queries and choose the best one
as a representative query. We then use the query as
input for both SPIKE and for neural search .

As shown in Table 2, for two of the three re-
lations, spread by and potential treatment, neural
search has been effective in significantly improving
recall while maintaining relatively high precision.
For the third relation, risk-factor, neural search did
not show benefit but did not lag far behind. We
hypothesize that this is due to this relation appear-
ing many times in the data and in less diverse ways
compared to the other relations, allowing a sym-
bolic pattern to accurately extract it. Importantly,
these data suggest that the neural search system is
less sensitive to the exact relation and query used
and that in some cases it also significantly improves
performance.

6 Example Search

We demonstrate the system via an example where
one aims to find sentences containing information
on compounds and their origin (e.g. plant-derived,
isolated from soil, etc.). We start with the query:

SomethingA1 is a drug extracted from plantsA2 .

215



The syntactic yields only few results, all of them
are relevant. Among the results:
-Colchicine is a drug extracted from Colchicum
autumnale.

-Berbamine is an experimental drug extracted from
a shrub native to Japan, Korea, and parts of China

-Taxol, isolated from Taxomyces andreanae , is the
most effective and successful anticancer drug ex-
tracted from endophytic fungi to date . Figure 1
shows the output (top results) of the neural sys-
tem. The neural results are notably more diverse.
While the syntactic results follow the pattern “X
extracted from Y”, the neural results are both lexi-
cally and syntactically diverse: the explicit descrip-
tor “a drug” is absent at times; the verbal phrase
“extracted from [a plant]” is sometimes replaced
with the paraphrases “found in [a plant]” and “[is
a] botanical extract”; and the third result contains
an unreduced relative clause structure.

Several additional results are presented below:
- Allicin is the major biologically active component
of garlic.
- Berberine is an isoquinoline alkaloid that has
been isolated from Berberis aquifolium.
- Phillyrin ( Phil ) , the main pharmacological com-
ponent of Forsythia suspensa, possesses a wide
range of pharmacological activities .
- Dimethyl cardamonin ( DMC ) is the active
compound isolated from the leaves of Syzygium
samarangense.
- Triostin is a well-known natural product with an-
tibiotic , antiviral, and antitumor activities .

Note that the last two examples demonstrate fail-
ure modes: in the the fourth example, the model
failed to identify Dimethyl cardamonin as an ar-
gument; and in the last sentence there is no clear
capture corresponding to the second argument.

Finally, we perform an aggregation over the pre-
dicted captures (Fig 1, right-pane), allowing the
user to quickly get a high-level overview of the
interactions. From our experience, users are mostly
interested in this table, and turn to the text as sup-
port for validating interesting findings.

7 Limitations of the neural approach

While we find the neural approach to be very effec-
tive, we would also like to discuss some of its limi-
tations. First, speed and scalability are still lagging
behind that of symbolic search systems: dense re-
trieval systems do not yet scale as well as symbolic
ones, and running the (Sci)BERT-base argument-

aligner for each candidate sentence is significantly
slower than performing the corresponding similar-
ity search. While the user can see the first results
almost immediately, getting extractions from thou-
sands of sentences may take several minutes. We
hope to improve this speed in future work.

In terms of accuracy, we find the system to be
hit-or-miss. For many symbolic queries we get fan-
tastic resutls, while for others we observe failures
of the dense retrieval model, or frequent failures of
the alignment model, or both. For effective incorpo-
ration in a user-facing system, we should—beyond
improvements in retrieval and alignment accuracy—
be able to predict which queries are likely to yield
poor results, and not extend them with fuzzy neural
matches.

8 Conclusions

We presented a system for neural extractive search.
While we found our system to be useful for scien-
tific search, it also has clear limitations and areas
for improvement, both in terms of accuracy (only
72.2% of the returned results are relevant, both the
alignment and similarity models generalize well to
some relations but not to others), and in terms of
scale. We see this paper as a beginning rather than
an end: we hope that this demonstration will in-
spire others to consider the usefulness of the neural
extractive search paradigm, and develop it further.
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Abstract

Transformer-based models have made tremen-
dous impacts in natural language generation.
However the inference speed is a bottleneck
due to large model size and intensive comput-
ing involved in auto-regressive decoding pro-
cess. We develop FastSeq framework to ac-
celerate sequence generation without accuracy
loss. The proposed optimization techniques in-
clude an attention cache optimization, an effi-
cient algorithm for detecting repeated n-grams,
and an asynchronous generation pipeline with
parallel I/O. These optimizations are general
enough to be applicable to Transformer-based
models (e.g., T5, GPT2, and UniLM). Our
benchmark results on a set of widely used
and diverse models demonstrate 4-9x infer-
ence speed gain. Additionally, FastSeq is easy
to use with a simple one-line code change. The
source code is available at https://github.
com/microsoft/fastseq.

1 Introduction

Transformer-based model architectures have made
tremendous impact in multiple domains. However,
due to large model size and intensive computing
involved in the decoding process, the inference
speed is still a bottleneck for long sequences appli-
cations (Wu et al., 2016; Tay et al., 2020). A variety
of model architectural innovations have been pro-
posed to increase the generation speed from differ-
ent perspectives. One trend is to change the model
architectures, like model distillation (Shleifer and
Rush, 2020) and sparse attention (Beltagy et al.,
2020). Although these techniques can alleviate the
performance issue, there may be still some trade-
off between model accuracy and speed. On the
other hand, efficient infrastructures have been de-

∗ Equal contribution
† Corresponding author

veloped to accelerate the inference speed, e.g., Ten-
sorRT (Vanholder, 2016) and FasterTransformers1.

In this paper, we present FastSeq framework
to make sequence generation faster. FastSeq can
accelerate the sequence generation by 4x to 9x
with a simple one-line code change for models
in FairSeq (Ott et al., 2019) and Huggingface-
Transformers (Wolf et al., 2020). The design prin-
ciple of FastSeq is to improve the inference speed
without losing model accuracy and usability.

Our optimization approaches include an atten-
tion cache optimization, an efficient algorithm for
detecting repeated n-grams, and an asynchronous
generation pipeline with parallel I/O. These opti-
mizations are general enough for a wide range of
Transformer-based model (Vaswani et al., 2017) ar-
chitectures, including the encoder-decoder architec-
ture (e.g., T5 Raffel et al. 2020, BART Lewis et al.
2020, ProphetNet Qi et al. 2020), the decoder-only
architecture (e.g., GPT2 Radford et al. 2019), and
the encoder-only architecture (e.g., UniLM Dong
et al. 2019). FastSeq is also designed to be flexi-
ble for extension on supporting other models and
frameworks. Our technologies are partially adopted
by FairSeq2. A demo video can be found at https:
//www.youtube.com/watch?v=jrdsEUxhSEE.

2 Preliminary Analysis

For models with similar size, the sequence genera-
tion is much slower than classification, regression
or language score computation. Why is the gen-
eration so time-consuming? Before analyzing the
reasons, let’s recap the generation algorithms first.

2.1 Generation Algorithms
Encoder-decoder structure is used in the most com-
petitive models for sequence-to-sequence genera-

1FasterTransformer Github
2See pull requests FastSeq n-gram Blocking and Beam

Search Perf Improvement
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tion. The encoder side takes an input sequence
of symbol representations (x1, ..., xn) and outputs
a sequence of continuous representations z =
(z1, ..., zn). Then the decoder side generates an
output sequence (y1, ..., yt) with one element at a
time. At each step, the model is auto-regressive by
consuming the previously generated symbols and
then computing the probability scores to select the
next element. Greedy search and beam search are
two popular algorithms used for the selection of
next element. The difference between them is that
at each step, greedy search only selects one candi-
date with maximum score, but beam search selects
the top k candidates as beams. As beam search
maintains multiple beams during the generation, it
usually outputs a better result than greedy search.

To avoid repeated computation in the attention
layer, the key (K) and value (V ) from previous
and current steps are usually cached to compute
the next token. Equation (1) describes how the self-
attention with the cache mechanism is implemented
at step t.

Qt
[B×M,1,D]

= yt−1
[B×M,1,D]

· Wq
[D×D]

Kt
[B×M,t,D]

= concat(Cache Kt−1
[B×M,t−1,D]

, yt−1 · Wk
[D×D]

)

Vt
[B×M,t,D]

= concat(Cache Vt−1
[B×M,t−1,D]

, yt−1 · Wv
[D×D]

)

attnt
[B×M,1,D]

= softmax(
QtK

T
t√

dkt
)Vt

(1)
where B is the batch size; M is the beam size; D

is the embedding dimension; Qt, Kt, Vt represent
query, key, value respectively, and are in the shape
of RB×M×RT×RD; Wq, Wk, Wv are the weights
for the query, key, and value in the shape of RD×D;
attnt is in the shape of RB×M × R1 × RD.

To simplify the equations, we do not consider
multi-heads here, but these equations can be ad-
justed to be of multi-head style.

2.2 Bottlenecks in Generation
Figure 1a shows the profiling results of running the
official BART model implemented by FairSeq. It
indicates that maintaining cache, blocking n-gram
repeats, and post-process individually take longer
time than decoding itself. Profiling is done by run-
ning the official BART implemented by FairSeq
v0.0.9 on CNN DM dataset with default param-
eters (batch size 32, beam size 4, and no-repeat
n-gram 3). Non-computation parts, like maintain

cache, blocking n-gram repeats and post-process,
cost more than 80% of the generation time. We
analyze these time-consuming components below.

(a) Before optimizations (b) After optimizations

Figure 1: (a) Before optimizations: non-computation
operations, e.g, maintain cache, n-gram blocking and
post-process cost most of the time. (b) After optimiza-
tions: majority of time is spent on encode and decode.

Cache Maintenance Along with better genera-
tion results, beam search introduces significant ad-
ditional computational and memory cost. As Equa-
tion (1) indicates, the size of Xt, Qt, Kt, Vt, and
attnt in beam search is M times larger than those
in greedy search. It results in more memory con-
sumption, larger matrix operations (e.g., concat),
and more expensive cache maintenance (e.g., re-
ordering the top-k beams and the cached key and
value at each step). Moreover, the batch size is con-
strained by large occupied memory, which results
in a low GPU utilization.

Block N-Gram Repeats Blocking N-Gram Re-
peats is a widely used operation to avoid an n-gram
appears more than once in natural language model
(Paulus et al., 2018; Klein et al., 2017). It prohibits
the repetitive generation of n-grams by setting their
probability scores to zero. However, conventional
implementation often needs to scan text sequen-
tially and move data between GPU and CPU fre-
quently. Its time complexity is quadratic in terms of
sequence length. When processing long sequences,
this operation becomes another bottleneck.

Post-process It deals with detokenization and
final result output. Post-process performance is
largely restricted by two parts: frequent exchange
of small data between GPU and CPU and the detok-
enization efficiency. In addition, for a synchronized
pipeline, post-process will block the generation for
the next batch of samples, while there is no required
dependency between these two components.
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3 Design

In order to address above bottlenecks, optimiza-
tions need to be done at multiple levels, including
operations, models, and pipelines, which basically
touch every component of a sequence generation
framework. It is a non-trivial burden for researchers
and practitioners. As a result, we develop this Fast-
Seq library to address these barriers and speed
up end-to-end inference in sequence generation.
FastSeq is designed with following features: (i)
speed up the inference of sequence models without
any accuracy loss; (ii) easy to use and compati-
ble Python APIs with FairSeq and HuggingFace-
Transformers; (iii) flexible to be extended to sup-
port new models and frameworks.

FastSeq is written in PyTorch (Paszke et al.,
2019) and composed of (1) ops module: provide
efficient implementations of kernels (e.g., block
n-gram repeats); (2) optimizer module: optimize
model implementations in run-time, where more
efficient implementations will be automatically
patched to replace the ones in existing NLP toolk-
its (e.g., FairSeq and HuggingFace-Transformers)
or the deep learning libraries (e.g., PyTorch); (3)
models module: define the model architectures
(e.g., ProphetNet, UniLM). It is noteworthy that the
models in FairSeq and HuggingFace-Transformers
are natively supported as well. Only one-line code
change is needed to make them work with Fast-
Seq; (4) command line interfaces (CLIs) mod-
ule: run the inference via commands with an asyn-
chronous pipeline, including preprocess (e.g., to-
kenization), generation process, and post-process
(e.g., detokenization). These CLIs are compatible
with FairSeq and HuggingFace-Transformers as
well. Users can use the same parameters to run
their end-to-end inferences.

FastSeq is designed to be easy to use. Existing
model usages (e.g., model content and parameter
settings) in FairSeq and Huggingface-Transformers
do not need to be changed. The example code can
be found in below:

• Python API

# simply add the import of FastSeq

import fastseq
import torch

bart = torch.hub.load(
’pytorch/fairseq’,
’bart.large.cnn’)

bart.cuda().eval().half()
slines = [

"Welcome to FastSeq. "
"Hope you enjoy it."]

hypotheses = bart.sample(
slines,
beam=4,
lenpen=2.0,
max_len_b=140,
min_len=55,
no_repeat_ngram_size=3)

print(hypotheses)

• Command Line Interface

fastseq-generate-for-fairseq \
DATA \
--path MODEL \
--fp16 \
--task translation \
--batch-size BATCH_SIZE \
--gen-subset valid \
--bpe gpt2 \
--beam 4 \
...

4 Optimizations

To address the bottlenecks discovered in Sec-
tion 2.2, we develop following optimizations.

4.1 Attention Cache Optimization
This section introduces how the cache for the key
and value in self-attention and encoder-decoder
attention can be optimized to further speed up the
inference. We describe the cache deduplication
below, see more comprehensive analysis and a new
attention method with faster speed in our work EL-
Attention (Yan et al., 2021)

4.1.1 Cache Optimization in Self-Attention
For the decoder-only or encoder-only Transformer
models (e.g., GPT2, UniLM), X is the prefix of
the generated hypothesis. In conventional imple-
mentations, X is replicated along beam dimension,
and the corresponding partial in the key (K) and
value (V ) is same for each beam. This means, as-
suming Kt and Vt to be of dimension [B,M,N +
T,D], K0(b, i, n, d) = · · · = Kt(b, j, n, d) and
V0(b, i, n, d) = · · · = Vt(b, j, n, d), for ∀b ∈
[0, B), ∀i, j ∈ [0,M), ∀n ∈ [0, N), ∀d ∈ [0, D),
where N is the length of X , B is the batch size, M
is the beam size, D is the embedding dimension.

To optimize the cache in self-attention, we can
split the cached key and value in Equation (1) in
two parts: Cache K ′ and Cache V ′ for the pre-
fix; Cache Kt and Cache Vt for the generated
sequence up till the time step t. With this split, the
size of Cache K ′ and Cache V ′ can be reduced
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from B ×M ×N ×D to B × 1×N ×D. This
also helps decrease cache reorder complexity by a
factor of M .

However, the above split operation results
in incompatible shapes between Cache K ′ and
Cache Kt, and between Cache V ′ and Cache Vt.
Instead of reshaping these cached keys and values,
einsum is utilized to compute attnt. This way,
the expensive concat operations on large tensors
can be avoided.

With the above changes, the matrix operations
will be conducted on the tensors with much smaller
size, so the peak memory can be smaller, the opera-
tions can run faster, and then a larger batch size can
be leveraged. For example, at the step t, the sizes
of Cache Kt−1 and Cache Vt−1 decrease from
B×M×(N+t−1)×D to B×M×(t−1)×D by
N+t−1
t−1 times. Then concat(Cache Kt−1, xt ·Wk)

and concat(Cache Vt−1, xt · WV ) can be much
quicker than before due to less GPU memory allo-
cation, copy, and deallocation. The peak memory
during concat is largely reduced as well. Mean-
while, this implementation will save the same
amount of data movement when reordering the
beams in Cache Kt−1 and Cache Vt−1 because
Cache K ′ and Cache V ′ do not need to be fre-
quently reordered since they are de-duplicated
along beam dimension.

4.1.2 Cache Optimization in
Encoder-Decoder Attention

The cached key and value in the encoder-decoder
attention also have duplication. The reason is that
the key and value in the encoder-decoder attention
are calculated based on the final output hidden state
(S) from the encoder side. Accordingly, the ele-
ments of cached key and value at the beam dimen-
sion are the same. Therefore, the size of Cache K
and Cache V can be reduced by M times, from
B ×M × N ×D to B × 1 × N ×D. Then the
optimization benefits mentioned in Section 4.1.1
can be achieved here as well, including peak mem-
ory reduction and larger batch size. Additionally,
the cached key and value are not needed to be fre-
quently reordered since the elements at the beam
dimension are exactly the same.

Notably, the above proposed optimizations are
general and can be applied to a variety of mod-
els with different architectures if they share fol-
lowing features: 1) attention-based architectures,
including self-attention or encoder-decoder atten-
tion; 2) auto-regressive decoding based on beam

Algorithm 1 GPU version no-repeat-ngram algo-
rithm with arguments - ngram length n, previously
generated tokens tokens, current step token proba-
bility distribution probs.

function BLOCK(tokens, probs, n)
nBlk = tokens.rows
nThr = tokens.columns+ 1− n
shMem = sizeof(tokens.row(0))
BAN <<< nBlk, nThr, shMem >>>
(tokens, probs, n)

function BAN(tokens, probs, n)
row = blockIdx.x
copy row-th row of tokens from global
mem to shared mem shm
col = threadIdx.x
start = tokens.columns+ 1− n
for i = 0 to n− 1 do

if shm[col + i] 6= shm[start+ i] then
return

tokenToBan = shm[col + n− 1]
probs[row, tokenToBan] = 0

search. These models could be classic Transformer-
based encoder-decoder architectures (e.g., BART,
ProphetNet, T5), Transformer-based decoder-only
architectures (e.g, GPT2), or Transformer-based
encoder-only architectures (e.g., UniLM).

The detailed implementations of the optimized
self-attention and encoder-decoder attention is pro-
vided in the Appendix.

4.2 GPU-based Block N-Gram Repeats
Algorithm

As observed in Figure 1a, the cost of block n-gram
repeats algorithm is as high as 25% of generation
time. To reduce the cost, a new GPU-based ker-
nel (see Algorithm 1) is developed to leverage the
power of parallel compute and achieves the follow-
ing benefits: 1) avoiding data movement between
GPU and CPU to alleviate the throughput bottle-
neck of PCIe bus interface. 2) scanning n-grams in
parallel. Instead of sequentially scanning tokens for
detecting repeated n-grams, they can be scanned
in parallel using threads equal to the number of
n-grams generated till the time step t. Furthermore,
each sample in a batch can be processed in parallel
using multiple thread-blocks. 3) using GPU shared
memory for faster memory access.

Since each token needs to be read multiple times
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Model Architecture Task Baseline FastSeq Speedup
encoder-decoder architecture

BART (Lewis et al., 2020) 12L-12L-1024 CNN/DailyMail 2.4 18.4 7.7x
DistilBART (Wolf et al.) 12L-6L-1024 CNN/DailyMail 3.4 18.5 5.4x
ProphetNet (Qi et al., 2020) 12L-12L-1024 CNN/DailyMail 2.8 10.7 3.8x
T5 (Raffel et al., 2020) 12L-12L-768 WMT16 EN-RO 8.7 31.3 4.3x
Transformer (Ott et al., 2018) 6L-6L-1024 WMT16 EN-DE 96.0 417.0 4.3x

decoder-only architecture
GPT2 (Radford et al., 2019) 0L-12L-768 CNN/DailyMail 3.0 16.7 5.5x

encoder-only architecture
UniLM (Dong et al., 2019) 12L-0L-768 CNN/DailyMail 1.7 16.4 9.6x

Table 1: Benchmark results on models of different architectures. Speed is measured by samples/s.

(equal to token length of n-gram), they are stored in
shared memory instead of global memory for faster
access. Jia et al. (2018) reports shared memory
bandwidth for Volta V100 is 16x of global memory
bandwidth. Although there are multiple ways to
organize CUDA thread blocks, our approach is to
assign each n-gram to a thread and each thread-
block to handle a sequence stream. In this way,
Block N-gram repeats is parallelized along hori-
zontal and vertical dimensions of a batch.

4.3 Asynchronous Pipeline with Parallel I/O

As shown in Figure 1a, post-process takes signif-
icant time (6.8s) in the generation process. It is
under-optimized in many existing seq2seq frame-
works. One reason is that post-process is not a
part of the training process, many efforts are spent
on optimizing the training pipeline and the model
structure rather than the generation speed. Another
reason is, despite of works focusing on genera-
tion speed, like distilling model, the speed metric
only covers the computation time but does not in-
clude the post-process part. For example, FairSeq
does not consider the post-process time when it
measures the speed. These biases result in a big
overlooked speed-up opportunity.

To improve the efficiency of the pipeline, we
develop an asynchronous pipeline with parallel I/O.
Similar to pre-fetch technology which loads next
batch of data to GPU while running inference on
the current batch, we post-process the current batch
in a background thread while running generation
on the next batch.

5 Evaluation

In the benchmarks, FairSeq and HuggingFace-
Transformers are used as the baseline to evaluate

the performance. The selected models cover differ-
ent kinds of architectures, including the encoder-
decoder models (e.g., BART, DistilBART, T5,
ProphetNet), the decoder-only models (e.g., GPT2),
and the encoder-only models (e.g., UniLM). CNN
/ Daily Mail dataset (Hermann et al., 2015) and
WMT’16 (Bojar et al., 2016) are used as the bench-
mark datasets. The benchmark experiments are
split into two groups 1) HuggingFace-Transformers
with/without FastSeq; 2) FairSeq with/without
FastSeq. If both FairSeq and HuggingFace-
Transformers have implemented the model, we
choose the faster result as the baseline.

Hardware The experiments are conducted on a
node with 1 GPU (NVIDIA Tesla V100 PCIe 16GB
) and 24 cores CPU (Intel(R) Xeon(R) CPU E5-
2690 v4 @ 2.60GHz).

5.1 End-to-end Performance
The end-to-end benchmarks (including model load-
ing, preprocess, model inference, and post-process)
have been conducted to evaluate the performance.
For each model, we use the same configuration ex-
cept batch size. We search the largest batch size for
each framework by doubling it per search run. Each
experiment is executed 10 times and the average
running time is computed as the final result. The
speed number is measured in samples per second.

With the optimizations of FastSeq, the end-to-
end performance yields a roughly 4x to 9x speedup,
see Table 1 for more details3. In the baseline, for
summarization dataset CNN/DailyMail, the speed
of all models (e.g., BART, DistilBART, ProphetNet,
GPT2, UniLM) is between 1.7 and 3.4 samples
per second. Enabling FastSeq boosts the speed to

3The baseline for BART is FairSeq and the baseline for
DistilBART is Huggingface Transformers.
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Model Batch Cache Throughput
size GB samples/s

BARTlarge no cache 32 0.0 1.8 (0.7x)
BARTlarge 32 6.3 2.4 (1.0x)
+Asynchronous pipeline 32 6.3 3.6 (1.5x)
+GPU n-gram block 32 6.3 5.6 (2.3x)
+Attention cache optimize 32 1.8 8.1 (3.3x)
+Larger batch 128 7.2 18.4 (7.7x)

Table 2: BARTlarge is the official version from FairSeq.
No cache: disable cache on FairSeq. Generation pa-
rameters: beam size = 4, no-repeat n-gram = 3. Data:
CNN DM validation dataset. Cache size is estimated
according to max input length 1024, output length 50.

more than 10 samples per second for all models
studied here, and the BART model achieves 18.4
samples per second, which is 7.7 times speedup.
On the two WMT16 translation datasets, FastSeq
improves throughput by 4.3 times.

In following sections, we will present analyses
on the three optimizations used in FastSeq.

5.2 Analysis of the Cache Optimization

To evaluate effect of the cache optimizations intro-
duced in Section 4.1, Table 2 compares the results
of not using cache, using conventional cache, and
using the proposed optimized cache. Although the
computing complexity is the same for both cache-
based approaches, the proposed cache optimization
approach reduces the usage of GPU memory by 3.5
times. Such smaller cache memory can speed up
concat operations and reduce the data movement
during the beam reordering, and also allow a larger
batch size. These advantages together increase gen-
eration throughput from 5.6 to 18.4 samples/s.

5.3 Analysis of Block N-Gram Repeats

To demonstrate the effectiveness of GPU kernel
described in Section 4.2, the new method is com-
pared with two other methods in Table 3: 1) the one
implemented by FairSeq (called baseline). 2) a re-
vised CPU-based kernel, which improves baseline
by moving data from GPU to CPU before comput-
ing to avoid multiple data transfers (called CPU
kernel). The time difference (4477.1 ms vs 584.9
ms) between baseline and CPU kernel indicates
that data transfer optimization alone can speedup
about 8x. Furthermore, the proposed GPU kernel,
which avoids data transfer and uses parallel compu-
tation has about 75x speed gain compared to CPU
kernel. As shown in Figure 1b, the computing time
after optimization becomes quite small, from about
25% to 1% of the overall time.

Method Time (ms)
baseline 4477.1
CPU kernel 584.9
GPU kernel 7.8

Table 3: Compare three implementations of no-repeat
n-gram.

Model With Baseline FastSeq
fp16 R-1/R-2/R-L R-1/R-2/R-L

UniLMlarge
4 7 43.08/20.43/40.34 43.09/20.29/40.32

UniLMlarge 3 43.06/20.42/40.32 43.08/20.29/40.32
BARTlarge 7 44.21/21.20/41.03 44.21/21.20/41.03
BARTlarge 3 44.22/21.20/41.04 44.22/21.21/41.03
ProphetNetlarge 7 44.20/21.17/41.30 44.20/21.17/41.30
ProphetNetlarge 3 44.17/21.17/41.28 44.17/21.17/41.28

Table 4: Metrics (ROUGE-1, ROUGE-2, and ROUGE-
L) on CNN/DailyMail test set.

5.4 Analysis of Asynchronous Pipeline with
Parallel I/O

Table 2 measures the performances of the synchro-
nized pipeline with single process implemented by
FairSeq and the proposed asynchronous pipeline
with parallel I/O in FastSeq. The throughput is
increased from 2.4 samples/s to 3.6 samples/s
(around 1.5x). The speedup comes from the bet-
ter resource scheduling, where the asynchronous
pipeline allows post-process to run in the back-
ground when running the model inference, and the
support of multi-thread detokenization. As shown
in Figure 1b, the post-process unique time is re-
duced from about 38% to 1% of the overall time.

5.5 Analysis of Generation Quality

All optimizations in FastSeq do not affect the
model generation quality. As discussed in Sec-
tion 4, the logic for detecting the repeated n-gram
blocks is the same for the CPU-based and GPU-
based kernels, and the asynchronous pipeline with
Parallel I/O only optimizes the I/O efficiency, so
these two optimizations do not change the model
outputs in any fashion. For the attention cache
optimization, it does not affect model outputs in
theory. However, in practice, if using mix preci-
sion (e.g., floating point 16) for inference, there
may be a few trivial differences in the outputs due
to the numerical stability issue in GPU. Similar
differences can be observed when changing batch
size during floating point 16 inference. But if using
floating point 32, the generated results are exactly

4The differences between the ROUGE scores for UniLM
are due to the differences in the data preprocess and the imple-
mentations of length-penalty.
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the same. That means the minor differences are not
caused by the proposed cache optimization itself.
In FastSeq, the unit tests have been developed to
make sure the inference outputs are the same with
and without FastSeq when using floating point 32.
We also compare the output quality based on the
CNN/DailyMail dataset (Table 4). The quite simi-
lar ROUGE scores demonstrate that FastSeq does
not impact the model quality.

6 Related Work

A variety of efforts have been developed to improve
the efficiency of Transformer models. From the per-
spective of model architectures, there are efforts on
reducing attention matrix size by chunking input
sequences into blocks (Beltagy et al., 2020), or us-
ing strided convolution over the keys and queries
to compress memory (Liu* et al., 2018). Another
kind of approaches focus on reducing model size
and memory consumption by weight quantization
(Zafrir et al., 2019), weight sharing (Dehghani
et al., 2019), and weight pruning (Michel et al.,
2019). Knowledge distillation is another popular
approach (Hinton et al., 2015).

On the other hand, a dozen of innovations on
infrastructure side have been conducted to speed
up serving of Transformer models. The fused
chains of basic operators in the attention layers
have been widely adopted in many frameworks
(e.g., Onnx Runtime 5, Deep Speed6). It is also
performance critical to optimize data layout and
movement among the connected operations (Ivanov
et al., 2020). In situation of varied input lengths,
TurboTransformers (Fang et al., 2021) is developed
to better serve online models by using dynamic
batch scheduler, more efficient memory allocation
and deallocation algorithms. FasterTransformers7

deeply optimizes kernels of encoder, decoder and
beam search to better utilize computer power of
Tensor Core.

7 Conclusion

In this work, we present FastSeq, which provides
general solutions for speeding up the sequence gen-
eration without accuracy loss. The proposed opti-
mizations include an attention cache optimization,
an GPU-based n-grams blocking algorithm, and an

5https://github.com/microsoft/
onnxruntime

6https://www.deepspeed.ai
7FasterTransformer Github

asynchronous generation pipeline. In the future,
we will support more models and explore more
techniques to accelerate the generation speed.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
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A Cache Optimization in Self-Attention

First, we can split the cached key and value to two
parts: Cache K ′ and Cache V ′ are for the pre-
fix; Cache Kt and Cache Vt are for the generated
sequence at the t step as below:

Cache K ′
[B,1,N,D]

= X
[B×1,N,D]

Wk

Cache V ′
[B,1,N,D]

= XWv

Kt
[B×M,t,D]

= concat(Cache Kt−1
[B×M,t−1,D]

, yt−1 · Wk
[D,D]

)

Vt
[B×M,t,D]

= concat(Cache Vt−1
[B×M,t−1,D]

, yt−1 · Wv
[D,D]

)

(2)

The above split operation results in incompatible
shapes between Cache K ′ and Cache Kt, and be-
tween Cache V ′ and Cache Vt. Instead of reorga-
nizing these cached keys and values, Equation (3)
is leveraged to compute attnt. By this way, the
expensive concat operations on large tensors can
be avoided.

attn w0
[B×M,1,N ]

= einsum(Qt, Cache K ′)

attn w1
[B×M,1,t]

= Qt ·KT
t

attn w
[B×M,1,N+t]

= concat(attn w0, attn w1)

attn prob
[B×M,1,N+t]

= softmax(
attn w√

dkt
)

attn prob0
[B×M,1,N ]

, attn prob1
[B,M,1,t]

= split(attn prob)

attnt0
[B×M,1,D]

= einsum(attn prob0, Cache V ′)

attnt1
[B×M,1,D]

= attn prob1 · Vt

attnt
[B×M,1,D]

= attnt0 + attnt1

(3)

B Cache Optimization in
Encoder-Decoder Attention

The first step is to remove the duplication in
Cache K and Cache V. For the incompatible shape
between Q and Cache K, einsum is leveraged to

avoid the reshape.

Cache K
[B,1,N,D]

= S
[B,1,N,D]

·Wk

Cache V
[B,1,N,D]

= S ·Wv

attn w
[B×M,1,N ]

= einsum(Qt, Cache K)

attn probt
[B×M,1,N ]

= softmax(
attn w√

dkt
)

attnt
[B×M,1,D]

= einsum(attn probt, Cache V )

(4)

As such, the size of Cache K and Cache V can
be reduced by M times from B ×M ×N ×D to
B × 1 × N ×D. Then the optimization benefits
in self-attention can be achieved here as well, in-
cluding peak memory reduction and larger batch
size. Additionally, the cached key and value are
not needed to be reordered since the elements at
the beam dimension are exactly the same.
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Abstract

We present Logical Optimal Actions (LOA),
an action decision architecture of reinforce-
ment learning applications with a neuro-
symbolic framework which is a combina-
tion of neural network and symbolic knowl-
edge acquisition approach for natural lan-
guage interaction games. The demonstra-
tion for LOA experiments consists of a
web-based interactive platform for text-based
games and visualization for acquired knowl-
edge for improving interpretability for trained
rules. This demonstration also provides a com-
parison module with other neuro-symbolic ap-
proaches as well as non-symbolic state-of-
the-art agent models on the same text-based
games. Our LOA also provides open-sourced
implementation in Python for the reinforce-
ment learning environment to facilitate an ex-
periment for studying neuro-symbolic agents.
Demo site: https://ibm.biz/acl21-loa, Code:
https://github.com/ibm/loa

1 Introduction

Neuro-symbolic (NS) hybrid approaches have been
proposed for overcoming the weakness of deep re-
inforcement learning (Dong et al., 2019; Jiang and
Luo, 2019; Kimura, 2018; Kimura et al., 2018), in-
cluding less training data with generalization, exter-
nal knowledge utilization, and direct explainability
of what is learned. Study of reinforcement learn-
ing (RL) in non-symbolic environments, such as
those with natural language and visionary obser-
vations, would be an important step towards the
real-world application of the approaches beyond
classic and symbolic environments.

Under certain controls necessary for studying
RL, text-based games provide complex, interac-
tive, and a variety of simulated environments
where the environmental game state observation

∗ denotes equal contribution

Environment Language
Understanding

Logical 
Optimal
Action 
by LNN

𝑠𝑡𝑎𝑡𝑒! 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑓𝑎𝑐𝑡!

𝑎𝑐𝑡𝑖𝑜𝑛!

𝑟𝑒𝑤𝑎𝑟𝑑!

Figure 1: An architecture overview for LOA.

is obtained through the text description, and the
agent is expected to make progress by entering
text commands. In addition to language under-
standing (Ammanabrolu and Riedl, 2019; Adhikari
et al., 2020), successful play requires skills such
as long-term memory (Narasimhan et al., 2015),
exploration (Yuan et al., 2018), observation prun-
ing (Chaudhury et al., 2020), and common sense
reasoning (Keerthiram Murugesan and Campbell,
2021). However, these studies are not using the
neuro-symbolic approach which is a combination
of the neural network and the symbolic framework.

A recent neuro-symbolic framework called the
Logical Neural Networks (LNN) (Riegel et al.,
2020) simultaneously provides key properties of
both neural networks (learning) and symbolic
logic (reasoning). The LNN can train the con-
straints and rules with logical functions in the neu-
ral networks, and since every neuron in the network
has a component for a formula of weighted real-
valued logics, it can calculate the probability and
contradiction loss for each of the propositions. At
the same time, trained LNN follow symbolic rules,
which means they yield a highly interpretable disen-
tangled representation. Using this benefit of LNN,
we proposed a neuro-symbolic RL method that
uses pre-defined external knowledge in logical net-
works, and the method successfully plays on the
text-based games (Kimura et al., 2021).

In this demonstration (demo site:
https://ibm.biz/acl21-loa), we present a Log-
ical Optimal Actions (LOA) architecture for
neuro-symbolic RL applications with LNN (Riegel
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et al., 2020) for text-based interaction games.
While natural language-based interactive agents
are the ambitious but attractive target as real-world
applications of neuro-symbolic, it is not easy
to provide an environment for the agent. The
proposed demonstration uses text-based games
learning environment, called TextWorld (Côté
et al., 2018), as a miniature of a natural language-
based interactive environment. The demonstration
provides a web-based user interface for visualizing
the game interaction, which is including displaying
the natural text observation from the environment,
typing the action sentence, and showing the
reward value from the taken action. The LOA
in this demonstration also visualizes trained
and pre-defined logical rules in LNN via the
same interface, and this will help the human
user understand the benefits of introducing the
logical rules via neuro-symbolic frameworks. We
also supply an open-sourced implementation for
demo environment and some RL methods. This
implementation contains our logical approaches
and other state-of-the-art agents.

2 Logical Optimal Action

Our proposing LOA is an RL framework which is
combining logical reasoning and neural network
training. These training and reasoning are provided
from functionalities of LNN (Riegel et al., 2020)
that is simultaneously providing key properties of
both neural networks and symbolic logic. Figure 1
shows the overview architecture for LOA. The LOA
model receives the logical state value as logical fact
from the language understanding component which
receives raw natural language state value from the
environment. The model forwards into LNN for
the input to get the optimal action for it, the action
goes into the environment to execute the action
command, then reward is input to LOA agent. The
LOA will be trained the action decision network
in LNN by using the acquired reward value and
chosen action from the network.

3 LOA Demo

The proposing web-based LOA demonstration sup-
ports two functionalities: 1) play the text-based
game by human interactions, 2) visualize the
trained and pre-defined LNN to increase inter-
pretability for acquired rules.

For playing the games by web interface, Fig. 2
shows an initial view for the LOA demonstration.

Figure 2: Initial view for LOA demo.

Figure 3: View for playing the game.

On the left-hand side, we can choose the game from
some existing text-based interaction games 1, such
as TextWorld Coin-Collector game (Côté et al.,
2018), TextWorld Cooking game (Côté et al., 2018),
TextWorld Commonsense Cleanup game (Keerthi-
ram Murugesan and Campbell, 2021), and Jericho
game (Hausknecht et al., 2019). Figure 3 shows the
view for playing the TextWorld game, and Fig. 4
shows the view for another game (cleanup task).
The human player can input any action by natural
language then the demonstration system displays
the raw observation output from the environment.

For visualizing the trained and pre-defined neuro-
symbolic network in LNN, Fig. 5 and Fig. 6
show the example of the LNN output. In these

1We are planning to add other games.
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Figure 4: View for playing the cleanup game.

figures, the LNN contains simple rules for the
TextWorld Coin-Collector game; for example, the
rule is the agent takes ‘go east’ action, when the
agent finds the east room (“found west” →
“go west”). The round box explains the propo-
sition from the given observation inputs, the cir-
cle with a logical function means a logical func-
tion node of LNN, and the rectangle box explains
an action candidate for the agent. The high-
lighted nodes (red node) have ‘true’ value, and non-
highlighted nodes (white node) have ‘false’ value.
In Fig. 5, the agent found the north exit from the
given observation (“Observation (t=1)”) by
using semantic parser 2, then the going north room
action (“go north”) are activated. In Fig. 6, if
the user clicks the selectable box, the LOA recom-
mends only one action which is ‘go north’. In this
demonstration, we show the benefit of introducing
the LNN into an RL agent, we don’t prepare to au-
tomatically choose the action by LOA framework.
However, if we execute the RL with LOA frame-
work, the RL agent can converge faster than other
non-symbolic and neuro-symbolic methods.

After selecting “go north” action at t = 1,
next observation sentence and LNN output for next
step are shown in Fig 7. In this step, the agent
found two doors, which are east and south; how-
ever, the south door is connected to the previous
room because the agent took going north action at
the previous step. Since this LNN is simple LNN,
the “go south” action is also recommended in

2This parser is out of our current research topic, we prepare
a simple semantic parser.

Figure 5: Displaying the simple LNN with given state.

Figure 6: User can choose the recommended action.

Fig 7. Figure 8 shows the output of the compli-
cated LNN which has functionality for avoiding
revisiting the visited room. By using such the LNN,
LOA can output only “go east” action by hav-
ing contradiction loss in LNN. This is a benefit of
introducing the neuro-symbolic framework, and the
human user can easily understand the reason for the
taken action by the agent with this interpretability
by LOA.

4 Conclusion

We propose a novel demonstration (URL:
https://ibm.biz/acl21-loa) which provides to play
the text-based games on the web interface and visu-
alize the benefit of the neuro-symbolic algorithm.
This application helps the human user understand
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Figure 7: Result for simple LNN.

Figure 8: Result for avoiding revisiting LNN.

the trained network and the reason for taken action
by the agent. We also extend more complicated
LNN for other difficult games on the demo site. At
the same time, we open the source code for the
demonstration (URL: https://github.com/ibm/loa).
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Abstract

Now, the pre-training technique is ubiquitous
in natural language processing field. Prophet-
Net is a pre-training based natural language
generation method which shows powerful per-
formance on English text summarization and
question generation tasks. In this paper, we
extend ProphetNet into other domains and lan-
guages, and present the ProphetNet family pre-
training models, named ProphetNet-X, where
X can be English, Chinese, Multi-lingual, and
so on. We pre-train a cross-lingual genera-
tion model ProphetNet-Multi, a Chinese gener-
ation model ProphetNet-Zh, two open-domain
dialog generation models ProphetNet-Dialog-
En and ProphetNet-Dialog-Zh. And also, we
provide a PLG (Programming Language Gen-
eration) model ProphetNet-Code to show the
generation performance besides NLG (Nat-
ural Language Generation) tasks. In our
experiments, ProphetNet-X models achieve
new state-of-the-art performance on 10 bench-
marks. All the models of ProphetNet-X share
the same model structure, which allows users
to easily switch between different models. We
make the code and models publicly available1,
and we will keep updating more pre-training
models and finetuning scripts.

1 Introduction

In recent years, quite a few natural language gen-
eration pre-training models are proposed (Qi et al.,
2020; Lewis et al., 2019; Song et al., 2019; Brown
et al., 2020). Downstream generation tasks benefit
from these large scale pre-training models greatly
in fluency and accuracy. Researchers also extend
these general pre-training works into specific do-
mains such as DialoGPT (Zhang et al., 2019) is

∗Work is done during internship at Microsoft Research
Asia.

† Corresponding Author.
1https://github.com/microsoft/ProphetNet

extended from GPT (Brown et al., 2020) for dialog
system, mBART (Liu et al., 2020b) is extended
from BART (Lewis et al., 2019) for multi-lingual
generation, CodeBERT (Feng et al., 2020) is ex-
tended from BERT (Devlin et al., 2018) for pro-
gramming language modeling, etc.

Although there are pre-trained models for some
specific domains, it is not convenient for users to
find them and set them up. Besides, even some
models in the same pre-training family with the
same model structure and pre-training tasks, their
codes and details vary a lot because of different
implementation and backends selection.

ProphetNet (Qi et al., 2020) is firstly proposed
as an English text pre-training model with future to-
kens’ prediction, and successfully improves the per-
formance on different downstream NLG tasks. In
this work, we pre-train the ProphetNet on different
corpus, respectively. The corpus covers different
languages and domains. All the pre-trained mod-
els share the same model structure with different
vocabularies. We provide six pre-trained models
with downstream task finetuning scripts, including
ProphetNet-En pre-trained with 160GB English
raw text, ProphetNet-Zh pre-trained with 160GB
Chinese raw text, ProphetNet-Multi with 101GB
Wiki-100 corpus and 1.5TB Common Crawl2 data,
ProphetNet-Dialog-En with 60 million sessions
Reddit open-domain dialog corpus, ProphetNet-
Dialog-Zh with collected Chinese dialog corpus
over 30 million sessions, and ProphetNet-Code
pre-trained with 10 million codes and documents.
ProphetNet-X achieves new state-of-the-art results
on 10 benchmarks, including Chinese summariza-
tion (MATINF-SUMM (Xu et al., 2020a) and LC-
STS (Hu et al., 2015)), Chinese question answering
(MATINF-QA (Xu et al., 2020a)), cross-lingual
generation (XGLUE NTG (Liang et al., 2020) and

2https://commoncrawl.org/
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Figure 1: A diagram of ProphetNet-X framework. ProphetNet-X models share the same model structure and cover
various languages and domains.

XGLUE QG (Liang et al., 2020)), English sum-
marization (MSNews (Liu et al., 2020a)), English
dialog generation (DailyDialog (Li et al., 2017),
PersonaChat (Zhang et al., 2018), and DSTC7-
AVSD (Alamri et al., 2019)), and code summariza-
tion (CodeXGLUE (Lu et al., 2021)). Users can
simply download the ProphetNet-X repository and
find corresponding pre-trained model with down-
stream task finetuning scripts.

The main contributions of ProphetNet-X can be
described as follows:

• We provide a family of pre-trained models
named ProphetNet-X, with six models includ-
ing English and Chinese natural language
generation in open-domain and dialog, multi-
lingual generation, and code generation.

• All the pre-trained ProphetNet-X models
share the same model structure. Users only
need to simply modify one model file to use it
in different language or domain tasks.

• We conduct extensive experiments, the results
show that ProphetNet-X models achieve new
state-of-the-art performance on 10 publicly
available benchmarks.

2 ProphetNet-X

2.1 Architecture

We train different ProphetNet-X models based on
ProphetNet. ProphetNet is an encoder-decoder nat-
ural language generation model with future n-gram
prediction. ProphetNet leverages stacked Trans-
former encoder layers and stacked multi-stream

self-attention Transformer decoder layers. Prophet-
Net aims to prevent overfitting on strong local cor-
relations such as 2-gram combinations, and de-
ploy future tokens’ prediction to enhance auto-
regressive generation ability.

Given the input sequence x = (x1, . . . , xM )
and output sequence y = (y1, . . . , yT ), n-gram
ProphetNet-X replaces the auto-regressive pre-
dicting dependency relationship p(yt|y<t, x) with
p(yt:t+n−1|y<t, x). Firstly, ProphetNet-X gets the
encoded hidden states with stacked Transformer
encoder layers Henc = Encoder(x1, . . . , xM ).
Then, decoder with n-stream self-attention
predicts next n tokens at each time step,
as: p(yt|y<t, x), . . . , p(yt+n−1|y<t, x) =
Decoder(y<t, Henc). The optimization tar-
get of ProphetNet-X can be described as:

L =−
n−1∑

j=0

αj ·
(
T−j∑

t=1

log pθ(yt+j |y<t, x)
)

=− α0 ·
(

T∑

t=1

log pθ(yt|y<t, x)
)

︸ ︷︷ ︸
language modeling loss

−
n−1∑

j=1

αj ·
(
T−j∑

t=1

log pθ(yt+j |y<t, x)
)

︸ ︷︷ ︸
future n-gram loss

The details of ProphetNet and multi-stream self-
attention can be found in Qi et al. (2020).

2.2 Pre-training Corpus
In this section, we introduce the pre-training corpus
for ProphetNet-X.
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language Fr It Es De Nl Pt En Sv Pl Vi Ar Ru Tr
size(GB) 77.25 74.01 72.97 71.48 71.19 71.05 68.34 67.48 67.44 67.43 65.18 64.09 62.96
language Ja Zh Cs El Ko Ro Th Da Bg Fi Hu No Hi
size(GB) 61.49 58.70 56.62 55.15 45.28 44.05 35.65 32.43 28.44 27.85 27.04 25.24 17.18
language Sk Id Ca Uk Lt Sr Sl Hr Et Lv Ka Az Ur
size(GB) 14.78 13.68 13.08 10.80 9.20 8.59 6.86 6.51 6.47 5.48 4.16 3.38 3.13
language Kk Ne Gl My Eu Gu Si Ms Sq Af Cy Sw Bs
size(GB) 3.09 2.18 1.95 1.83 1.37 1.23 1.20 1.03 1.03 0.93 0.51 0.34 0.15

Table 1: Statistics of our multi-lingual pre-training corpus. The total pre-training corpus size is 1.54 TB. ISO codes
are used to represent each language.

For ProphetNet-Zh, we collect Chinese
Wikipedia, CLUE (Xu et al., 2020b) and Chinese
Common Crawl data to reach 160GB. For tra-
ditional Chinese data, we firstly use OpenCC 3

to convert them to simplified Chinese. The
pre-training corpus includes common webs, online
forums, comments websites, Q&A websites,
Chinese Wikipedia, and other encyclopedia
websites. We build a simplified Chinese char
vocabulary. The char vocabulary size is 9,360.

For ProphetNet-Multi, besides Wiki-100 corpus,
we select 52 common languages to collect and
clean multi-lingual data from Common Crawl. Af-
ter cleaning and tokenizing, the Common Crawl
corpus size we use is described in Table 1. The
ProphetNet-Multi vocabulary is same as XLM-
R (Conneau et al., 2019) 250k sentencepiece4

model.
For ProphetNet-Dialog-En, we utilize Reddit

comments dataset (Zhou et al., 2018; Galley et al.,
2019). We firstly load the weights of ProphetNet-
En then clean 60 million sessions for pre-training.

For ProphetNet-Dialog-Zh, we use the pre-
training corpus from Wang et al. (2020) and we
crawled 18.2 million dyadic dialogues (conversa-
tion between two persons) longer than or equal to
2 turns (one turn denotes one utterance from one
person) from the Douban group5 which is a pop-
ular social networking service in China. The pre-
training corpus size comparison between Wang
et al. (2020) and ProphetNet-Dialog-Zh is shown
in Table 2. We also load the pre-trained model from
ProphetNet-Zh before pre-training, which already
contains external knowledge from open-domain
Chinese corpus.

For ProphetNet-Code, we conduct pre-training
on both PLs (Programming Languages) and their
describing NL (Natural Language). We use the pre-

3https://github.com/BYVoid/OpenCC
4https://github.com/google/sentencepiece
5https://www.douban.com/group

Corpus Size Single-turn Multi-turn
LCCC-base 3,354,382 3,466,607
LCCC-large 7,273,804 4,733,955

ProphetNet-Dialog-Zh 23,309,502 6,985,425

Table 2: Statistics of Chinese Dialog pre-training cor-
pus

training corpus provided by CodeSearchNet (Hu-
sain et al., 2019). It covers 6 programming
languages, including Go, Java, Javascript, PHP,
Python, and Ruby. We employ the same sentence-
piece tokenizer as CodeBERT (Feng et al., 2020).
The tokenizer is used for both PL and NL, with a
vocabulary size 50,365.

For ProphetNet-En, we directly take the model
pre-trained in ProphetNet (Qi et al., 2020). It is pre-
trained with 160GB English raw texts, including
Wikipedia, books, stories, news, and web texts. The
vocabulary of ProphetNet-En is same as BERT sub-
words vocabulary. The vocabulary is based on bpe
subwords with a max length matching algorithm.
Its vocabulary size is 30,522.

3 Experiments

3.1 Pre-training Settings

We carry out pre-training with 12-layer encoder, 12-
layer decoder ProphetNet models. The hidden size
is 1,024, feed forward size is 4,096, future tokens’
prediction length is 2. Both the max sequence
lengths of the input and output are set to 512.

For ProphetNet-En, ProphetNet-Zh, ProphetNet-
Multi, ProphetNet-Dialog-En, and ProphetNet-
Code, we carry out un-supervised pre-training with
masked span prediction task. Spans of continu-
ous tokens are masked out from the encoder in-
put sentences and predicted from the decoder side.
We masked continuous 9 tokens in every 64 to-
kens from the encoder side, and predict the 9 to-
kens on the decoder side. In other words, for
maximum 512 encoder sequence length, totally
8(spans) × 9(tokens per span) = 72 tokens
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Method MATINF-QA MATINF-SUMM LCSTS
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

TextRank (Mihalcea and Tarau, 2004) - - - 35.53 25.78 36.84 24.38 11.97 16.76
LexRank (Erkan and Radev, 2004) - - - 33.08 23.31 34.96 22.15 10.14 14.65
Seq2Seq (Sutskever et al., 2014) 16.62 4.53 10.37 23.05 11.44 19.55 - - -
Seq2Seq+Att (Luong et al., 2015) 19.62 5.87 13.34 43.05 28.03 38.58 33.80 23.10 32.50
WEAN (Ma et al., 2018) - - - 34.63 22.56 28.92 37.80 25.60 35.20
Global Encoding (Lin et al., 2018) - - - 49.28 34.14 47.64 39.40 26.90 36.50
BertAbs (Liu and Lapata, 2019) - - - 57.31 44.05 55.93 - - -
MTF-S2Ssingle (Xu et al., 2020a) 20.28 5.94 13.52 43.02 28.05 38.55 33.75 23.20 32.51
MTF-S2Smulti (Xu et al., 2020a) 21.66 6.58 14.26 48.59 35.69 43.28 - - -
ProphetNet-Zh 24.18 6.38 15.47 58.82 44.96 54.26 42.32 27.33 37.08

Table 3: Results of ProphetNet-Zh on MATINF-QA, MATINF-SUMM, and LCSTS. “R-1”, “R-2”, and “R-L”
represent “ROUGE-1”, “ROUGE-2”, and “ROUGE-L”, respectively.

Task Model De En Es Fr It Pt Ru AVG

QG

M-BERT (Devlin et al., 2018) 0.1 7.8 0.1 0.1 0.2 0.1 - 1.4
XLM-Rbase (Conneau et al., 2019) 0.1 6.0 0.0 0.0 0.1 0.0 - 1.0
UnicoderDAE (Liang et al., 2020) 3.0 14.0 12.4 4.2 15.8 8.3 - 9.6
UnicoderFNP (Liang et al., 2020) 3.7 13.9 14.8 4.9 17.0 9.5 - 10.6
ProphetNet-Multi 4.9 14.9 17.0 6.0 19.2 11.3 - 12.2

NTG

M-BERT (Devlin et al., 2018) 0.7 9.0 0.4 0.4 - - 0.0 2.1
XLM-Rbase (Conneau et al., 2019) 0.6 8.1 0.4 0.3 - - 0.0 1.9
UnicoderDAE (Liang et al., 2020) 6.8 15.6 9.0 8.7 - - 7.7 9.6
UnicoderFNP (Liang et al., 2020) 7.5 15.8 11.9 9.9 - - 8.4 10.7
ProphetNet-Multi 8.7 16.7 12.7 11.4 - - 8.5 11.6

Table 4: Results of ProphetNet-Multi on XGLUE zero-shot cross-lingual generation task. Task QG and NTG
represent Question Generation and News Title Generation. Numbers in this table are BLEU-4 scores.

are masked and predicted. If the last part does
not reach a maximum length of 64, 15% contin-
uous tokens are masked. ProphetNet-Dialog-En
has special tokens [X SEP] to separate turns in a
session and [SEP] to separate different sessions.
For ProphetNet-Dialog-Zh, we conduct supervised
pre-training. Previous turns of dialogs are fed into
the encoder, and the response is predicted from
the decoder. It means that for a multi-turn session
with n sentences, n − 1 samples are created for
pre-training. The pre-trained ProphetNet-Dialog-
Zh can be used to directly generate dialogs without
finetuning.

We carry out pre-training on NVIDIA Tesla
V100 GPUs, and the total cost exceeds 30,000 GPU
hours.

3.2 Finetuning Benchmarks

For different ProphetNet-X models, we select dif-
ferent benchmarks to evaluate them, respectively.

For ProphetNet-Zh, we evaluate our pre-trained
model with MATINF-QA (Xu et al., 2020a) for
generative question answering task, MATINF-
SUMM (Xu et al., 2020a) and LCSTS (Hu et al.,
2015) for summarization task.

For ProphetNet-Multi, we follow UnicoderFNP
to evaluate on XGLUE (Liang et al., 2020) for

cross-lingual zero-shot generation tasks. The pre-
trained multi-lingual model is finetuned with En-
glish supervised data and inference with English
and other un-seen languages data. There are NTG
(News Title Generation) and QG (Question Gener-
ation) tasks.

For ProphetNet-Dialog-En, we carry out finetun-
ing on DailyDialog (Li et al., 2017) for chit-chat
generation, Persona-Chat (Zhang et al., 2018) for
knowledge grounded conversation generation and
DSTC7-AVSD (Alamri et al., 2019) for conversa-
tional question answering.

For ProphetNet-Dialog-Zh, we use the
STC (Shang et al., 2015) single-turn open-domain
dialog dataset cleaned by Wang et al. (2020), and
real-world Xiaoice Chinese dialog dataset for
evaluation.

For ProphetNet-Code, we evaluate the per-
formance on code summarization task from
CodeXGLUE (Lu et al., 2021).

For ProphetNet-En, we reports the results
on summarization tasks CNN/DM (Hermann
et al., 2015), Gigaword (Rush et al., 2015), and
MSNews (Liu et al., 2020a); question generation
tasks SQuAD 1.1 (Rajpurkar et al., 2016) and
MSQG (Liu et al., 2020a).
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
AVSD Baseline (Alamri et al., 2019) 0.629 0485 0.383 0.309 0.215 0.487 0.746
CMU Sinbad’s (Sanabria et al., 2019) 0.718 0.584 0.478 0.394 0.267 0.563 1.094
PLATO (Bao et al., 2020) 0.784 0.637 0.525 0.435 0.286 0.596 1.209
ProphetNet-Dialog-En 0.823 0.688 0.578 0.482 0.309 0.631 1.354

Table 5: Results of ProphetNet-Dialog-En on DSTC7-AVSD.

Model DailyDialog PersonaChat
B-1 B-2 D-1 D-2 AVG B-1 B-2 D-1 D-2 AVG

Seq2Seq (Vinyals and Le, 2015) 0.336 0.238 0.03 0.128 0.183 0.448 0.353 0.004 0.016 0.205
iVAE MI (Fang et al., 2019) 0.309 0.249 0.029 0.25 0.209 - - - - -
LIC (Golovanov et al., 2019) - - - - - 0.405 0.320 0.019 0.113 0.214
PLATO w/o latent (Bao et al., 2020) 0.405 0.322 0.046 0.246 0.255 0.458 0.357 0.012 0.064 0.223
PLATO (Bao et al., 2020) 0.397 0.311 0.053 0.291 0.263 0.406 0.315 0.021 0.121 0.216
ProphetNet-Dialog-En 0.461 0.402 0.038 0.208 0.277 0.459 0.382 0.010 0.060 0.228

Table 6: Results of ProphetNet-Dialog-En on DailyDialog and PersonaChat. “B-1”, “B-2”, “D-1” and “D-2”
represent “BLEU-1”, “BLEU-2”, “Distinct-1” and “ Distinct-2”, respectively.

3.3 Results

For ProphetNet-Zh, we see significant improve-
ments in Table 3. TextRank (Mihalcea and Ta-
rau, 2004) and LexRank (Erkan and Radev, 2004)
are extractive baselines and others are abstractive
baselines. MTF-S2Ssingle (Xu et al., 2020a) and
MTF-S2Smulti denote single task finetuning and
multi-task finetuning on MATINF dataset. We see
consistent gains on both Chinese question answer-
ing task and summarization tasks.

For ProphetNet-Multi, we show the results
in Table 4, UnicoderDAE and UnicoderFNP are
pre-trained on Wiki-100 with denoising auto en-
coder task and ProphetNet, respectively. Com-
paring the results between the UnicoderFNP and
ProphetNet-Multi, we see that more pre-training
corpus improves supervised English inference re-
sults and other zero-shot languages inference per-
formance. And compared with other baseline meth-
ods, ProphetNet-Multi achieves new state-of-the-
art results on both NTG and QG tasks.

For English open-domain dialog generation, we
show the results in Table 5 and Table 6, com-
pared with strong new proposed PLATO (Bao et al.,
2020), we see that ProphetNet-Dialog achieves per-
formance improvements.

Results for ProphetNet-Dialog-Zh on STC can
be seen in Table 7. In addition, Table 8 shows the re-
sults on real-world Xiaoice dialog dataset with hu-
man evaluation. Results in Table 7 hint that for dia-
log generation, the auto-evaluation metrics (BLEU-
2 and BLEU-4) may fail because open-domain dia-
log outputs could be very different from the given
golden targets but still good responses. We observe
that ProphetNet-Dialog-Zh without finetuning can

Models B-2 B-4
Seq2Seq-Attn (Luong et al., 2015) 3.93 0.9
Transformer (Vaswani et al., 2017) 6.72 3.14
GPTNovel (Wang et al., 2020) 5.96 2.71
CDialGPTLCCC−base (Wang et al., 2020) 6.48 3.08
CDialGPT2LCCC−base (Wang et al., 2020) 5.69 2.50
CDialGPTLCCC−large (Wang et al., 2020) 6.63 3.20
ProphetNet-Dialog-Zh w/o finetuning 2.54 0.75
ProphetNet-Dialog-Zh w/ finetuning 6.78 3.05

Table 7: Results of ProphetNet-Dialog-Zh on STC
dataset. “B-2”, and “B-4” represent “BLEU-2” and
“BLEU-4”, respectively.

Setting Win Lose Tie Kappa
Ours-C vs Xiaoice-C 68% 26% 6% 0.73
Ours-C vs Xiaoice-S 76% 24% 0% 0.65
Ours-S vs Xiaoice-S 81% 19% 0% 0.67

Table 8: Human evaluated results for ProphetNet-
Dialog-Zh on real-world Xiaoice dataset. Here, Ours
means ProphetNet-Dialog-Zh, Xiaoice means old Xi-
aoice retrieval based dialog system. -S(single-turn) de-
notes only the last turn is fed to our model or Xiaoice
traditional single-turn retrieval model. -C(context) de-
notes feeding dialog history into our model or Xiaoice
traditional multi-turn retrieval model.

generate fluent and meaningful responses but have
lower BLEU scores because of the writing style
difference. Thus, we conduct a human evaluation
as in (Zhao et al., 2020). We randomly collect 500
single-turn and 500 multi-turn context-response
pairs from the online logs of the real-word dialog
system Xiaoice. Then, we recruit 3 native speak-
ers as human annotators. The annotators have to
judge which response is better, based on informa-
tiveness, consistency, and fluency of the responses.
If an annotator cannot tell which response is bet-
ter, he/she is required to label a “Tie”. With the
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Models Ruby Javascript Go Python Java PHP overall
Seq2Seq (Vinyals and Le, 2015) 9.64 10.21 13.98 15.93 15.09 21.08 14.32
Transformer (Vaswani et al., 2017) 11.18 11.59 16.38 15.81 16.26 22.12 15.56
RoBERTa (Liu et al., 2019) 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT (Feng et al., 2020) 12.16 14.90 18.07 19.06 17.65 25.16 17.83
PLBART (Ahmad et al., 2021) 14.11 15.56 18.91 19.30 18.45 23.58 18.32
Prophetnet-Code 14.37 16.60 18.43 17.87 19.39 24.57 18.54

Table 9: Results of ProphetNet-Code on CodeXGLUE for code-to-text summarization task. Numbers in this table
are smoothed BLEU-4 scores.

Method CNN/DM Gigaword MSNews
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LSTM (Bahdanau et al., 2014) 37.3 15.7 34.4 33.6 15.4 31.2 30.0 14.6 27.7
Transformer (Vaswani et al., 2017) 39.5 16.7 36.7 36.4 17.7 33.8 33.0 15.4 30.0
MASS (Song et al., 2019) 42.9 19.8 39.8 38.9 20.2 36.2 40.4 21.5 36.8
BART (Lewis et al., 2019) 44.1 21.2 40.9 37.5 17.6 34.3 43.8 24.0 39.2
ProphetNet-En 44.2 21.1 41.3 39.5 20.4 36.6 44.1 24.4 40.2

Table 10: Results of ProphetNet-En for text summarization. “R-1”, “R-2”, and “R-L” represent “ROUGE-1”,
“ROUGE-2”, and “ROUGE-L”, respectively.

experts’ annotation, we see that ProphetNet-Dialog-
Zh obviously outperforms Xiaoice retrieval based
old system. Kappa (Fleiss and Cohen, 1973) val-
ues of all models exceed 0.6, indicating substantial
agreement overall annotators.

For ProphetNet-Code, the code summarization
results are shown in Table 9. We can see new state-
of-the-art results are obtained with ProphetNet-
Code. It shows that ProphetNet-X models not only
benefit from pre-training on natural language gen-
eration tasks but also perform well in programming
language tasks.

Model SQuAD 1.1 MSQG
R-L B-4 MTR R-L B-4 MTR

LSTM 27.2 3.8 8.9 25.3 3.5 14.1
Transformer 30.7 4.8 10.9 29.3 5.1 16.6
MASS 49.9 21.3 25.2 38.9 9.5 23.5
BART 50.3 22.0 26.4 38.8 9.2 24.3
ProphetNet-En 51.5 22.5 26.0 38.3 9.6 23.3

Table 11: Results of ProphetNet-En for question gen-
eration on SQuAD1.1 and MSQG. “R-L”, “B-4”, and
“MTR” represent “ROUGE-L”, “BLEU-4”, and “ME-
TEOR”, respectively.
.

For ProphetNet-En, we report the results for
ProphetNet in Table 10 and Table 11. We also
report the results for two new tasks MSNTG and
MSQG introduced from GLGE (Liu et al., 2020a).

4 Related Work

ProphetNet (Qi et al., 2020) is the most related to
our work since we carry out pre-training based
on it. Other related works involve pre-training
works in different domains. For English gener-

ation pre-training, MASS (Song et al., 2019) pro-
poses an unsupervised pre-training task with span
masked and recover. BART (Lewis et al., 2019)
feeds corrupted sentences into the encoder and re-
constructs the original sentences. GPT (Radford
et al., 2019) models perform language modeling
pre-training with Transformer decoder. For multi-
lingual pre-training, mBART (Liu et al., 2020b)
introduces language labels to adopt BART denois-
ing pre-training. Based on GPT (Radford et al.,
2019), DialoGPT (Zhang et al., 2019) and CDial-
GPT (Wang et al., 2020) adopts language model
pre-training with English and Chinese dialog cor-
pus respectively. CodeBERT (Feng et al., 2020)
and GraphCodeBERT (Guo et al., 2020) are two
pre-training models for programming languages.
PLBART (Ahmad et al., 2021) is similar to multi-
lingual BART with language tags to perform de-
noising pre-training on programming languages.

5 Conclusion

In this paper, we pre-train ProphetNet-X on various
languages and domains, including open-domain
(for English, Chinese, and Multi-lingual), dialog
(for English and Chinese), and programming (for
Ruby, Javascript, Go, Python, Java, and PHP). All
the models share the same model structure and
are easy to use. Extensive experiments show that
ProphetNet-X achieves new state-of-the-art perfor-
mance on 10 benchmarks. In the future, we will ex-
tend ProphetNet-X to support more domains such
as biomedical text and protein pre-training.
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Abstract

Automated Essay Assessment (AEA) aims to
judge students’ writing proficiency in an au-
tomatic way. This paper presents a Chinese
AEA system IFlyEssayAssess (IFlyEA), tar-
geting on evaluating essays written by na-
tive Chinese students from primary and ju-
nior schools. IFlyEA provides multi-level
and multi-dimension analytical modules for es-
say assessment. It has state-of-the-art gram-
mar level analysis techniques, and also inte-
grates components for rhetoric and discourse
level analysis, which are important for evalu-
ating native speakers’ writing ability, but still
challenging and less studied in previous work.
Based on the comprehensive analysis, IFlyEA
provides application services for essay scoring,
review generation, recommendation, and ex-
plainable analytical visualization. These ser-
vices can benefit both teachers and students
during the process of writing teaching and
learning.

1 Introduction

Automated essay assessment (AEA) is an important
educational application (Page, 1968; Rudner et al.,
2006). It aims to reduce the burden of teachers
for scoring student essays and give students direct
instructions to improve their writing ability.

Automated essay scoring (AES) is one of the
most important modules for AEA, which is usually
formulated as a supervised learning problem. The
early approaches utilized hand-crafted features to
predict essay scores (Yannakoudakis et al., 2011;
Chen and He, 2013; Phandi et al., 2015). Re-
cently, deep learning has been applied to AES as
well (Taghipour and Ng, 2016; Dong et al., 2017;
Song et al., 2020c).

One issue about AES is that its prediction lacks
explainability since a single score gives very lim-
ited information. Many efforts have been paid to

expand the boundary of AES, and try to analyze
detailed linguistic properties, such as grammatical
errors (Ng et al., 2014), coherence (Somasundaran
et al., 2014), organization (Burstein et al., 2003;
Persing et al., 2010) and so on.

Several AES systems, such as E-Rater (Attali
and Burstein, 2006) and Lingglewrite (Tsai et al.,
2020), have been successfully applied in the edu-
cation scenario. However, many of them focus on
evaluating second-language learners’ writing abil-
ity or evaluating basic language usages depending
on shallow features, which may be not sufficient
for evaluating essays written by native speakers.
Moreover, most existing platforms mainly target
on English, while there are significantly fewer sys-
tems working on other languages, such as Chinese.

In this paper, we introduce the IFlyEssayAssess
(IFlyEA) system, which is a Chinese automated
essay assessment system, focusing on assessing the
quality of essays written by native Chinese students
from primary and junior schools.

IFlyEA has the following highlights:

• IFlyEA has comprehensive multi-level and
multi-dimension analytical modules. It pro-
vides state-of-the-art Chinese spelling error
correction and grammatical error diagnosis at
grammar level. More specially, it also pro-
vides rich rhetoric and discourse level analy-
sis, which are less studied but important for
evaluating native speakers’ writing ability.

• Based on the information provided by the an-
alytical modules, IFlyEA provides a complete
set of application services, including rating,
review generation and recommendation.

• IFlyEA has an easy-to-use visualization and
interactive interface, which can clearly show
the detailed analytical results of an essay, and

240



Figure 1: The architecture of IFlyEA.

improve the explainability of predictions at
the application level.

The target users of IFlyEA is students from pri-
mary and junior schools, in other hands, it is also
helpful for teachers to reduce their heavy work.
IFlyEA has been applied in practice and it is be-
ing continually improved by learning from user
feedback.

2 System Architecture

The main modules of IFlyEA can be categorized
into two types: analytical modules and applica-
tion modules, as shown in Figure 1. These mod-
ules are integrated with visualization and interac-
tive interfaces.

The analytical modules involve multi-level and
multi-dimension analysis of essay quality, which
mainly cover three levels:

• Grammar level: This level aims to judge
whether students can correctly use words to
communicate. IFlyEA applies several techni-
cal approaches such as spelling correction and
grammatical error diagnosis.

• Rhetoric level: This level aims to judge
whether students can gracefully and skillfully
convey their ideas. IFlyEA can recognize
rhetorical devices and beautiful sentences in
essays.

• Discourse level: This level aims to judge
whether students can logically connect basic

discourse units to construct a coherent whole.
The system identifies discourse elements for
representing and evaluating essay organiza-
tion, and also has other discourse level analy-
sis such as topic classification and genre clas-
sification.

The techniques at grammar level are widely used
for essay scoring, especially for evaluating second-
language learners. The rhetoric and discourse lev-
els are more important for evaluating essays written
by native speakers, especially for distinguishing
well-written essays from moderate ones.

The application modules include:

• Essay scoring: This module gives scores to
indicate the general quality of an essay and
the quality of specific aspects.

• Review generation: This module provides
readable reviews on multiple writing dimen-
sions.

• Recommendation: This module suggests rel-
evant and potentially helpful materials to stu-
dents.

The review generation and recommendation mod-
ules depend on the results from the analytical mod-
ules and the essay scoring module.

In general, the analytical modules are the basis
of the application modules, providing evidence and
diagnosis, and also improving the explainability for
the predictions of application modules. As illus-
trated in Figure 2, through web page visualization
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Figure 2: The visualization and interactive interfaces of IFlyEA.

and interfaces, students or teachers can receive rich
information and interact with the analytical results.

3 Analytical Modules

IFlyEA has multi-level and multi-dimension qual-
ity evaluation to provide comprehensive analytical
results. This section will introduce the main analyti-
cal modules, which can be roughly categorized into
3 levels: grammar, rhetoric and discourse levels.

3.1 Grammar-level Analysis

Correctly using words is a fundamental require-
ment for effective writing. Grammar-level analysis
would try to detect spelling and grammatical er-
rors in essays, and highlight detected errors as a
reminder.

3.1.1 Spelling Error Correction
Given a sentence, our spelling checker would locate
spelling errors if there is any, and provide a list of
corrected candidates (Tseng et al., 2015).

Inspired by Liu et al. (2013); Yu and Li (2014),
we establish a confusion-set based unsupervised
two-stage method to detect and correct spelling
errors.
Confusion set: A confusion set is built to group
characters with similar pronunciation or graphemic
into clusters. We implement it with an inverted
indexing structure so that given a target character,
we can quickly get a list of confusion characters
from the same cluster.
Stage 1: Correction candidate detection with lo-
cal context: We train a 5-gram language model LM
on a large-scale corpus. For each character in a
sentence, we substitute it with its corresponding

Model P R F1

Wang et al. (2019) 0.715 0.595 0.649
Zhang et al. (2020) 0.667 0.662 0.664
Ours 0.662 0.641 0.651

Table 1: Chinese spelling error correction performance
on SIGHAN 2015 dataset.

confusion characters one by one, and use LM to
compute perplexity. If any confusion character
leads to a lower perplexity than the original one
by a pre-defined threshold, it would be retained as
a correction candidate. After state 1, we obtain a
small list of correction candidates. This stage can
be processed very fast.
Stage 2: Correction candidate reranking with
global context: We further use the masked lan-
guage model MLM from BERT (Devlin et al., 2019)
to take advantage of the pre-trained transformer
based language model and exploit the whole sen-
tence as context to rerank the correction candidates
at different positions, respectively.

We evaluate our system on the SIGHAN 2015
benchmark. As shown in Table 1, the results
demonstrate that our system can obtain compet-
itive results to state-of-the-art methods, although it
is unsupervised.

3.1.2 Grammatical Error Diagnosis
We focus on 4 types of grammatical errors: redun-
dant word, missing word, word selection, and word
ordering (Rao et al., 2018). We concentrate on
detecting whether a sentence has any grammatical
error (detection level), and show the positions of
possible grammatical errors (position level).

In line with (Bell et al., 2019; Fu et al., 2018),
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Dataset Detection level Position level
CGED 2020 data
(Rao et al., 2020) 0.894 0.404

Domain data 0.797 0.631

Table 2: Comparison of best F1 results reported in the
CGED 2020 dataset and the domain dataset of primary
students’ essays.

we formulate grammatical error diagnosis as a se-
quence labeling problem. Specifically, we build
our model based on (Wang et al., 2020), where a
ResNet enhanced multi-layer bidirectional trans-
former encoder (ResELECTRA) is used to en-
code sentences. This solution ranked 1st in the
NLPTEA-2020 CGED shared task at identification
and position level.

Since we target on student essays, we continue
to train ResELECTRA on a sample of primary
students’ essays annotated with grammatical er-
ror types. The performance on primary students’
essays can reach 63% F1-score at position level.
The score is higher at position level but lower at
detection level than on the CGED 2020 test set.
This is because that the label distributions of both
levels are different.

3.2 Rhetoric-level Analysis

Grammar-level analysis is important but is not
enough for sufficiently evaluating the quality of
native speakers’ writing. For example, grammat-
ical errors already become much less in junior
students’ essays compared with that in second-
language learners’ essays.

This section will introduce rhetoric-level analyt-
ical modules, which aim to identify excellent sen-
tences and rhetorical devices, to explore whether
language is used in a graceful way.

3.2.1 Modeling the Beauty of Sentences
We define beautiful sentences as the ones that can
induce aesthetic feelings in us. This definition is
vague and the criterion is subjective. Therefore, we
construct a classifier to identify beautiful sentences
in a data-driven way.

We collect more than 20k sentences with beau-
tiful or not labels through crowd-sourcing. Each
sentence is at least labeled by two annotators. For
training, we only keep the sentences that are la-
beled with the same tags by two annotators. We
train a simple attention based BiLSTM model (Bah-
danau et al., 2014) to classify whether a sentence

should be annotated as beautiful. The classifier can
get an accuracy of 81% through cross-validation
evaluation.

3.2.2 Figurative Language Recognition

Figurative language refers to the use of words in a
way that deviates from the literal meaning to con-
vey a complicated meaning to amplify our writing.
Figurative language recognition in essays enables
monitoring students’ ability in using figurative lan-
guage and providing clues for evaluating quality of
essays. Currently, we focus on identifying simile
and personification.
Simile Recognition Simile leads a comparison be-
tween concepts using explicit comparators such as
like, as in English and Xiang, Si, Ru in Chinese.
But a sentence with a comparator does not always
trigger a simile, unless the two arguments of the
comparator form a cross-domain mapping (Lakoff
and Johnson, 2008). So simile recognition is not a
trivial task.

We adopt a multi-task learning framework for
simile recognition (Liu et al., 2018). The frame-
work jointly optimizes two subtasks: simile sen-
tence classification and simile component extrac-
tion. The model is trained on 12k annotated sen-
tences that contain a comparator. The simile sen-
tence classifier can obtain a 86% F1 score in 5-fold
cross-validation evaluation on the dataset.
Personification Recognition Personification is an-
other special case of figurative language, borrowing
human’s actions, expressions, or other character-
istics to ascribes specific attributes of non-human
objects, such as, “Life has cheated me” (Lakoff and
Johnson, 2008).

This task is cast as a typical classification prob-
lem. We adopt an attention based BiLSTM (Bah-
danau et al., 2014) to encode a sentence into a dense
feature vector. This vector is then fed into a nonlin-
ear layer and a softmax layer to generate the clas-
sification result. Considering the characteristics of
this task, we introduce an external knowledge base
Chinese CiLin (A Synonymy Thesaurus of Chinese
Words) (Mei, 1984) to group words into clusters
according to word senses, and assign a learnable
embedding vector for each cluster. Each word is
represented by the concatenation of its word em-
bedding and cluster embedding, which is fed into
the encoder for learning. The personification recog-
nizer can achieve a 80% F1 score. This task shows
to be more difficult than simile recognition.
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3.2.3 Sentence Parallelism Recognition
Sentence parallelism is also a widely used rhetor-
ical device in writing. It can be defined as two or
more coherent text spans (phrases or sentences),
which have similar syntactic structures and related
semantics, and express relevant content or emotion
together (Song et al., 2016). Parallelism adds bal-
ance and rhythm to make speeches and writings
more vivid and powerful.

We adopt a feature-based method for this task.
The features contain a set of alignment measures at
position, word, syntactic and semantic levels. We
find that sentence parallelism can be recognized
with accepted performance (82% F1-score at pair-
wise level and 72% F1-score at parallelism block
level) using a random forest classifier trained on
hundreds of training samples. We also observe that
sentence parallelism has a positive correlation to
the quality of essays, especially in argumentative
essays.

3.2.4 Quotation Detection
Quotation is a figure-of-speech that intentionally
referring to some predecessor’s words, like poems,
maxims, and proverbs, to explain one’s own idea,
which is aim to amplify the writing or enhance the
persuasiveness of argument. We collect a large-
scale quotation corpus from the Internet, ranging
from poetry to proverbs, and exploit information
retrieval (IR) techniques and semantic matching for
quotation detection.

3.3 Discourse-level Analysis

Discourse analysis aims to build connections be-
tween discourse units to form a whole (Song and
Liu, 2020). For essay scoring, we mainly focus on
analyzing the organization of essays. One impor-
tant issue is how to represent essay organization.
Our solution is to use discourse elements, which are
defined as the function of discourse units in build-
ing a coherent discourse. The discourse elements
of an essay are dependent on its genre. For ex-
ample, narrative and argumentative essays usually
have different organizational strategies and have
different discourse elements.

3.3.1 Argumentation Structure Modeling for
Argumentative Essays

For argumentative essays, we define a set of dis-
course elements following previous work (Attali
and Burstein, 2006; Persing et al., 2010), including
prompt, thesis, main idea, support and conclusion.

These discourse elements can be used for both sen-
tences and paragraphs (Song et al., 2020a,b).

IFlyEA currently maintains a hybrid organiza-
tion module. A discourse element is represented
by combining its distributed semantic vector and
a manually constructed feature vector (Song et al.,
2015). The learning framework is based on hier-
archical multi-task learning (Song et al., 2020b),
which jointly optimizes sentence and paragraph
level discourse element identification and organi-
zation evaluation. Evaluation shows that some
minority discourse elements, such as thesis and
ideas, are more difficult to recognize, and organi-
zation evaluation of argumentative essays is still
challenging due to the lack of large-scale training
data. However, visualizing recognized discourse
elements helps teachers quickly see the organiza-
tion structure of an essay, and helps us collect user
feedback through interactions to accumulate more
training data.

3.3.2 Discourse Mode Recognition for
Narrative Essays

Evaluating organization of narrative essays is even
more difficult, since narrative text understanding is
still very challenging and open in both theory and
practice.

IFlyEA uses discourse modes as discourse el-
ements influenced by (Smith, 2003). The main
reasons are: (1) discourse modes can represent the
essay organization by segmenting an essay into
discourse mode zones; (2) discourse modes are
closely related to rhetoric (Connors, 1981; Brooks
and Warren, 1958) so that discourse modes can
reflect writing proficiency in a degree.

Discourse modes are categorized into narration,
description, exposition, argument and emotion, fol-
lowing (Song et al., 2017). Moreover, we further
identify fine-grained description types, such as ap-
pearance, facial expression, action, natural scene,
psychology, dialogue and so on. How to accurately
and vividly describe details of a character, a scene
or an object is an important lesson to be learned for
writing. Identifying and visualizing fine-grained
description types let people quickly find some high-
lights in writing descriptions.

Technically, we adopt a two-stage approach. In
the first stage, we use a discourse-level hierarchical
encoder to encode an essay and identify 5 discourse
modes (Song et al., 2017). The hidden state of
each sentence is used as a sentence representation
for classification. In the second stage, we further
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classify descriptive sentences into fine-grained de-
scription types, which is formulated as a typical
classification problem.

3.3.3 Discourse-level Abnormal Detection
and Content Analysis

Abnormal detection is important for building a ro-
bust system. For example, intentional plagiarism
is a terrible behavior and should be detected. We
build a large-scale corpus covering common pla-
giarism resource, and exploit IR techniques and
semantic matching to detect plagiarism. We also
filter out malicious input, such as non-Chinese es-
says or meaningless character sequences, utilizing
a pre-trained language model.

Other content analysis, including off-topic detec-
tion, genre classification, and topic classification,
are also required to support the comprehensive as-
sessment of essays. We formulate these tasks as a
classification problem. The genre and topic classifi-
cation can be well solved, while off-topic detection
is very challenging at present.

4 Application Modules

4.1 Essay Scoring

Essay scoring is a main module for AES. Instead
of giving a single general score only, we consider
scoring from multiple aspects additionally, includ-
ing content, expression, rhetoric and organization,
to provide a comprehensive assessment.

We formulate these scoring tasks as an essay
classification problem, classifying a given essay
into four grades: bad, moderate, good and excel-
lent. We construct a feature-based model for each
task, and use different feature templates for differ-
ent aspects. The feature templates can be divided
into three types: basic features, such as length, vo-
cabulary, syntax and distributed dense representa-
tions; common analytical features, which are based
on the output of our analytical modules, such as
the counts of spelling and grammatical errors, and
the use of rhetorical devices; and genre related
features, for example, we use different strategies
for modeling the organization of narrative and ar-
gumentative essays so that the features would be
extracted accordingly.

4.2 Review Generation

Generating a review based on the multi-level evalu-
ation can benefit students for getting direct instruc-
tions, and also benefit teachers for getting scor-

ing reports fast and automatically. Currently, our
system generates reviews based on a series of pre-
defined templates. The scores of multiple aspects
and the whole essay are generated by essay scor-
ing module. According to these scores, the system
would manage template selection and integration
to generate a coherent review, revealing both the
advantages and the shortcomings of an essay.

4.3 Recommendation

In addition to rate and review essays, it is also
important to help students learn from feedback to
overcome existing weaknesses. To tackle this, We
build a module to recommend relevant materials
according to diagnosis results at three levels.

We trigger the grammar-level recommendation
if spelling errors are detected. In addition to rec-
ommending the correct characters, IFlyEA will
automatically generate a set of cloze test questions.
We first retrieve sentences containing the correct
character from an existing corpus of this module,
then mask the character in each sentence, and mix
it with characters from its confusion set, and fi-
nally let students choose the best character to fill
the blank. We expect students can better master
correct usage of characters and distinguish confu-
sion characters through exercises. As a supplement,
the meaning and example usage of both the correct
character and its confusion set are prepared previ-
ously, which will be displayed after the exercises.

At rhetoric level, we recommend some well-
written rhetorical sentences that describe similar
objects or scenes as in the target essay, while at dis-
course level, we show more well-written essays or
passages related to similar topics. To achieve this,
we have constructed a high quality resource bank
of high scoring essays, proses and novels written by
famous writers. We use the analytical modules to
analyze the resource to support recommendations
according to different demands.

5 Conclusion and Future Work

This paper presented IFlyEA, a Chinese automated
essay assessment system. IFlyEA demonstrates the
techniques, that we have developed, could tackle
with evaluating the quality of essays written by
native Chinese students. A demonstrating video is
available at https://youtu.be/BujBQfxvX3A.

The main advantage of IFlyEA is its multi-level
and multi-dimension analytical modules for essay
assessment, especially on several high level skill-
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ful language usage abilities, which is less studied
previously. Most of these modules can achieve
moderate and above performance. IFlyEA also
provides comprehensive services for rating, review
generation and recommendation. Together with
the visualization and interactive interfaces, teach-
ers and students can get useful feedback and easily
understand why the system makes such predictions.

IFlyEA has been applied in practice. In future,
we plan to conduct more user studies and continue
to improve the system. And how to evaluate the im-
pact of the system on students is another important
problem, which is worth exploring.
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Abstract

Our understanding of why Transformer-based
NLP models have been achieving their recent
success lags behind our ability to continue
scaling these models. To increase the trans-
parency of Transformer-based language mod-
els, we present Ecco – an open-source1 li-
brary for the explainability of Transformer-
based NLP models. Ecco provides a set of
tools to capture, analyze, visualize, and in-
teractively explore inner mechanics of these
models. This includes (1) gradient-based fea-
ture attribution for natural language generation
(2) hidden states and their evolution between
model layers (3) convenient access and exami-
nation tools for neuron activations in the under-
explored Feed-Forward Neural Network sub-
layer of Transformer layers. (4) convenient ex-
amination of activation vectors via canonical
correlation analysis (CCA), non-negative ma-
trix factorization (NMF), and probing classi-
fiers. We find that syntactic information can
be retrieved from BERT’s FFNN representa-
tions in levels comparable to those in hidden
state representations. More curiously, we find
that the model builds up syntactic information
in its hidden states even when intermediate
FFNNs indicate diminished levels of syntac-
tic information. Ecco is available at https:
//www.eccox.io/.2

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has been powering many recent advances in NLP. A
breakdown of this architecture is provided by Alam-
mar (2018) and will help understand this paper’s
details. Pre-trained language models based on the
architecture (Liu et al., 2018; Devlin et al., 2018;
Radford et al., 2018, 2019; Liu et al., 2019; Brown

1The code is available at https://github.com/
jalammar/ecco

2Video demo available at https://youtu.be/
bcEysXmR09c

Figure 1: A set of tools to make the inner work-
ings of Transformer language models more trans-
parent. By introducing tools that analyze and visu-
alize input saliency (for natural language generation),
hidden states, and neuron activations, we aim to enable
researchers to build more intuition about Transformer
language models.

et al., 2020) continue to push the envelope in vari-
ous tasks in NLP and, more recently, in computer
vision (Dosovitskiy et al., 2020). Our understand-
ing of why these models work so well, however,
still lags behind these developments.

Ecco provides tools and interactive explorable
explanations3 aiding the examination and intuition
of:

• Input saliency methods that score input to-
kens importance to generating a token are dis-
cussed in section 2.

• Hidden state evolution across the layers of
the model and what it may tell us about each
layer’s role. This is discussed in section 3.

• Neuron activations and how individual and
groups of model neurons spike in response
to inputs and to produce outputs. This is dis-
cussed in section 4.

3http://worrydream.com/
ExplorableExplanations/
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• Non-negative matrix factorization of neu-
ron activations to uncover underlying pat-
terns of neuron firings, revealing firing pat-
terns of linguistic properties of input tokens.
This is discussed in subsection 4.2.

Ecco creates rich, interactive interfaces directly
inside Jupyter notebooks (Ragan-Kelley et al.,
2014) running on pre-trained models from the Hug-
ging Face transformers library (Wolf et al., 2020).
Currently it supports GPT2 (Radford et al., 2018),
BERT (Devlin et al., 2018), and RoBERTa (Liu
et al., 2019). Support for more models and explain-
ability methods is under development and open for
community contribution.

2 Input Saliency

When a computer vision model classifies a picture
as containing a husky, an input saliency map (Fig-
ure 2) can tell us whether the classification was
made due to the visual properties of the animal
itself or because of the snow in the background
(Ribeiro et al., 2016). This is a method of attribu-
tion explaining the relationship between a model’s
output and inputs – helping us detect errors and
biases to better understand the system’s behavior.

Figure 2: Input saliency map attribute a model’s predic-
tion to input pixels.

Multiple methods exist for assigning feature im-
portance scores to the inputs of an NLP model (Li
et al., 2015; Arrieta et al., 2020). Instead of as-
signing scores to pixels, in the NLP domain these
methods assign scores to input tokens. The litera-
ture is most often concerned with this application
for classification tasks rather than natural language
generation. Ecco enables generating output tokens
and then interactively exploring the saliency values
for each output token.

2.1 Saliency View

In Figure 3, we see an experiment to probe the
world knowledge of GPT2-XL. We ask the model
to output William Shakespeare’s date of birth. The
model is correctly able to produce the date (1564,

but broken into two tokens: 15 and 64, because
the model’s vocabulary does not include 1564 as a
single token). By hovering on each token, Ecco im-
poses each input’s saliency value as a background
color. The darker the color, the more that input
token is attributed responsibility for generating this
output token.

(a) Input saliency for the first output token, 15 (shown by
hovering over 15).

(b) Input saliency for the second output token, 64 (shown by
hovering over 64).

Figure 3: GPT2-XL is able to tell the birth date of
William Shakespeare. It expresses it in two tokens:
15 and 64. Ecco shows the input saliency of each of
these tokens using Gradient X Inputs. The darker the
background color of the token is, the higher its saliency
value.

2.2 Detailed Saliency View
Ecco also provides a detailed view to see the attri-
bution values in more precision. Figure 4 demon-
strates this interactive interface which displays the
normalized attribution value as a percentage and
bar next to each token.

Figure 4: Ecco’s detailed input saliency view for the
token 64 (shown by hovering over 64).

About Gradient-Based Saliency Ecco calcu-
lates feature importance based on Gradients X
Inputs (Denil et al., 2015; Shrikumar et al.,
2017) – a gradient-based saliency method shown
by Atanasova et al. (2020) to perform well across
various datasets for text classification in Trans-
former models.

Gradients X Inputs can be calculated using the
following formula:

‖∇Xifc(X1:n)Xi‖2
Where Xi is the embedding vector of the input

token at timestep i, and ∇Xifc(X1:n) is the back-
propagated gradient of the score of the selected
token. The resulting vector is then aggregated into
a score via calculating the L2 norm as this was

250



Figure 6: Similarity of hidden states and
FFNN activations in a distilled BERT model.
Ecco enables capturing neuron activations and
comparing activation space similarity using Pro-
jection Weighted Canonical Correlation Analysis
(PWCCA).

Figure 7: Evolution of the rankings of a list of
countries across the 12 layers of GPT2-XL. The
prediction represented here is generated using GPT2-XL,
on the input sequence "The countries of the
European Union are:\n1. Austria\n2.
Belgium\n3. Bulgaria\n4". Output decoding
strategy used is top50 sampling.

empirically shown by Atanasova et al. (2020) to
perform better than other methods.

3 Hidden States Examination

Another method to glean information about the
inner workings of a language is by examining the
hidden states produced by every Transformer block.
Ecco provides multiple methods to examine the hid-
den states and to visualize how they evolve across
the layers of the model.

3.1 Canonical Correlation Analysis (CCA)
Recent work has used Canonical Correlation Anal-
ysis (Hotelling, 1992) to examine language model
internal representations. For example, Voita et al.
(2019) used hidden state to analyze the flow of
information inside Transformers and how the infor-
mational content of hidden states compares across
tasks. Singh et al. (2019) examined internal repre-
sentations of multilingual BERT. Wu et al. (2020)
compared the internal representations of multiple
NLP models. More specifically, these works used
recently developed methods like SVCCA (Raghu
et al., 2017), PWCCA (Morcos et al., 2018) and
CKA (Kornblith et al., 2019).

Ecco bundles these methods (cca(),
svcca(), pwcca(), and cka()) to allow
convenient similarity comparison of language
model representations. This includes hidden
state representations, yet also extends to neuron

activations (Ecco pays special attention to the
neurons after the largest dense FFNN layer as can
be seen in Section 4). Figure 6 shows a comparison
of the hidden states and FFNN neuron activations
as the model processes textual input. All three
CCA methods take two activation vectors (be they
hidden states or neuron activations) and assign a
similarity score from zero (no correlation) to one
(the two inputs are linear transformations of each
other).

3.2 Ranking of Output Token Across Layers

Nostalgebraist (2020) presents compelling visual
treatments showcasing the evolution of token rank-
ings, logit scores, and softmax probabilities for the
evolving hidden state through the various layers of
the model. The author does this by projecting the
hidden state into the output vocabulary using the
language model head (which is typically used only
for the output of the final layer).

Ecco enables creating such plots as can be seen
in Figure 7. More examples showcasing this
method can be found in(Alammar, 2021).

3.3 Comparing Token Rankings

Ecco also allows asking questions about which of
two tokens the model chooses to output for a spe-
cific position. This includes questions of subject-
verb agreement like those posed by Linzen et al.
(2016). In that task, we want to analyze the model’s
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Figure 8: Rankings, across model layers, of which to-
ken should go in the blank DistillGPT-2 is prompted
by the prompt shown at the top, while limited to two
output tokens shown on the bottom.

capacity to encode syntactic number (whether the
subject we’re addressing is singular or plural) and
syntactic subjecthood (which subject in the sen-
tence we’re addressing). Put simply, fill-in the
blank. The only acceptable answers are 1) is 2)
are:

The keys to the cabinet
Using Ecco, we can present this sentence to

DistilGPT-2, and visualize the rankings of is and
are using ecco.rankings watch(), which
creates Figure 8. The first column shows the rank-
ings of the token is as the completion of the sen-
tence, and the second column shows those for the
token are for that same position. The model ulti-
mately ranks are as the more probable answer, but
the figure raises the question of why five layers fail
to rank are higher than is, and only the final layer
sets the record straight.

4 Neuron Activations

The Feed-Forward Neural Network (FFNN) sub-
layer is one of the two major components inside a
Transformer block (in addition to self-attention). It
often makes up two-thirds of a Transformer block’s
parameters, thus providing a significant portion of
the model’s representational capacity. Previous
work (Karpathy et al., 2015; Strobelt et al., 2017;

Poerner et al., 2018; Radford et al., 2017; Olah
et al., 2017, 2018; Bau et al., 2018; Dalvi et al.,
2019; Rethmeier et al., 2020) has examined neuron
firings inside deep neural networks in both the NLP
and computer vision domains. Ecco makes it easier
to examine neuron activations by collecting them
and providing tools to analyze them and reduce
their dimensionality to extract underlying patterns.

4.1 Probing classifiers
Probing classifiers (Veldhoen et al., 2016; Adi et al.,
2016; Conneau et al., 2018) are the most com-
monly used method for associating NLP model
components with linguistic properties (Belinkov
and Glass, 2019). Ecco currently supports linear
probes with control tasks (Hewitt and Liang, 2019).
Section 5 is a case study on using this method to
probe FFNN representations for part-of-speech in-
formation.

4.2 Uncovering underlying patterns with
NMF

By first capturing the activations of the neurons in
FFNN layers of the model and then decomposing
them into a more manageable number of factors
through NMF, we can shed light on how various
neuron groups respond to input tokens.

Figure 9 shows intuitively interpretable firing
patterns extracted from raw firings through NMF.
This example, showcasing ten factors applied to
the activations of layer #0 in response to a text
passage, helps us identify neurons that respond to
syntactic and semantic properties of the input text.
The factor highlighted in this screenshot, factor 5,
seems to correlate with pronouns.

This interface can compress a lot of data that
showcase the excitement levels of factors (and,
by extension, groups of neurons). The sparklines
(Tufte, 2006) on the left give a snapshot of the
excitement level of each factor across the entire
sequence. Interacting with the sparklines (by hover-
ing with a mouse or tapping) displays the activation
of the factor on the tokens in the sequence on the
right.

4.3 About Matrix Factorization of Neuron
Activity

Figure 10 explains the intuition behind dimension-
ality reduction using NMF. This method can reveal
underlying behavior common to groups of neurons.
It can be used to analyze the entire network, a sin-
gle layer, or groups of layers.
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Figure 9: Individual factor view: Activation pattern in response to pro-
nouns Ten Factors extracted from the activations the neurons in Layer 0 in
response to a passage from Notes from Underground. Hovering on the line
graphs isolates the tokens of a single factor and imposes the magnitude of
the factor’s activation on the tokens as a background color. The darker the
color the higher the activation magnitude. In addition to the pronouns fac-
tor highlighted in the figure, we can see factors that focus on specific regions
of the text ( beginning , middle , and end ). This indicates neurons that are
sensitive to positional encodings. View this interface online at (Alammar,
2020).

Neuron token 1 token 2 token 3

0 0 2 0

1 0.1 0 0

2 0 0.9 0

...

18,432 1.5 0.6 0

18,432 FFNN Neuron Activations

Factor token 1 token 2 token 3

0 0 1.2 0

... 0.2 0.5 0

10 0 0 0.3

Matrix Decomposition
e.g. NMF (Non-negative Matrix 
Factorization), PCA, or ICA

10 Underlying Factors

Figure 10: Decomposition of
activations matrix using Non-
negative Matrix Factorization.
NMF reveals underlying patterns
of neuron activations inside one
layer, a collection of layers, or the
entire model.

.

5 Case study: Probing FFNN neuron
activations for PoS information

In this section, we use Ecco to examine the rep-
resentations of BERT’s Feed-Forward Neural Net-
work using probing classifiers. Our work is most
similar to Durrani et al. (2020). There has been
plenty of work on probing BERT focused on the
hidden states, but none to our knowledge that
trained probes to extract token information from
the FFNN representation.

5.1 Method
We first forward-pass the entire dataset through
BERT. We capture all the hidden states of all the
model’s layers as well as the neuron activations of
the FFNN sublayers (namely, the widest layer com-
posed of 3072 neurons after the GELU activation).
We then train external linear classifiers to predict
the PoS of the tokens in the dataset and then report
the accuracy on the test set. Because probes have
been criticized as memorizing the inputs, we report
selectivity scores (Hewitt and Liang, 2019) next
to each accuracy score. Selectivity is metric that
is calculated by generating a control task where
each token is assigned a random part-of-speech
tag. A separate probe is then trained on this con-
trol set. The difference in accuracy between the
actual dataset and the control dataset is the selec-

tivity score. The higher selectivity is, the more
we can say that the probe really extracted part-of-
speech data from the representation of the model
as opposed to simply memorizing the training set.

5.2 Experimental Setup

We use the Universal Dependencies version 2 part-
of-speech dataset in English. We extract 10,000
tokens and split them into a 67% and 33% train/test
sets. We train linear probes for 50 epochs using the
Adam optimizer. We run experiments with learning
rates (0.1, 0.001, 1e-5) and report those of the best
achieving learning rate (0.001). We run five trials
and report their average results. For every trial,
we train a probe for each permutation of 1) model
layer 2) hidden state vs. FFNN activations 3) actual
labels vs. random controls to calculate selectivity
scores.

5.3 Results

We report accuracy and selectivity scores in Ta-
ble 1. We observe that FFNN neuron activations
do encode PoS information at levels comparable to
hidden states. We find intriguing the divergence of
scores in layers 2 and 3 between FFNN activations
(which drop slightly) and hidden states (which con-
tinue increasing). Future work can examine if this
divergence points towards layers storing different

253



FFNN Activations Hidden States (context. embeds)
layer id accuracy selectivity accuracy selectivity
Embed - - - - - - 87.6 (±0.5) 6.1 (±1.1)
0 90.5 (±0.4) 9.1 (±0.7) 92.2 (±0.3) 13.6 (±0.8)
1 93.3 (±0.5) 14.8 (±0.8) 93.6 (±0.4) 17.9 (± 1)
2 87.3 (±0.5) 35.9 (±0.5) 94.2 (±0.3) 20.9 (±0.8)
3 84.7 (±0.5) 34.6 (±0.3) 94.7 (±0.3) 23.9 (±0.7)
4 94.2 (±0.3) 18.9 (±0.6) 94.9 (±0.2) 27.5 (±0.6)
5 94.6 (±0.3) 22.2 (±0.6) 94.8 (±0.3) 31.5 (±0.7)
6 93.6 (±0.5) 27.1 (±1.1) 94.1 (±0.4) 34.3 (±0.8)
7 92.8 (±0.6) 31.5 (±0.5) 93.7 (±0.6) 36.0 (±0.4)
8 91.9 (±0.6) 34.4 (±1.1) 92.4 (±0.7) 37.1 (±0.5)
9 90.5 (±0.4) 35.2 (±0.4) 91.6 (±0.6) 37.3 (±0.7)
10 88.8 (±0.5) 36.4 (±0.6) 90.6 (±0.5) 37.3 (±0.9)
11 87.9 (±0.5) 36.5 (±0.8) 89.0 (±0.7) 36.7 (±1.1)

Table 1: Probing BERT representations for Part-of-Speech information. We can see that raw embeddings already
have some PoS information encoded, but the low selectivity indicates this accuracy score is inflated. (Embed
layer) The model continues to build PoS information through the first half of the network, increasing in both
accuracy and selectivity (Layers 0-5). FFNN representations are comparable to hidden states in the quantity of
PoS information our probes can extract. It is interesting that a layer can increase PoS information despite its
FFNN showing lower accuracy (layer 3). This could indicate that different FFNN sublayers encode different
subsets of PoS information and the model is able to extract only the subset of information that layer specializes in.

subsets of PoS information which the model is able
to collect and assemble as it builds up its internal
representations across layers.

6 System Design

Ecco is implemented as a python library that pro-
vides a wrapper around a pre-trained language
model. The wrapper collects the required data
from the language model (e.g., neuron activations,
hidden states) and makes the needed calculations
(e.g., input saliency, NMF dimensionality reduc-
tion). The interactive visualizations are built using
web technologies manipulated through D3.js (Bo-
stock et al., 2012).

Ecco is built on top of open source libraries
including Scikit-Learn (Pedregosa et al., 2011),
Matplotlib (Hunter, 2007), NumPy (Walt et al.,
2011), PyTorch (Paszke et al., 2019) and Trans-
formers (Wolf et al., 2020). Canonical Correla-
tion Analysis is calculated using the code open-
sourced4 by the authors (Raghu et al., 2017; Mor-
cos et al., 2018; Kornblith et al., 2019).

7 Limitations

Ecco’s input saliency feature is currently only sup-
ported for GPT2-based models, while neuron ac-

4https://github.com/google/svcca

tivation collection and dimensionality reduction
are supported for GPT2 in addition to BERT and
RoBERTa.

We echo the sentiment of Leavitt and Morcos
(2020) that visualization has a role in building in-
tuitions, but that researchers are encouraged to use
that as a starting point towards building testable
and falsifiable hypotheses of model interpretability.

8 Conclusion

As language models proliferate, more tools are
needed to aid debugging models, explain their
behavior, and build intuitions about their inner-
mechanics. Ecco is one such tool combining ease
of use, visual interactive explorables, and multiple
model explainability methods.

Ecco is open-source software5 and contributions
are welcome.
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Stéfan van der Walt, S Chris Colbert, and Gael Varo-
quaux. 2011. The numpy array: a structure for effi-
cient numerical computation. Computing in science
& engineering, 13(2):22–30.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

256



John Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Dur-
rani, Fahim Dalvi, and James Glass. 2020. Similar-
ity analysis of contextual word representation mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 4638–4655, Online. Association for Compu-
tational Linguistics.

257



Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 258–264, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

PAWLS: PDF Annotation With Labels and Structure

Mark Neumann Zejiang Shen

Allen Institute for Artificial Intelligence
{markn,shannons,sams}@allenai.org

Sam Skjonsberg

Abstract

Adobe’s Portable Document Format (PDF) is
a popular way of distributing view-only docu-
ments with a rich visual markup. This presents
a challenge to NLP practitioners who wish to
use the information contained within PDF doc-
uments for training models or data analysis,
because annotating these documents is diffi-
cult. In this paper, we present PDF Annota-
tion with Labels and Structure (PAWLS), a new
annotation tool designed specifically for the
PDF document format. PAWLS is particularly
suited for mixed-mode annotation and scenar-
ios in which annotators require extended con-
text to annotate accurately. PAWLS supports
span-based textual annotation, N-ary relations
and freeform, non-textual bounding boxes, all
of which can be exported in convenient for-
mats for training multi-modal machine learn-
ing models. A PAWLS demo server is available
at https://pawls.apps.allenai.org/ 1

and the source code can be accessed at https:
//github.com/allenai/pawls.

1 Introduction

Scholars of Natural Language Processing technol-
ogy rely on access to gold standard annotated data
for training and evaluation of learning algorithms.
Despite successful attempts to create machine read-
able document formats such as XML and HTML,
the Portable Document Format (PDF) is still widely
used for read-only documents which require visual
markup, across domains such as scientific publish-
ing, law, and government. This presents a challenge
to NLP practitioners, as the PDF format does not
contain exhaustive markup information, making
it difficult to extract semantically meaningful re-
gions from a PDF. Annotating text extracted from
PDFs in a plaintext format is difficult, because

1Please see Appendix A for instructions on accessing the
demo and the demo video.

the extracted text stream lacks any organization
or markup, such as paragraph boundaries, figure
placement and page headers/footers.

Existing popular annotation tools such as BRAT
(Stenetorp et al., 2012) focus on annotation of user
provided plain text in a web browser specifically
designed for annotation only. For many labeling
tasks, this format is exactly what is required. How-
ever, as the scope and ability of natural language
processing technology goes beyond purely textual
processing due in part to recent advances in large
language models (Peters et al., 2018; Devlin et al.,
2019, inter alia), the context and media in which
datasets are created must evolve as well.

In addition, the quality of both data collection
and evaluation methodology is highly dependent
on the particular annotation/evaluation context in
which the data being annotated is viewed (Joseph
et al., 2017; Läubli et al., 2018). Annotating data
directly on top of a HTML overlay on an under-
lying PDF canvas allows naturally occurring text
to be annotated in its original context - that of the
PDF itself.

To address the need for an annotation tool that
goes beyond plaintext data, we present a new an-
notation tool called PAWLS (PDF Annotation With
Labels and Structure). In this paper, we discuss
some of the PDF-specific design choices in PAWLS,
including automatic bounding box uniformity, free-
form annotations for non-textual image regions and
scale/dimension agnostic bounding box storage.
We report agreement statistics from an initial round
of labelling during the creation of a PDF structure
parsing dataset for which PAWLS was originally
designed.

2 Design Choices

As shown in Figure 1, the primary operation that
PAWLS supports is drawing a bounding box over
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Figure 1: An overview of the PAWLS annotation interface. We show an example of annotating scientific documents
in PAWLS, yet the target documents and labeling categories could be easily switched to other domains in a self-
hosted version.

a PDF document with the mouse, and assigning
that region of the document a textual label. PAWLS
supports drawing both freeform boxes anywhere
on the PDF, as well as boxes which are associated
with tokens extracted from the PDF itself.

This section describes some of the user interface
design choices in PAWLS.

2.1 PDF Native Annotation

The primary tenet of PAWLS is the idea that annota-
tors are accustomed to reading and interacting with
PDF documents themselves, and as such, PAWLS
should render the actual PDF as the medium for
annotation. In order to achieve this, annotations
themselves must be relative to a rendered PDF’s
scale in the browser. Annotations are automatically
re-sized to fit the rendered PDF canvas, but stored
relative to the absolute dimensions of the original
PDF document.

2.2 Annotator Ease of Use

PAWLS contains several features which are de-
signed to speed up annotation by users, as well as
minimizing frustrating or difficult interaction expe-
riences. Bounding box borders in PAWLS change
depending on the size and density of the annotated

span, making it easier to read dense annotations.
Annotators can hide bounding box labels using the
CTRL key for cases where labels are obscuring the
document flow. Users can undo annotations with
familiar key combinations (CMD-z) and delete an-
notations directly from the sidebar. These features
were derived from a tight feedback loop with anno-
tation experts during development of the tool.

2.3 Token Parsing

PAWLS pre-processes PDFs before they are ren-
dered in the UI to extract the bounding boxes of
every token present in the document. This allows
a variety of interactive labelling features described
below. Users can choose between different pre-
processors based on their needs, such as GROBID 2

and PdfPlumber 3 for digital-born PDFs, or Tesser-
act 4 for Optical Character Recognition (OCR) in
PDFs which have been scanned, or are otherwise
low quality. Future extensions to PAWLS will in-
clude higher level PDF structure which is general
enough to be useful across a range of domains,
such as document titles, paragraphs and section

2https://github.com/kermitt2/grobid
3https://github.com/jsvine/pdfplumber
4https://github.com/tesseract-ocr/tesseract
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Figure 2: An example of visual token selection. When a user begins highlighting a bounding box, PAWLS uses
underlying token level boundary information extracted from the PDF to 1) highlight selected textual spans as they
are dragged over and 2) normalize the bounding box of a selection to be a fixed padded distance from the maximally
large token boundary.

headings to further extend the possible annotation
modes, such as clicking on paragraphs or sections.

2.4 Visual Token Selection and Box Snapping

PAWLS pre-processes PDFs before they are served
in the annotation interface, giving access to token
level bounding box information. When users draw
new bounding boxes, token spans are highlighted
to indicate their inclusion in the annotation. After
the user has completed the selection, the bounding
box “snaps” to a normalized boundary containing
the underlying PDF tokens. Figure 2 demonstrates
this interaction. In particular, this allows bounding
boxes to be normalized relative to their containing
token positions (having a fixed border), making
annotations more consistent and uniform with no
additional annotator effort. This feature allows
annotators to focus on the content of their anno-
tations, rather than ensuring a consistent visual
markup, easing the annotation flow and increasing
the consistency of the collected annotations.

2.5 N-ary Relational Annotations

PAWLS supports N-ary relational annotations as
well as those based on bounding boxes. Relational
annotations are supported for both textual and free-
form annotations, allowing the collection of event
structures which include non-textual PDF regions,
such as figure/table references, or sub-image co-
ordination. For example, this feature would allow
annotators to link figure captions to particular fig-
ure regions, or relate a discussion of a particular
table column in the text to the exact visual region
of the column/table itself. Figure 3 demonstrates

this interaction mode for two annotations.

Figure 3: The n-ary relation annotation modal.

2.6 Command Line Interface

PAWLS includes a command line interface for ad-
ministrating annotation projects. It includes func-
tionality for assigning labeling tasks to annotators,
monitoring the annotation progress and quality
(measuring inter annotator agreement), and export-
ing annotations in a variety of formats. Addition-
ally, it supports pre-populating annotations from
model predictions, detailed in Section 2.7.

Annotations in PAWLS can be exported to differ-
ent formats to support different downstream tasks.
The hierarchical structure of user-drawn blocks
and PDF tokens is stored in JSON format, linking
blocks with their corresponding tokens. For vision-
centered tasks (e.g., document layout detection),
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Figure 4: Annotation pre-population can significantly improve labeling efficiency.

PAWLS supports converting to the widely-used
COCO format, including generating jpeg captures
of pdf pages for training vision models. For text-
centric tasks, PAWLS can generate a table for to-
kens and labels obtained from the annotated bound-
ing boxes.

2.7 Annotation Pre-population

The PAWLS command line interface supports pre-
population of annotations given a set of bounding
boxes predictions for each page. Figure 4 illus-
trates how pre-annotation can help improve the
labeling efficiency. In this example, we trained a
Mask R-CNN (He et al., 2017) model on the Pub-
LayNet (Zhong et al., 2019b) dataset that can detect
content region bounding boxes for the input page
image, and a BERT model (Devlin et al., 2018) on
the DocBank (Li et al., 2020c) dataset that predicts
the textual category for each text region. PAWLS
loads the model predictions and automatically cor-
rects the bounding boxes using the block snapping
function, and annotators only need to make minor
modifications in the box categories to obtain the
gold annotations.

This further enables model-in-the-loop type
functionality, with annotators correcting model pre-
dictions directly on the PDF. Future extensions to
PAWLS will include active learning based annota-
tion suggestions as annotators work, from models
running as a service.

3 Implementation

PAWLS is implemented as a Python-based web
server which serves PDFs, annotations and other
metadata stored on disk in the JSON format. The

user interface is a Single Page Application imple-
mented using Typescript and relies heavily on the
React web framework. PDFs are rendered using
PDF.js. PAWLS is designed to be used in a browser,
with no setup work required on the behalf of anno-
tators apart from navigating to a web page. This
makes annotation projects more flexible as they can
be distributed across a variety of crowd-sourcing
platforms, used in house, or run on local machines.
PAWLS development and deployment are both

managed using the containerization tools Docker
and Docker Compose, and multiple PAWLS in-
stances are running on a Google Cloud Platform
Kubernetes cluster. Authentication in production
environments is managed via Google Account lo-
gins, but PAWLS can be run locally by individual
users with no authentication.

4 Case Study

PAWLS enables the collection of mixed-mode an-
notations on PDFs. PAWLS is currently in use for
a PDF Layout Parsing project for academic papers,
for which we have collected an initial set of gold
standard annotations. This dataset consists of 80
PDF pages with 2558 densely annotated bounding
boxes of 20 categories from 3 annotators.

Table 1 reports pairwise Inter-Annotator agree-
ment scores, split out into textual and non-textual
labels. For textual labels like titles and paragraphs,
the agreement is measured via token accuracy: for
each word labeled, we compare the label of the
belonging block across different annotators. Non-
textual labels are used for regions like figures and
tables, and they are usually labeled using free-form
boxes. Average Precision (AP) score (Lin et al.,
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2014), commonly used in Object Detection tasks
(e.g., COCO) in computer vision, is adopted to
measure the consistency of these boxes labeled by
different annotators. As AP calculates the block
categories agreement at different overlapping lev-
els, the scoring is not commutative, and an 80 AP
scores already suggests a high level of annotation
quality.

Annotator 1 Annotator 2 Annotator 3

Annotator 1 N/A 94.43 / 86.58 93.28 / 83.97
Annotator 2 94.43 / 86.49 N/A 88.69 / 84.20
Annotator 3 93.28 / 84.67 88.69 / 84.79 N/A

Table 1: The Inter-Annotator Agreement scores for the
labeling task. We show the textual / non-textual anno-
tation agreement scores in each cell. The (i, j)-th ele-
ment in this table is calculated by treating i’s annotation
as the “ground truth” and j’s as the “prediction”.

5 Related Work

Many commercial PDF annotation tools exist, such
as IBM Watson’s smart document understanding
feature and TagTog’s Beta PDF Annotation tool
5. PAWLS is open source and freely available.
Knowledge management systems such as Protégé
(Musen, 2015) support PDFs, but more suited to
management of large, evolving corpora and knowl-
edge graph construction than the creation of static
datasets.

LabelStudio 6 supports image annotation as well
as plaintext/html-based annotation, meaning PDF
pages can be uploaded and annotated within their
user interface. However, bounding boxes are hand
drawn, and the context of the entire PDF is not vis-
ible as the pdf pages are viewed as individual im-
ages. PDFAnno (Shindo et al., 2018) is the closest
tool conceptually to PAWLS, supporting multiple
annotation modes and pdf-based rendering. Un-
fortunately PDFAnno is no longer maintained and
PAWLS provides additional functionality, such as
pre-annotation.

Several PDF based datasets exist for document
parsing, such as DocBank (Li et al., 2020b), Pub-
LeNet (Zhong et al., 2019a) and TableBank (Li
et al., 2020a). However, both DocBank and Pub-
LeNet are constructed using weak supervision from
Latex parses or Pubmed XML information. Table-
Bank consists of 417k tables extracted from Mi-

5https://www.tagtog.net/
#pdf-annotation

6https://labelstud.io/

crosoft Word documents and computer generated
PDFs. This approach is feasible for common el-
ements of document structure such as tables, but
is not possible for custom annotation labels or de-
tailed figure/table decomposition.

The PAWLS interface is similar to tools which
augment PDFs for reading or note taking pur-
poses. Along with commercial tools such as Adobe
Reader, SideNoter (Abekawa and Aizawa, 2016)
augments PDFs with rich note taking and linguistic
annotation overlays, directly on the PDF canvas.
ScholarPhi (Head et al., 2020) augments the PDF
reading experience with equation overlays and def-
inition modals for symbols.

As a PDF specific annotation tool, PAWLS adds
to the wider landscape of annotation tools which
fulfil a particular niche. SLATE (Kummerfeld,
2019) provides a command line annotation tool
for expert annotators; (Mayhew and Roth, 2018)
provides an annotation interface specifically de-
signed for cross-lingual annotation in which the
annotators do not speak the target language.

Textual annotation tools such as BRAT (Stene-
torp et al., 2012), Pubtator (Wei et al., 2013, 2012),
Knowtator (Ogren, 2006), or TextANno (Yimam
et al., 2014) are recommended for annotations
which do not require full PDF context, or for which
extension to multi-modal data formats is not pos-
sible or likely. We view PAWLS as a complimen-
tary tool to the suite of text based annotation tools,
which support more advanced types of annotation
and configuration, but deal with annotation on ex-
tracted text removed from its originally published
format.

In particular, we envisage scholarly document
annotation as one of the key use cases for PAWLS,
as PDF is a widely used format in the context of
scientific publication. Several recently published
datasets leave document structure parsing or multi-
modal annotation to future work. For example, the
SciREX dataset (Jain et al., 2020) use the text-only
LaTeX source of ArXiv papers for dataset construc-
tion, leaving Table and Figure extraction to future
work. Multiple iterations of the Evidence Inference
dataset (Lehman et al., 2019; DeYoung et al., 2020)
use textual descriptions of interventions in clinical
trial reports; answering inferential questions using
figures, tables and graphs may be a more natural
format for some queries.
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6 Conclusion

In this paper, we have introduced a new annota-
tion tool, PAWLS, designed specifically with PDFs
in mind. PAWLS facilitates the creation of multi-
modal datasets, due to its support for mixed mode
annotation of both text and image sub-regions on
PDFs. Additionally, we described several user in-
terface design choices which improve the resulting
annotation quality, and conducted a small initial an-
notation effort, reporting high annotator agreement.
PAWLS is released as an open source project under
the Apache 2.0 license.
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A Accessing the Demo

A demo video for PAWLS usage is available at
https://youtu.be/TB4kzh2H9og, and the demo
server can be accessed at https://pawls.apps.

allenai.org/. We demonstrate PAWLS’ key func-
tionalities using the scientific document labeling
task as an example—the label spaces and exemplar
documents are configured accordingly—but they
can be easily switched to adapt to other types of
documents like financial or legal reports. To fully
present the capability of PAWLS, no pre-annotation
function is used. THe authors demonstrated docu-
ments are

Production deployments of PAWLS use Google
Authentication to allow users to log in. The demo
server is configured to allow access to all non-corp
gmail accounts, e.g any email address ending in
“@gmail.com". For this public demo, no personal
information and annotations will be collected from
this server, as it is read-only. Please feel free to
create a one-off account if you prefer not to use
a personal gmail. If you cannot log in, please try
again using an incognito window which will ensure
gmail cookies are not set.
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Abstract
We present TWEENLP, a one-stop portal that
organizes Twitter’s natural language process-
ing (NLP) data and builds a visualization and
exploration platform. It curates 19,395 tweets
(as of April 2021) from various NLP confer-
ences and general NLP discussions. It sup-
ports multiple features such as TweetExplorer
to explore tweets by topics, visualize insights
from Twitter activity throughout the organiza-
tion cycle of conferences, discover popular re-
search papers and researchers. It also builds
a timeline of conference and workshop sub-
mission deadlines. We envision TWEENLP
to function as a collective memory unit for
the NLP community by integrating the tweets
pertaining to research papers with the NLPEx-
plorer scientific literature search engine. The
current system is hosted at URL.

1 Introduction

Online communication channels have become pop-
ular in the Internet era, and several online commu-
nities of like-minded people have evolved around
these channels. For example, communities such
as Stack Overflow and AskUbuntu are question-
answering forums; Twitter and Reddit are content-
sharing forums. These forums over the years have
provided a platform for novice users to learn from
the experts, facilitated discussions among the com-
munity members, and have over the years accumu-
lated a rich database of questions, answers, and
discussions.

According to the theory of diffusion of inno-
vation proposed by Rogers (2003), the communi-
cation channel is one of the four main elements
influencing the spread of a new idea. Notably, the
communication channel serves as a collective long-
term memory or a knowledge archive of the com-
munity, which any member can access to study the
community’s stance on diverse topics at any point
in time.

Although several mailing lists, slack channels,
and subreddits exist for communication, most natu-
ral language processing (henceforth NLP) commu-
nity discussions are primarily carried out on Twit-
ter due to its open accessibility and wider reach.
Announcements of calls for papers and submis-
sion deadlines, recently accepted papers, interest-
ing talks and seminars, lecture videos, and tutori-
als on various topics are often posted on Twitter.
These are a great medium to stay updated on the
recent developments in the NLP field. It is also
a medium for researchers to engage in informal
research discussions which might be unreported
in official publications. We present a sample of
diverse NLP tweets in Figure 1 to emphasise the
utility of the platform.

However, unlike subreddits or communities like
Stack Overflow and AskUbuntu, Twitter is not an
exclusive channel for NLP discussions. Exclusive
channels provide users a one-stop destination for
their interests and allow extremely topic-specific
exploration. While Twitter allows search by hash-
tags to narrow down to specific topics, the usage
of hashtags is highly irregular. Furthermore, Twit-
ter is more suited to live discussions and less suit-
able for maintaining a snapshot of the discussions
taking place in the online community. Relevant
Twitter discussions about specific research papers
are often forgotten in the long run because there
is no infrastructure to link these discussions with
the papers on the proceedings archives or research
paper search engines. In an attempt to address
these issues, we extend the functionality of NLP-
Explorer (Parmar et al., 2020) platform by integrat-
ing TWEENLP with it. NLPExplorer is a portal for
searching, and visualizing NLP research volume
based on the ACL Anthology (ACL Anthology). In
our current work, we build an automatic pipeline
for curating NLP tweets and build a one-stop por-
tal - TWEENLP, for the search and browsing of
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Figure 1: A sample of diverse natural language processing tweets.

NLP discussion on Twitter. The system has curated
19,395 NLP tweets as of April 2021.

TWEENLP organizes NLP tweets into topics:
(i) New paper announcements, (ii) Call for Pa-
per announcements, (iii) Reading Materials & Tu-
torials, (iv) Career Opportunities, (v) Talks &
Seminars, and (vi) Others. Topic-wise tweets
are presented via dashboards for easy exploration.
TWEENLP supports dashboards to browse through
popular NLP tweets in the previous week and the
month. We construct a CFP Timeline from ‘Call
for Papers’ announcements on Twitter and arrange
it according to the upcoming submission deadlines
of various workshops and conferences. We link the
research paper tweets to the research paper’s meta-
data, accessible via the NLPExplorer paper discov-
ery feature. We also build live Conference Visu-
alization dashboards, which curate tweets about
the conference schedule, ongoing talks, poster ses-
sions, and interesting papers at the conference, and
present statistics such as popular hashtags, users,
tweet languages, etc.

We integrate TWEENLP with NLPExplorer
(Section 2) to build a joint-portal that aims to bridge
the gap between published research and its infor-
mal communication on the social media platform
Twitter. Our automatic data curation pipeline and
the architecture of the system is described in Sec-
tion 3 and Section 4 respectively. We describe the
features of TWEENLP in detail in Section 5. In
Section 6, we discuss previous works in organiz-
ing the NLP literature and visualization of research

papers.

2 NLPExplorer

NLPExplorer1 (Parmar et al., 2020) is an auto-
matic portal for indexing, searching, and visualiz-
ing Natural Language Processing research volume.
It presents multiple paper, venue, and author statis-
tics, including paper citation distribution, paper
topic distribution, authors, their field of study, their
citation distributions, etc. It also presents category
information of research papers into various topics
broadly arranged in five categories: (i) Linguistic
Target (Syntax, Discourse, etc.), (ii) Tasks (Tag-
ging, Summarization, etc.), (iii) Approaches (un-
supervised, supervised, etc.), (iv) Languages (En-
glish, Chinese, etc.) and (v) Dataset types (news,
clinical notes, etc.). The current snapshot consists
of 75k research papers and 50k authors. Since its
inception, it has been accessed by more than 7.3k
users having a close to 9.7k sessions.

3 Dataset

We curate the dataset from two primary sources:

3.1 Twitter
We curate the Twitter data using the open-source
library Twint2 by retrieving tweets with the hashtag
NLProc. We also curate tweets with NLP confer-
ence hashtags such as #acl2020, #emnlp2020, etc.
The list of NLP conferences is compiled via ACL

1http://nlpexplorer.org/
2https://github.com/twintproject/twint
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Figure 2: The architecture of TWEENLP. Arrow direc-
tions denote the flow of data. AAD represents the ACL
Anthology Dataset which is the other data source apart
from Twitter.

Anthology. Our system is scheduled to download
the Twitter data for each day automatically. For on-
going conferences, our system curates new tweets
every hour to continually update the Conference
Visualizer page. The current snapshot (as of April
2021) contains data since October 2017 (around
1300 days) and consists of 19,395 tweets.

3.2 ACL Anthology

We curate the conference and journal names and
URLs from the ACL Anthology github reposi-
tory3. We also curate the paper titles and their links.
Tweets are collected periodically every day, and the
system checks for paper mentions in the tweets by
substring matching the paper URLs collected from
the ACL Anthology github repository.

4 Architecture

We present the pipeline of our system in Figure 2.
The Data Curator module curates tweets daily. The
curated tweets are processed before we perform fur-
ther steps. The following modules process tweets:
(i) Tweet Classifier, (ii) Conference Page Builder,
(iii) CFP Timeline Builder, and (iv) Paper Tweet
Linker. We describe the tweet processing modules
in detail below:

1. Tweet Classifier: The Tweet Classifier module
classifies a tweet into one of the six topics: (i)
New Paper Announcements, (ii) Call for Pa-
per announcements, (iii) Reading Materials &
Tutorials, (iv) Career Opportunities, (v) Talks
& Seminars, and (vi) Others. The Tweet Ex-
plorer feature utilizes these tweet categories.
The detailed description of each topic is pre-

3https://github.com/acl-org/
acl-anthology

sented in Section 5.1. We experiment by fine-
tuning a BERT-base(Devlin et al., 2019) clas-
sifier and twitter-roberta-base(Barbieri et al.,
2020) to predict the tweet topics. The BERT-
base model4 obtains the best test accuracy of
75% on a small manually annotated dataset5.

2. Conference Page Builder: The Conference
Page Builder classifies a tweet either as dis-
cussing an ongoing conference or other topics.
The module builds specific conference pages
using such tweets.

3. CFP Timeline Builder: The module processes
‘Call for Papers’ tweets identified by the Tweet
Classifier module. It extracts the conference
(and workshop) name by regex-based key-
word matching against a pre-compiled list of
venues. The submission date are extracted
from the tweets by labeling dates using the
Spacy6 library. The tweets are arranged in a
timeline sorted by the submission deadline.

4. Paper Tweet Linker: The Paper Tweet Linker
module maps specific tweets to research pa-
pers using regex matching of the paper title
and paper URL. The Paper Tweet Visualizer
uses these mappings to embed the tweets on
the research paper page on NLPExplorer.

The pipeline then stores the tweets in the database
after processing by the above modules. We sched-
ule our system to automatically curate the Twitter
data daily and increase it to an hourly frequency
during ongoing conferences.

5 TWEENLP Features

5.1 Tweet Explorer

We present a Tweet Explorer dashboard that allows
a user to browse tweets from specific topics such
as:

1. New paper announcements: This topic orga-
nizes tweets about recent papers, which often
involve the summary or a short introduction
of the research paper. These twitter threads
facilitate other researchers to communicate in-
formally with the paper authors. These also
contain interesting discussions by the commu-
nity on the insights, merits, and critiques of
the research paper, and post questions about

4We also experimented with a zero-shot classifier but it
underperformed the BERT-base classifier.

5each tweet was annotated by two ML/NLP students and
inter annotator agreement computed using Cohen’s κ=0.68

6https://spacy.io/
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the work. The authors’ short introductions of-
fer an informal account of the paper compared
to the paper alert services that usually present
the title and the abstract of the research paper.

2. Call for Papers (CFPs) by various confer-
ences and workshops: Users can view the
announcements for call for papers and sub-
mission deadlines by various workshops and
conferences.

3. Reading Materials & Tutorials: It lists var-
ious study material, such as lecture slides
and videos, tutorials, online courses, and blog
posts.

4. NLP Career Opportunities: Individuals fre-
quently advertise opportunities for various po-
sitions such as interns, full-time, Ph.D., post-
doctoral fellows, and research fellows on Twit-
ter.

5. NLP Talks & Seminars: Various online NLP
talks and seminars can be accessed using the
NLP Talks & Seminars filter on the Tweet
Explorer dashboard.

6. Others: This category contains the NLP
tweets which do not belong to any of the above
topics.

The Tweet Explorer feature allows users to specif-
ically browse through tweets by topics and filter
them based on their immediate interests. A snap-
shot of the same is presented in Figure 3. We
present the distribution of tweets in the six cate-
gories from tweets curated by the system in the last
1,300 days in Table 1.

Figure 3: Tweet Explorer feature of TWEENLP which
facilitates browsing tweets by six different topics.

5.2 Conference Visualizer – Near real-time
view for conferences

TWEENLP supports real-time statistics for mul-
tiple top conferences and the popular #NLProc
hashtag. The information is updated hourly for
live events and weekly for past events. Some of
the statistics presented are top mentions, top hash-

Topic Tweet Count
New Paper Announcements 6,337

Call for Papers 972
Reading Materials & Tutorials 1,400

NLP Career Opportunities 681
NLP Talks & Seminars 2,382

Others 7,623
Total Tweets 19,395

Table 1: Distribution of tweets (curated since October
2017) into various topics.

tags, top linked URLs, and top discussed papers
in tweets. We present the most popular hashtags,
mentions, URLs, and highly discussed papers for
ACL2020 in Table 2. A summary of Twitter activ-
ity from the Conference Visualizer page for ACL
2020 is presented in Table 3. Apart from Twitter
discussions about a conference in a specific month,
we also show insights from the conferences across
the year. The insights from ACL conference over
time is presented in Figure 4. We also present other
conference-specific statistics such as the number
of tweets per month, daily distribution of tweets
in the conference month, most active users tweet-
ing about the conference, and a distribution of the
tweet languages other than English.

5.3 Popular Paper Visualizer

We showcase widely discussed papers on Twitter in
the Popular Paper Visualizer dashboard. It presents
the titles and provides direct links to the full-text
of the top discussed papers for quick reference.
The system extracts tweets mentioning research pa-
pers and assigns a popularity score to each paper
based on the count of tweets that mention it, and
the likes, retweets, and replies on the paper tweets.
We present a snapshot of few popular papers iden-
tified by our platform in Figure 5. It also presents
the most active users tweeting about #NLProc on
Twitter. Popular Paper Visualizer dashboard also
supports exploration of most liked and retweeted
#NLProc tweets of all times and in the last month.

5.4 CFP Timeline

TWEENLP presents a timeline of the upcoming
submission deadlines. The timeline is created by
identifying ‘Call for Papers’ tweets using keyword
based filtering of tweets and also lists the confer-
ence/workshop website. The details are described
in the CFP Timeline Builder module 3. We present
a snapshot of the timeline in Figure 6.
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Top Hashtags Top Mentions Top URLs Top Papers Discussed

#acl2020nlp @aclmeeting virtual.acl2020.org/socials.html Beyond Accuracy: Behavioral Testing
of NLP models with CheckList

#acl2020en @emilymbender virtual.acl2020.org/plenary
session keynote kathy mckeown.html

Photon: A Robust Cross-Domain Text-
to-SQL System

#nlproc @akoller virtual.acl2020.org/paper main.701.html
Climbing towards NLU: On Meaning,
Form, and Understanding in the Age of
Data

#acl2020zht @winlpworkshop virtual.acl2020.org/workshop W1.html
Language Models as an Alternative Eval-
uator of Word Order Hypotheses: A
Case Study in Japanese

#acl2020hi @xandaschofield www.aclweb.org/anthology/
2020.acl-main.442/

Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks

#mt @gneubig virtual.acl2020.org/workshop W10.html The State and Fate of Linguistic Diver-
sity and Inclusion in the NLP World

Table 2: ACL 2020 Twitter Coverage: Top discussed papers, mentions and URLs and popular hashtags.

Tweet Counter Likes Counter Retweet Counter Unique Mentions Unique Paper Mentions
5,343 58,160 11,440 907 251

Table 3: ACL 2020 Twitter Statistics of various activities.

Figure 4: Conference Visualizer: ACL2020 Statistics. (a) Distribution of tweets across different months. (b) Daily
distribution of ACL2020 tweets in July 2020. (c) Distribution of tweet languages except English. (d) Twitter users
with highest ACL2020 tweets.

5.5 Paper Tweet Visualizer

NLPExplorer supports a research paper search
interface and builds research paper pages which
showcase standard paper related statistics such as
the publication year and venue, author information,
citations, citation distribution over the years and
the link to the corresponding PDF article. Addition-

ally, it also provides interesting insights like similar
papers, topical distribution and mentioned URLs.
We map research paper discussion tweets on Twit-
ter to the NLPExplorer paper page. This feature
allows users to browse through discussions about
the paper along with the metadata of the paper. We
present a snapshot of the feature in Figure 7.
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Figure 5: Popular papers identified TWEENLP based on twitter activity.

Figure 6: CFP Timeline built from tweets. ‘W’ on top-
right denotes Workshop.

Figure 7: Paper Tweet Visualizer curates tweets and
metadata of a research paper on a joint portal. The
image background is a ‘Paper’ page from NLPEx-
plorer which lists paper metadata, citing papers, field-
of-study tags, and similar papers alongwith the associ-
ated tweets.

5.6 Popular Last Week

Lastly, we present popular tweets in the NLP com-
munity on Twitter (also referred as NLP Twitter).
This feature allows researchers to catch up with the
recent NLP-related Twitter discussions in a single
dashboard without searching for them specifically
in the Twitter feed.

6 Related Works

Bird et al. (2008) curated the ACL Anthology Ref-
erence Corpus (ACL ARC) of research papers in
NLP and CL. Radev et al. (2009, 2013) constructed

the ACL Anthology Network (AAN) by manual
annotation of the references to complete the cita-
tion network and analysed the network to present
central papers, authors and other network statis-
tics (Radev et al., 2016). Works by Schäfer et al.
(2011) and Parmar et al. (2020) provide a compre-
hensive search interface to browse through the NLP
based on parameters such as author, full text, year
of publication, title, and the field of study. Moham-
mad (2020) built the NLPScholar platform which
consists of interactive dashboards that present vari-
ous aspects of NLP research papers. The platform
uses ACL Anthology and Google Scholar as the
information source.

Few works have analysed Twitter data to predict
scholarly impact. Shuai et al. (2012) report a sta-
tistical correlation between high volume of Twitter
mentions and arXiv downloads and early citations
(i.e., citations occurring less than seven months af-
ter the publication of a preprint). However, they
also point out that Twitter mentions cannot be di-
rectly concluded to be causative of higher levels of
download and early citations. Several other works
such as Eysenbach (2011), Thelwall et al. (2013),
and Haustein et al. (2014) have tried to analyze
whether tweets correlate with citations.

However, to the best of our knowledge, no prior
work has tried to curate NLP discussions data from
Twitter in an attempt to organize it and link it to re-
search papers via a search engine or a visualization
portal.

7 Future Scope and Extensions

Currently, the system is implemented only for NLP
papers present in the ACL Anthology. The system
could be extended to papers from NeurIPS, ICLR,
and CVPR as the data for these conferences is avail-
able publicly. The system is versatile and can be
easily extended to other domains. TWEENLP pro-
vides basic visualization graphs over Twitter activ-
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ity. Over time, these discussions could be used to
build a timeline of evolution of research in various
domains of NLP based on the Twitter activity of
researchers. Tweets by popular users attain likes
and retweets at a higher rate in comparison to new
users (or users with less followers) of the commu-
nity. TWEENLP currently only presents popular
tweets based on retweets and likes count which
can bias the conversations, understanding and pre-
sentation of ideas by emphasising the tweets of a
small set of popular users. Future work includes
identifying novel alternative ideas and perspectives
by adjusting user popularity to create an inclusive
space for the community.
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Abstract

We introduce ChrEnTranslate, an online ma­
chine translation demonstration system for
translation between English and an endangered
language Cherokee. It supports both statistical
and neural translation models as well as pro­
vides quality estimation to inform users of re­
liability, two user feedback interfaces for ex­
perts and common users respectively, exam­
ple inputs to collect human translations for
monolingual data, word alignment visualiza­
tion, and relevant terms from the Cherokee­
English dictionary. The quantitative evalu­
ation demonstrates that our backbone trans­
lation models achieve state­of­the­art transla­
tion performance and our quality estimation
well correlates with both BLEU and human
judgment. By analyzing 216 pieces of expert
feedback, we find that NMT is preferable be­
cause it copies less than SMT, and, in gen­
eral, current models can translate fragments of
the source sentence but make major mistakes.
When we add these 216 expert­corrected paral­
lel texts into the training set and retrain mod­
els, equal or slightly better performance is ob­
served, which demonstrates indicates the po­
tential of human­in­the­loop learning.1

1 Introduction

Machine translation is a relatively mature natural
language processing technique that has been de­
ployed to real­world applications. For instance,
Google Translate currently supports translations
between over 100 languages. However, a lot of
low­resource languages are out there without the
support of modern technologies, which might ac­
celerate their vanishing. In this work, we focus
on one of those languages, Cherokee. Cherokee

1Our online demo is at https://chren.cs.unc.edu/;
our code is open­sourced at https://github.com/
ZhangShiyue/ChrEnTranslate; and our data is available
at https://github.com/ZhangShiyue/ChrEn.

is one of the most well­known Native American
languages, however, is identified as an “endan­
gered” language by UNESCO. Cherokee nations
have carried out language revitalization plans (Na­
tion, 2001) and established language immersion
programs and k­12 language curricula. Chero­
kee language courses are offered in some universi­
ties, including UNC Chapel Hill, the University of
Oklahoma, Stanford University, Western Carolina
University. A few pedagogical books have been
published (Holmes and Smith, 1976; Joyner, 2014;
Feeling, 2018) and a digital archive of historical
Cherokee language documents has been built up
(Bourns, 2019; Cushman, 2019). However, there
are still very limited resources available on the In­
ternet for Cherokee learners; meanwhile, first lan­
guage speakers and translators of Cherokee are
mostly elders and would likely benefit from ma­
chine translation’s assistance. This motivates us to
develop the first online Cherokee­Englishmachine
translation demonstration system. Extending our
previous works (Frey, 2020; Zhang et al., 2020),
we develop the backbone statistical and neural ma­
chine translation systems (SMT and NMT) on a
larger parallel dataset (17K) and obtain the state­
of­the­art Cherokee­English (Chr­En) and English­
Cherokee (En­Chr) translation performance.
Besides translation, our system also supports

quality estimation (QE) for both SMT and NMT.
QE is an important (missing) component of ma­
chine translation systems, which is used to inform
users of the reliability of machine­translated con­
tent (Specia et al., 2010). Since our models are
trained on a very limited number of parallel sen­
tences, it is expected that the translations will be
poor in most cases when used by Internet users.
Therefore, QE is essential for avoiding misuse and
warning users of potential risks. Existing best­
performance QE models are usually trained under
supervision with quality ratings from professional
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translators (Fomicheva et al., 2020a). However,
we are unable to easily collect a lot of human rat­
ings for Cherokee, due to its state of endanger­
ment. Nonetheless, we test both supervised and
unsupervised QEmethods: (1) Supervised: we use
BLEU (Papineni et al., 2002) as the quality rat­
ing proxy and train a BLEU regressor; (2) Unsu­
pervised: following the uncertain estimation lit­
erature (Lakshminarayanan et al., 2017), we use
the ensemble model’s output probability as the es­
timation of quality. Furthermore, to evaluate how
well theQEmodels perform, we collect 200 human
quality ratings (50 ratings for SMT Chr­En, SMT
En­Chr, NMT Chr­En, and NMT En­Chr, respec­
tively). We show that our methods obtain mod­
erate to strong correlations with human judgment
(Pearson correlation coefficient γ ≥ 0.44).

One main purpose of our system is to allow
human­in­the­loop learning. Since limited paral­
lel texts are available, it is important to involve
humans, especially experts, in the loop to give
feedback and then improve the models accord­
ingly. We develop two different user feedback
interfaces for experts and common users, respec­
tively (shown in Figure 2). We ask experts to pro­
vide quality rating, to correct the model­translated
content, and to leave open­ended comments; for
common users, we allow them to rate how help­
ful the translation is and to provide open­ended
comments. Upon submission, we collected 216
pieces of feedback from 4 experts. We find that
experts favor NMT more than SMT because SMT
excessively copies from source sentences; accord­
ing to their ratings and comments, current transla­
tion systems can translate fragments of the source
sentence but make major mistakes. Our naive
human­in­the­loop learning, by adding these 216
expert­corrected parallel texts back to the training
set, obtains equal or slightly better translation re­
sults. Plus, the expert comments shine a light on
where the model often makes mistakes. Besides,
our demo allows users to input text or choose an ex­
ample input to translate (shown in Figure 1). These
examples are from our monolingual databases, so
that experts will annotate them by providing trans­
lation corrections. Finally, to support an interme­
diate interpretation of the model translations, we
visualize the word alignment learned by the trans­
lation model and link to cherokeedictionary to pro­
vide relevant terms from the dictionary.

Our code is hosted at ChrEnTranslate and our

online website is at chren.cs.unc.edu. Common
users need to accept agreement terms before us­
ing our service to avoid misuse; access the ex­
pert page chren.cs.unc.edu/expert requires autho­
rization. We encourage fluent Cherokee speakers
to contact us and contribute to our human­in­the­
loop learning procedure. A demonstration video
of our website is at YouTube. In summary, our
demo is featured by (1) offering the first online
machine translation system for translation between
Cherokee and English, which can assist both pro­
fessional translators or Cherokee learners; (2) doc­
umenting human feedback, which, in the long run,
expands Cherokee data corpus and allows human­
in­the­loop model development. Additionally, our
website can be easily adapted to any other low­
resource translation pairs.

2 System Description

2.1 Translation Models

As shown in Figure 1, our system allows users to
choose statistical or neural model (SMT or NMT).

SMT is more effective for out­of­domain transla­
tion between Cherokee and English (Zhang et al.,
2020). We implement phrase­based SMT model
via Moses (Koehn et al., 2007), where we train a
3­gram KenLM (Heafield et al., 2013) and learn
word alignment by GIZA++ (Och and Ney, 2003).
Model weights are tuned on a development set by
MERT (Och, 2003).

NMT has better in­domain performance and can
generate more fluent texts. We implement the
global attentional model proposed by Luong et al.
(2015). Detailed hyper­parameters can be found
in Section 3.1. Note that we do not use Trans­
former because it empirically works worse (Zhang
et al., 2020). And we find that the multilingual
techniques we explored only significantly improve
in­domain performance when using multilingual
Bible texts, so we suspect that it biases to Bible
style texts. Hence, we also do not apply multilin­
gual techniques and just train the backbone models
with our Cherokee­English parallel texts. We use
a 3­model ensemble as our final working model.

2.2 Quality Estimation

Supervised QE. The QE (Specia et al., 2010)
task in WMT campaign provides thousands of
model­translated texts plus corresponding human
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Figure 1: Translation interface of our demonstration system. Note that “Ꮎ ᎠᏍᎦᏯ ᎠᎢ.” is not a correct translation.
See Figure 2 for the corrected translation by an expert.

ratings, which allow participants to train super­
vised QE models. Fomicheva et al. (2020a) show
that supervised models work significantly better
than unsupervised ones. Since we are unable to
collect thousands of human ratings, we use BLEU
(Papineni et al., 2002) as the quality rating. We use
17­fold cross­validation to obtain training data, i.e.,
we split our 17K parallel texts into 17 folds, use
16 folds to train a translation model, get the trans­
lation features plus BLEU scores of examples in
the left one fold, repeat this for 17 times, and fi­
nally, we get the features plus BLEU scores of 17K
examples. Then, we separate 16K examples as a
training set to train a BLEU score regressor and
evaluate the performance on the left 1K examples.
Fomicheva et al. (2020a,b) define three sets of fea­
tures. However, we need to compute features on­
line, so some features (e.g., dropout features) that
require multiple forward computations will greatly
increase latency. W use features that will not cause
too much speed lag. For SMT, we use:

(a) output length Lt, i.e., the number of words in
the translated text;

(b) total score;

(c) scores of distortion, language model, lexi­
cal reordering, phrases penalty, translation
model, and word penalty;

(d) length normalized (b) and (c) features (i.e., di­
vide each feature from (b) and (c) by (a)).

For NMT, we use:

(a) output length;

(b) log probability and length normalized log
probability;

(c) probability and length normalized probabil­
ity;

(d) attention entropy (Fomicheva et al., 2020a,b):
− 1

Lt

∑Lt
i=1

∑Ls
j=1 αij logαij , where Ls is the

length of source text, and αij is the attention
weight between target token i and source to­
ken j.

Finally, we use XGBoost (Chen and Guestrin,
2016) as the BLEU regressor.2 As shown in Fig­
ure 1, we use 5 stars to show QE, therefore, we
rescale the estimated quality to 0­5 by dividing the
predicted BLEU score (0­100) by 20.

Unsupervised QE. Even though supervised QE
works better (Fomicheva et al., 2020a), we suspect
that the advantage cannot generalize to open do­
main scenarios unless we have a large amount of
human­rated data to learn from. Hence, we also
explore unsupervised QE methods. Unsupervised
QE is closely related to uncertainty estimation. We
can use how uncertain the model is to quantify how
low­quality the model output is. Though it is intu­
itive to use the output probability as model’s con­
fidence, Guo et al. (2017) point out that the output
probability is often poorly calibrated, so that they
propose to re­calibrate the probability on the devel­
opment set. However, this method is designed for
classification tasks and not applicable for language
generation. Gal and Ghahramani (2016) show that
“dropout” can be a good uncertainty estimator, in­
spired by which Fomicheva et al. (2020b) propose
the dropout features. However, the multiple for­
ward passes are not preferable for an online system.
Lakshminarayanan et al. (2017) demonstrate that
the ensemble model’s output probability can bet­
ter estimate the model’s uncertainty than dropout.
We find that this method is simple yet effective for

2Wealso testedGradientBoost (Friedman, 2002) andMLP,
but XGBoost empirically works better.
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(a) Common User Feedback

(b) Expert Feedback

Figure 2: Two user feedback interfaces of our demonstration system. (b) shows the feedback given by an expert.

NMT. Note that we normalize the output probabil­
ity by the sentence length. Similarly, we rescale
the normalized probability (0­1) to 0­5 by multi­
plying it by 5.

Human Quality Rating. So far, our QE devel­
opment and evaluation are all based on BLEU. To
better evaluate QE performance, we collect 200 hu­
man ratings (all rated by Prof. Benjamin Frey3),
50 ratings for Chr­En SMT, En­Chr SMT, Chr­En
NMT, and En­Chr NMT, respectively. We fol­
low the direct assessment setup used by FLoRes
(Guzmán et al., 2019),4 and thus each translated
sentence receives a 0­100 quality rating.

3Benjamin Frey is a proficient second­language Cherokee
speaker and a citizen of the Eastern Band of Cherokee Indians.

40–10: represents a translation that is completely incorrect
and inaccurate; 11–29 represents a translation with a few cor­
rect keywords, but the overall meaning is different from the
source; 30–50 represents a translation that contains translated
fragments of the source string, with major mistakes; 51–69
represents a translation that is understandable and conveys the
overall meaning of source string but contains typos or gram­
matical errors; 70–90 represents a translation that closely pre­
serves the semantics of the source sentence; 90–100 range rep­

2.3 User Feedback & Example Inputs
Enlarging the parallel texts is a fundamental ap­
proach to improve the translation model’s per­
formance. Besides compiling existing translated
texts, it is important to newly translate English
texts to Cherokee by translators. Our system is de­
signed to not only assist these translators but also
document their feedback and post­edited correct
translation, so that model can be improved by us­
ing this feedback, i.e., human­in­the­loop learning.
To achieve this goal, we design two kinds of user
feedback interfaces. One is for common users, in
which users can rate how helpful the translation
is (in 5­point Likert scale) and leave open­ended
comments, as shown in Figure 2 (a). The other
is for experts, in which authorized users can rate
the quality, correct the translated text, and leave
open­ended comments, as shown in Figure 2 (b).
Upon submission, we collect 216 pieces of feed­
back from 4 experts and detailed analysis can be
found in Section 3.3. Meanwhile, as shown in

resents a perfect translation.
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Figure 3: Word alignment visualization and link to Cherokee­English Dictionary.

Figure 1, besides inputting text, users can also
choose an example input to translate. These ex­
amples are from our Cherokee or English mono­
lingual databases. On the one hand this provides
users with more convenience; on the other hand,
whenever experts submit translation corrections of
an example, we will updated its status as “labeled”.
Hence, we can gradually collect human transla­
tions for the monolingual data.

2.4 Other Features

As shown in Figure 3, to make model prediction
more interpretable to users, we visualize the word
alignment learned by the translation model. For
SMT, we visualize the hard word­to­word align­
ment; for NMT, we visualize the soft attention map
between source and target tokens. Additionally,
to provide users with some oracle and handy ref­
erences from the dictionary, we link to cherokee­
dictionary. We use each of the source and target
tokens as a query and list up to 15 relevant terms
on our web page.

3 Evaluation

3.1 Implementation Details

Data. To train translation models, we use the
14K parallel data collected by our previous work
(Zhang et al., 2020) plus 3K newly complied par­
allel texts. We randomly sample 1K as our devel­
opment set and treat the rest as the training set. The
data is open­sourced at ChrEn/data/demo. To col­

lect human quality ratings, we randomly sample 50
examples from the development set, and for each
of them, we collect 4 ratings for Chr­En/En­Chr
SMT and Chr­En/En­Chr NMT, respectively.

Setup. We implement SMT models via Moses
(Koehn et al., 2007). After training and tuning,
we run it as a server process.5 We develop our
NMT models via OpenNMT (Klein et al., 2017).
For both Chr­En and En­Chr NMT models , we
use 2­layer LSTM encoder and decoder, general
attention (Luong et al., 2015), hidden size=1024,
label smoothing (Szegedy et al., 2016) equals to
0.2, dynamic batching with 1000 tokens. Differ­
ently, the Chr­En NMT model uses dropout=0.3,
BPE tokenizer (Sennrich et al., 2016), and mini­
mumword frequency=10; the En­Chr NMTmodel
uses dropout=0.5, Moses tokenizer, and minimum
word frequency=0. We train each NMT model
with three random seeds (7, 77, 777) and use the
3­model ensemble as the final translation model,
and we use beam search (beam size=5) to gener­
ate translations. We implement the supervised QE
model with XGBoost.6 XGBoost has three impor­
tant hyperparameters: max depth, eta, the number
of rounds. Tuned on the development set, we set
them as (5, 0.1, 100) for Chr­En SMT, (3, 0.1, 80)
for En­Chr SMT, (4, 0.5, 40) for Chr­En NMT, and

5http://www.statmt.org/moses/?n=Advanced.
Moses

6https://xgboost.readthedocs.io/en/latest/
python/index.html
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BLEU Human Rating

Model QE Chr­En En­Chr Chr­En En­Chr

SMT

Supervised XGBoost 0.75 0.71 0.63 0.44

Unsupervised
TranslationModel / length 0.36 0.46 0.07 ­0.09
LM / length 0.34 0.43 ­0.11 0.11
PhrasePenalty / length ­0.33 ­0.52 0.06 0.03

NMT (ensemble)
Supervised XGBoost 0.79 0.68 0.53 0.38

Unsupervised Exp(LogProbability / length) 0.75 0.63 0.59 0.44
LogProbability / length 0.45 0.50 0.37 0.52

Table 1: Pearson correlation coefficients between QE and BLEU or between QE and human rating. “/ length”
represents the normalization by output sentence length.

Model Chr­En En­Chr

SMT 17.0 12.9

NMT (single) 18.1 13.8
NMT (ensemble) 19.9 14.8

Table 2: The performance of translation models.

(5, 0.1, 40) for En­Chr NMT. Lastly, the backend
of our demonstration website is based on the Flask
framework.

Metrics. We evaluate translation systems by
BLEU (Papineni et al., 2002) calculated via Sacre­
BLEU7 (Post, 2018). Supervised QE models are
developed by minimizing the mean square error of
predicting BLEU, but all QE models are evaluated
by the correlation with BLEU on development set
and the correlation with human ratings. We use
Pearson correlation (Benesty et al., 2009).

3.2 Quantitative Results

Translation. Table 2 shows the translation per­
formance on our 1K development set, which
are significantly better than the single­model in­
domain translation performance reported in our
previous work (Zhang et al., 2020) and thus
achieves the state­of­the­art results. In addition,
the 3­model NMT ensemble further boosts the per­
formance.

QE. Table 1 illustrates the performance of qual­
ity estimation models. In our experiments, we take
every feature used in supervised QE as an unsu­
pervised quality estimator. Here, we only present
those having a high correlation with BLEU and
human rating. It can be observed that, for SMT,
supervised QE consistently works better, whereas,
for NMT, unsupervised QE has a better correla­
tion with human rating. The obtained correlations
with human judgement are moderate (γ ≥ 0.3)

7BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0

to strong (γ ≥ 0.5) (Cohen, 1988). Therefore,
we use the trained XGBoost for SMT model’s
QE and use the length normalized probability (i.e.,
Exp(LogProbability / length)) for NMT model’s
QE in our online demonstration system.

3.3 Qualitative Results

Expert Feedback. Upon submission, we re­
ceived 216 pieces of feedback from 4 experts (in­
cluding Prof. Benjamin Frey and 3 other fluent
Cherokee speakers). The results are shown in Ta­
ble 3. It can be observed that we received a lot
more feedback to NMT than SMT because SMT
excessively copies words from source sentences
when translating open­domain texts whereas NMT
can mostly translate into the target language. On
average, there are only 2.3 tokens in the input or
translated Cherokee sentence; however, the aver­
age translation quality rating is only 2.45 out of
5, which is close to the average rating (43.8 out
of 100) of the 200 human ratings we collected.
Therefore, according to FLoRes’s rating standard
(Guzmán et al., 2019) (see footnote 2), our transla­
tion systems can translate fragments of the source
string but make major mistakes in general. Be­
sides ratings, we received 36 open­ended com­
ments that shine a light on commonmistakes made
by the models. The most frequent comments are
(1)model gets some parts correct but others wrong.
For example, “it got the subject but not the verb”,
“it got the stem right but used 3rd person prefix”,
“it missed the part about going to town, but got ‘to­
day’ correct”, etc. (2) model uses archaic English
terms, like “thy”, “thou”, “speaketh”, etc. because
the majority of our training set is the Cherokee Old
Testament and the Cherokee New Testament.

Human­in­the­Loop Learning. To improve
models based on expert feedback, we propose to
simply add the 216 expert­corrected parallel texts
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Model Chr­En En­Chr

SMT 12 / 1.92 / 0.39 6 / 2.0 / 0.66

NMT 166 / 2.58 / 0.43 32 / 2.13 / 0.21

Table 3: Expert feedback. In each cell, the 3 numbers
are the number of feedback received / average quality
rating / Pearson correlation coefficient between quality
rating and quality estimation.

back to our training set and retrain the translation
models.8 The new BLEU results on our devel­
opment set are 17.3, 13.0, 20.0, 14.8 for Chr­En
SMT, En­Chr SMT, Chr­En NMT (ensemble),
and En­Chr NMT (ensemble), respectively, which
are equal or slightly better than the results in
Table 2. To tackle the archaic English issue,
we simply replace archaic English terms (“thy”,
“thou”) with new English terms (“your”, “you”).

4 Conclusion & Future Work

In this work, we develop a Cherokee­English
Machine Translation demonstration system that
intends to demonstrate and support automatic
translation between Cherokee and English, col­
lect user feedback/translations, allow human­in­
the­loop development, and eventually contribute
to the revitalization of the endangered Cherokee
language. Future work involves inviting more ex­
perts and common users to test/use our system and
proposing more efficient and effective human­in­
the­loop learning methods.

5 Broader Impact Statement

As shown in Section 3.3, the current translation
models are still far from being reliably used in prac­
tice. Therefore, our system is just a demonstration
or prototype of the translation between Cherokee
and English, while the model­translated texts are
not supposed to be directly applied anywhere else
without confirmation from professional translators.
We stress this point in our agreement terms. Com­
mon users need to accept those terms before using
our system; experts need to agree to those terms
as well before being authorized. Lastly, we sin­
cerely thank David Montgomery, Barnes Powell,
and Tom Belt for voluntarily participating in our
system test and providing their feedback.

8We also tried to up­weight these examples by repeating
them by 5 or 10 times but did not see better performance.
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Abstract

With the rapid development of NLP research,
leaderboards have emerged as one tool to track
the performance of various systems on vari-
ous NLP tasks. They are effective in this goal
to some extent, but generally present a rather
simplistic one-dimensional view of the sub-
mitted systems, communicated only through
holistic accuracy numbers. In this paper, we
present a new conceptualization and imple-
mentation of NLP evaluation: the EXPLAIN-
ABOARD, which in addition to inheriting the
functionality of the standard leaderboard, also
allows researchers to (i) diagnose strengths
and weaknesses of a single system (e.g. what
is the best-performing system bad at?) (ii) in-
terpret relationships between multiple systems.
(e.g. where does system A outperform system
B? What if we combine systems A, B and
C?) and (iii) examine prediction results closely
(e.g. what are common errors made by multi-
ple systems or in what contexts do particular
errors occur?). So far, EXPLAINABOARD cov-
ers more than 400 systems, 50 datasets, 40 lan-
guages, and 12 tasks.1 We not only released
an online platform at the website2 but also
make our evaluation tool an API with MIT Li-
cence at Github3 and PyPi4 that allows users to
conveniently assess their models offline. We
additionally release all output files from sys-
tems that we have run or collected to motivate
“output-driven” research in the future.

1 Introduction

Natural language processing (NLP) research has
been and is making astounding strides forward.

1EXPLAINABOARD keeps updated and is recently up-
graded by supporting (1) multilingual multi-task bench-
mark and (2) more complicated task: machine translation,
which reviewers also suggested.

2http://explainaboard.nlpedia.ai/
3https://github.com/neulab/

explainaBoard
4https://pypi.org/project/

interpret-eval/

Figure 1: Illustration of the EXPLAINABOARD concept.
Compared to vanilla leaderboards, EXPLAINABOARD
allows users to perform interpretable (single-system ,
pairwise analysis, data bias), interactive (system com-
bination, fine-grained/common error analysis), and re-
liable analysis (confidence interval, calibration) on sys-
tems in which they are interested. “Comb.” denotes
“combination” and “Errs” represents “errors”. “PER,
LOC, ORG” refer to different labels.

This is true both for classical tasks such as machine
translation (Sutskever et al., 2014; Wu et al., 2016),
as well as for new tasks (Lu et al., 2016; Rajpurkar
et al., 2016), domains (Beltagy et al., 2019), and
languages (Conneau and Lample, 2019). One way
this progress is quantified is through leaderboards,
which report and update performance numbers
of state-of-the-art systems on one or more tasks.
Some prototypical leaderboards include GLUE and
SuperGLUE for natural language understanding
(Wang et al., 2018, 2019), XTREME and XGLUE
(Hu et al., 2020; Liang et al., 2020) for multilingual
understanding, the WMT shared tasks (Barrault
et al., 2020) for machine translation, and GEM and
GENIE for natural language generation (Gehrmann
et al., 2021; Khashabi et al., 2021), among many
others.

These leaderboards serve an important purpose:
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they provide a standardized evaluation setup, often
on multiple tasks, that eases reproducible model
comparison across organizations. However, at the
same time, due to the prestige imbued by a top, or
high, place on a leaderboard they also can result
in a singular focus on raising evaluation numbers
at the cost of deeper scientific understanding of
model properties (Ethayarajh and Jurafsky, 2020).
In particular, we argue that, among others, the fol-
lowing are three major limitations of the existing
leaderboard paradigm:

• Interpretability: Most existing leaderboards
commonly use a single number to summarize
system performance holistically. This is con-
ducive to system ranking but at the same time,
the results are opaque, making the strengths and
weaknesses of systems less interpretable.

• Interactivity: Existing leaderboards are static
and non-interactive, which limits the ability of
users to dig deeper into the results. Thus, (1)
they usually do not flexibly support more com-
plex evaluation settings (e.g. multi-dataset, multi-
metric, multi-language) (2) users may miss op-
portunities to understand the relationships be-
tween different systems. For example, where
does model A outperform model B? Would the
performance be further improved if we combine
the Top-3 models?

• Reliability: Given the increasing role that
leaderboards have taken in guiding NLP research,
it is important that information expressed in them
is reliable, especially on datasets with small sam-
ple sizes, but most current leaderboards do not
give an idea of the reliability of system rankings.

In this paper, we describe EXPLAINABOARD

(see Fig.1), a software package and hosted leader-
board that satisfies all of the above desiderata.
It also serves as a prototype implementation of
some desirable features that may be included in
future leaderboards, even independent of the pro-
vided software itself. We have deployed EXPLAIN-
ABOARD for 9 different tasks and 41 different
datasets, and demonstrate how it can be easily
adapted to new tasks of interest.

We expect that EXPLAINABOARD will benefit
different steps of the research process:
(i) System Developement: EXPLAINABOARD

provides more detailed information regarding the
submitted systems (e.g. fine-grained results, con-
fidence intervals), allowing system developers to

diagnose successes and failures of their own sys-
tems, or compare their systems with baselines and
understand where improvements of their proposed
methods come from. This better understanding can
lead to more efficient and effective system improve-
ments. Additionally, EXPLAINABOARD can help
system developers uncover their systems’ advan-
tages over others, even when these systems have
not achieved state-of-the-art performance holisti-
cally. (ii) Leaderboard Organization: The EX-
PLAINABOARD software both provides a ready-
made platform for easy leaderboard development
over different NLP tasks, and helps upgrade tradi-
tional leaderboards to allow for more fine-grained
analysis. For example, we have already established
an ExplainaBoard 5 for the existing XTREME
benchmark.6 (iii) Broad Analysis and Under-
standing: Because EXPLAINABOARD encourages
system developers to provide their system outputs
in an easy-to-analyze format, these will also help
researchers, particularly those just starting in a par-
ticular NLP sub-field, get a broad sense of what
current state-of-the-art models can and cannot do.
This not only helps them quickly track the progress
of different areas, but also can allow them to un-
derstand the relative advantages of diverse sys-
tems, suggesting insightful ideas for what’s left
and what’s next.7

2 ExplainaBoard

As stated above, EXPLAINABOARD extends exist-
ing leaderboards, improving their interpretability,
interactivity, and reliability. It does so by provid-
ing a number of functionalities that are applicable
to a wide variety of NLP tasks (as illustrated in
Tab. 1). Many of these functionalities are grounded
in existing research on evaluation and fine-grained
diagnostics.

2.1 Interpretability

Interpretable evaluation (Popović and Ney, 2011;
Stymne, 2011; Neubig et al., 2019; Fu et al., 2020a),
is a research area that considers methods that break
down the holistic performance of each system into
different interpretable groups. For example, in a

5http://explainaboard.nlpedia.ai/
leaderboard/xtreme/

6https://sites.research.google/xtreme/
7Since the first release of EXPLAINABOARD, we have

received invitations from multiple companies, startups, and
researchers to collaborate, and we are working together to
make it better for the community.

281



Aspect Functionality Input Output

Interpretability

Single-system
Analysis One model

� 4
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Performance Histogram: the input model is
good at dealing with short entities, while achiev-
ing lower performance on long entities.

Pairwise
Analysis

Two models
(M1,M2)
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Performance Gap Histogram (M1−M2): M1
is better at dealing with short entities, while M2
is better at dealing with long entities.

Data Bias
Analysis Multi-dataset
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Data Bias Chart: For the entity length
attribute, the average entity length (We average
the length of all test entities on a given data set.)
of these datasets order by descending is BN>
BC> CN03> WB.

Interactivity

Fine-grained
Error Analysis

Single- or
Pairwise-system
diagnostic results
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PER LOC ORG Error Table: Error analysis allows the user to
print out the entities that are incorrectly pre-
dicted by the given model, as well as the true
label of the entity, the mispredicted label, and
the sentence where the entity is located.

System
Combination

Multi-models
(M1,M2,M3)

M1 M3M2 Comb0

Ensemble Chart: The combined result of
model M1, M2, and M3 is shown by the his-
togram with x-label value comb. The combined
result is better than the single models.

Reliability

Confidence One model
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0

Error Bars: the error bars represent 95% con-
fidence intervals of the performance on the spe-
cific bucket.

Calibration One model

Output
Gap

Error: 28.6

0.0 0.5 1.0

Reliability Diagram: Confidence histograms
(red) and reliability diagrams (blue). that indi-
cate the accuracy of model probability estimates

Table 1: A graphical breakdown of the functionality of EXPLAINABOARD, with examples from an NER task.

Named Entity Recognition (NER) task, we may ex-
amine the accuracy along different dimensions of a
concerned entity (such as “entity frequency,” telling
us how well the model does on entities that appear
in the training data a certain number of times) or
sentences (such as “sentence length,” telling us
how well the model does on entities that appear
in longer or shorter sentences) (Fu et al., 2020a).
This makes it possible to understand where mod-
els do well and poorly, leading to further insights
beyond those that can be gleaned by holistic evalua-
tion numbers. Applying this to a new task involves
the following steps: (i) Attribute definition: define
attributes by which we can partition the test set
into different groups. (ii) Bucketing: partition into
different buckets based on defined attributes and
calculate performance w.r.t each bucket.

Generally, previous work on interpretable evalu-
ation has been performed over single tasks, while
EXPLAINABOARD allows for comprehensive eval-

uation of different types of tasks in a single soft-
ware package. We concretely show several ways
interpretable evaluation can be defined within EX-
PLAINABOARD below:

F18: Single-system Analysis: What is a system
good or bad at? For an individual system as in-
put, generate a performance histogram that high-
lights the buckets where it performs well or poorly.
For example, in Tab. 1 we demonstrate an example
from NER where the input system does worse in
dealing with longer entities (eLen ≥ 4).

F2: Pairwise Analysis: Where is one system bet-
ter (worse) than another? Given a pair of sys-
tems, interpret where the performance gap occurs.
Researchers could flexibly choose two systems they
are interested in (e.g. selecting two rows from the
leaderboard), and EXPLAINABOARD will output a
performance gap histogram to describe how the

8“F” represents “Functionality”.
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performance differences change over different
buckets of different attributes. Tab. 1 demonstrates
how we can see one system is better than the other
at longer or shorter entities.

F3: Data Bias Analysis: What are the charac-
teristics of different evaluated datasets? The
defined attributes do not only help us interpret sys-
tem performance, but also make it possible for
users to take a closer look at characteristics of di-
verse datasets. For example, from Fig. 1 shows an
example of analyzing differences in average entity
length across several datasets.

2.2 Interactivity

EXPLAINABOARD also allows users to dig deeper,
interacting with the results in more complex ways.

F4: Fine-grained Error Analysis: What are
common mistakes that most systems make and
where do they occur? EXPLAINABOARD pro-
vides flexible fine-grained error analyses based on
the above-described performance evaluation:

1. Users can choose multiple systems and see
their common error cases, which can be use-
ful to identify challenging samples or even
annotation errors.

2. In single-system analysis, users can choose
particular buckets in the performance his-
togram9 and see corresponding error samples
in that bucket (e.g. which long entities does
the current system mispredict?).

3. In pairwise analysis, users can select a bucket,
and the unique errors (e.g. system A succeeds
while B fails and vice versa) of two models
will be displayed.

F5: System Combination: Is there potential
complementarity between different systems?
System combination (Ting and Witten, 1997;
González-Rubio et al., 2011; Duh et al., 2011) is a
technique to improve performance by combining
the output from multiple existing systems. In EX-
PLAINABOARD, users can choose multiple systems
and obtain combined results calculated by voting
over multiple base systems.10 In practice, for NER
task, we use the recently proposed SPANNER (Fu

9Each bin of the performance histogram is clickable, re-
turning an error case table.

10With the system combination button of Explainaboard,
we observed the-state-of-the art performance of some tasks
(e.g., NER, Chunking) can be further improved.

et al., 2021) as a combiner, and for text summariza-
tion we employed REFACTOR, a state-of-the-art en-
semble approach (Liu et al., 2021). Regarding the
other tasks, we adopt the majority voting method
for system combination.

2.3 Reliability

The experimental conclusions obtained from the
evaluation metrics are not necessarily statistically
reliable, especially when the experimental results
can be affected by many factors. EXPLAIN-
ABOARD also makes a step towards more reliable
interpretable evaluation.

F6: Confidence Analysis: To what extent can
we trust the results of our system? EXPLAIN-
ABOARD can perform confidence analysis over
both holistic and fine-grained performance met-
rics. As shown in Tab. 1, for each bucket, there is
an error bar whose width reflects how reliable the
performance value is. We claim this is an important
feature for fine-grained analysis since the numbers
of test samples in each bucket are imbalanced, and
with the confidence interval, one could know how
much uncertainty there is. In practice, we use boot-
strapping method (Efron, 1992; Ye et al., 2021) to
calculate the confidence interval.

F7: Calibration Analysis: How well is the con-
fidence of prediction calibrated with its correct-
ness? One commonly-cited issue with modern
neural predictors is that their probability estimates
are not accurate (i.e. they are poorly calibrated), of-
ten being over-confident in the correctness of their
predictions (Guo et al., 2017). We also incorporate
this feature into EXPLAINABOARD, allowing users
to evaluate how well-calibrated their systems of
interest are.

3 Tasks, Datasets and Systems

We have already added to EXPLAINABOARD 12
NLP tasks, 50 datasets, and 400 models,11 which
cover many or most of top-scoring systems on these
tasks.We briefly describe them below, and show
high-level statistics in Tab. 2.

Text Classification Prediction of one or multi-
ple pre-defined label(s) for a given input text. The
current interface includes datasets for sentiment

11265 of these models are implemented by us, as unfortu-
nately it is currently not standard in NLP to release the system
outputs that EXPLAINABOARD needs.
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classification (Pang et al., 2002), topic identifica-
tion (Wang and Manning, 2012), and intention de-
tection (Chen et al., 2013).

Text-Span Classification Prediction of a pre-
defined class from the input of a text and a span,
such as aspect-based sentiment classification task
(Pappas and Popescu-Belis, 2014). We collect top-
perform system outputs from (Dai et al., 2021).

Text Pair Classification Prediction of a class
given two texts, such as the natural language in-
ference task (Bowman et al., 2015).

Sequence Labeling Prediction of a label for
each token in a sequence. The EXPLAINABOARD

currently includes four concrete tasks: named en-
tity recognition (Tjong Kim Sang and De Meulder,
2003), part-of-speech tagging (Toutanova et al.,
2003), text chunking (Ando and Zhang, 2005), and
Chinese word segmentation (Chen et al., 2015).

Structure Prediction Prediction of a syntac-
tic or semantic structure from text, where EX-
PLAINABOARD currently covers semantic parsing
tasks (Berant et al., 2013; Yu et al., 2018).

Text Generation EXPLAINABOARD also con-
siders text generation tasks, and currently mainly
focuses on conditional text generation, for exam-
ple, text summarization (Rush et al., 2015; Liu and
Lapata, 2019) and machine translation . System
outputs on text summarization are expanded based
on the previous work’s collection (Bhandari et al.,
2020) as well as recently state-of-the-art systems
(Liu and Liu, 2021) while outputs from machine
translation are collected from the WMT20.12

4 Case Study

Here, we briefly showcase the actual EXPLAIN-
ABOARD interface through a case study on analyz-
ing state-of-the-art NER systems.

4.1 Experimental Setup
Attribute Definition We define attributes follow-
ing Fu et al. (2020a) and three of them are used be-
low: entity length, sentence length
and label of entity.

Collection of Systems Outputs Currently, we
collect system outputs by either implementing them
by ourselves or collecting from other researchers

12http://www.statmt.org/wmt20/
metrics-task.html

Task Data Model Attr.

Text Classification

Sentiment 8 40 2

Topic 4 18 2

Intention 1 3 2

Text-Span Classi-
fication

Aspect Sentiment 4 20 4

Text Pair Classifi-
cation

NLI 2 6 7

Sequence Labeling

NER 3 74 9

POS 3 14 4

Chunking 3 14 9

CWS 7 64 7

Structure Pred. Semantic Parsing 4 12 4

Text Generation
Summarization 2 36 7

Translation 4 60 9

Table 2: Brief descriptions of tasks, datasets and sys-
tems that EXPLAINABOARD currently supports. “Attr.”
denotes Attribute. “Pred.” denotes “Prediction”.

(Fu et al., 2020b; Schweter and Akbik, 2020; Ya-
mada et al., 2020). Using these methods, we have
gathered 74 models on six NER datasets with sys-
tem output information.

4.2 Analysis using ExplainaBoard
Fig. 2 illustrates different types of results driven by
four functionality buttons13 over the top-3 NER
systems: LUKE (Yamada et al., 2020), FLERT
(Schweter and Akbik, 2020) and FLAIR (Akbik
et al., 2019).
Box A breaks down the performance of the top-1
system over different attributes.14 We can intu-
itively observe that even the state-of-the-art system
does worse on longer entities. Users can further
print error cases in the longer entity bucket by click-
ing the corresponding bin.
Box B shows the 1st system’s (LUKE) performance
minus the 2nd system’s (FLERT) performance.
We can see that although LUKE surpasses FLERT
holistically, it performs worse when dealing with
PERSON entities.
Box C identifies samples that all systems mispre-
dict. Further analysis of these samples uncovers
challenging patterns or annotation errors.
Box D examines potential complementarity among
these top-3 systems. The result shows that, by
a simple voting ensemble strategy, a new state-

13As it is relatively challenging to define calibration in struc-
ture prediction tasks, this feature is currently only provided
for classification tasks. We will explore more in the future.

14Due to the page limitation, we only show three.
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Figure 2: An example of the actual EXPLAINABOARD interface for NER over three top-performing systems on
the CoNLL-2003 dataset. Box A shows the single-system analysis results obtained when users select the top-1
system and click the “Single Analysis” button. Box B shows the pairwise analysis results when top-2 systems are
chosen and “Pair Analysis” is clicked. Users can click any bin of the histogram, which results in a fine-grained
error case table. Box C represents a table with common errors of these top-3 systems. Box D illustrates the
combined result of the top-3 systems.

of-the-art (94.65 F1) has been achieved on the
CoNLL-2003 dataset.

5 Usage

Example Use-cases To show the practical util-
ity of EXPLAINABOARD, we first present exam-
ples of how it has been used as an analysis tool
in existing published research papers. Fu et al.
(2020b) (Tab.4) utilize single-system analysis with
the attribute of label consistency for NER
task while Zhong et al. (2019) (Tab.4-5) use it for
text summarization with attributes of density
and compression. Fig.4 and Tab.3 in Fu et al.
(2020a) leverage the data bias analysis and pair-
wise system diagnostics to interpret top-performing
NER systems while Tab.4 in Fu et al. (2020c) use
single and pairwise system analysis to investigate
what’s next for the Chinese Word Segmentation
task. Liu et al. (2021) use system combiner func-
tionality to make ensemble analysis of summariza-
tion systems and Fig.1 in Ye et al. (2021) use reli-
ability analysis functionality to observe how con-
fidence intervals change in different buckets of a
performance histogram.

Using ExplainaBoard Researchers can use EX-
PLAINABOARD in different ways: (i) We main-
tain a website where each task-specific EXPLAIN-
ABOARD allows researchers to interact with it, in-
terpreting systems and datasets that they are inter-
ested in from different perspectives. (ii) We also
release our back-end code for different NLP tasks
so that researchers could flexibly use them to pro-
cess their own system outputs, which can assist
their research projects.

Contributing to ExplainaBoard The commu-
nity can contribute to EXPLAINABOARD in sev-
eral ways: (i) Submit system outputs of their im-
plemented models. (ii) Add more informative at-
tributes for different NLP tasks. (iii) Add new
datasets or benchmarks for existing or new tasks.

6 Implications and Roadmap

EXPLAINABOARD presents a new paradigm in
leaderboard development for NLP. This is just the
beginning of its development, and there are many
future directions.
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Research Revolving on System Outputs15 Due
to the ability to analyze, contrast, or combine re-
sults from many systems EXPLAINABOARD incen-
tivizes researchers to submit their results to explain-
aboard to better understand them and showcase
their systems’ strengths. At the same time, EX-
PLAINABOARD will serve as a central repository
for system outputs across many tasks, allowing
for future avenues of research into cross-system
analysis or system combination.

Enriching ExplainaBoard with Glass-box Anal-
ysis EXPLAINABOARD currently performs black-
box analysis, solely analyzing system outputs with-
out accessing model internals. On the other hand,
there are many other glass-box interpretability tools
that look at model internals, such as the AllenNLP
Interpret (Wallace et al., 2019) and Language Inter-
pretability Tool (Tenney et al., 2020). Expanding
leaderboards to glass-box analysis methods (see
Lipton (2018); Belinkov and Glass (2019) for a
survey) is an interesting future work.

In the future, we aim to improve the applicabil-
ity and usefulness by following action items: (1)
Collaborate with more leaderboard organizers of
diverse tasks and set up corresponding EXPLAIN-
ABOARDs for them. (2) Cover more tasks, datasets,
models, as well as functionalities.
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Abstract

The usage of individual words can change over
time, for example, when words experience a
semantic shift. As text datasets generally com-
prise documents that were collected over a
longer period of time, examining word usage
changes in a corpus can often reveal interest-
ing patterns. In this paper, we introduce a
simple and intuitive way to track word usage
changes via continuously evolving embeddings,
computed as a weighted running average of
transformer-based contextualized embeddings.
We demonstrate our approach on a corpus of
recent New York Times article snippets and
provide code for an easy to use web app to
conveniently explore semantic shifts with inter-
active plots.

1 Introduction

Languages are constantly changing, with new
words being coined or existing ones adopting a
new meaning (Blank, 1999; Hamilton et al., 2016).
For example, as Hurricane Dorian hit the Bahamas
on Sept. 1, 2019, and was henceforth regarded as
the worst natural disaster in the country’s recorded
history, within a matter of days the until then in-
nocuous name “Dorian” suddenly became synony-
mous with a devastating tropical cyclone (Fig. 1).
These kinds of semantic shifts are of great interest
for researchers in fields like computational linguists
and digital humanities, but their analysis requires
appropriate tools, especially to create fine-granular
visualizations, for example, to facilitate the study
of texts from fast-paced environments such as so-
cial media.

Word embeddings are nowadays the method of
choice when examining the meaning of and rela-
tion between words, and, as an extension thereof,
diachronic embeddings can be used to discover and
analyze the semantic shifts and usage changes of
words over time. The main idea behind diachronic
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Figure 1: Cosine similarity between the continuously
evolving embeddings for the word “Dorian” and its
nearest neighbors over time, computed on our NYTimes
article snippets corpus (see Sec. 4 for further details).

word embeddings is to learn a set of embeddings
for each word, one for each time period of inter-
est, to then see how much the embeddings for the
same word differ over time (see e.g. (Kutuzov et al.,
2018) or (Tahmasebi et al., 2018) for a compre-
hensive overview). However, most approaches for
computing diachronic embeddings either a) rely on
static word embedding models such as word2vec,
which makes it difficult to use them with small cor-
pora, b) are based upon rather complex dynamic
language models, and/or c) require the corpus to be
split into individual time slices, which introduces
a bias, since by computing embeddings for differ-
ent years, for example, one implicitly assumes that
the meaning of a word might change between Jan-
uary and December of the previous year, but not
between July and August of the same year.

In this paper, we introduce continuously evolv-
ing embeddings that are computed in one pass
over the whole (chronologically ordered) corpus by
keeping track of a weighted running average of con-
textualized embeddings generated by a transformer
model such as BERT (Sec. 2). By taking (poten-
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tially arbitrarily frequent) ‘snapshots’ of the current
state of the embeddings at user-defined time points,
one obtains smoothly changing high-resolution di-
achronic embeddings. With these embeddings, se-
mantic shifts can be detected at a resolution of
weeks or months instead of years or decades. The
exploration of word usage change is facilitated by
our web app that provides the user with the corre-
sponding interactive graphics (Sec. 3), which we
demonstrate on a corpus of recent newspaper article
snippets (Sec. 4).

Summary of our contributions:
1. continuously evolving embeddings:

• simple and intuitive method for comput-
ing diachronic embeddings

• can be applied to small datasets thanks
to pre-trained transformer models

• corpus does not need to be split into (ar-
bitrarily) defined time intervals

• frequent snapshots ensure smoothly
changing, high-resolution embeddings

2. all the necessary code1 to explore word usage
change in novel datasets with a user-friendly
web app

2 Continuously Evolving Embeddings

Let xlocal
ti be the contextualized embedding of a to-

ken t generated by some arbitrary method (e.g. a
pre-trained BERT model) for the ith occurrence of
t in a corpus. Then a global embedding of t can
be computed by averaging over the local embed-
dings of all N occurrences of t in the corpus (Horn,
2017; Bommasani et al., 2019; Martinc et al., 2019;
Kutuzov and Giulianelli, 2020):

x
global
t =

1

N

N∑

i=1

xlocal
ti . (1)

Equivalently, this can be formulated as a run-
ning average (Finch, 2009), allowing for memory-
efficient continuous updates in one pass over the
corpus:

x
global[:n]
t =

(n− 1)x
global[:n−1]
t + xlocal

ti

n
.

Using this running average formula, it is possible
to compute continuously evolving embeddings by

1https://github.com/cod3licious/evolvemb

updating the global embedding as more and more
sentences are processed (Akbik et al., 2019). How-
ever, usually the more recent occurrences of the
word are of greater relevance when determining
the current sense of the word. To account for this,
the above formula can be adapted by introducing a
weighting factor 0 < α ≤ 0.5:

n′ = min

{
n,

⌈
1

α

⌉}

x
α[:n]
t =

(n′ − 1)x
α[:n−1]
t + xlocal

ti

n′
. (2)

This is equivalent to computing the weighted aver-
age of the two embeddings (for large n):

x
α[:n]
t = (1− α)xα[:n−1]t + αxlocal

ti

and results in an exponential forgetting of the past
occurrences in favor of the more recent instances
(Finch, 2009).

While Martinc et al. (2019) generate diachronic
embeddings by computing a global average of all
contextualized embeddings occurring in texts from
individual (predefined) time periods (Eq. 1), we
instead propose to keep track of a weighted run-
ning average computed in one pass over the whole
(chronologically ordered) corpus (Eq. 2). By tak-
ing ‘snapshots’ of the current state of these continu-
ously evolving embeddings at user-defined time
points, it is possible to obtain smoothly chang-
ing high-resolution diachronic word embeddings.2

The weighting parameter α in the running aver-
age should be set according to the number of word
occurrences one assumes it might take for the mean-
ing to change and can be set individually for each
word to reflect the differing overall frequencies and
semantic shift paces (Hamilton et al., 2016).

The computation of continuously evolving em-
beddings scales linearly with respect to the number
of sentences in the dataset, since each sentence has
to be embedded with the transformer model once
to update the weighted running average with the re-
spective contextualized embeddings. The required
memory, on the other hand, scales linearly with the
number of embedding snapshots that are taken dur-
ing the computation, where a copy of the current
state of the global embedding matrix needs to be
stored for every snapshot.

2Since an embedding simply stays the same when the word
does not occur, these snapshots can be taken in arbitrarily short
intervals.
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3 The EvolvEmb App

Word usage changes in a corpus can be easily ex-
plored using the web application we created for
this purpose. The app itself is based on the dash
framework (Shammamah Hossain, 2019) and can
be run locally by following the steps listed in Fig. 2
and demonstrated in the screencast3, i.e., first com-
puting continuously evolving embeddings and sav-
ing the respective snapshots (or, alternatively, di-
achronic embeddings obtained with a traditional
approach such as a SGNS model trained on indi-
vidual time slices (Kim et al., 2014)), and then
starting the app (which loads the pre-computed em-
beddings) to obtain the list of most changed words
in the corpus and a simple interface to generate the
plots displaying the evolution of nearest neighbors
over time for individual (user-selected) words.

1.) [Optional] Fine-tune transformer model on corpus
2.) Compute embedding snapshots:

3.) Exploratory analysis (in web app):
→ load precomputed snapshots
a) List of most changed words
b) Plots for individual words:
nearest neighbors over time

transformer

2019-01-01 In Search of Lost Screen Time . Imagine
what we could do with our money , and hours , if we
set our phones aside for a year .

2019-01-07 A Different Kind of Comfort Food for an
Italian Chef . Nina Clemente cooks her own version of
a hearty Indian dal instead of pasta or pizza when
she 's feeling run down .

2019-01-16 Republicans Break Ranks Over Move to Lift
Sanctions on Russian Oligarch 's Firms . Eleven
Senate Republicans defied their leadership and the
Trump administration in a clash over removing
sanctions on companies controlled by a Kremlin ally .

2019-01-31 On Politics : Trump Calls His Own
Intelligence Officials ' Naive ' President Trump
lashed out at U.S. intelligence agencies , putting
them in the awkward position of being at odds with
the commander in chief over Iran and North Korea .

2019-02-12 The Bezos Story Is Big . And it 's got a
little bit of everything .

2019-02-13 From a Church in Philadelphia , Sports
Reference Informs the World . A network of sports
data websites began when a Ph.D. candidate needed a
distraction. Last year those sites generated a
billion page views .

2019-03-03 Michael Jackson Documentary Revives
Lurid Claims , Imperiling His Thriving Estate . Mr.
Jackson died deep in debt. Now his estate is worth
billions. Will the new film , " Leaving Neverland ,"
focused on two men 's accounts of sexual abuse ,
damage his posthumous career ?

......pr
oc
es
sc
hr
on
ol
og
ic
al
ly

generate contextualized
word embeddings

update global
embedding matrix

take frequent snapshots

corpus

. . .

2020-01-31: 2020-02-29: 2020-03-31: 2020-04-30:{ }

Figure 2: Steps to explore word usage change in novel
datasets: First the continuously evolving embedding
snapshots are computed as described in Sec. 2, then the
precomputed matrices can be used in the app to produce
interactive plots similar to those shown in Fig. 3.

4 Exploring Word Usage Change

To demonstrate our approach, we downloaded
95,203 newspaper article snippets (consisting of a
headline and 1-3 sentences) published by the New
York Times between April 1st, 2019, and Dec. 31st,
2020, via their API.4 Diachronic embeddings were
computed for the 5,620 words that occurred at
least 50 times in the corpus by processing the texts
chronologically, computing continuously evolving

3https://youtu.be/ltF67J-la7I
4https://developer.nytimes.com/apis

embeddings with a transformer model, and taking
a snapshot of the current state of the embeddings at
the end of each month. α was set individually for
each word based on how many times on average
the word occurred in the articles of a single month.
To compute the contextualized embeddings, we ex-
perimented with pre-trained BERT and RoBERTa
models from the HuggingFace library (Wolf et al.,
2020) that were either used as is or fine-tuned for
three epochs on our corpus. As the results obtained
with both models were similar, we focus on BERT
in the following.

Words with different usages were identified
based on the minimum cosine similarity between
their embedding snapshots from different time
points.5 As this also yielded several words with
multiple meanings that showed seasonal trends (Ta-
ble 1, Fig. 3), we additionally identified words with
a continuous semantic shift specifically by consid-
ering only the cosine similarity scores Sik of all
snapshots i to the last snapshot k and subtracted
from the overall increase of the scores over time any
intermediate decrease between subsequent scores:

(Skk − S0k)−
k−1∑

i=0

max{Sik − S(i+1)k, 0}.

As expected, when computing continuously
evolving embeddings on shuffled article snippets,
i.e., a corpus that is no longer chronologically or-
dered (Dubossarsky et al., 2017), the resulting se-
mantic shift scores are significantly lower (Table 2).

Even though the continuously evolving embed-
dings computed with pre-trained transformers are
already sufficient to identify many words with us-
age changes, fine-tuning of the models is gener-
ally advised, especially to clearly identify seman-
tic shifts when the new usage of a word was not
present in the texts the transformer was originally
trained on. To illustrate this, inspired by Rosen-
feld and Erk (2018), we introduced a synthetic se-
mantic shift into the data for an artificially created

5We also explored the intersection of the k nearest neigh-
bors (NN) of the word embeddings to identify words with a
usage change (Gonen et al., 2020), but found these results to
be less reliable, because the number of close NN can differ a
lot between words with a specific or more general meaning.
Nevertheless, there is a significant correlation between the
minimum cosine similarity and the kNN interaction score.
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Figure 3: Plots as included in the app, here depicting the evolution of nearest neighbors over time for the word
“category”, computed with a pre-trained BERT model on our NYTimes article snippets dataset. For the target word,
first the two time points with the smallest cosine similarity between the embeddings of the word itself were identified,
then the five nearest neighbors of the word at both time points were selected (red and blue colors respectively; words
that occurred in both sets are in red). Left: Cosine similarity between the target word at each time point and the
nearest neighbors, as well as the two most different embedding snapshots of the target word itself (inspired by the
plots in (Bamler and Mandt, 2017)). Right: 2D PCA visualization of all embedding snapshots of the target word as
well as both sets of nearest neighbors (smaller dots represent embeddings at earlier time points).

Table 1: The 25 most changed tokens with their corre-
sponding minimum cosine similarity score between the
embedding snapshots (multiple meanings) and our se-
mantic shift score, obtained by computing continuously
evolving embeddings using a pre-trained BERT model
on the NYTimes article snippets (ignoring new words
that only occurred after the first snapshot date; words
occurring in both lists are italicized).

multiple meanings: category (0.50), appoint-
ment, barrier, majors, bend, chiefs, doubles,
tables, upon, 600, del, positive, kobe, plague,
nationals, lands, dorian, stanley, murray, mine,
plunge, rolling, posed, jeopardy, revival (0.77)
semantic shift: coney (0.1869), kobe (0.1852),
dorian, 600, barrier, plague, stimulus, remotely,
arbery, positive, sheet, thanksgiving, excerpt, tu-
dor, plunge, halted, mask, infected, tracing, dis-
tancing, masks, educators, throwing, tip, retire
(0.1083)

word:6 First, we removed all sentences containing
the words “president” or “coronavirus” (the two
most frequent nouns in our dataset) from the cor-
pus and replaced each occurrence of the respective
word with the new token “presidentcoronavirus”.
These augmented sentences were then reintroduced
into the corpus at regular intervals based on a tran-

6Since established word usage change evaluation datasets
so far only cover broad discrete time bins (Schlechtweg et al.,
2020), to evaluate gradual semantic shifts one has to resort to
synthetic data (Shoemark et al., 2019).

Table 2: Analogous to Table 1: the 25 tokens with the
greatest semantic shift when applying the pre-trained
BERT model to shuffled sentences.

semantic shift (shuffled): breakthrough
(0.1210), trend (0.0621), coup, urgency, releas-
ing, succeed, wind, limiting, holes, forecast,
developments, attempted, richest, superstar,
pastor, addressing, pack, upset, recommen-
dation, programming, autism, arrival, denver,
associated, flowers (0.0313)

sition probability that follows a sigmoid curve, i.e.,
most of the sentences included at earlier dates were
sampled from the contexts for the word “president”,
while at later dates this shifted towards sentences
that originally contained “coronavirus”. While the
continuously evolving embeddings computed with
a pre-trained BERT model can pick up on this arti-
ficially introduced semantic shift in general (Fig. 4
top: the black lines for the token ‘presidentcoron-
avirus’ run according to the sigmoid curve based
on which the respective contexts were sampled),
the nearest neighbors are not very instructive to
identify the two senses. This is mainly due to
the subword embeddings that the transformer uses
to represent this new token, thereby introducing
a strong preconception w.r.t. the word’s meaning.
However, after fine-tuning BERT on the synthetic
dataset for three epochs, not only is the difference
between the embedding snapshots of the target to-
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ken itself stronger, but also the nearest neighbors
now correspond more closely to the initial (‘presi-
dent’) and later (‘coronavirus’) sense of the word
(Fig. 4 bottom).
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Figure 4: Analogously to Fig. 3 the nearest neighbors
over time for the artificially constructed token “pres-
identcoronavirus” before (top; semantic shift score:
0.028) and after (score: 0.053) fine-tuning BERT on
the synthetically modified NYT article snippets.

Finally, as a comparison we also show the plots
obtained with diachronic embeddings learned us-
ing a skip-gram word2vec model trained with neg-
ative sampling (SGNS) on the original sentences.
Similar to Kim et al. (2014), we trained a SGNS
model7 from the gensim library (Řehůřek and So-
jka, 2010) for 50 epochs on the texts from each time
period between two snapshots. As described in the
original paper, the embeddings learned on later
time slices were initialized with the embeddings
from the previous interval. Additionally, since the
amount of text contained in each time slice is much
smaller than generally recommended when train-
ing a word2vec model, the model was first trained
on the full corpus for 100 epochs to initialize the
embeddings before training on the first time period.
While the evolution of nearest neighbors over time
(Fig. 5) still contains faint patterns (e.g., the sense
“hurricane” is stronger during the late summer and
fall months), the plots are much noisier than those

7embedding dim. 50; context window 5; neg. sampling 13

created with the transformer-based continuously
evolving embeddings (Fig. 3).

5 Related Work

When it comes to learning word embeddings in gen-
eral, it is helpful to distinguish between older meth-
ods, such as word2vec (Mikolov et al., 2013a,b) or
GloVe (Pennington et al., 2014), that learn static
word embeddings, i.e., a single “global” embed-
ding for each word in the vocabulary, and modern
transformer models, such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and Flair (Akbik et al., 2018), that gen-
erate contextualized embeddings based on the local
context of a word in the current sentence. While the
static word embedding models are usually trained
on a target corpus containing several millions of
words to obtain expressive domain-specific embed-
dings (Tshitoyan et al., 2019), pre-trained trans-
formers are well suited for transfer learning and
can therefore also more easily be applied to smaller
datasets.

Some of the more advanced methods for cre-
ating diachronic embeddings use special-purpose
dynamic language models, which explicitly take
the temporal structure of the data into account when
learning the word embeddings (Bamler and Mandt,
2017; Rosenfeld and Erk, 2018; Yao et al., 2018;
Rudolph and Blei, 2018; Brandl and Lassner, 2019;
Jawahar and Seddah, 2019; Hofmann et al., 2020;
Tsakalidis and Liakata, 2020). A different line
of work instead relies on conventional static word
embedding models, such as word2vec, and uses
them directly to learn embeddings for the individ-
ual time periods. The main challenge here consists
of aligning the word embeddings learned for dif-
ferent time intervals, which can, for example, be
achieved by using the embeddings from one time
slice to initialize the next (Kim et al., 2014), by
explicitly matching up the matrices learned on dif-
ferent time periods (Kulkarni et al., 2015; Hamilton
et al., 2016; Zhang et al., 2016; Yin et al., 2018),
or utilizing other techniques such as temporal ref-
erencing (Dubossarsky et al., 2019). An even sim-
pler approach to produce diachronic word embed-
ding in a single embedding space uses the same
(fixed) model to compute contextualized embed-
dings on all texts and then averages the respec-
tive embeddings from each individual time period
to get the diachronic embeddings (Basile et al.,
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Figure 5: Analogously to Fig. 3 the results with diachronic embeddings obtained by training a SGNS word2vec
model on the article snippets from the respective time intervals (Kim et al., 2014).

2016).8 When using high-quality contextualized
embeddings from a transformer model, it is fur-
thermore possible to compute the diachronic em-
beddings for shorter time slices of single years
(Martinc et al., 2019, 2020; Hu et al., 2019; Giu-
lianelli et al., 2020; Beck, 2020). However, one
major problem remains, namely that the time slices
across which the diachronic embeddings are com-
puted have to be discretized and defined in advance.
This problem could previously only be addressed
by a more complex dynamic model (Rosenfeld and
Erk, 2018).

While several of the above mentioned papers
have published code alongside their manuscripts,
this was mainly done with the intention that others
could reproduce their results, not apply the meth-
ods to novel datasets. To the best of our knowl-
edge, only Hamilton et al. (2016) has released a
more comprehensive library to explore word usage
change in other corpora, however, their approach
relies on static word embeddings and should there-
fore mainly be applied to larger corpora. Most
other available software for analyzing corpora only
considers word frequencies over time, but does not
track the semantic shifts of these words.

6 Conclusion

This paper introduced continuously evolving em-
beddings as a conceptually simple and intuitive
method for computing smoothly changing high-
resolution diachronic embeddings from weighted
running averages of contextualized embeddings.

8Since the contextualized embeddings are all in the same
embedding space already (defined by the single fixed model),
averaging the embeddings from each time slice creates time
period specific global word embeddings that are themselves
also comparable.

By taking advantage of pre-trained transformer
models and processing the texts in a corpus se-
quentially rather than dividing them into (more
or less arbitrary) time slices, our approach makes
it possible to obtain diachronic embeddings from
comparatively small corpora and at very short in-
tervals compared to the previously standard time
periods of at least one year. This should make our
method particularly well suited to study fast-paced
environments such as social media, where a new
meme can go viral in a matter of hours, only to be
superseded by the next a few days later.

Aside from the parameters involved in the un-
derlying transformer model and its possible fine-
tuning, our method only has a single hyperparam-
eter, α, whose setting mostly just influences how
frequently the embedding snapshots need to be
taken to not miss any semantic shifts in between
the snapshot intervals. On our NYTimes corpus
we obtained reasonable results already with pre-
trained transformer models, however, fine-tuning
is nevertheless advised and especially helpful to
characterize new word usages that the transformer
did not encounter in its original training data.

We hope that the provided code will help others
identify interesting patterns of word usage change
in their own corpora.
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Wei Yang, Jawad Ateeq, Harsh Barot, Meidan Alon, Yanshuai Cao

Borealis AI
{peng.z.xu, wenjie.zi, hamidreza.shahidi, akos.kadar, keyi.tang}@borealisai.com

{wei.yang, jawad.ateeq, harsh.barot, meidan.alon, yanshuai.cao}@borealisai.com

Abstract

A natural language database interface (NLDB)
can democratize data-driven insights for non-
technical users. However, existing Text-to-
SQL semantic parsers cannot achieve high
enough accuracy in the cross-database setting
to allow good usability in practice. This work
presents TURING1, a NLDB system toward
bridging this gap. The cross-domain seman-
tic parser of TURING with our novel value pre-
diction method achieves 75.1% execution ac-
curacy, and 78.3% top-5 beam execution ac-
curacy on the Spider validation set (Yu et al.,
2018b). To benefit from the higher beam ac-
curacy, we design an interactive system where
the SQL hypotheses in the beam are explained
step-by-step in natural language, with their dif-
ferences highlighted. The user can then com-
pare and judge the hypotheses to select which
one reflects their intention if any. The En-
glish explanations of SQL queries in TUR-
ING are produced by our high-precision natu-
ral language generation system based on syn-
chronous grammars.

1 Introduction

Today a vast amount of knowledge is hidden in
structured datasets, not directly accessible to non-
technical users who are not familiar with the cor-
responding database query language like SQL or
SPARQL. Natural language database interfaces
(NLDB) enable everyday users to interact with
databases (Zelle and Mooney, 1996; Popescu et al.,
2003; Li and Jagadish, 2014; Zeng et al., 2020).
However, correctly translating natural language to
executable queries is challenging, as it requires
resolving all the ambiguities and subtleties of nat-
ural utterances for precise mapping. Furthermore,

∗Equal contribution
1System demo at https://turing.borealisai.

com/; video at https://vimeo.com/537429187/
9a5d41f446

quick deployment and adoption for NLDB require
zero-shot transfer to new databases without an in-
domain text-to-SQL parallel corpus, i.e. cross-
database semantic parsing (SP), making the trans-
lation accuracy even lower. Finally, unlike in other
NLP applications where partially correct results
can still provide partial utility, a SQL query with a
slight mistake could cause negative utility if trusted
blindly or confusing to users.

The recent Spider benchmark (Yu et al., 2018a)
captures this cross-domain problem, and the state-
of-the-art methods merely achieve around 70% ex-
ecution accuracy at the time of this submission 2.
Meanwhile, generalization to datasets collected un-
der different protocols is even weaker (Suhr et al.,
2020). Finally, users generally have no way to
know if the NLDB made a mistake except in very
obvious cases. The high error rate combined with
the overall system’s opacity makes it hard for users
to trust any output from the NLDB.

Our key observation is that our model’s top-5
accuracy on Spider is 78.3%, significantly higher
than the previous best single-model method at
around 68%, and our own top-1 accuracy. Top-
5 accuracy is the proportion of times when one of
the top five hypotheses from beam-search inference
is correct (in execution accuracy evaluation). For
top-5 accuracy to be relevant in practice, a non-
technical user needs to be able to pick the correct
hypothesis from the candidate list. To this end, we
design a feedback system that can unambiguously
explain the top beam-search results while present-
ing the differences intuitively and visually. Users
can then judge which, if any, of the parses cor-
rectly reflects their intentions. The explanation sys-
tem uses a hybrid of two synchronous context-free
grammars, one shallow and one deep. Together,
they achieve good readability for the most frequent

2https://yale-lily.github.io/spider
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query patterns while near-complete coverage over-
all.

Our system, TURING, is not only interpretable,
but also a highly accurate cross-domain NLDB.
Our semantic parser is based on the one in Xu et al.
(2020), which does not handle value prediction
like many other previous state-of-the-art models
on Spider. Compared to previous executable se-
mantic parsers, we achieve significant gains with a
number of techniques, but predominantly by dras-
tically simplifying the learning problem in value
prediction. The model only needs to identify the
text span providing evidence for the ground-truth
value. The noisy long tail text normalization step
required for producing the actual value is offloaded
to a deterministic search phase in post-processing.

In summary, this work presents two steps to-
wards a more robust NLDB:

1. A state-of-the-art text-to-SQL parsing system
with the best top-1 execution accuracy on the
Spider development set.

2. A way to relax usability requirement from top-
1 accuracy to top-k accuracy by explaining the
different hypotheses in natural language with
visual aids.

2 System Overview

As shown in Figure 1, TURING’s interface has
two main components: the database browser show-
ing schema and selected database content, and
the search panel where the users interact with the
parser. Figure 1 caption describes the typical user
interaction using an example.

Behind the front-end interface, TURING con-
sists of an executable cross-domain semantic parser
trained on Spider that maps user utterances to SQL
query hypotheses, the SQL execution engine that
runs the queries to obtain answers, and the explana-
tion generation module that produces the explana-
tion text and the meta-data powering explanation
highlighting. The next sections will describe the
semantic parsing and explanation modules.

3 Semantic Parser

The backbone of TURING is a neural semantic
parser which generates an executable SQL query T
given a user question Q and the database schema
S . We follow the state-of-the-art system (Xu et al.,
2020), but extend it to generate executable SQL
query instead of ignoring values in the SQL query,

like many other top systems (Wang et al., 2019;
Guo et al., 2019) on the Spider leaderboard.

On the high-level, our SP adopts the grammar-
based framework following TranX (Yin and Neu-
big, 2018) with an encoder-decoder neural archi-
tecture. A grammar-based transition system is
designed to turn the generation process of the
SQL abstract syntax tree (AST) into a sequence
of tree-constructing actions to be predicted by the
parser. The encoder fenc jointly encodes both
the user question Q = q1 . . . q|Q| and database
schema S = {s1, . . . , s|S|} consisting of tables
and columns in the database. The decoder fdec is
a transition-based abstract syntax decoder, which
uses the encoded representation H to predict the
target SQL query T . The decoder also relies on the
transition system to convert the AST constructed
by the predicted action sequences to the executable
surface SQL query.

To alleviate unnecessary burden on the decoder,
we introduce two novel modifications to the tran-
sition system to handle the schema and value de-
coding. With simple, but effective value-handling,
inference and regularization techniques applied on
this transition system, we are able to push the exe-
cution accuracy much higher for better usability.

3.1 Transition System

Our transition system has four types of action
to generate the AST, including (1) ApplyRule[r]
which applies a production rule r to the latest
generated node in the AST; (2) Reduce which
completes the generation of the current node; (3)
SelectColumn[c] which chooses a column c from
the database schema S; (4) CopyToken[i] which
copies a token qi from the user question Q.

There are two key distinctions of our transition
system with the previous systems. First, our tran-
sition system omits the action type SelectTable
used by other transition-based SP systems (Wang
et al., 2019; Guo et al., 2019). This is made pos-
sible by attaching the corresponding table to each
column, so that the tables in the target SQL query
can be deterministically inferred from the predicted
columns. Second, we simplify the value prediction
by always trying to copy from the user question,
instead of applying the GenToken[v] action (Yin
and Neubig, 2018) which generates tokens from a
large vocabulary or choose from a pre-processed
picklist (Lin et al., 2020). Both of the changes con-
strain the output space of the decoder to ease the
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Figure 1: TURING system in action: the user selected database “Dog kennels”; the left and top panels show the
database schema and table content. The user then entered “What is the average age of the dogs who have gone
through any treatments?” in the search box. This question is run through the semantic parser producing multiple
SQL hypotheses from beam-search, which are then explained step-by-step as shown. The differences across the
hypotheses are highlighted. The tokens corresponding to table and columns are in bold. If there were more valid
hypotheses, a “Show more” button would appear to reveal the additional ones.

learning process, but the latter change unrealisti-
cally assumes that the values are always explicitly
mentioned in the question. To retain the genera-
tion flexibility without putting excessive burden on
the decoder, we propose a conceptually simple but
effective strategy to handle the values next.

3.2 Handling Values

Value prediction is a challenging, but crucial com-
ponent of NLDBs, however, only limited efforts
are committed to handling values properly in the
current cross-domain SP literature. Value mentions

are usually noisy, if mentioned explicitly at all, re-
quiring commonsense or domain knowledge to be
inferred. On the other hand, the number of possible
values in a database can be huge, leading to sparse
learning signals if the model tries to choose from
the possible value candidates.

Instead of attempting to predict the actual values
directly, our SP simply learns to identify the input
text spans providing evidence for the values. As
mentioned earlier, we introduce the CopyToken
action to copy an input span from the user question,
indicating the clues for this value. The ground-truth
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CopyToken[i] actions are obtained from a tagging
strategy based on heuristics and fuzzy string match-
ing between the user question and the gold values.
As a result, the decoder is able to focus on un-
derstanding the question without considering other
complexities of the actual values which are difficult
to learn. If the values are only implicitly mentioned
in the user question, nothing is copied from the user
question. We leave the identification of the actual
values to a deterministic search-based inference in
post-processing, after the decoding process. This
yields a simpler learning task as the neural network
does not need to perform domain-specific text nor-
malization such as mapping “female” to “F” for
some databases.

Given the schema, the predicted SQL AST and
the database content, the post-processing first iden-
tifies the corresponding column type (number, text,
time), operation type (like, between, >, <, =, ...),
and aggregation type (count, max, sum, ...). Based
on these types, it infers the type and normalization
required for the value. If needed, it then performs
fuzzy-search in the corresponding column’s val-
ues in the database. When nothing is copied, a
default value is chosen based on some heuristics
(e.g., when there exist only two element “Yes” and
“No” in the column, the default value is “Yes”);
otherwise, the most frequent element in the column
is chosen. Searching the database content can also
be restricted to a picklist for privacy reasons like
previous works (Zeng et al., 2020; Lin et al., 2020).

Another benefit of this simple value handling
strategy is the ease to explain. The details are pre-
sented in the Sec. 4.

3.3 Encoder-Decoder

Our encoder architecture follows Xu et al. (2020).
The encoder, fenc, maps the user question Q and
the schema S to a joint representation H =
{φq1, . . . , φq|Q|} ∪ {φs1, . . . , φs|S|}. It contextualizes
the question and schema jointly through both the
RoBERTA-Large model similar to (Guo et al.,
2019), as well as through the additional sequence of
24 relation-aware transformer (RAT) (Wang et al.,
2019) layers. As mentioned in Section 3.1, tables
are not predicted directly but inferred from the
columns, so we augment the column representa-
tions by adding the corresponding table representa-
tions after the encoding process.

We use a LSTM decoder fdec to gener-
ate the action sequence A. Formally, the

generation process can be formulated as
Pr(A|H) =

∏
t Pr(at|a<t,H) where H is

the encoded representations outputted by the
encoder fenc. The LSTM state is updated
following Wang et al. (2019): mmmt,hhht =
fLSTM([aaat−1‖zzzt−1‖hhhpt‖aaapt‖nnnpt ],mmmt−1,hhht−1),
wheremmmt is the LSTM cell state, hhht is the LSTM
output at step t, aaat−1 is the action embedding of
the previous step, zzzt−1 is the context representation
computed using multi-head cross-attention of
hhht−1 over H, pt is the step corresponding to the
parent AST node of the current node, and nnn is
the node type embedding. For ApplyRule[r],
we compute Pr(at = ApplyRule[r]|a<t,H) =
softmaxr(g(zzzt)) where g(·) is a 2-layer MLP. For
SelectColumn[c], we use the memory augmented
pointer network following Guo et al. (2019). For
CopyToken[i], a pointer network is employed
to copy tokens from the user question Q with a
special token indicating the termination of copy.

3.4 Column Label Smoothing

One of the core challenges for cross-domain SP
is to generalize to unseen domains without over-
fitting to some specific domains during training.
Empirically, we observe that applying uniform la-
bel smoothing (Szegedy et al., 2016) on the ob-
jective term for predicting SelectColumn[c] can
effectively address the overfitting problem in the
cross-domain setting. Formally, the cross-entropy
for a ground-truth column c∗ we optimize becomes
(1 − ε) ∗ log p(c∗) + ε

K ∗
∑

c log p(c), where K
is the number of columns in the schema, ε is the
weight of the label smoothing term, and p(·) ,
Pr(at = SelectColumn[·]|a<t,H).

3.5 Weighted Beam Search

During inference, we use beam search to find the
high-probability action sequences. As mentioned
above, column prediction is prone to overfitting in
the cross-domain setting. In addition, value predic-
tion is dependent on the column prediction, that is,
if a column is predicted incorrectly, the associated
value has no chance to be predicted correctly. As a
result, we introduce two hyperparameters control-
ling influence based on the action types in the beam,
with a larger weight α > 1 for SelectColumn and
a smaller weight 0 < β < 1 for CopyToken.
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4 Explanation Generation

The goal of the explanation generation system is to
unambiguously describe what the semantic parser
understands as the user’s command and allow the
user to easily interpret the differences across the
multiple hypotheses. Therefore, unlike a typical
dialogue system setting where language genera-
tion diversity is essential, controllability and con-
sistency are of primary importance. The generation
not only needs to be 100% factually correct, but the
differences in explanation also need to reflect the
differences in the predicted SQLs, no more and no
less. Therefore, we use a deterministic rule-based
generation system instead of a neural model.

Our explanation generator is a hybrid of two syn-
chronous context-free grammar (SCFG) systems
combined with additional heuristic post-processing
steps. The two grammars trade off readability and
coverage. One SCFG is shallow and simple, cov-
ering the most frequent SQL queries; the other is
deep and more compositional, covering the tail of
query distribution that our SP can produce for com-
pleteness. The SCFG can produce SQL and En-
glish explanation parallel. Given a SQL query, we
parse it under the grammar to obtain a derivation,
which we then follow to obtain the explanation text.
At inference time, for a given question, if any of
the SQL hypotheses cannot be parsed using the
shallow SCFG, then we move onto the deep one.

4.1 Details of the Grammars

Using the deep SQL syntax trees allows almost
complete coverage on the Spider domains. How-
ever, these explanations can be unnecessarily ver-
bose as the generation process faithfully follows the
re-ordered AST without 1.) compressing repeated
mentions of schema elements when possible 2.)
summarizing tedious details of the SQL query into
higher level logical concepts. Even though these
explanations are technically correct, practical ex-
planation should allow users to spot the difference
between queries easily. To this end, we design the
shallow grammar similarly to the template-based
explanation system in Elgohary et al. (2020), which
simplifies the SQL parse trees by collapsing large
subtrees into a single tree fragment. In the resulting
shallow parses production rules yield non-terminal
nodes corresponding to 1.) anonymized SQL tem-
plates 2.) UNION, INTERSECT, or EXCEPT op-
erations of two templates 3.) or a template pattern
followed by ORDER-BY-LIMIT clause. Our shal-

low but wide grammar has 64 rules with those non-
terminal nodes. The pre-terminal nodes are place-
holders in the anonymized SQL queries such as
Table name, Column name, Aggregation operator
and so on. Finally, the terminal nodes are the values
filling in the place holders. The advantage of this
grammar is that each high-level SQL template can
be associated with an English explanation template
that reveals the high level logic and abstracts away
from the details in the concrete queries. To fur-
ther reduce the redundancy, we make assumptions
to avoid unnecessarily repeating table and column
names. Table. 1 showcases some rules from the
shallow SCFG and one example of explanation. In
practice, around 75% of the examples in the Spider
validation set have all beam hypotheses from our
SP model parsable by the shallow grammar, with
the rest handled by the deep grammar. The deep
grammar has less than 50 rules. But because it is
more compositional, it covers 100% of the valid
SQLs that can be generated by our semantic parser.
Some sample explanation by the deep grammar can
be found in Table. 2.

Finally, whenever the final value in the query dif-
fers from original text span due to post-processing,
a sentence in the explanation states the change ex-
plicitly for clarity. For example, “‘Asian’ in the
question is matched to ‘Asia’ which appears in the
column Continent.”

5 Quantitative Evaluations

Implementation Details. We apply the DT-Fixup
technique from (Xu et al., 2020) to train our seman-
tic parser and mostly re-use their hyperparamters.
The weight of the column label smoothing term ε
is 0.2. Inference uses a beam size of 5 for the beam
search. We set the column weight as α = 3 and the
value weight as β = 0.1.
Dataset. We use Spider (Yu et al., 2018b), a
complex and cross-domain Text-to-SQL semantic
parsing benchmark, which has 10, 180 questions,
5, 693 queries covering 200 databases in 138 do-
mains. All our experiments are evaluated based on
the development set. We use the execution match
with values (Exec) evaluation metrics.
Results on Spider. We compare TURING with the
top systems on the Spider execution leaderboard
that have published reports with execution accu-
racy on the development set as well. As seen from
Table 3, our single model significantly outperforms
the previous state of the art in terms of Exec accu-
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S -> P
S -> P UNION P
P -> (SELECT <T_0>.<C_0> FROM <T_1> GROUP BY <T_2>.<C_1> HAVING <AOps_0> ( <T_3>.<C_2> ) <WOps_0> <L_0>,

find the different values of the {<C_0>} in the {<T_1>} whose {<AOps_0>} the {<C_2>} {<WOps_0>} {<L_0>})

step 1: find the average of product price in the products table
step 2: find the different values of the product type code in the products table

whose average of the product price is greater than the results of step 1

Table 1: Sample shallow grammar production rules and one example explanation.

Step 1: find the entries in the employee table whose age is less than 30.0.
Step 2: among these results, for each city of the employee table,

where the number of records is more than 1, find city of the employee table.
---------------
"30" in the question is converted to 30.
"one" in the question is converted to 1.

Step 1: find combinations of entries in the employee table, the hiring table and the shop table
for which employee id of the employee table is equal to employee id of the hiring table
and shop id of the hiring table is equal to shop id of the shop table.

Step 2: among these results, for each shop id of the shop table,
find the average of age of the employee table and shop id of the shop table.

Table 2: Examples of explanation by the deep grammar. The first example also showcases the additional explana-
tion for value post-processing.

Model Exec
GAZP + BERT (Zhong et al., 2020) 59.2

Bridge v2 + BERT (Lin et al., 2020) 68.0

Bridge v2 + BERT (ensemble) 70.3

Turing + RoBERTa 75.1(best), 73.8± 0.7

Table 3: Exec accuracy on the Spider development set.

Model Exec
Turing + RoBERTa 73.8± 0.7

w/o. value post-processing 67.2± 0.8
w/o. column label smoothing 73.1± 1.2
w/o. weighted beam search 73.5± 0.7

top 3 in the beam 77.3± 0.4
top 5 in the beam 78.3± 0.3

Table 4: Ablation study on various techniques used in
TURING. We use 5 runs with different random seeds.

racy on the development set.
Ablation Study. Table 4 shows an ablation study
of various techniques in TURING. We can see that
removing the value post-processing decreases the
accuracy significantly, showing that copying alone
is not enough due to the mismatch in linguistic vari-
ation and the schema specific normalization. The
effectiveness of the proposed column label smooth-
ing and weighted beam search are also reflected by
the Exec accuracy on Spider. Furthermore, simply
adding more hypotheses in the beam can signifi-
cantly boost the coverage of the correct predictions,

leading to 4.5% accuracy gain over the top one
accuracy. By combining all these techniques to-
gether, TURING achieves an overall performance
gain above 10% over the previous best single model
system (68.0% of Bridge v2). 3

6 Related Work

Executable Cross-database Semantic Parsing.
Early NLDB systems use rule-based parsing (Zelle
and Mooney, 1996; Li and Jagadish, 2014) and
cannot handle the diversity of natural language in
practice. Neural semantic parsing is more promis-
ing for coverage but is still brittle in real-world
applications where queries can involve novel com-
positions of learned patterns (Finegan-Dollak et al.,
2018; Shaw et al., 2020). Furthermore, to allow
plug-and-play on new databases, the underlying
semantic parser may not be trained on in-domain
parallel corpus but needs to transfer across domains
in a zero-shot fashion.

Executable cross-database semantic parsing is
even more challenging. Many of the previous work
only tackle the cross-domain part, omitting the
value prediction problem required for executable
queries (Guo et al., 2019; Wang et al., 2019; Choi
et al., 2020; Xu et al., 2020). Unlike the output
space of predicting the SQL sketch or columns,

3Rubin and Berant (2020) updated a version (April 11th
2021) around the time of this submission with a dev accuracy
of 75% (missing from the first version), and a test accuracy of
71.1% significantly higher than the original 60.5%.

303



the value prediction output space is much less con-
strained. The correct value depends on the source
question, the SQL query, the type information of
the corresponding column, as well as the database
content. This complexity combined with limited
training data in standard benchmark datasets like
Spider makes the task very difficult. Some previ-
ous works directly learn to predict the values (Yin
and Neubig, 2018; Guo and Gao, 2020) on Wik-
iSQL (Zhong et al., 2017), but does not generalize
in cross-domain settings. On Spider, Zeng et al.
(2020) and Lin et al. (2020) build a candidate list
of values first and learn a pointer network to select
from the list. TURING instead learns a pointer net-
work to identify the input source span that provides
evidence for the value instead of directly the value
as previously described. Identification of the actual
value is offloaded to post-processing. From a sys-
tem perspective, it is also simpler for a power user
of the NLDB to upload a domain-specific term de-
scription/mapping which can extend the heuristic-
search-based value post-processing instantly rather
than relying on re-training.

Query Explanation. Explaining structured
query language has been studied in the past
(Simitsis and Ioannidis, 2009; Koutrika et al.,
2010; Ngomo et al., 2013; Xu et al., 2018). Full
NLDB systems can leverage explanations to
correct mistakes with user feedback (Elgohary
et al., 2020), or to prevent mistakes by giving
clarifications (Zeng et al., 2020). However, these
methods can only handle cases where the mistake
or ambiguity is about the table, column, or value
prediction. There is no easy way to resolve
structural mistakes or ambiguities if the query
sketch is wrong. TURING, on the other hand,
offers the potential to recover from such mistakes
if the correct query is among the top beam results.
This is an orthogonal contribution that could
be integrated with other user-interaction modes.
Finally, the NaLIR system (Li and Jagadish, 2014)
has a similar feature allowing the user to pick
from multiple interpretations of the input question.
However, NaLIR’s interpretation is based on
syntactical parses of the question rather than
interpreting the final semantic parses directly. A
rule-based semantic parser then maps the selected
syntactic parse to SQL. As the syntactic parse is
not guaranteed to be mapped to the correct SQL,
this interpretation does not completely close the
gap between what the NLDB performs and what

the user thinks it does.

7 Conclusion

We presented TURING, a natural language interface
to databases (NLDB) that is accurate, interpretable,
and works on a wide range of domains. Our sys-
tem explains its actions in natural language so that
the user can select the right answer from multiple
hypotheses, capitalizing on the much higher beam
accuracy instead of top-1 accuracy. TURING pro-
vides a complementary way to resolve mistakes
and ambiguities in NLDB.
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Abstract

While there are more than 7000 languages in
the world, most translation research efforts
have targeted a few high resource languages.
Commercial translation systems support only
one hundred languages or fewer, and do not
make these models available for transfer to low
resource languages. In this work, we present
useful tools for machine translation research:
MTDATA, NLCODEC, and RTG. We demon-
strate their usefulness by creating a multilin-
gual neural machine translation model capable
of translating from 500 source languages to En-
glish. We make this multilingual model read-
ily downloadable and usable as a service, or
as a parent model for transfer-learning to even
lower-resource languages.1

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2015; Vaswani et al., 2017) has progressed
to reach human performance on select benchmark
tasks (Barrault et al., 2019, 2020). However, as MT
research has mainly focused on translation between
a small number of high resource languages, the un-
availability of usable-quality translation models for
low resource languages remains an ongoing con-
cern. Even those commercial translation services
attempting to broaden their language coverage has
only reached around one hundred languages; this
excludes most of the thousands of languages used
around the world today.

Freely available corpora of parallel data for many
languages are available, though they are hosted at
various sites, and are in various forms. A challenge
for incorporating more languages into MT models
is a lack of easy access to all of these datasets.While
standards like ISO 639-3 have been established to

1Demo website: http://rtg.isi.edu/many-eng.
Video demo: https://youtu.be/NSY0-MvO1KE.

bring consistency to the labeling of language re-
sources, these are not yet widely adopted. In ad-
dition, scaling experimentation to several hundred
languages on large corpora involves a significant
engineering effort. Simple tasks such as dataset
preparation, vocabulary creation, transformation
of sentences into sequences, and training data se-
lection becomes formidable at scale due to corpus
size and heterogeneity of data sources and file for-
mats. We have developed tools to precisely address
all these challenges, which we demonstrate in this
work.

Specifically, we offer three tools which can be
used either independently or in combination to ad-
vance NMT research on a wider set of languages
(Section 2): firstly, MTDATA, which helps to easily
obtain parallel datasets (Section 2.1); secondly, NL-
CODEC, a vocabulary manager and storage layer
for transforming sentences to integer sequences,
that is efficient and scalable (Section 2.2); and
lastly, RTG, a feature-rich Pytorch-backed NMT
toolkit that supports reproducible experiments (Sec-
tion 2.3).

We demonstrate the capabilities of our tools by
preparing a massive bitext dataset with more than
9 billion tokens per side, and training a single mul-
tilingual NMT model capable of translating 500
source languages to English (Section 3). We show
that the multilingual model is usable either as a
service for translating several hundred languages
to English (Section 4.1), or as a parent model in a
transfer learning setting for improving translation
of low resource languages (Section 4.2).

2 Tools

Our tools are organized into the following sections:

2.1 MTDATA

MTDATA addresses an important yet often over-
looked challenge – dataset preparation. By assign-
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# List all the available datasets for deu-eng
$ mtdata list -l deu-eng
# Get the selected training & held-out sets
$ mtdata get -l deu-eng --merge\
-tr wmt13_europarl_v7 wmt13_commoncrawl\

wmt18_news_commentary_v13\
-ts newstest201{8,9}_deen -o data

Listing 1: MTDATA examples for listing and down-
loading German-English datasets. The -merge flag re-
sults in merging all of the training datasets specified by
-tr argument into a single file.

ing an ID for datasets, we establish a clear way
of communicating the exact datasets used for MT
experiments, which helps in reproducing the exper-
imental setup. By offering a unified interface to
datasets from many heterogeneous sources, MT-
DATA hides mundane tasks such as locating URLs,
downloading, decompression, parsing, and sanity
checking. Some noteworthy features are:
• Indexer: a large index of publicly available par-

allel datasets.
• Normalizer: maps language names to ISO-639-3

codes which has representation space for 7800+
languages.2

• Parsers: parses heterogeneous data formats for
parallel datasets, and produces a simple plain
text file by merging all the selected datasets.

• Extensible: new datasets and parsers can be eas-
ily added.

• Local Cache: reduces network transfers by main-
taining a local cache, which is shared between
experiments.

• Sanity Checker: performs basic sanity checks
such as segment count matching and empty seg-
ment removal. When error states are detected,
stops the setup with useful error messages.

• Reproducible: stores a signature file that can be
used to recreate the dataset at a later time.

• Courtesy: shows the original BIBTEX citation
attributed to datasets.

• Easy Setup: pip install mtdata

• Open-source:
https://github.com/thammegowda/mtdata

Listing 1 shows an example for listing and get-
ting datasets for German-English. In Section 3.1,
we use MTDATA3 to obtain thousands of publicly
available datasets for a large many-to-English trans-
lation experiment.

2https://iso639-3.sil.org
3At the time of writing, v0.2.8

2.2 NLCODEC

NLCODEC is a vocabulary manager with encoding-
decoding schemes to transform natural language
sentences to and from integer sequences.
Features:
• Versatile: Supports commonly used vocabulary

schemes such as characters, words, and byte-
pair-encoding (BPE) subwords (Sennrich et al.,
2016).

• Scalable: Apache Spark4(Zaharia et al., 2016)
backend can be optionally used to create vocab-
ulary from massive datasets.

• Easy Setup: pip install nlcodec

• Open-source:
https://github.com/isi-nlp/nlcodec/

When the training datasets are too big to be kept
in the primary random access memory (RAM), the
use of secondary storage is inevitable. The train-
ing processes requiring random examples lead to
random access from a secondary storage device.
Even though the latest advancements in secondary
storage technology such as solid-state drive (SSD)
have faster serial reads and writes, their random
access speeds are significantly lower than that of
RAM. To address these problems, we include an
efficient storage and retrieval layer, NLDB, which
has the following features:
• Memory efficient by adapting datatypes based

on vocabulary size. For instance, encoding with
vocabulary size less than 256 (such as charac-
ters) can be efficiently represented using 1-byte
unsigned integers. Vocabularies with fewer than
65,536 types, such as might be generated when
using subword models (Sennrich et al., 2016) re-
quire only 2-byte unsigned integers, and 4-byte
unsigned integers are sufficient for vocabularies
up to 4 billion types. As the default implementa-
tion of Python, CPython, uses 28 bytes for all in-
tegers, we accomplish this using NumPy (Harris
et al., 2020). This optimization makes it possible
to hold a large chunk of training data in smaller
RAM, enabling a fast random access.

• Parallelizable: Offers a multi-part database by
horizontal sharding that supports parallel writes
(e.g., Apache Spark) and parallel reads (e.g., dis-
tributed training).

• Supports commonly used batching mechanisms
such as random batches with approximately-
equal-length sequences.
NLDB has a minimal footprint and is part of

4https://spark.apache.org/
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the NLCODEC package. In Section 3, we take
advantage of the scalability and efficiency aspects
of NLCODEC and NLDB to process a large parallel
dataset with 9 billion tokens on each side.

2.3 RTG
Reader translator generator (RTG) is a neural
machine translation (NMT) toolkit based on Py-
torch (Paszke et al., 2019). Notable features of
RTG are:
• Reproducible: All the required parameters of

an experiment are included in a single YAML
configuration file, which can be easily stored in
a version control system such as git or shared
with collaborators.

• Implements Transformer (Vaswani et al., 2017),
and recurrent neural networks (RNN) with cross-
attention models (Bahdanau et al., 2015; Luong
et al., 2015).

• Supports distributed training on multi-node
multi-GPUs, gradient accumulation, and Float16
operations.

• Integrated Tensorboard helps in visualizing train-
ing and validation losses.

• Supports weight sharing (Press and Wolf, 2017),
parent-child transfer (Zoph et al., 2016), beam
decoding with length normalization (Wu et al.,
2016), early stopping, and checkpoint averaging.

• Flexible vocabulary options with NLCODEC

and SentencePiece (Kudo and Richardson, 2018)
which can be either shared or separated between
source and target languages.

• Easy setup: pip install rtg

• Open-source: https://isi-nlp.github.io/rtg/

3 Many-to-English Multilingual NMT

In this section, we demonstrate the use of our tools
by creating a massively multilingual NMT model
from publicly available datasets.

3.1 Dataset
We use MTDATA to download datasets from var-
ious sources, given in Table 1. To minimize data
imbalance, we select only a subset of the datasets
available for high resource languages, and select
all available datasets for low resource languages.
The selection is aimed to increase the diversity of
data domains and quality of alignments.

Cleaning: We use SACREMOSES5 to normalize
5https://github.com/isi-nlp/sacremoses a fork of

https://github.com/alvations/sacremoses with improve-
ments to tokenization for many low resource languages.

Dataset Reference
Europarl Koehn (2005)
KFTT Ja-En Neubig (2011)
Indian6 Post et al. (2012)
OPUS Tiedemann (2012)
UNPCv1 Ziemski et al. (2016)
Tilde MODEL Rozis and Skadin, š (2017)
TEDTalks Qi et al. (2018)
IITB Hi-En Kunchukuttan et al. (2018)
Paracrawl Esplà et al. (2019)
WikiMatrix Schwenk et al. (2019)
JW300 Agić and Vulić (2019)
PMIndia Haddow and Kirefu (2020)
OPUS100 Zhang et al. (2020)
WMT [13-20] Bojar et al. (2013, 2014, 2015, 2016,

2017, 2018); Barrault et al. (2019,
2020)

Table 1: Various sources of MT datasets.

Unicode punctuations and digits, followed by word
tokenization. We remove records that are dupli-
cates, have abnormal source-to-target length ratios,
have many non-ASCII characters on the English
side, have a URL, or which overlap exactly, either
on the source or target side, with any sentences
in held out sets. As preprocessing is compute-
intensive, we parallelize using Apache Spark. The
cleaning and tokenization results in a corpus of 474
million sentences and 9 billion tokens on the source
and English sides each. The token and sentence
count for each language are provided in Figure 1.
Both the processed and raw datasets are available
at http://rtg.isi.edu/many-eng/data/v1/.6

3.2 Many-to-English Multilingual Model
We use RTG to train Transformer NMT (Vaswani
et al., 2017) with a few modifications. Firstly, in-
stead of a shared BPE vocabulary for both source
and target, we use two separate BPE vocabularies.
Since the source side has 500 languages but the
target side has English only, we use a large source
vocabulary and a relatively smaller target vocabu-
lary. A larger target vocabulary leads to higher time
and memory complexity, whereas a large source
vocabulary increases only the memory complex-
ity but not the time complexity. We train several
models, ranging from the standard 6 layers, 512-
dimensional Transformers to larger ones with more
parameters. Since the dataset is massive, a larger
model trained on big mini-batches yields the best
results. Our best performing model is a 768 dimen-
sional model with 12 attention heads, 9 encoder
layers, 6 decoder layers, feed-forward dimension
of 2048, dropout and label smoothing at 0.1, using

6A copy is at https://opus.nlpl.eu/MT560.php
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Figure 1: Training data statistics for the 500 languages, sorted based on descending order of English token count.
These statistics are obtained after de-duplication and filtering (see Section 3.1). The full name for these ISO 639-3
codes can be looked up using MTDATA, e.g. mtdata-iso eng .

512,000 and 64,000 BPE types as source and tar-
get vocabularies, respectively. The decoder’s input
and output embeddings are shared. Since some
of the English sentences are replicated to align
with many sentences from different languages (e.g.
the Bible corpus), BPE merges are learned from
the deduplicated sentences using NLCODEC. Our
best performing model is trained with an effec-
tive batch size of about 720,000 tokens per opti-
mizer step. Such big batches are achieved by using
mixed-precision distributed training on 8 NVIDIA
A100 GPUs with gradient accumulation of 5 mini-
batches, each having a maximum of 18,000 tokens.
We use the Adam optimizer (Kingma and Ba, 2014)
with 8000 warm-up steps followed by a decaying
learning rate, similar to Vaswani et al. (2017). We
stop training after five days and six hours when a

total of 200K updates are made by the optimizer;
validation loss is still decreasing at this point. To
assess the translation quality of our model, we re-
port BLEU (Papineni et al., 2002; Post, 2018)7 on
a subset of languages for which known test sets
are available, as given in Figure 2, along with a
comparison to Zhang et al. (2020)’s best model.8

4 Applications

The model we trained as a demonstration for our
tools is useful on its own, as described in the fol-
lowing sections.

7All our BLEU scores are obtained from SACREBLEU
BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.13.

8Scores are obtained from https://github.com/
bzhangGo/zero/tree/master/docs/multilingual_laln_

lalt; accessed: 2021/03/30
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Figure 2: Many-to-English BLEU on OPUS-100 tests (Zhang et al., 2020). Despite having four times more
languages on the source side, our model scores competitive BLEU on most languages with the strongest system of
Zhang et al. (2020). The tests where our model scores lower BLEU have shorter source sentences (mean length of
about three tokens).

4.1 Readily Usable Translation Service
Our pretrained NMT model is readily usable as
a service capable of translating several hundred
source languages to English. By design, source
language identification is not necessary. Figure 2
shows that the model scores more than 20 BLEU,
which maybe be a useful quality for certain down-
stream applications involving web and social media
content analysis. Apache Tika (Mattmann and Zit-
ting, 2011), a content detection and analysis toolkit
capable of parsing thousands of file formats, has an
option for translating any document into English
using our multilingual NMT model.9 Our model
has been packaged and published to DockerHub,10

which can be obtained by the following command:

IMAGE=tgowda/rtg-model:500toEng-v1

docker run --rm -i -p 6060:6060 $IMAGE

# For GPU support: --gpus '"device=0"'

The above command starts a docker image with
HTTP server having a web interface, as can be
seen in Figure 3, and a REST API. An example
interaction with the REST API is as follows:

curl --data "source=Comment allez-vous?"\

--data "source=Bonne journée"\

http://localhost:6060/translate

{

"source": [ "Comment allez-vous?",

"Bonne journée" ],

"translation": [ "How are you?",

"Have a nice day" ]

}

4.2 Parent Model for Low Resource MT
Fine tuning is a useful transfer learning technique
for improving the translation of low resource lan-
guages (Zoph et al., 2016; Neubig and Hu, 2018;

9https://cwiki.apache.org/confluence/display/
TIKA/NMT-RTG

10https://hub.docker.com/

Figure 3: RTG Web Interface

Gheini and May, 2019). For instance, consider
Breton-English (BRE-ENG) and Northern Sami-
English (SME-ENG), two of the low resource
settings for which our model has relatively poor
BLEU (see Figure 2). To show the utility of fine
tuning with our model, we train a strong baseline
Transformer model, one for each language, from
scratch using OPUS-100 training data (Zhang et al.,
2020), and finetune our multilingual model on the
same dataset as the baselines. We shrink the par-
ent model vocabulary and embeddings to the child
model dataset, and train all models on NVIDIA
P100 GPUs until convergence.11 Table 2, which
shows BLEU on the OPUS-100 test set for the two
low resource languages indicates that our multilin-
gual NMT parent model can be further improved
with finetuning on limited training data. The fine-
tuned model is significantly better than baseline
model.

11More info: https://github.com/thammegowda/
006-many-to-eng/tree/master/lowres-xfer
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Model BRE-ENG SME-ENG
Baseline 12.7 10.7
Parent 11.8 8.6
Finetuned 22.8 19.1

Table 2: Finetuning our multilingual NMT on limited
training data in low resource settings significantly im-
proves translation quality, as quantified by BLEU.

5 Related work

5.1 Tools
SACREBLEU (Post, 2018) simplifies MT evalua-
tion. MTDATA attempts to simplify training setup
by automating training and validation dataset re-
trieval. OPUSTOOLS (Aulamo et al., 2020) is
a similar tool however, it interfaces with OPUS
servers only. Since the dataset index for OPUS-
TOOLS is on a server, the addition of new datasets
requires privileged access. In contrast, MTDATA

is a client side library, it can be easily forked and
extended to include new datasets without needing
special privileges.

NLCODEC: NLCODEC is a Python library for
vocabulary management. It overcomes the mul-
tithreading bottleneck in Python by using PyS-
park. SentencePiece (Kudo and Richardson, 2018)
and HuggingfaceTokenizers (Wolf et al., 2020) are
the closest alternatives in terms of features, how-
ever, modification is relatively difficult for Python
users as these libraries are implemented in C++
and Rust, respectively. In addition, SentencePiece
uses a binary format for model persistence in fa-
vor of efficiency, which takes away the inspectabil-
ity of the model state. Retaining the ability to
inspect models and modify core functionality is
beneficial for further improving encoding schemes,
e.g. subword regularization (Kudo, 2018), BPE
dropout (Provilkov et al., 2020), and optimal stop
condition for subword merges (Gowda and May,
2020). FastBPE is another efficient BPE tool writ-
ten in C++.12 Subword-nmt (Sennrich et al., 2016)
is a Python implementation of BPE, and stores the
model in an inspectable plain text format, however,
it is not readily scalable to massive datasets such as
the one used in this work. None of these tools have
an equivalent to NLDB’s mechanism for efficiently
storing and retrieving variable length sequences for
distributed training.

RTG: Tensor2Tensor (Vaswani et al., 2018)
originally offered the Transformer (Vaswani et al.,
2017) implementation using Tensorflow (Abadi

12https://github.com/glample/fastBPE

et al., 2015); our implementation uses Pytorch
(Paszke et al., 2019) following Annotated Trans-
former (Rush, 2018). OpenNMT currently offers
separate implementations for both Pytorch and
Tensorflow backends (Klein et al., 2017, 2020).
As open-source toolkits evolve, many good fea-
tures tend to propagate between them, leading
to varying degrees of similarities. Some of the
available NMT toolkits are: Nematus (Sennrich
et al., 2017), xNMT (Neubig et al., 2018). Mar-
ian NMT (Junczys-Dowmunt et al., 2018), Joey
NMT (Kreutzer et al., 2019), Fairseq (Ott et al.,
2019), and Sockey (Hieber et al., 2020). An exhaus-
tive comparison of these NMT toolkits is beyond
the scope of our current work.

5.2 Multilingual NMT

Johnson et al. (2017) show that NMT models are
capable of multilingual translation without any ar-
chitectural changes, and observe that when lan-
guages with abundant data are mixed with low re-
source languages, the translation quality of low
resource pairs are significantly improved. They use
a private dataset of 12 language pairs; we use pub-
licly available datasets for up to 500 languages. Qi
et al. (2018) assemble a multi-parallel dataset for
58 languages from TEDTalks domains, which are
included in our dataset. Zhang et al. (2020) curate
OPUS-100, a multilingual dataset of 100 languages
sampled from OPUS, including test sets; which are
used in this work. Tiedemann (2020) have estab-
lished a benchmark task for 500 languages includ-
ing single directional baseline models. Wang et al.
(2020) examine the language-wise imbalance prob-
lem in multilingual datasets and propose a method
to address the imbalance using a scoring function,
which we plan to explore in the future.

6 Conclusion

We have introduced our tools: MTDATA for down-
loading datasets, NLCODEC for processing, stor-
ing and retrieving large scale training data, and
RTG for training NMT models. Using these tools,
we have collected a massive dataset and trained a
multilingual model for many-to-English translation.
We have demonstrated that our model can be used
independently as a translation service, and also
showed its use as a parent model for improving low
resource language translation. All the described
tools, used datasets, and trained models are made
available to the public for free.
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Ethical Consideration

Failure Modes: MTDATA will fail to operate, un-
less patched, when hosting services change their
URLs or formats over time. On certain scenarios
when a dataset has been previously accessed and
retained in local cache, MTDATA continues to op-
erate with a copy of previous version and ignores
server side updates. We have done our best effort
in normalizing languages to ISO 639-3 standard;
our current version does not accommodate coun-
try and script variations of languages; e.g. UK
English and US English are both mapped to eng.
Our multilingual NMT model is trained to trans-
late a full sentence at a time without considering
source language information; translation of short
phrases without a proper context might result in a
poor quality translation.

Diversity and Fairness: We cover all languages
on the source side for which publicly available
dataset exists, which happens to be about 500
source languages. Our model translates to English

only, hence only English speakers are benefited
from this work.

Climate Impact: MTDATA reduces network
transfers to the minimal by maintaining a local
cache to avoid repetitive downloads. In addition to
the raw datasets, preprocessed data is also available
to avoid repetitive computation. Our Multilingual
NMT has higher energy cost than a typical sin-
gle directional NMT model due to higher number
of parameters, however, since our single model
translates hundreds of languages, the energy re-
quirement is significantly lower than the total con-
sumption of all independent models. Our trained
models with all the weights are also made available
for download.

Dataset Ownership: MTDATA is a client side
library that does not have the ownership of datasets
in its index. Addition, removal, or modification
in its index is to be submitted by creating an is-
sue at https://github.com/thammegowda/mtdata/issues.
We ask the dataset users to review the dataset li-
cense, and acknowledge its original creators by
citing their work, whose BIBTEX entries may be
accessed using:
mtdata list -n <NAME> -l <L1-L2> -full

The prepared dataset that we have made avail-
able for download includes citations.bib that
acknowledges all the original creators of datasets.
We do not vouch for quality and fairness of all the
datasets.
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Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1–55, Online. Association for Computational Lin-
guistics.
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Abstract

We present LEGOEval, an open-source toolkit
that enables researchers to easily evaluate di-
alogue systems in a few lines of code using
the online crowdsource platform, Amazon Me-
chanical Turk. Compared to existing toolk-
its, LEGOEval features a flexible task design
by providing a Python API that maps to com-
monly used React.js interface components. Re-
searchers can personalize their evaluation pro-
cedures easily with our built-in pages as if
playing with LEGO blocks. Thus, LEGOE-
val provides a fast, consistent method for re-
producing human evaluation results. Besides
the flexible task design, LEGOEval also offers
an easy API to review collected data.

1 Introduction

As dialogue systems are becoming an increasingly
trending topic, the need for standardized and reli-
able evaluation procedures has grown significantly.
Typically, the evaluation of dialogue systems is ac-
complished by the use of both automatic metrics
(Papineni et al., 2002; Lin, 2004; Lavie and Agar-
wal, 2007) and human evaluation (Serban et al.,
2016; Park et al., 2018). Automatic metrics are reli-
able measurements, but common automatic metrics
correlate weakly with human judgment (Liu et al.,
2016; Lowe et al., 2017; Gu et al., 2020). Thus, hu-
man evaluation has become a primary method for
dialogue system evaluation. Previously, researchers
invited participants to the lab to physically inter-
act with dialogue systems; recently, the popular
approach is crowdsourcing using platforms such
as Amazon Mechanical Turk (AMT) (Deriu et al.,
2020; Eskenazi et al., 2013).

* Equal contribution.
Source code and documentation are available at https:

//github.com/yooli23/LEGOEval.
A demo video is available at https://www.

youtube.com/watch?v=Dg6mafRGOpg&ab_
channel=JoshArnold.

However, human evaluation via crowdsourcing
presents its own challenges, being both expensive
and time-intensive. Specifically, human evaluation
requires a huge engineering effort to develop the
interface and deploy the task on crowdsourcing
platforms. The front-end interfaces can be difficult
to set up: the crowdworkers need to be properly in-
structed, and the tasks need to be prepared to reflect
real-world environment as closely as possible. Fur-
thermore, one needs to take into account the high
variability of user behaviour especially in crowd-
sourced environments (Deriu et al., 2020). It was
shown that even different phrasings can result in
weaker levels of agreement (Li et al., 2019). Thus,
it is not trivial to reproduce the human evaluation
results from scratch.

To address these problems, we present LEGOE-
val, an open-source toolkit that enables researchers
to easily build and deploy their human evaluation
tasks on AMT in one click. LEGOEval supports
representative human evaluation tasks, such as
static evaluation, where crowdworkers are asked to
rate sampled dialogues, and interactive evaluation,
where crowdworkers interact with two systems and
evaluate their responses (Finch and Choi, 2020;
Adiwardana et al., 2020). Furthermore, researchers
are also able to customize their own human evalua-
tion procedures easily with LEGOEval.

Existing tools typically provide rigid human eval-
uation templates. For example, DialCrowd (Lee
et al., 2018) follows the speech synthesis evaluation
toolkit (Parlikar, 2012) and provides a small num-
ber of standard evaluation experiments, however,
researchers have to manually create the web ser-
vices and then post the evaluation task on AMT. Se-
doc et al. (2019) developed ChatEval, which posts
a response comparison task (Otani et al., 2016) on
AMT. It is only effective for specific dialogue sys-
tems and is not generalizable. The widely used
toolkit ParlAI (Miller et al., 2018) supports crowd-
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Toolkit LEGOEval DialCrowd
(Lee et al., 2018)

ParlAI
(Miller et al., 2018) Mephisto

Sample Templates 3 3 3 3

Flexible Interface Design 3 7 7 7

Branching Logic 3 7 7 7

Plug & Play 3 7 7 3

Data Reviewing Tool 3 3 7 3

Table 1: Comparison of related crowdsourcing tools. “Sample Templates” indicates that the tool has evaluation
examples that are commonly used. “Flexible Interface Design” indicates that the evaluation interface can be fast
and easily modified. “Branching Logic” means the tool supports different interfaces in a same task.“Plug & Play”
means that the tool can be used out of the box.

sourcing tasks on AMT for the models built by Par-
lAI. However, ParlAI also requires additional engi-
neering efforts to incorporate an external model or
modify the evaluation interface. To our best knowl-
edge, the most similar tool to ours is Mephisto
1, a crowdsourcing tool in an early alpha release
expanded from ParlAI. From our experience, how-
ever, Mephisto has a steeper learning curve and
is currently not suited for easily customizing and
launching simple tasks.

Compared to these existing tools, our toolkit fea-
tures a flexible interface design with a plug and
play fashion, as shown in Table 1. Researchers
can build their personalized human evaluation task
flow with our library of Python classes, including
a chatbot interface, an instruction page, and vari-
ous survey formats. The task building process is
similar to playing a LEGO game. Furthermore,
LEGOEval makes it easy to share tasks with oth-
ers, thereby making it easy to reproduce human
evaluation results. Additionally, LEGOEval pro-
vides a straight-forward way to persist, retrieve,
and review collected data, thus helping researchers
process their results more efficiently.

In this paper, we present LEGOEval in the fol-
lowing order: first, we describe the design and
architecture in Section 2, then we provide code
snippets showing how to build the personalized
task page in Section 3. Finally in section 4, we
reproduce past experiments using LEGOEval.

2 LEGOEval Toolkit

LEGOEval is an open-source Python-based toolkit.
As shown in Figure 1, LEGOEval includes three
modules: (1) a task flow builder (Section 2.1) for
designing the human evaluation task, (2) an AMT
manager (Section 2.2) that automatically deploys

1https://github.com/facebookresearch/Mephisto

the evaluation task on AMT, and (3) a data reviewer
API (Section 2.3) that retrieves and formats data
collected on AMT. We describe each module in the
following sections.

2.1 Task Flow Builder
The task flow builder generates the interface and
flow for different human evaluation tasks by com-
piling a list of pages. The pages can be viewed as
LEGO blocks: we can snap pages together to easily
customize the evaluation task flow. Furthermore,
our toolkit and LEGO-style design makes it easy
to share tasks: instead of sharing an entire web ap-
plication, researchers can simply share their tasks
with a few lines of code in-order to reproduce their
evaluation procedure.

We have also provided common human evalua-
tion procedures in LEGOEval for instance, static
evaluation, where crowdworkers are asked to
rate sampled dialogues and interactive evaluation,
where a crowdworker interacts with multiple di-
alogue systems and evaluates the responses. Re-
searchers can easily integrate their models, and
customize their task flow using LEGOEval.
Page As the name suggests, a page in LEGOEval is
a single web page with a specific functionality (e.g.
displaying instructions, presenting a survey). Pages
are designed to be independent of one-another, pre-
venting any complex dependencies from occurring.
Furthermore, each page is defined by a single Re-
act.js file and mapped to a simple Python wrapper
class. We have provided a pool of pages that are
commonly used in human evaluation tasks, includ-
ing an instruction page (to display task instruc-
tions), an interactive chatbot page, and various sur-
vey pages. Beyond the built-in pages and their
parameters, researchers also have the flexibility to
customize a page or its logic by simply editing a
single React.js file.
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Figure 1: Design of LEGOEval, the task building process is similar to playing a LEGO game, the pages can be
viewed as LEGO blocks in the task flow builder. The developer can also add branching logic in their task with the
lambda function to show different task flows to different crowdworkers at runtime.

Page Customization Customizing the front-end
display of a page is as simple as editing a single Re-
act.js file. Researchers can easily add an image, or
re-arrange the order of the user-interface elements.
With React.js, one can also edit a page’s CSS,
achieving complex front-end layouts if needed.
Lastly, if researchers need to modify the logic/func-
tionality of a component, they can also do it from
the same React.js file through the use of state.
We further describe how state works in LEGO-
Eval in the next paragraph.

State In LEGOEval, researchers are able to easily
customize the functionality of a page with the idea
of state. State solves the dilemma that often
occurs when designing a human evaluation task:
specifically, how one should design the data flow
between the back-end and the front-end. To ad-
dress this issue of data-flow design, we implement
the idea of a shared-state between the front-end
and the back-end. When the back-end modifies the
state of a task, the state is automatically updated
on the front-end, and vice versa. Furthermore, any
changes made to the state are automatically per-
sisted in a Postgres-SQL database, making data
persistence and retrieval incredibly simple. Thus,
when modifying the functionality of React.js page,
the researcher only needs to set key-value pairs
in the front-end React.js state-dictionary. Their
key-value pairs will automatically be persisted in a
database and synced to the backend. Although not
always necessary to modify, LEGOEval also fea-
tures a main loop function on the backend, found
in main loop.py, that is called each time the
state is modified from the front-end. In the main

loop, the researcher can respond to any front-end
changes from the backend. For example, when a
crowdworker sends a chat message on the front-
end, the main loop provides the backend an oppor-
tunity to provide a response. We provide detailed
documentation on the main loop in our GitHub
repository. Thus, with state, the researcher can
easily save or pass data between the backend and
their front-end React.js file, allowing them to flexi-
bly implement any needed functionality.
Building a Task Flow To build an evaluation task
in LEGOEval, we just need to assemble the pages
in a similar fashion to building LEGO. An evalu-
ation task usually consists of a multi-phase flow,
e.g., displaying task instructions, then a survey,
etc. Each phase corresponds to an individual page.
The developer can add the desired pages in a se-
quence, and LEGOEval will automatically display
each page in order one at a time. Additionally, LE-
GOEval supports branching logic to show different
task flows to different crowdworkers, determined at
runtime. We will describe branching logic in more
detail in Section 2.4.

2.2 AMT Manager

Once the task flow is created, the task flow builder
will automatically generate the necessary files that
can be embedded in an AMT task. Our AMT man-
ager follows the Mechanical Turk manager pipeline
in ParlAI (Miller et al., 2018) and launches the
evaluation task on AMT by embedding the gener-
ated interface using an iFrame. Researchers can
edit the AMT configuration file which contains
the AMT task settings, including the reward for
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each Human Intelligence Task (HIT), the number
of HITs to launch, the task title, etc. When re-
searchers launch the task, the AMT manager will
automatically build and deploy a web application
on the cloud application platform, Heroku 2, and
then post the evaluation task on AMT using the
AMT API. Our AMT manager inherits necessary
functions from the Mechanical Turk manager in
ParlAI, for example, checking crowdworker’s qual-
ification and optionally limiting the number of hits
for each crowdworker. The AMT manager also
supports automatic data validation. For instance,
when crowdworkers finish a HIT, the manager can
check the quality of the collected data via metrics
defined by the researcher (e.g., the dialogue length
or the rating variance in the rating question compo-
nent), and then it will approve or deny the reward
and bonus, depending on if the results pass the data
validation test.

2.3 Data Reviewer

LEGOEval also simplifies the process to review the
collected data. Different from ParlAI (Miller et al.,
2018) which saves raw data locally, we create an in-
dividual Heroku Postgres add-on as the database of
the web application when researchers launch a new
task. We will create separate databases when there
are multiple evaluation tasks running on AMT at
the same time. Collected data will be saved in the
corresponding add-on database. The data can be
read locally using our Python API. Storing the data
on the cloud prevents potential accidents, such as
locally deleting the data. Since there are various
types of data that can be collected in LEGOEval
(e.g., conversations, ratings, and free response ques-
tions), we organize the data according to the data
type so that they can be easily reviewed and pro-
cessed for further research using a Python API we
wrote.

2.4 Additional Functions

As mentioned earlier, LEGOEval is a flexible
toolkit to easily implement human evaluation tasks.
Specifically, it allows branching logic to display
pages dynamically at run-time, as well as guaran-
teed data collection of a fixed size, which are two
important features in dialogue human evaluation.
Branching Logic LEGOEval is unique in the way
that our pages are instantiated at run-time. To im-
plement branching logic, we offer a special lambda

2https://www.heroku.com/

function that is called at runtime. Each lambda
function takes as an argument the current state
of a task. Researchers can build branching and
conditional logic in their tasks by using lambda
functions. For example, a researcher can easily
define logic to skip a certain page based upon a
crowdworker’s previous answer to a survey. We
show an example of branching logic implementa-
tion in Section 3.
Assigning Tasks to Workers Another common
problem faced with crowd-sourced tasks is collect-
ing data in a distributed, sampled fashion. For
example, if you have 100 conversations, you might
want each conversation to be rated exactly X times,
each time by a different crowd-worker. Because
crowd-workers can start a task and then give up
half-way through, building the logic to assign HITS
in the aforementioned way can be time-consuming.
To achieve this in LEGOEval we provide a Python
wrapper class, named Data Assigner. When
using the Data Assigner class, you simply pass
in a list of json seralizable data (dictionaries, ar-
rays, strings, etc) and specify how many times you
want to collect each data point. After that, LEGO-
Eval will automatically distribute the data to be
randomly assigned to different workers until each
data point has been successfully collected X times.

3 Toolkit Usage

In this section, we provide a simple example of
what the researcher needs to do to create a task.
Typical Usage Researchers would first design their
high-level task flow on paper, (e.g, instruction page,
then a pre survey, ..., and finally, a post survey). Af-
ter this, researchers can add their different pages to
their task flow by editing the build.py file and
initializing a list of our provided Python classes.
Some pages, such as the survey page, have a high
level of customization, where developers can spec-
ify what types of questions they want to display on
the survey, and the questions’ relative order. Next,
researchers can test their task locally by running
server.py and navigating to their localhost. If
they are happy with the results, researchers can
launch their task on MTurk with one command:
launch hits.py. If researchers want to make
a few tweaks, such as using a custom font for the
instructions, they can easily edit a single React.js
file and override any necessary CSS in typically
one line of code. A strong benefit of our platform
is that it is very fast for researchers to plug and
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Figure 2: An example how the task build maps to a generated evaluation task in Section 3.

play typical evaluation tasks. For further detail, see
Figure 2 for an example.
Advanced Usage As previously mentioned, it is
possible to add branching logic via the use of
lambda functions. Firstly, the researcher must de-
fine a function that takes as an input the state dic-
tionary. The state dictionary contains information
representing the current state of the task and any
persisted data. Thus, based upon the data collected
so far, the researcher can decide which page to
instantiate and return. The researcher adds the
LambdaFunction object passing in their lambda
function. During run time, when the LambdaFunc-
tion object is popped from the task flow list, our
framework will call the function by passing in the
current state dictionary and return the determined
page to display.

# 1) Define conditional logic

f = lambda state: \
ComponentA() \
if state[’survey’][’q1’] == "Yes" \
else ComponentB()

# 2) Add the LambdaFunction to the Task Flow

task flow.append(LambdaFunction(f))

4 Experiments

To demonstrate the effectiveness of LEGOEval in
setting up dialogue system human evaluation tasks,
we reproduce a set of crowdsourced experiments
from the BlenderBot paper (Roller et al., 2020),
a state-of-the-art open-domain chatbot. Crowd-
sourced experiments in BlenderBot include two
steps: (1) collecting human-bot conversations via

crowdworkers, (2) ACUTE-Eval (Li et al., 2019)
between two models, where crowdworkers are
asked to make pairwise evaluations of complete
dialogues. We implement both crowdsourced ex-
periments in approximately 20 lines of Python code
with LEGOEval, indicating that it is easy to imple-
ment different types of human evaluation tasks with
our toolkit in a plug and play fashion.

4.1 Human-Bot Data Collection
Following Roller et al. (2020) and Adiwardana et al.
(2020), we build a task to collect human-bot con-
versations on AMT for the 90M BlenderBot model
with LEGOEval. We simply assemble a pre-survey
question component in the first page and a chatbot
component in the second page. The generated in-
terface is shown in Figure 3. We build the whole
task from scratch and post it on AMT in several
minutes. Then we collect 20 conversations fol-
lowing the settings in Roller et al. (2020). One
example from our collected conversations is shown
in Appendix A. It shows that our toolkit can collect
human-bot conversations properly.

4.2 BlenderBot (2.7B) vs. Meena
To demonstrate LEGOEval’s capability to support
different dialogue system human evaluation tasks,
we also reproduce ACUTE-Eval (Li et al., 2019) be-
tween BlenderBot (Roller et al., 2020) and Meena
(Adiwardana et al., 2020). ACUTE-Eval requires
human annotators to compare multi-turn conver-
sations between different dialogue systems. Fol-
lowing Roller et al. (2020) and Li et al. (2019), we
consider two evaluation questions:

• Engagingness question: “Who would you pre-
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Figure 3: The interface of the human-bot conversation task with the Blender Model. In the task, the survey is
shown first, and then the chat window. However, we show the pages side by side for convenience.

fer to talk to for a long conversation?”

• Humanness question: “Which speaker sounds
more human?”

As shown in Figure 4, we use a chat history com-
parison page that features a single choice survey
question. Crowdworkers are instructed to compare
two dialogues and answer two questions below. We
collect 114 data points, the results is shown in Ta-
ble 2. The results (0.72 vs. 0.28 for engagingness,
0.68 vs. 0.32 for humanness) are close to the results
in Roller et al. (2020) (0.75 vs. 0.25 for engaging-
ness, 0.65 vs. 0.35 for humanness). It demonstrates
that with our toolkit, we can reproduce the human
evaluation results in other works quickly.

Model BlenderBot Meena
Engagingness 0.72 (0.75) 0.28 (0.25)
Humanness 0.68 (0.65) 0.32 (0.35)

Table 2: Human-Chat ACUTE-Eval of engagingness
and humanness between BlenderBot (2.7B) and Meena,
numbers represent the percentage of people choose the
model. Numbers in brackets are the results in Roller
et al. (2020)

5 Conclusion and Future Work

We introduce LEGOEval, an open-source Python-
based toolkit that allows researchers to easily de-
velop human evaluation tasks for dialogue systems
on AMT in a LEGO plug-and-play fashion. LEGO-
Eval provides a variety of commonly-used React.js
components as building blocks for researchers to

Figure 4: Interface of ACUTE-Eval between the
BlenderBot and Meena. The conversations have been
truncated to save display-space.

use. We have shown that it is straightforward to
customize different types of human evaluation pro-
cedures for dialogue systems in a few lines of code,
create new components by leveraging the shared
state between the front-end and back-end, and re-
produce human evaluation results in other works
effortlessly. With LEGOEval, we hope to provide
a simple and flexible way to evaluate dialogue sys-
tems. For future work, we plan to add more human
evaluation procedure templates and React.js com-
ponents. We further want to extend the tool to
support human-human interaction on AMT, mak-
ing it work not only for evaluation, but also for
dialogue data collection.
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A Example conversation

Table 3 shows an example conversation we col-
lected in the human-bot data collection experiment.

Role Utterance
Human Hi
Bot Hi, how are you today? I just got back from a

long day of work, how about you?
Human I have had a day off today. Nothing much to

do.
Bot Oh, I’m sorry to hear that what do you like to

do in your spare time?
Human I like to read a lot. I also like to go to the

movies.
Bot I love to read as well. What kind of books do

you read? I’ve never been to a movie
Human I like the Harry Potter series and the Lord of

the Rings trilogy very much.
Bot I haven’t read any of those books, but I have

heard good things about them, do you have any
other hobbies?

Human I like to go walking in the countryside. Do you
like nature?

Bot I do like nature, but not as much as I would
like to spend time in the wild

Human Do you enjoy camping? I really love that.
Bot No, I don’t think I could do that. I think I

would get sick of it.
Human But it’s so nice to be outside interacting with

nature.
Bot That’s true, maybe I’ll try it one day, it sounds

like a lot of fun.
Human You can cook outside too. Do you like cook-

ing?
Bot I do love to cook, I do it all the time. What is

your favorite thing to cook?
Human I like to bake a lot. I make really good choco-

late chip cookies.

Table 3: One example conversation between Blender-
Bot and human collected by LEGOEval.
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Abstract

We present Retriever-Transducer-Checker
(ReTraCk), a neural semantic parsing frame-
work for large scale knowledge base question
answering (KBQA). ReTraCk is designed
as a modular framework to maintain high
flexibility. It includes a retriever to retrieve
relevant KB items efficiently, a transducer to
generate logical form with syntax correctness
guarantees and a checker to improve the
transduction procedure. ReTraCk is ranked
at top1 overall performance on the GrailQA
leaderboard1 and obtains highly competitive
performance on the typical WebQuestionsSP
benchmark. Our system can interact with
users timely, demonstrating the efficiency of
the proposed framework.2

1 Introduction

Knowledge base question answering (KBQA) is
an important task in natural language processing
that aims to satisfy users’ information needs based
on factual information stored in knowledge bases.
Over the years, it has attracted a great deal of re-
search attention from academia and industry. Early
KBQA systems are generally rule-based. They
rely on predefined rules or templates to parse ques-
tions into logical forms (Cabrio et al., 2012; Abu-
jabal et al., 2017), suffering from coverage and
scalability problems. Recently, researchers usu-
ally focus more on neural semantic parsing ap-
proaches. These data-driven parsing methods (Yih
et al., 2015; Jia and Liang, 2016; Dong and La-
pata, 2016; Liang et al., 2017; Gu et al., 2021)
significantly improve the state-of-the-art (SOTA)
performance on KBQA tasks.

∗The first three authors contributed equally. This work
was conducted during Shuang and Qian’s internship at Mi-
crosoft Research Asia.

1https://dki-lab.github.io/GrailQA/
2https://aka.ms/ReTraCk
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Figure 1: The Retriever-Transducer-Checker (Re-
TraCk) framework.

Although various neural semantic parsing meth-
ods have been proposed for KBQA, there are few
works investigating how to leverage the advantages
of SOTA models to build a comprehensive system,
and how to fit the system with practical applica-
tion purpose (e.g., balancing effectiveness and effi-
ciency). To investigate, we identify two key issues
hindering the development of KBQA systems.

On the one hand, there is a lack of a generic
and extensible framework for KBQA. For exam-
ple, the popular SEMPRE3 toolkit (Berant et al.,
2013) provides infrastructures to develop statis-
tical semantic parsers for KBQA with rich fea-
tures, but its performance and scalability are in-
ferior to recent neural semantic parsing methods.
The TRANX toolkit4 (Yin and Neubig, 2018) em-
ploys a transition-based neural semantic parser to
model the logical form generation procedure as a

3https://github.com/percyliang/sempre
4https://github.com/pcyin/tranX
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sequence of tree-constructing actions under gram-
mar specification. However, TRANX does not in-
clude the essential retriever components used in
grounding, and thus does not support KBQA by
now.

On the other hand, recent neural semantic pars-
ing methods mostly emphasize performance on
benchmark datasets while neglecting the efficiency
(speed) dimension. This limits the understanding of
how designed approaches fit into real applications.
For example, the popular query graph generation
methods generate and rank a set of query graphs
(Yih et al., 2015; Maheshwari et al., 2019; Lan
and Jiang, 2020). Since all query graph candidates
keep in line with the knowledge base (KB) struc-
ture, these methods take full advantage of the KB.
However, they suffer from poor efficiency due to
the large number of candidates and heavily query-
ing on KB. To verify that, we performed a prelim-
inary study on available SOTA models5,6,7,8,9,10.
According to our study, these models either have
difficulties in supporting interactive online services,
or limit the candidate space for specific datasets,
which makes them difficult to apply in practice.

To this end, we present ReTraCk, a practical
framework for large scale KBQA. We hope Re-
TraCk can help standardize the KBQA model de-
sign process and lower the barrier of entry for new
practitioners. ReTraCk is designed with the follow-
ing principles in mind:

• Flexibility ReTraCk employs a modular architec-
ture, which decouples the dependencies among
components as much as possible to enable quick
integration of novel components. For exam-
ple, our system supports two different kinds
of schema retrievers, namely dense schema re-
triever and neighbor schema retriever11.

• Efficiency ReTraCk falls into the transduction
family, which is fast during the generation pro-
cess. Besides, we retrieve entities and relevant
schema items (relations and types) in parallel
by leveraging the recent advance of entity link-
ing (Orr et al., 2021) and dense retrieval (Wu

5http://github.com/nju-websoft/SPARQA
6http://github.com/lanyunshi/Multi-hopComplexKBQA
7http://github.com/OceanskySun/GraftNet
8https://github.com/scottyih/STAGG
9https://github.com/guoday/Dialog-to-Action

10https://github.com/dongpobeyond/Seq2Act
11This module is implemented in our codebase. The de-

tailed analysis is in the Appendix.

et al., 2020; Karpukhin et al., 2020). Our system
can interact with users timely, demonstrating the
efficiency of the proposed ReTraCk framework.

• Effectiveness ReTraCk is designed to enhance
the controllability of transduction-based meth-
ods in both syntax level and semantic level. It
first employs a grammar based decoder (Yin and
Neubig, 2018) to guarantee the syntax correct-
ness. Then it leverages a checker to alleviate the
semantic inconsistency issues. Inspired by pre-
vious work, four checking mechanisms are pro-
posed and implemented in the checker: instance-
level checking (Liang et al., 2017), ontology-
level checking (Chen et al., 2018), real execu-
tion (Wang et al., 2018) and the novel virtual
execution. The experimental results verify the
significant effectiveness of our proposed checker.
Notably, the checker is also flexible enough to be
easily extended with new mechanisms. Finally,
ReTraCk achieves state-of-the-art performance
on GrailQA and achieves highly competitive per-
formance on WebQuestionsSP.

2 ReTraCk Framework

Given an input question q, ReTraCk parses the
question into a logical form which can be determin-
istically converted into a SPARQL query to retrieve
answers from the knowledge base K. Generally K
consists of two parts: an ontologyO ⊆ T ×R×T ,
which defines the schema structure, and the fact
triples F ⊆ E ×R× (E ∪ T ∪ L). Here, T is the
set of types,R is the set of relations, E is the set of
entities, and L is the set of literals.

As shown in Fig. 1, ReTraCk consists of three
components: retriever, transducer and checker. The
retriever consists of an entity linker, which links
explicit entity mentions to corresponding entities,
and a schema retriever, which retrieves relevant
schema items (types and relations) mentioned either
explicitly or implicitly in the question. Given the
retrieved KB items (entities, types, and relations),
the transducer employs a grammar-based decoder
to generate the logical form with syntax correctness
guarantees. Meanwhile, the transducer interacts
with the checker to discourage generating programs
that are semantically inconsistent with KB.

To make ReTraCk more accessible and inter-
pretable for end users, we build a user interface.
As shown in Fig. 2, users can type a question in
the text box. The interface then displays retrieved
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(c) Predict logic form & SPARQL query(a) Users type a question

(b) Entity linker and Schema Retriever

(d) Obtain answers by querying KB

Figure 2: The main user interface of ReTraCk.

KB items, a graph visualization of predicted logi-
cal forms, generated SPARQL query and predicted
answer (s). The schema items selected by our trans-
ducer are shaded. Besides, users can refer to more
information of any KB item by clicking on the sub-
sequent “Detail”. Next, we will introduce each
component in detail.

2.1 Retriever

Entity Linker The entity linker used in this work
follows the entity linking pipeline described in
Gu et al. (2021). It firstly detects entity men-
tions using a BERT-based NER system, then gener-
ates candidate entities along with their prior score
based on an alias map mined from the KB and
FACC1 (Gabrilovich et al., 2013). As for entity dis-
ambiguation, we implement a prior baseline which
selects the most popular entity based on the prior
score. Besides, we also implement an alternative
model by leveraging BOOTLEG (Orr et al., 2021)
enriched with the prior features12. Due to space
limitations, the model details and its comparison
with the entity linker used in Gu et al. (2021) are
put in the Appendix.

Schema Retriever As schema items are not al-
ways mentioned explicitly in the question and their
vocabularies are much fewer than entities13, we
leverage the dense retriever framework (Mazaré
et al., 2018; Humeau et al., 2020; Wu et al., 2020)

12In our demo system, we choose the prior baseline method
since it is more memory efficient than the BOOTLEG (Orr et al.,
2021) method.

13In the latest version of Freebase, there are more than 120
million entities, 16k types and 20k relations.

to obtain the related types and relations. To be spe-
cific, we train a bi-encoder architecture (Wu et al.,
2020) such that related schema items are close to
the question embedding. This architecture allows
for fast real-time inference, as it is able to cache
the encoded candidates.

We use two independent BERT-base encoders
(Devlin et al., 2019) to represent the input question
eq and candidate schema items es by extracting
the upper most layer representation corresponding
to the [CLS] token. The matching score for each
pair (qg, si) is calculated by the dot-product:

s(qg, si) = eqg · esi . (1)

Given a question q, we retrieve the top k schema
items with the highest scores during inference time.

2.2 Transducer

Following previous work (Guo et al., 2018, 2019)
- especially the s-expression design principle (Gu
et al., 2021), we design a set of grammar rules for
the logical form. As shown in Table 1, there are two
kinds of grammars in our definition: knowledge-
agnostic grammar and knowledge-specific gram-
mar. To incorporate these predefined grammar
rules, we introduce a question encoder and a
grammar-based decoder (Liu et al., 2020).

Question Encoder To capture contextual infor-
mation in a question, we apply a Bidirectional Long
Short-Term Memory Neural Network (BiLSTM)
(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) as our question encoder. For each
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Grammar Rule Description

root→ set | num start of the grammar rule sequence
set→ and(set1, set2) set1 ∩ set2
set→ joinent(rel, ent) {e1 | (e1, ent) ∈ rel}
set→ joinset(rel, set) {e1 | (e1, e2) ∈ rel and e2 ∈ set}
set→ argmax(set, rel) {e1 | (e1, e2) ∈ rel and e2 is the largest}
set→ argmin(set, rel) {e1 | (e1, e2) ∈ rel and e2 is the smallest}
set→ gt(rel, num) {e1 | (e1, e2) ∈ rel and e2 > num}
set→ ge(rel, num) {e1 | (e1, e2) ∈ rel and e2 ≥ num}
set→ lt(rel, num) {e1 | (e1, e2) ∈ rel and e2 < num}
set→ le(rel, num) {e1 | (e1, e2) ∈ rel and e2 ≤ num}
rel→ joinrel(rel1, rel2) {(e1, e2) | (e1, e) ∈ rel1 and (e, e2) ∈ rel2}
rel→ reverse(rel) {(e1, e2) | (e2, e1) ∈ rel}
num→ count(set) number of entities in set
rel→ relation instantiate a relation in I
set→ type instantiate a type in I
ent→ entity | literal instantiate an entity or literal in I
num→ literal instantiate a grammar rule for any literal in I

Table 1: Knowledge-agnostic (Top) and knowledge-
specific (Bottom) grammar rule definitions used in our
grammar-based decoder. Knowledge-specific grammar
rules change with the retrieved KB items I. Here, set
denotes a set of entities, rel denotes the set of (head,
tail) entity tuples.

Decoder

root

root → set

Decoder

root → set

set → joinset(rel, set)

… Decoder
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Figure 3: Decoding procedure of the example in Fig. 1.

token qi in q, we obtain its contextual representa-
tion as hE

i = [h
−→
E
i ;h

←−
E
i ], where the forward hidden

state h
−→
E
i is computed by passing the word embed-

ding of qi into a forward LSTM. The backward
hidden state is computed similarly.

Grammar-based Decoder Once the question
representation is prepared, the grammar-based de-
coder starts to produce the target logical form step
by step with attention on the question. Our decoder
regards each logical form as a structure and outputs
its corresponding grammar rule/action 14 sequence
a = (a1, · · · , aK).

At each decoding step, a nonterminal (e.g., set)
is expanded using one of its valid grammar rules.
For example, at time step k, the LSTM decoder
LSTM

−→
D accepts the embedding of the previous

output φa(ak−1) as input and updates its hidden
state as:

h
−→
D
k = LSTM

−→
D
(
[φa(ak−1); ck−1],h

−→
D
k−1
)
, (2)

14We use grammar rule and action interchangeably.

where ck−1 is the context vector obtained by attend-
ing on each encoder hidden state hE

i . As for φa, it
behaves differently for knowledge-agnostic gram-
mar rules and knowledge-specific grammar rules.
For knowledge-agnostic grammar rules, φa returns
a trainable global embedding. For knowledge-
specific grammar rules, φa returns its related KB
item representation, obtained by averaging over all
word representations.

When predicting ak, the probability of selecting
the action γ follows:

P (ak=γ)∝exp
(
φa(γ) tanh([h

−→
D
k ;ck]W

o)
)
, (3)

where Wo is a learned matrix.

BERT Encoding Motivated by the success of
pretrained language models on cross-domain text-
to-SQL tasks (Hwang et al., 2019), we augment
our model with BERT (Devlin et al., 2019). First,
we concatenate the questions with all retrieved KB
items as input for BERT to strengthen the connec-
tion between them. Then, we replace the word
embeddings mentioned above with deep contex-
tual representations from the last layer of BERT of
each question token and each KB item, respectively.
In a case where the total number of words in the
retrieved KB items exceeds the maximum length
constraint of BERT, we split these KB items into
different blocks and encode them with the question
separately (Gu et al., 2021).

2.3 Checker

Inspired by previous work (Liang et al., 2017; Chen
et al., 2018; Wang et al., 2018), we design a plug-
gable module named checker to improve the decod-
ing process by leveraging semantics of KB.

Instance-level Checking relies on the KB link-
age information at the instance level (i.e., enti-
ties and their connected relations), which means
that instance-level checking only deals with cases
where the current action is a child node of action
set→ joinent(rel, ent) in the abstract syntax tree
(AST). As illustrated in Fig. 4, when expanding the
nonterminal ent, any retrieved KB entity can re-
turn a valid grammar rule such as ent→m.04bmk or
ent→m.04vd3. However, only m.04vd3 can pass
the instance-level checking, since other candidates
do not share direct links with the decoded relation
tv.tv episode segment.subjects.

328



joinent

arg

rel1set1 joinrelset2 rel2

Instance-level Checking

Ontology-level Checking

subjects tv programs

World War 
II 

Anne Frank: The Whole 
Story 

tv programs

𝐣𝐨𝐢𝐧𝐞𝐧𝐭 𝐣𝐨𝐢𝐧𝐞𝐧𝐭

O
n

to
lo

g
y

In
st

a
n

ce

Semantic Checker

Real Execution

Knowledge Base

A
b

st
ra

ct
 S

y
n

ta
x 

Tr
e
e

SPARQL Query

Figure 4: The illustration of four checking mechanisms in the check given the question “What was the subject of
the TV show with the most number of episodes and featured on killer joke?”

Ontology-level Checking performs checking
with the help of KB linkage information at
the ontology level (i.e., types and bridging
relations). Taking the right subtree presented
in Fig. 4 as an example, when expanding the
second rel, we employ ontology-level checking
to determine its valid semantic scope. Ac-
cording to the semantics of the grammar rule
set→ joinrel(rel1, rel2), the type set of the head
entity in rel2 must overlap with the type set of
the tail entity in rel1, by which the candidate
rel→tv.tv program.number of episodes

is selected. Although ontology-level checking
applies to more situations than instance-level, it
is weaker in terms of checking effectiveness and
needs constraints of high coverage.

Real Execution When decoding reaches the end,
an action sequence can be converted into a logi-
cal form, and finally into a SPARQL query. As
depicted in Fig. 4, the real execution simply takes
the final SPARQL query and tries to execute it over
KB. If the query cannot be executed successfully,
or the result is empty, it means that the correspond-
ing action sequence cannot meet the executable re-
quirement. In practice, we utilize the real execution
to check all complete action sequence candidates
searched by the beam search procedure, until an
action sequence passes checking.

Virtual Execution The real execution cannot in-
tervene in the middle of program generation, which
leads to candidates of low quality in the final beam
(e.g., no candidate can be executed). Meanwhile,
since real execution relies on SPARQL, it is rela-
tively slow as SPARQL queries are executed over
tremendous (e.g., millions) entities with multi-hop

relations. Instead, we propose virtual execution to
alleviate these issues. As illustrated in Fig. 4, when
a sub-program (i.e., shaded in purple) is fully pro-
duced, virtual execution is triggered to run bottom-
up and check if the virtual answer set is empty. If
so, the action sequence is removed from the beam.
At each node, this virtual execution performs ac-
cording to the program function semantics at the
ontology-level. Taking rel→ reverse(rel) as an
illustration, the virtual answer is obtained by revers-
ing each tuple (head entity type, end entity type) in
rel. Such virtual execution is very fast since the
ontology only contains thousands of relations and
types. Meanwhile, it can prune programs earlier;
before the real execution.15

3 Experiments

3.1 Datasets and Metrics

GrailQA (Gu et al., 2021) is a challenging crowd-
sourced KBQA dataset containing 64,331 ques-
tions involving up to 4 relations. This dataset is
created to evaluate three levels of generalization
scenarios in KBQA: i.i.d., compositional, and zero-
shot, which account for 25%, 25%, and 50% of the
test set, respectively. We refer readers to Gu et al.
(2021) for more details.

WebQuestionsSP (WebQSP) (Yih et al., 2016)
is a popular KBQA dataset with 4,937 questions,
requiring up to 2-hop relation path inference. Orig-
inally it splits into 3,298 questions as train set and
1,639 questions as test set. We randomly sample
200 questions from the train set as a dev set.

On GrailQA, we use official evaluation metrics:
exact match accuracy (EM) and F1. Consistent

15More details are described in the Appendix.
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Overall I.I.D. Compositional Zero-shot

EM F1 EM F1 EM F1 EM F1

Query-Graph Generation methods
QGG (Lan and Jiang, 2020) − 36.7 − 40.5 − 33.0 − 36.6
GloVe + RANKING (Gu et al., 2021) 39.5 45.1 62.2 67.3 40.0 47.8 28.9 33.8
BERT + RANKING (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7

Transduction-based methods
GloVe + TRANSDUCTION (Gu et al., 2021) 17.6 18.4 50.5 51.6 16.4 18.5 3.0 3.1
BERT + TRANSDUCTION (Gu et al., 2021) 33.3 36.8 51.8 53.9 31.0 36.0 25.7 29.3

Ours 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
– Checker 41.6 44.2 73.2 74.5 43.4 48.3 26.2 28.4

Table 2: EM and F1 results on the hidden test set of GrailQA.

Method F1 Hits@1

IR-based methods
EmbedKGQA∗♥ (Saxena et al., 2020) − 72.5
EmbedKGQA∗ (Saxena et al., 2020) − 66.6
PullNet∗ (Sun et al., 2019) − 68.1
GRAFT-Net∗ (Sun et al., 2018) 62.8 67.8

Query-Graph Generation methods
GrailQA RANKING∗♥ (Gu et al., 2021) 67.0 −
STAGG♥ (Yih et al., 2015) 69.0 −
Topic Units♥ (Lan et al., 2019) 67.9 −
TextRay♥ (Bhutani et al., 2019) 60.3 −
QGG♥ (Lan and Jiang, 2020) 74.0 −
UHop (Chen et al., 2019) 68.5 −

Transduction-based methods
NSM♥ (Liang et al., 2017) 69.0 −
Ours∗ 74.7 74.6

– Checker 62.0 61.7
Ours 71.0 71.6

– Checker 56.9 57.4

Table 3: F1 and Hits@1 results on WebQSP. ∗ denotes
using oracle entity linking annotations. ♥ denotes us-
ing fixed number of hops assumption.

with previous work, we use F1 and Hits@1 as
evaluation metrics on WebQSP.

3.2 Implementation Details

We implemented our model based on PyTorch
(Paszke et al., 2019) and AllenNLP (Gardner et al.,
2018). With respect to BERT, we utilize the un-
cased BERT-base model from the Transformers li-
brary (Wolf et al., 2020). In training, we employed
the Adam optimizer (Kingma and Ba, 2015). The
learning rate is set to 1e-3, except for BERT, which
is set to 2e-5. Our model training time on a single
Tesla V100 is approximately 20h16.

As for dense retriever, on GrailQA dataset, we
retrieve top-100 type items and top-150 relation
items. On WebQSP dataset, we retrieve top-200

16Due to space limitation, we put the detailed hyper-
parameters setting in the Appendix.

type items and top-500 relation items.

3.3 Baseline Models
We compare our model with previous state-of-the-
art models on GrailQA (Lan and Jiang, 2020; Gu
et al., 2021) and WebQSP (Liang et al., 2017;
Sun et al., 2019; Saxena et al., 2020; Lan and
Jiang, 2020). Notably, both TRANSDUCTION and
RANKING models proposed by Gu et al. (2021) on
GrailQA can be based on either GloVe (Pennington
et al., 2014) or BERT (Devlin et al., 2019). We
compare with them under all settings.

3.4 Results
We test ReTraCk with two configurations, with
or without Checker. As shown in Table 2, Re-
TraCk significantly outperforms the previous SOTA
model BERT + RANKING (F1 +7.3, EM +7.5 ) and
achieves an improvement (F1 +28.5, EM + 24.8)
over the previous best transduction-based model
BERT + TRANSDUCTION on GrailQA.

Table 3 shows model performance on WebQSP.
Given predicted entities, our model outperforms
previous models (except for QGG (Lan and Jiang,
2020)) and even outperforms these models with
oracle entities: GRAFT-Net, PullNet, and Embed-
KGQA. Given oracle entities, the performance of
our model further boosts to 74.7 F1, which shows
the potential gains with a better entity linker.

While most SOTA models constrain their answer
space by assuming a fixed number of hops, we
conduct experiments on both datasets without such
assumptions, which simulates real world scenarios.
QGG works well on WebQSP by accessing the KB
via SPARQL when generating the query graph at
each step. However, as noted in Gu et al. (2021),
extending QGG to consider 3-hops relations on
GrailQA will take a few months to train, which
is time consuming. It works poorly on GrailQA
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Example Right

Query: which journal did don slater serve as editor on the editor in chief?
Predict: (AND book.journal (JOIN book.periodical.editorial staff (AND (JOIN book.editoria

l tenure.editor m.05ws t6) (JOIN book.editorial tenure.title m.02wk2cy))))

X

Golden: (AND book.journal (JOIN book.periodical.editorial staff (AND (JOIN book.editoria

l tenure.editor m.05ws t6) (JOIN book.editorial tenure.title m.02wk2cy))))

Query: which exhibition has the same exhibition curator with venice biennale of architecture taiwan pavillion
2006?
Predict: (AND exhibitions.exhibition (JOIN exhibitions.exhibition.curators (JOIN ( R exhi

bitions.exhibition.curators) m.064dsyn)))

X

Golden: (AND exhibitions.exhibition (JOIN (R exhibitions.exhibition curator.exhibitions cu

rated) (JOIN exhibitions.exhibition curator.exhibitions curated m.064dsyn)))

Query: how is surface density measured in international system of units?
Predict: (AND measurement unit.unit of density (JOIN measurement unit.unit of density.measure

ment system m.0c13h))

×

Golden: (AND measurement unit.unit of surface density (JOIN measurement unit.unit of surface

density.measurement system m.0c13h))

Table 4: Case Study. Three examples from the development set of GrailQA dataset. Brown words denote semanti-
cally equivalent schema items. Red words denote inconsistent schema items.

under 2-hop assumption.
By removing the checker module, the perfor-

mance drops 21.1 and 14.1 F1 points on GrailQA
and WebQSP respectively, which demonstrates the
significant effectiveness of the checker. Except
for QGG mentioned above, GrailQA RANKING

model takes an average 115.5 seconds17 to process
one query, which is not applicable for online sys-
tems. In contrast, ReTraCk takes only 1.62 seconds
per query on average at its current implementation
which demonstrates its efficiency.

3.5 Case Study

To demonstrate ReTraCk’s capability, we show
three typical examples from the development set
of GrailQA dataset in Table 4. In the first case,
ReTraCk accurately links two mentions (don slater
and editor in chief ) in the query to correspond-
ing entities (m.05ws t6 and m.02wk2cy) in Free-
base. It also retrieves all necessary schema items
(three relations and one type) via schema retriever.
The transducer equipped with checker accurately
understands the meaning of query and compose
the complex logical form with five operators. The
predicted logical form is exactly the same as the
golden logical form. As for the second case, Re-
TraCk parses the query to a logical form which is
semantically equivalent to the golden logical form,
which demonstrates the existence of program alias.
As for the third case, ReTraCk ignores the seman-

17Data are derived from https://github.com/dki-lab/
GrailQA

tics conveyed by the word surface in the query, and
selects wrong schema item unit of density in-
stead of unit of surface density. This example
shows that our model sometimes only captures part
of the semantics in the query and misses some span
information.

4 Conclusion

We present ReTraCk, a semantic parsing frame-
work for KBQA. ReTraCk is flexible and efficient,
achieving strong results on two distinct KBQA
datasets. We hope that ReTraCk will be benefi-
cial for future research efforts towards developing
better KBQA systems.
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A Entity Linker

The entity linker used in this paper follows the
typical pipeline that consists of three sub-modules:
mention detection, candidate generation and entity
disambiguation. Following the previous work Gu
et al. (2021), we use a BERT-based NER system18

to detect the entity mentions and literals (e.g., nu-
merical values and datetime) in the question. Then
we generate candidate entities along with their prior
probability using an alias map mined from the KB
and FACC1 (Gabrilovich et al., 2013), a large entity
linking corpus.

For entity disambiguation, we adopt the state-of-
the-art neural entity disambiguation model BOOT-
LEG (Orr et al., 2021)19 which shows decent gen-
eralization performance over long-tail entities. In
BOOTLEG, each entity is represented with three
levels information: its unique entity embedding, at-
tached types’ embedding and relations’ embedding,
and leverage BERT (Devlin et al., 2019) to encode

18https://github.com/kamalkraj/BERT-NER
19http://ai.stanford.edu/blog/bootleg/

the context. Besides, we also combine the prior
score from the candidate generation step and the
context compatibility score from BOOTLEG with
two fully connected layers of 100 hidden units and
ReLU non-linearities. Note that existing KBQA
datasets do not provide the mention boundary an-
notations. We generated the distantly supervised
training data for both named entity recognition
and entity disambiguation by aligning the natural
language question with entities’ observed aliases
mined from the candidate generation step.

We evaluate the performance of our entity linker
on GrailQA dev set and WebQSP test set. We com-
pare its performance with the following baselines:
1) Aqqu (Bast and Haussmann, 2015) which is a
rule based entity linker using linguistic and entity
popularity features. 2) GrailQA (Gu et al., 2021)
which is a prior baseline. 3) Prior which is a prior
baseline implemented by us. 4) BOOTLEG (Orr
et al., 2021) which is trained using distantly aligned
question answering data. 5) BOOTLEG + Prior
which is the full disambiguation model used in this
paper.

As you can see from Table 5, our Prior performs
slightly better than the GrailQA (Gu et al., 2021)’s
Prior by 0.8 F1 points on GrailQA. What’s inter-
esting is that the BOOTLEG trained with GrailQA
data is even inferior than Prior baseline by 4.8 F1
points. However, BOOTLEG + Prior improves over
BOOTLEG and Prior by 4.4 F1 points and 9.2 F1
points respectively. The above experiment results
show that the prior feature is very important and
orthogonal to the BOOTLEG model in the question
entity linking. As shown in Table 6, similar conclu-
sions can be derived from the experiment results on
WebQSP dataset. Compared with experiments on
GrailQA, the performance of BOOTLEG is lower
with only 58.5 F1 score and the improvement of
BOOTLEG + Prior over Prior is reduced by 1.7 F1
points. This is mainly because the size of training
data of WebQSP (3,098 instances) is much smaller
than GrailQA (44,337 instances) which limits the
learning of BOOTLEG model.

B Dense Schema Retriever

In principle, the encoders can be implemented by
any neural networks (Karpukhin et al., 2020). We
use two independent BERT-base encoders (Devlin
et al., 2019).

Training The goal of training the encoders is
to create a vector space such that relevant schema
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Overall I.I.D. Com Zero

Aqqu (Bast and Haussmann, 2015) 14.5 − − −
GrailQA (Test set ) (Gu et al., 2021) 75.2 − − −
GrailQA (Dev set) (Gu et al., 2021) 72.2 − − −
Prior 73.0 78.6 74.9 69.7
BOOTLEG 68.2 78.6 70.6 62.5
BOOTLEG + Prior 77.4 86.6 81.3 71.9

Table 5: F1 scores of various Entity linking models on GrailQA dev set.

Precision Recall F1

Prior 81.2 81.7 81.4
BOOTLEG 58.3 58.6 58.5
BOOTLEG + Prior 82.8 83.3 83.1

Table 6: Entity linking performance (set level metric
P/R/F1) on WebQSP test set.

items get higher scores with the given question. For
each pair of question and schema item (qi, si) in a
batch of size B, the loss is computed as:

L(qi,si)=−s(qi, si)+log

B∑

j=1

exp(s(qi, sj)). (4)

In-batch negatives have shown to be effective
for learning a bi-encoder architecture (Karpukhin
et al., 2020). To use in-batch negatives, we separate
relevant schema items of the same question into
different mini-batches. In this way, there are B
training instances in each batch and B− 1 negative
candidates for each question.

Dense Schema Retriever v.s. Neighbor Schema
Retriever To prune the decoding vocabulary
space, Gu et al. (2021) retrieves schema items
that are reachable by anchor entities within 2-hops
in KB, which is named after neighbor schema re-
triever. In this section, we compare the perfor-
mance of dense schema retriever proposed in this
work with the neighbor schema retriever. Fig. 5
shows the recall of the schema items with respect
to top-k retrieved candidates on GrailQA dev set.
Neighbor schema retriever obtains 69.2% type re-
call with an average of 112.1 candidate items while
dense schema retriever achieves 73.3% recall with
only 2 candidates and 98.5% recall with 100 can-
didates. Similar trends can be found in the rela-
tion recall curve in Fig. 5. Dense schema retriever
not only improves the recall of schema items, but
also reduces the candidate size, which benefits the
downstream transducer model.
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Figure 5: Top-k recall of schema retriever on GrailQA
dev set.

C Checking Procedure

The usage of 4 functions (instance checking,
type checking, virtual execution and
real execution) are explained in the paper.
Here we present an algorithm to introduce the
checking procedure better, as show in Algorithm
1.

D Detailed Hyper-parameter Setting

Entity Linker For the BERT-based NER model,
we use the uncased BERT-base model from the
Transformers library trained with AdamW opti-
mizer (learning rate: 5e-5) for 5 epochs. For
the entity disambiguation model, we use the de-
fault parameters from BOOTLEG. On GrailQA
dataset, we use the uncased BERT-base model
trained with SparseDenseAdam optimizer imple-
mented by BOOTLEG (learning rate: 1e-4) for 5
epochs. We add two fully connected layers of 100
hidden units and ReLU non-linearities to combine
BOOTLEG and the prior score feature. The entity
embedding size is set to 256, type and relation
embedding size is set to 128. The entity embed-
ding mask percentage is set to 0.8. On the smaller
dataset WebQSP, except training with a larger num-
ber of epochs (50), and the embedding size is set
to 64 to avoid overfitting, everything is the same as
the model on GrailQA. Through our experiments,
we select the best model based on the F1 score on
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Algorithm 1 Checking Process
Input: valid action candidates C, decoded logical form beam
L, knowledge base K
Output: logical form beam for the next step L̂
Algorithm:
L̂ = /O
Procedure static checking(C,L,K)

for each action sequence s in L do
for each valid action candidate c in C do

if not instance checking(s, c) then
continue

if not ontology checking(s, c) then
continue

. novel checking techniques can be added here
ŝ ←〈s1, s2, · · · , s|s|, c〉
L̂ ← L̂ ∪ {ŝ}

L̂ = kbest beam(L̂, k) . keep top k scoring candidates in L̂
Procedure dynamic checking(L̂)

for each action sequence ŝ in L̂ do
τ = ŝ|ŝ|
While τ corresponds to a full sub-program do
r = virtual execution(τ)
if not r then
L̂ ← L̂ remove ŝ
break

τ ← parent node of τ in AST tree
if ŝ arrives at the end then
r = real execution(ŝ)
if r then
L̂ ← {ŝ} . only keep the first executable ŝ
break

return L̂

dev set of each dataset. We pass top-3 and top-5
candidate entities per entity mention to the down-
stream transducer model on GrailQA and WebQSP
dataset respectively.

Dense Schema Retriever We use the uncased
BERT-base model from the Transformers library
trained with AdamW optimizer (learning rate: 1e-
5) for 10 epochs. We select the best model based
on the recall of schema items on the dev set of each
dataset. On GrailQA dataset, we retrieve top-100
type items and top-150 relation items. On WebQSP
dataset, we retrieve top-200 type items and top-500
relation items.

Parser We implement our model based on Py-
Torch and AllenNLP. With respect to BERT, we use
the uncased BERT-base model from Transformers
library. In training, we employ the Adam optimizer.
The learning rate of our model is set to 1e-3, except
for BERT, which is set to 2e-5. The training time of
our model on single Tesla V100 is approximately
20 hours. We select the best model based on the ex-
act match ratio between the predicted logical form
and golden logical form.
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Abstract

We present skweak, a versatile, Python-based
software toolkit enabling NLP developers to
apply weak supervision to a wide range of
NLP tasks. Weak supervision is an emerging
machine learning paradigm based on a simple
idea: instead of labelling data points by hand,
we use labelling functions derived from do-
main knowledge to automatically obtain anno-
tations for a given dataset. The resulting labels
are then aggregated with a generative model
that estimates the accuracy (and possible con-
fusions) of each labelling function.
The skweak toolkit makes it easy to implement
a large spectrum of labelling functions (such
as heuristics, gazetteers, neural models or lin-
guistic constraints) on text data, apply them
on a corpus, and aggregate their results in a
fully unsupervised fashion. skweak is espe-
cially designed to facilitate the use of weak
supervision for NLP tasks such as text classi-
fication and sequence labelling. We illustrate
the use of skweak for NER and sentiment anal-
ysis. skweak is released under an open-source
license and is available at:
https://github.com/NorskRegnesentral/skweak

1 Introduction

Despite ever-increasing volumes of text documents
available online, labelled data remains a scarce
resource in many practical NLP scenarios. This
scarcity is especially acute when dealing with
resource-poor languages and/or uncommon textual
domains. This lack of labelled datasets is also com-
mon in industry-driven NLP projects that rely on
domain-specific labels defined in-house and can-
not make use of pre-existing resources. Large pre-
trained language models and transfer learning (Pe-
ters et al., 2018, 2019; Lauscher et al., 2020) can to
some extent alleviate this need for labelled data, by
making it possible to reuse generic language repre-
sentations instead of learning models from scratch.

Start: corpus of raw (unlabelled) 
documents from target domain

Step 1: 
labelling functions

(heuristics, gazetteers, etc.)

Step 2: aggregation 
(EM with generative model)

Step 3: Training of 
final NLP model    

(on aggregated labels) …

…

O O B-PER …

Figure 1: General overview of skweak: labelling func-
tions are first applied on a collection of texts (step 1)
and their results are then aggregated (step 2). A dis-
criminative model is finally trained on those aggregated
labels (step 3). The process is illustrated here for NER,
but skweak can in principle be applied to any type of
sequence labelling or classification task.

However, except for zero-shot learning approaches
(Artetxe and Schwenk, 2019; Barnes and Klinger,
2019; Pires et al., 2019), they still require some
amounts of labelled data from the target domain to
fine-tune the neural models to the task at hand.

The skweak framework (pronounced /skwi:k/) is a
new Python-based toolkit that provides solutions to
this scarcity problem. skweak makes it possible to
bootstrap NLP models without requiring any hand-
annotated data from the target domain. Instead
of labelling data by hand, skweak relies on weak
supervision to programmatically label data points
through a collection of labelling functions (Fries
et al., 2017; Ratner et al., 2017; Lison et al., 2020;
Safranchik et al., 2020a). The skweak framework
allows NLP practitioners to easily construct, apply
and aggregate such labelling functions for classifi-
cation and sequence labelling tasks. skweak comes
with a robust and scalable aggregation model that
extends the HMM model of Lison et al. (2020). As
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detailed in Section 4, the model now includes a
feature weighting mechanism to capture the corre-
lations that may exist between labelling functions.
The general procedure is illustrated in Figure 1.

Another novel feature of skweak is the ability to
create labelling functions that produce underspeci-
fied labels. For instance, a labelling function may
predict that a token is part of a named entity (but
without committing to a specific label), or that a
sentence does not express a particular sentiment
(but without committing to a specific sentiment cat-
egory). This ability greatly extends the expressive
power of labelling functions and makes it possible
to define complex hierarchies between categories –
for instance, COMPANY may be a sub-category of
ORG, which may be itself a sub-category of ENT.
It also enables the expression of “negative” signals
that indicate that the output should not be a par-
ticular label. Based on our experience applying
weak supervision to various NLP tasks, we expect
this ability to underspecify output labels to be very
useful in NLP applications.

2 Related Work

Weak supervision aims to replace hand-annotated
‘ground truths’ with labelling functions that are
programmatically applied to data points – in our
case, texts – from the target domain (Ratner et al.,
2017, 2019; Lison et al., 2020; Safranchik et al.,
2020b; Fu et al., 2020). Those functions may take
the form of rule-based heuristics, gazetteers, an-
notations from crowd-workers, external databases,
data-driven models trained from related domains,
or linguistic constraints. A particular form of weak
supervision is distant supervision, which relies on
knowledge bases to automatically label documents
with entities (Mintz et al., 2009; Ritter et al., 2013;
Shang et al., 2018). Weak supervision is also re-
lated to models for aggregating crowd-sourced an-
notations (Kim and Ghahramani, 2012; Hovy et al.,
2013; Nguyen et al., 2017).

Crucially, labelling functions do not need to pro-
vide a prediction for every data point and may
“abstain” whenever certain conditions are not met.
They may also rely on external data sources that
are unavailable at runtime, as is the case for labels
obtained by crowd-workers. After being applied
to a dataset, the results of those labelling functions
are aggregated into a single, probabilistic annota-
tion layer. This aggregation is often implemented
with a generative model connecting the latent (un-

observed) labels to the outputs of each labelling
function (Ratner et al., 2017; Lison et al., 2020;
Safranchik et al., 2020a). Based on those aggre-
gated labels, a discriminative model (often a neural
architecture) is then trained for the task.

Weak supervision shifts the focus away from
collecting manual annotations and concentrates the
effort on developing good labelling functions for
the target domain. This approach has been shown
to be much more efficient than traditional annota-
tion efforts (Ratner et al., 2017). Weak supervision
allows domain experts to directly inject their do-
main knowledge in the form of various heuristics.
Another benefit is the possibility to modify/extend
the label set during development, which is a com-
mon situation in industrial R&D projects.

Several software frameworks for weak supervi-
sion have been released in recent years. One such
framework is Snorkel (Ratner et al., 2017, 2019)
which combines various supervision sources using
a generative model. However, Snorkel requires
data points to be independent, making it difficult
to apply to sequence labelling tasks as done in
skweak. Swellshark (Fries et al., 2017) is another
framework optimised for biomedical NER. Swell-
shark, is however, limited to classifying already
segmented entities, and relies on a separate, ad-hoc
mechanism to generate candidate spans.

FlyingSquid (Fu et al., 2020) presents a novel ap-
proach based on triplet methods, which is shown to
be fast enough to be applicable to structured predic-
tion problems such as sequence labelling. However,
compared to skweak, the aggregation model of Fly-
ingSquid focuses on estimating the accuracies of
each labelling function, and is therefore difficult
to apply to problems where labelling sources may
exhibit very different precision/recall trade-offs. A
labelling function may for instance rely on a pattern
that has a high precision but a low recall, while the
opposite may be true for other labelling functions.
Such difference is lost if accuracy is the only met-
ric associated for each labelling function. Finally
Safranchik et al. (2020b) describe a weak supervi-
sion model based on an extension of HMMs called
linked hidden Markov models. Although their ag-
gregation model is related to skweak, they provide
a more limited choice of labelling functions, in par-
ticular regarding the inclusion of document-level
constraints or underspecified labels.

skweak is also more distantly related to ensemble
methods (Sagi and Rokach, 2018), as those meth-
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ods also rely on multiple estimators whose results
are combined at prediction time. However, a major
difference lies in the fact that labelling functions
only need to be aggregated once in skweak, in or-
der to generate labelled training data for the final
discriminative model (Step 3 of Figure 1). This
difference is important as labelling functions may
be computationally costly to run or rely on external
resources that are not available at runtime, as is the
case for annotations from crowd-workers.

3 Labelling functions

Labelling functions in skweak can be grouped in
four main categories: heuristics, gazetteers, ma-
chine learning models, and document-level func-
tions. Each labelling function is defined in skweak
as a method that takes SpaCy Doc objects as in-
puts and returns text spans associated with labels.
For text classification tasks, the span simply corre-
sponds to the full document itself.

The use of SpaCy greatly facilitates downstream
processing, as it allows labelling functions to oper-
ate on texts that are already tokenised and include
linguistic features such as lemma, POS tags and
dependency relations.1 skweak integrates several
functionalities on top of SpaCy to easily create,
manipulate, label and store text documents.

Heuristics
The simplest type of labelling functions integrated
in skweak are rule-based heuristics. For instance,
one heuristic to detect entities of type COMPANY is
to look for text spans ending with a legal company
type (such as “Inc.”). Similarly, a heuristic to detect
named entities of the (underspecified) type ENT is
to search for sequences of tokens tagged as NNPs.
Section 6 provides further examples of heuristics
for NER and Sentiment Analysis.

The easiest way to define heuristics in skweak
is through standard Python functions that take a
SpaCy Doc object as input and returns labelled
spans. For instance, the following function detects
entities of type MONEY by searching for numbers
preceded by a currency symbol like $ or e:

def money_detector(doc):
"""Searches for occurrences of
MONEY entities in text"""

for tok in doc[1:]:
if (tok.text[0].isdigit() and

1For languages not yet supported in SpaCy, the multi-
language model from SpaCy can be applied.

tok.nbor(-1).is_currency):
yield tok.i-1, tok.i+1, "MONEY"

skweak also provides functionalities to easily
construct heuristics based on linguistic constraints
(such as POS patterns or dependency relations) or
the presence of neighbouring words within a given
context window.

Labelling functions may focus on specific labels
and/or contexts and ”abstain” from giving a predic-
tion for other text spans. For instance, the heuristic
mentioned above to detect companies from legal
suffixes will only be triggered in very specific con-
texts, and abstain from giving a prediction other-
wise. More generally, it should be stressed that
labelling functions do not need to be perfect and
should be expected to yield incorrect predictions
from time to time. The purpose of weak supervi-
sion is precisely to combine together a set of weak-
er/noisier supervision signals, leading to a form of
denoising (Ratner et al., 2019).

Labelling functions in skweak can be constructed
from the outputs of other functions. For instance,
the heuristic tagging NNP chunks with the label
ENT may be refined through a second heuristic that
additionally requires the tokens to be in title case –
which leads to a lower recall but a higher precision
compared to the initial heuristic. The creation of
such derived labelling functions through the com-
bination of constraints is a simple way to increase
the number of labelling sources and therefore the
robustness of the aggregation mechanism. skweak
automatically takes care of dependencies between
labelling functions in the backend.

Machine learning models

Labelling functions may also take the form of ma-
chine learning models. Typically, those models
will be trained on data from other, related domains,
thereby leading to some form of transfer learning
across domains. skweak does not impose any con-
straint on type of model that can be employed.

The support for underspecified labels in skweak
greatly facilitates the use of models across datasets,
as it makes it possible to define hierarchical re-
lations between distinct label sets – for instance,
the coarse-grained LOC label from CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) may be
seen as including both the GPE and LOC labels in
Ontonotes (Weischedel et al., 2011).
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Gazetteers

Another group of labelling functions are gazetteers,
which are modules searching for occurrences of a
list of words or phrases in the document. For in-
stance, a gazetteer may be constructed using the ge-
ographical locations from Geonames (Wick, 2015)
or names of persons, organisations and locations
from DBPedia (Lehmann et al., 2015)

As gazetteers may include large numbers of en-
tries, skweak relies on tries to efficiently search for
all possible occurrences within a document. A trie,
also called a prefix tree, stores all entries as a tree
which is traversed depth-first. This implementation
can scale up to very large gazetteers with more than
one million entries. The search can be done in two
distinct modes: a case-sensitive mode that requires
an exact match between the entity in the trie and
the occurrence and a case-insensitive mode that
relaxes this constraint.

Document-level functions

Unlike previous weak supervision frameworks,
skweak also provides functionalities to create
document-level labelling functions that rely on the
global document context to derive new supervision
signals. In particular, skweak includes a labelling
function that takes advantage of label consistency
within a document. Entities occurring multiple
times through a document are highly likely to be-
long to the same category (Krishnan and Manning,
2006). One can take advantage of this phenomenon
by estimating the majority label of each entity in
the document and then creating a labelling function
that applies this majority label to each mention.

Furthermore, when introduced for the first time
in a text, entities are often referred univocally,
while subsequent mentions (once the entity is
salient) frequently rely on shorter references. For
instance, the first mention of a person in a text will
often take the form of a full name (possibly com-
plemented with job titles), but mentions that follow
will often rely on shorter forms, such as the fam-
ily name. skweak provides functionalities to easily
capture such document-level relations.

4 Aggregation model

After being applied to a collection of texts, the out-
puts of labelling functions are aggregated using
a generative model. For sequence labelling, this
model is expressed as a Hidden Markov Model
where the states correspond to the “true” (unob-

served) labels, and the observations are the predic-
tions of each labelling function (Lison et al., 2020).
For document classification, this model reduces to
Naive Bayes since there are no transitions.

This generative model is estimated using the
Baum-Welch algorithm (Rabiner, 1990), which a
variant of EM that uses the forward-backward al-
gorithm to compute the statistics for the expecta-
tion step. For efficient inference, skweak combines
Python with C-compiled routines from the hmm-
learn package2 employed for both parameter esti-
mation and decoding.

4.1 Probabilistic Model
We assume a list of J labelling functions
{λ1, ..., λJ}. Each labelling function produces a
label for each data point (including a special “void”
label denoting that the labelling function abstains
from a concrete prediction, as well as underspeci-
fied labels). Let {l1, ..., lL} be the set of labels that
can be produced by labelling functions.

The aggregation model is represented as a hidden
Markov model (HMM), in which the states corre-
spond to the true underlying mutually exclusive
class labels {l1, ..., lS}.3 This model has multiple
emissions (one per labelling function). For the time
being, we assume those emissions to be mutually
independent conditional on the latent state (see next
section for a more refined model).

Formally, for each token i ∈ {1, ..., n} and la-
belling function λj , we assume a multinomial dis-
tribution for the observed labels Yij . The param-
eters of this multinomial are vectors P si

j ∈ RL[0,1].
The latent states are assumed to have a Markovian
dependence structure along the tokens {1, ..., n}.
As depicted in Figure 2, this results in an HMM
expressed as a dependent mixture of multinomials:

p(λ
(i)
j = Yij |P si

j ) = Multinomial
(
P si
j

)
, (1)

p(si = k|si−1 = l) = τlk. (2)

where τlk ∈ R[0,1] are the parameters of the transi-
tion matrix controlling for a given state si−1 = l
the probability of transition to state si = k.

The likelihood function includes a constraint that
requires latent labels to be observed in at least one
labelling function to have a non-zero probability.

2https://hmmlearn.readthedocs.io/
3Note that the set of observed labels {l1, ..., lL} produced

by the labelling functions may be larger than the set of la-
tent labels {l1, ..., lS}, since those observed labels may also
include underspecified labels such as ENT.
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This day in 1918 ...

si−1 si si+1 si+2 ...

P si
j Y ij

Labelling function j ∈ {1, ..., J}

Figure 2: Aggregation model using a hidden Markov
model with multiple multinomial emissions.

This constraint reduces the search space to a few
labels at each step, and greatly facilitates the con-
vergence of the forward-backward algorithm.

To initialise the model parameters, we run a ma-
jority voter that predicts the most likely latent labels
based on the “votes” for each label (also includ-
ing underspecified labels), each labelling function
corresponding to a voter. Those predictions are
employed to derive the initial transition and emis-
sion probabilities, which are then refined through
several EM passes.

Performance-wise, skweak can scale up to large
collections of documents. The aggregation of all
named entities from the MUC-6 dataset (see Sec-
tion 6.1) based on a total of 52 labelling functions
only requires a few minutes of computation time,
with an average speed of 1000-1500 tokens per
second on a modern computing server.

4.2 Weighting

One shortcoming of the above model is that it fails
to account for the fact that labelling functions may
be correlated with one another, for instance when
a labelling function is computed from the output
of another labeling function. To capture those de-
pendencies, we extend the model with a weighting
scheme – or equivalently, a tempering of the densi-
ties associated with each labelling function.

Formally, for each labelling function λj and ob-
served label k we determine weights {wjk} with
respect to which the corresponding densities of the
labelling functions are annealed. This flattens to
different degrees the underlying probabilities for
the components of the multinomials. The observed
process has then a tempered multinomial distribu-

tion with a density of form:

p(λ
(i)
j = Yij |P si

j ,wj) ∝
L∏

k=1

P sijk
Yijkwjk . (3)

The temperatures {wjk} are determined using a
scheme inspired by delution priors widely used in
Bayesian model averaging (George, 1999; George
et al., 2010). The idea relies on redundancy as the
measure of prior information on the importance of
features. Formally, we define for each λj a neigh-
bourhood N(λj) consisting of labelling functions
known to be correlated with λj , as is the case for la-
belling functions built on top of another function’s
outputs. The weights are then specified as:

wjk = exp


−γ

∑

l∈N(λj)

Rjlk


, (4)

where γ is a hyper-parameter specifying the
strength of the weighting scheme, and Rjlk is the
recall between labelling functions λj and λl for
label k. Informally, the weight wjk of a labelling
function λj producing the label k will decrease if
λj exhibits a high recall with correlated sources,
and is therefore at least partially redundant.

Also, the temperatures can be interpreted as
weights of the log-likelihood function and Dim-
itroff et al. (2013) have shown that under some reg-
ularity conditions there exist weights that allow to
maximize F1 score when optimising the weighted
log-likelihood (Field and Smith, 1994).

5 Example

With skweak, one can apply and aggregrate la-
belling functions with a few lines of code:

import spacy, re
from skweak import heuristics,

gazetteers, aggregation, utils

# First heuristic (see Section 3)
lf1 = heuristics.FunctionAnnotator

("money", money_detector)

# Detection of years
lf2= heuristics.TokenConstraintAnnotator

("years", lambda tok: re.match
("(19|20)\d{2}$", tok.text), "DATE")

# Gazetteer with a few names
NAMES = [("Barack", "Obama"), ("Donald",

"Trump"), ("Joe", "Biden")]
trie = gazetteers.Trie(NAMES)
lf3 = gazetteers.GazetteerAnnotator

("presidents", trie, "PERSON")
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# We create a simple text
nlp = spacy.load("en_core_web_md")
doc = nlp("Donald Trump paid $750 in

federal income taxes in 2016")

# apply the labelling functions
doc = lf3(lf2(lf1(doc)))

# aggregate them
hmm = aggregation.HMM("hmm",

["PERSON", "DATE", "MONEY"])
hmm.fit_and_aggregate([doc])

# and visualise the result (in Jupyter)
utils.display_entities(doc, "hmm")

skweak’s repository provides Jupyter Notebooks
with additional examples and explanations.

6 Experimental Results

We describe below two experiments demonstrating
how skweak can be applied to sequence labelling
and text classification. We refer the reader to Lison
et al. (2020) for more results on NER.4 It should
be stressed that the results below are all obtained
without using any gold labels.

6.1 Named Entity Recognition

We seek to recognise named entities from the MUC-
6 corpus (Grishman and Sundheim, 1996), which
contains 318 Wall Street Journal articles annotated
with 7 entity types: LOCATION, ORGANIZATION,
PERSON, MONEY, DATE, TIME, PERCENT.

Labelling functions
We apply the following functions to the corpus:

• Heuristics for detecting dates, times and per-
cents based on handcrafted patterns

• Heuristics for detecting named entities based
on casing, NNP part-of-speech tags or com-
pound phrases. Those heuristics produced
entities of underspecified type ENT

• One probabilistic parser (Braun et al., 2017)
for detecting dates, times, money amounts,
percents, and cardinal/ordinal values

• Heuristics for detecting person names, based
on honorifics (such as Mr. or Dr.) along with
a dictionary of common first names

• One heuristic for detecting company names
with legal suffixes (such as Inc.)

4See also Fries et al. (2017) for specific results on applying
weak supervision to biomedical NER.

Model Token F1 Entity F1

Majority vote 0.61 0.57
(all labelling functions)
HMM-aggregated labels:
- only heuristics 0.57 0.43
- only gazetteers 0.36 0.35
- only NER models 0.60 0.56
- all but doc-level 0.80 0.71
- all labelling functions 0.81 0.72
Neural NER trained on 0.82 0.72
HMM-aggregated labels

Table 1: Micro-averaged F1 scores on MUC-6.

• Gazetteers for detecting persons, organisa-
tions and locations based on Wikipedia, Geon-
ames (Wick, 2015) and Crunchbase

• Neural models trained on CoNLL 2003 & the
Broad Twitter Corpus (Tjong Kim Sang and
De Meulder, 2003; Derczynski et al., 2016)

• Document-level labelling functions based on
(1) majority labels for a given entity or (2) the
label of each entity’s first mention.

All together (including multiple variants of the
functions above, such as gazetteers in both case-
sensitive and case-insensitive mode), this amounts
to a total of 52 labelling functions.

Results
The token and entity-level F1 scores are shown in
Table 1. As baselines, we provide the results ob-
tained by aggregating all labelling functions using
a majority voter, along with results using the HMM
on various subsets of labelling functions. The final
line indicates the results using a neural NER model
trained on the HMM-aggregated labels (with all
labelling functions). The neural model employed
in this particular experiment is a transformer archi-
tecture based on a large pretrained neural model,
RoBERTa (Liu et al., 2019).

See Lison et al. (2020) for experimental details
and results for other aggregation methods.

6.2 Sentiment Analysis

We consider the task of three class (positive, nega-
tive, neutral) sentiment analysis in Norwegian as a
second case study. We use sentence-level annota-
tions5 from the NoReCfine dataset (Øvrelid et al.,

5Data: https://github.com/ltgoslo/norec sentence
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2020). These are created by aggregating the fine-
grained annotations for sentiment expressions such
that any sentence with a majority of positive sen-
timent expressions is assumed to be positive, and
likewise with negative expressions. Sentences with
no sentiment expressions are labelled neutral.

Labelling functions
Sentiment lexicons: NorSent (Barnes et al.,
2019) is the only available lexicon in Norwegian
and contains tokens with their associated polarity.
We also use MT-translated English lexicons: SoCal
(Taboada et al., 2011), the IBM Debater lexicon
(Toledo-Ronen et al., 2018) and the NRC word
emotion lexicon (NRC emo.) (Mohammad and
Turney, 2010). Automatic translation introduces
some noise but has been shown to preserve most
sentiment information (Mohammad et al., 2016).

Heuristics: For sentences with two clauses con-
nected by ‘but’, the second clause is typically more
relevant to the sentiment, as for instance in “the
food was nice, but I wouldn’t go back there”. We
include a heuristic to reflect this pattern.

Machine learning models: We create a
document-level classifier (Doc-level) by training a
bag-of-words SVM on the NoReC dataset (Velldal
et al., 2018), which contains ‘dice labels’ ranging
from 1 (very negative) to 6 (very positive). We map
predictions to positive (>4), negative (<3), and
neutral (3 and 4). We also include two multilingual
BERT models mBERT-review6 (trained on
reviews from 6 languages) and mBERT-SST
(trained on the Stanford Sentiment Treebank). The
predictions for both models are again mapped to 3
classes (positive, negative, neutral).

Results
Table 2 provides results on the NoReC sentence
test split. As baseline, we include a Majority class
which always predicts the neutral class. As upper
bounds, we include a linear SVM trained on TF-
IDF weighted (1-3)-grams (Ngram SVM), along
with Norwegian BERT (NorBERT) models (Ku-
tuzov et al., 2021) fine-tuned on the gold training
data. Those two models are upper bounds as they
have access to in-domain labelled data, which is
not the case for the other models.

Again, we observe that the HMM-aggregated
labels outperform all individual labelling functions

6https://huggingface.co/nlptown/
bert-base-multilingual-uncased-sentiment

Source Macro F1

baseline Majority class 22.4

upper bounds
Ngram SVM 55.2
NorBERT 68.5

lexicons

NorSent 45.3
NorSent lemmas 33.7
NRC VAD 8.2
SoCal 46.1
SoCal adv. 43.8
SoCal Google 45.0
SoCal Int. 36.5
SoCal verb 37.2
IBM 35.9
NRC Emo. 41.7

heuristics BUT 25.3
BUT lemmas 24.0

trained models
Doc-level 33.0
mBERT-review 44.3
mBERT-SST 32.3

Aggregation
Majority vote 40.0
HMM 49.1

Trained on agg. NorBERT 51.2

Table 2: Macro F1 on sentence-level NoReC data.

as well as a majority voter that aggregates those
functions. The best performance is achieved by a
neural model (in this case NorBERT) fine-tuned on
those aggregated labels.

7 Conclusion

The skweak toolkit provides a practical solution
to a problem encountered by virtually every NLP
practitioner: how can I obtain labelled data for my
NLP task? Using weak supervision, skweak makes
it possible to create training data programmatically
instead of labelling data by hand. The toolkit pro-
vides a Python API to apply labelling functions
and aggregate their results in a few lines of code.
The aggregation relies on a generative model that
express the relative accuracy (and redundancies) of
each labelling function.

The toolkit can be applied to both sequence la-
belling and text classification and comes along a
range of novel functionalities such as the integra-
tion of underspecified labels and the creation of
document-level labelling functions.
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Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
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Abstract

TextFlint is a multilingual robustness evalua-
tion toolkit for NLP tasks that incorporates uni-
versal text transformation, task-specific trans-
formation, adversarial attack, subpopulation,
and their combinations to provide comprehen-
sive robustness analyses. This enables practi-
tioners to automatically evaluate their models
from various aspects or to customize their
evaluations as desired with just a few lines of
code. TextFlint also generates complete ana-
lytical reports as well as targeted augmented
data to address the shortcomings of the model
in terms of its robustness. To guarantee
acceptability, all the text transformations are
linguistically based and all the transformed
data selected (up to 100,000 texts) scored
highly under human evaluation. To validate
the utility, we performed large-scale empirical
evaluations (over 67,000) on state-of-the-art
deep learning models, classic supervised meth-
ods, and real-world systems. The toolkit is al-
ready available at https://github.com/textflint,
with all the evaluation results demonstrated at
textflint.io.

1 Introduction

The detection of model robustness has been
attracting increasing attention in recent years,
given that deep neural networks (DNNs) of high
accuracy can still be vulnerable to carefully crafted
adversarial examples (Li et al., 2020), distribution
shift (Miller et al., 2020), data transformation (Xing
et al., 2020), and shortcut learning (Geirhos et al.,
2020). Existing approaches to textual robustness
evaluation focus on slightly modifying the input
data, which maintains the original meaning and
results in a different prediction. However, these
methods often concentrate on either universal or

∗Xiao Wang and Qin Liu contributed equally to this work
and are co-first authors.

†Corresponding Author

Subpopulation

Transformation

Adversarial attack
Original Premise: Some rooms have balconies.

Hypothesis: All of the rooms have balconies.
Premise: Many rooms have balconies.
Hypothesis: All of the rooms have balconies.

Contradiction

Neutral
Adv

Original Tasty burgers, and crispy fries. (Target aspect: burgers)

RevTgt Terrible burgers, but crispy fries.
RevNon Tasty burgers, but soggy fries.
Typos Tatsy burgers, and cripsy fries.

Original Set Subpopulation - Gender
She became a nurse and worked in a hospital.
I told John to come early, but he failed.
The river derives from southern America.
Marry would like to teach kids in the kindergarten.
The storm destroyed many houses in the village. ✘

✓

✓

✘
✓

Figure 1: Examples of three main generation functions.
The transformation example is from ABSA (Aspect-
based Sentiment Analysis) task, where the italic bold
RevTgt (short for reverse target) denotes task-specific
transformations, and the bold Typos denotes universal
transformation.

task-specific generalization capabilities, which is
difficult to comprehensively evaluate.

In response to the shortcomings of recent works,
we introduce TextFlint, a unified, multilingual, and
analyzable robustness evaluation toolkit for NLP.
Its features include:

1. Integrity. TextFlint offers 20 general transfor-
mations and 60 task-specific transformations,
as well as thousands of their combinations that
cover a variety of aspects of text transforma-
tions to enable a comprehensive evaluation of
robustness. It also supports evaluations on
both English and Chinese. In addition, the
toolkit also incorporates adversarial attack and
subpopulation (Figure 1). Currently, 12 NLP
tasks are available and more are on the way.
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Subpopulation

Original Data

AttackRecipe

Transformation
Analyzer

ReportGenerator

Original Model

Validator

Generated Data Robustness Report

Config File

Generation Layer

Dataset

Config

FlintModel

Report LayerInput Layer

Figure 2: Architecture of TextFlint. Input Layer receives the original dataset, config file and target model as input,
which are represented as Dataset, Config and FlintModel separately. Generation Layer consists of three
parallel modules, where Subpopulation generates a subset of input dataset, Transformation augments
datasets, and AttackRecipe interacts with the target model. Report Layer analyzes test results by Analyzer
and provides users with robustness report by ReportGenerator.

2. Acceptability. All the text transformations
offered by TextFlint are linguistically based and
passed human evaluation. To verify the quality
of the transformed text, we conducted human
evaluation on the original and transformed texts
under all of the mentioned transformations. The
transformed texts performed well in plausibility
and grammaticality.

3. Analyzability. Based on the evaluation results,
TextFlint provides a standard analysis report
with respect to a model’s lexics, syntax, and
semantics. All the evaluation results can be
displayed via visualization and tabulation to
help users gain a quick and accurate grasp of the
shortcomings of a model. In addition, TextFlint
generates a large amount of targeted data to
augment the evaluated model, based on the the
defects identified in the analysis report, and
provides patches for the model defects.

We evaluated 95 state-of-the-art models and
classic systems on 6,903 transformation datasets
for a total of over 67,000 evaluations and found that
almost all models showed significant performance
degradation, including a decline of more than 50%
of BERT’s prediction accuracy on tasks such as
aspect-level sentiment classification, named entity
recognition, and natural language inference. This
means that the robustness of most models needs to
be improved.

2 TextFlint Framework

TextFlint is designed to be flexible enough to
allow practitioners to configure the workflow while
providing appropriate abstractions to alleviate
the concerns of the low-level implementation.
According to its pipeline architecture, TextFlint
can be organized into three blocks, as shown
in Figure 2: (a) Input Layer, which prepares
the necessary information for sample generation;
(b) Generation Layer, which applies generation
functions to each sample; and (c) Reporter Layer,
which analyzes the evaluation results and generates
a robustness report.

2.1 Input Layer

For input preparation, the original dataset, which
is to be loaded by Dataset, should first be
formatted as a series of JSON objects. The
configuration of TextFlint is specified by
Config, which can be loaded from a customized
config file. TextFlint is model-agnostic and
provides FlintModel to wrap the target model.
This means that it can apply robustness evaluation
to models implemented in any deep learning
framework. After Input Layer completes the
required input loading, the interaction between the
system and the user is complete.

348



Pragmatics

Morphology

Maxims of Conversation

Prejudice

Word as Symbols Inflection

Acronym

Derivation

Contraction

Relevance

Quantity

Quality

Manner

[Word]

SpellingError

[Char]

Keyboard

[C
ha

r]

Typ
os

[C
ha

r]
Ocr

[N
ER

]
En

tT
yp

os
[W

or
d]

Te
ns

e

[C
W

S]

Sw
apVerb

[PO
S]

Sw
apM

ultiPO
S

[CW
S]

SwapAcronym

[NER]
SwapLonger

[POS]SwapPrefix

[Word]
Contraction

[NLI]

AddSent

[ABSA]

AddDiff

[Senten
ce]

AppendIrr

[S
en

ten
ce

]

Tw
itte

rT
yp

e[C
or

ef
]

Rn
dI

ns
er

t

[N
ER

]
C

on
ca

tS
en

t[SA
]

A
ddSum

[Coref]

RndRepeat

RndD
elete

[M
RC]

AddSentDiverse

[MRC]

PerturbAnswer

Question
[Coref]RndShuffle

[Word]Add/RmvPunc

Syntax

Paradigmatic Relation

Model Related

Syntactic Category
Adjunct

Incom
patible

Synonym Antonym

[Sentence] BackTrans

[SM/NLI] Overlap

[MRC] ModifyPos

Subpopulation

Word

SwapNamedEnt

[NER]

OOV

CrossCategory

[SA]

SwapSpecialEnt

[R
E]

Swap
Trip

leP
os

[S
A]

Dou
bl

eD
en

ial[S
M

]
Sw

ap
W

or
d

[S
M

/N
LI

]
Sw

ap
N

um

[R
E]

Sw
apEnt

[A
BSA

]

RevTgt

[ABSA]

RevNon

[W
ord]

InsertAdv[DP]
DeleteSubTree[DP]AddSubTree[DP]

DeleteAdd
[RE]

InsertClause

[Word]

SwapNum

[CWS]

SwapNum

[CWS]

SwapNam
e

[W
ord

]

M
LM

Su
gg

est
ion

[W
or

d]
Sw

ap
Sy

n
[C

W
S]

Sw
ap

Co
nt

ra
ct

io
n

[C
W

S]
Sw

ap
Sy

n [W
ord]

Sw
apA

nt

[W
ord]

A
dd/Rm

vN
eg

[SM
/NLI]

SwapAnt

Figure 3: Overview of transformations through the lens of linguistics.

2.2 Generation Layer

Generation Layer supports three types of sample
generation functions to provide comprehensive
robustness analyses, i.e., Transformation,
Subpopulation, and AttackRecipe.
It is worth noting that the procedure of
Transformation and Subpopulation
does not require querying the target model, which
means it is a completely decoupled process with
the target model prediction. Additionally, to
ensure semantic and grammatical correctness of
the transformed samples, Validator provides
several metrics to calculate the confidence of each
sample.

Transformation Transformation aims to
generate perturbations of the input text while
maintaining the acceptability of the transformed
texts. To verify the robustness comprehensively,
TextFlint offers 20 universal transformations and
60 task-specific transformations, as well as thou-
sands of their combinations, covering 12 NLP
tasks.

From the perspective of linguistics, the trans-
formations are designed according to morphology,
syntax, paradigmatic relation, and pragmatics.
Transformations on morphology include Key-
Board, Ocr, Typos, etc. As for syntactical
transformations, there are SwapSyn-WordNet,
AddSubTree, etc. Due to limited space, refer
to Figure 3 for specific information. Further, we
conducted a large scale human evaluation on the

original and transformed texts under all of the
mentioned transformations (Section 4).

Subpopulation Subpopulation identifies
the specific part of the dataset on which the target
model performs poorly. To retrieve a subset that
meets the configuration, Subpopulation
divides the dataset by sorting samples
according to certain attributes. TextFlint
provides four general Subpopulation
configurations, which contain GenderBias,
TextLength, LanguageModelPerplexity, and
PhraseMatching. Take the configuration of text
length for example, TextLength retrieves the
subset of the top 20% or bottom 20% in length.

AttackRecipe AttackRecipe aims to find a
perturbation of an input text that satisfies the goal
to fool the given FlintModel. In contrast with
Transformation and Subpopulation,
AttackRecipe requires the prediction scores of
the target model. TextFlint provides 16 easy-to-use
adversarial attack recipes that are implemented
based on TextAttack (Morris et al., 2020).

Validator It is crucial to verify the quality of
the samples generated by Transformation
and AttackRecipe. TextFlint provides several
metrics to evaluate the quality of the generated text,
including (1) language model perplexity calculated
based on the GPT2 model (Radford et al., 2019), (2)
word replacement ratio in generated text compared
with its original text, (3) edit distance between
original text and generated text, (4) semantic
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similarity calculated based on Universal Sentence
Encoder (Cer et al., 2018), and (5) BLEU score
(Papineni et al., 2002).

2.3 Reporter Layer
Generation Layer yields three types of adversarial
samples and verifies the robustness of the target
model. Based on the evaluation results from
Generation Layer, Report Layer aims to provide
users with a standard analysis report from syntax,
morphology, pragmatics, and paradigmatic relation
aspects. The running process of Report Layer
can be regarded as a pipeline from Analyzer
to ReportGenerator.

3 Usage

Using TextFlint to verify the robustness of a
specific model is as simple as running the following
command:
$ textflint --dataset input_file

--config config.json

where input file is the input file of csv or
json format, and config.json is a configuration
file with generation and target model options.
Complex functions can be implemented by a
simple modification on config.json, such as
executing the pipeline of transformations and
assigning the parameters of each transformation
method. Take the configuration for TextCNN (Kim,
2014) model on SA (sentiment analysis) task as an
example:
{
"task": "SA",
"out_dir": "./DATA/",
"flint_model": "./textcnn_model.py",
"trans_methods": [
"Ocr",
["InsertAdv", "SwapNamedEnt"],
...

],
"trans_config": {
"Ocr": {"trans_p": 0.3},
...

},
...
}

• task is the name of the target task. TextFlint
supports 12 types of tasks.

• out dir is the directory where each of the gen-
erated samples and their corresponding original
samples are saved.

• flint model is the python file path that saves
the instance of FlintModel.

Figure 4: Screenshot of TextFlint’s web interface
running Ocr transformation for ABSA task.

• trans methods is used to specify the
transformation method. For example, "Ocr"
denotes the universal transformation Ocr, and
["InsertAdv", "SwapNamedEnt"]
denotes a pipeline of task-specific
transformations, namely InsertAdv and
SwapNamedEnt.

• trans config configures the parameters for
the transformation methods. The default parame-
ter is also a good choice.

Moreover, it also supports the configuration of
subpopulation and adversarial attack. For more
details about parameter configuration, please move
to https://github.com/textflint/textflint.

Based on the design of the decoupling sample
generation and model verification, TextFlint can
be used inside another NLP project with just a few
lines of code.

from textflint import Engine

data_path = ’input_file’
config = ’config.json’
engine = Engine()
engine.run(data_path, config)

TextFlint is also available for use through our
web demo, displayed in Figure 4, which is available
at https://www.textflint.io/demo.

Case Studies of Usage Due its user-friendly de-
sign philosophy, TextFlint shows its practicality in
real applications. We summarize three occasions in
which model robustness evaluation is challenging:

Case 1: General Evaluation For users who
want to evaluate the robustness of NLP models
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Plausibility Grammaticality

Ori. Trans. Ori. Trans.
DoubleDenial 3.26 3.37 3.59 3.49
AddSum-Person 3.39 3.32 3.76 3.59
AddSum-Movie 3.26 3.34 3.61 3.58
SwapSpecialEnt-Person 3.37 3.14 3.75 3.73
SwapSpecialEnt-Movie 3.17 3.28 3.70 3.49

Plausibility Grammaticality

Ori. Trans. Ori. Trans.
OOV 3.69 3.76 3.54 3.48
SwapLonger 3.73 3.66 3.77 3.54
EntTypos 3.57 3.5 3.59 3.54
CrossCategory 3.48 3.44 3.41 3.32
ConcatSent 4.14 3.54 3.84 3.81

Table 1: Human evaluation results for task-specific transformation. Ori and Trans denote the original text and
the transformed text, respectively. The table on the left is the performance of task-specific transformations for
the sentiment analysis task, and the right is of that for named entity recognition. These metrics are rated on a
1-5 scale (5 denotes the best).

in a general way, TextFlint supports generating
massive and comprehensive transformed samples
with just one command. By default, TextFlint
performs all single transformations on the original
dataset to form the corresponding transformed
datasets, and the performance of the target models
is tested on these datasets. The evaluation report
provides a comparative view of model performance
on datasets before and after certain types of
transformations, which supports model weakness
analyses and guides particular improvements. For
example, take BERT base(Devlin et al., 2019)
as the target model to verify its robustness on
the CONLL2003 dataset(Tjong Kim Sang and
De Meulder, 2003), whose robustness report is
shown in Figure 5. The performance of BERT
base decreases significantly in some morphology
transformations, such as OCR, Keyboard, Typos,
and Spelling Error. To combat these errors of
input texts and improve the robustness of the
model, we suggest that placing a word correction
model(Pruthi et al., 2019) before BERT would be
beneficial.
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Figure 5: Robustness report of BERT base model on
CONLL2003 dataset, where trans f1 denotes the F1-
score of target model on the transformed test data.

Case 2: Customized Evaluation For users who
want to test model performance on specific aspects,
they demand a customized transformed dataset of
certain transformations or their combinations. In
TextFlint, this could be achieved by modifying
Config, which determines the configuration of
TextFlint in generation. Config specifies the
transformations being performed on the given
dataset. It can be modified manually or generated
automatically. By modifying the configuration,
users could decide to generate multiple transformed
samples on each original data sample, validate
samples by semantics, preprocess samples with
certain processors, and more.

Case 3: Target Model Improvement For users
who want to improve the robustness of target
models, they may work hard to inspect the
weakness of a model with less alternative support.
To tackle the issue, we believe a diagnostic report
revealing the influence of comprehensive aspects
on model performance will provide concrete
suggestions on model improvement. By using
TextFlint and applying a transformed dataset to
target models, the transformations corresponding
to significant performance decline in the evaluation
report will provide guidance for improvements to
the target models. Moreover, TextFlint supports
adversarial training on target models with a large-
scale transformed dataset, and the change of
performance will also be reported to display
performance gain due to adversarial training.

4 Benchmarking Existing Models with
TextFlint

To verify the quality of transformation, we con-
ducted human evaluation on the original and
transformed texts under all of the mentioned
transformations. Specifically, we considered two
metrics in human evaluation: plausibility and gram-
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Model RevTgt (Ori. → Trans.) RevNon (Ori. → Trans.) AddDiff (Ori. → Trans.)
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Restaurant Dataset
LSTM (Hochreiter et al., 1997) 84.42→ 19.30 55.75→ 19.88 85.91→ 73.42 55.02→ 44.69 84.42→ 44.63 55.75→ 33.24
TD-LSTM (Tang et al., 2016a) 86.42→ 22.42 61.92→ 22.28 87.29→ 79.58 60.70→ 53.35 84.42→ 81.35 61.92→ 55.69
ATAE-LSTM (Wang et al., 2016) 85.60→ 28.90 67.02→ 23.84 86.60→ 60.74 65.41→ 41.46 85.60→ 44.39 67.02→ 36.40
MemNet (Tang et al., 2016b) 81.46→ 19.30 54.57→ 17.77 83.68→ 72.95 55.39→ 45.14 81.46→ 63.62 54.57→ 39.36
IAN (Ma et al., 2017) 83.83→ 17.71 58.91→ 18.12 84.88→ 73.06 56.91→ 45.87 83.83→ 56.61 58.91→ 37.08
TNet (Li et al., 2018) 87.37→ 24.58 66.29→ 25.00 87.86→ 75.00 66.15→ 49.09 87.37→ 80.56 66.29→ 59.68
MGAN (Fan et al., 2018) 88.15→ 26.10 69.98→ 23.65 89.06→ 71.95 68.90→ 50.24 88.15→ 70.21 69.98→ 51.71
BERT-base (Devlin et al., 2019) 90.44→ 37.17 70.66→ 30.38 90.55→ 52.46 71.45→ 32.47 90.44→ 55.96 70.66→ 37.00
BERT+aspect (Devlin et al., 2019) 90.32→ 62.59 76.91→ 44.83 91.41→ 57.04 77.53→ 44.43 90.32→ 81.58 76.91→ 71.01
LCF-BERT (Zeng et al., 2019) 90.32→ 53.48 76.56→ 39.52 90.55→ 61.09 75.18→ 44.87 90.32→ 86.78 76.56→ 73.71
Average 86.83→ 31.16 65.86→ 26.63 87.78→ 67.73 64.96→ 45.15 86.83→ 66.55 65.86→ 49.49

Table 2: Accuracy and F1 score on the SemEval 2014 Restaurant dataset.

maticality1. For each of the transformed texts, three
native speakers from Amazon Mechanical Turk
were invited for evaluation, and the average score
was recorded. For each kind of transformations
(single one or a combination of two or more),
100 original-transformed text pairs were randomly
selected for human evaluation. All of the 100,000
texts scored highly in terms of the two metrics. It
was verified that the plausibility and grammaticality
of the transformed texts, taking the data of SA and
NER for example (Table 1), only dropped slightly
compared with the original ones. Statistically, the
average score of the grammaticality of the texts
before and after transformation reported 3.947 and
3.825, respectively; the average of plausibility
of original and transformed texts was 3.847 and
3.792, respectively. For the worst case where
the grammaticality dropped the most, a decline
of 1.03 from the original to the transformed text
was from Ocr on ABSA task. The largest decline
of plausibility, 0.48, was seen on the SwapSyn of
CWS task.

We adopted TextFlint to evaluate hundreds of
models of 12 tasks (including both English and
Chinese tasks), covering various model frameworks
and learning schemas, ranging from traditional
feature-based machine learning approaches to
state-of-the-art neural networks. All evaluated
models and their implementations are available
publicly. After model implementation, dataset
transformation, and batch inspection, users will
receive evaluation reports on various aspects,
comprehensively analyzing the robustness of a
system by acquiring larger test samples. From
the evaluation reports, we can easily compare the
model results of the original test set with those
of the transformed set, spotting the main defects

1The detailed scoring criteria are available at our website:
textflint.io.

of the input model and identifying the model that
performs the best or worst.

From the numerous evaluations and comparisons
conducted by TextFlint, we have a thorough view
of existing NLP systems and discovered underlying
patterns about model robustness. As for the ABSA
task (Table 2), methods equipped with pre-training
LMs showed better performance than other models
on the task-specific transformations, e.g., AddDiff ,
where the accuracy score of BERT-Aspect dropped
from 90.32 to merely 81.58. All the evaluation
results and comprehensive robustness analysis are
available at textflint.io.

5 Related Work

Our work is related to many existing open-source
tools and works in different areas.

Robustness Evaluation Many tools include
evaluation methods for robustness, including
NLPAug (Ma, 2019), Errudite (Wu et al.,
2019), AllenNLP Interpret (Wallace et al.,
2019), and Checklist (Ribeiro et al., 2020),
which are only applicable to limited parts
of robustness evaluations, while TextFlint
supports comprehensive evaluation methods, e.g.,
subpopulation, adversarial attacks, transformations,
and so on. Besides the common transformation
methods like synonym substitution and typos,
various task-specific transformations are tailored
for each of the 12 NLP tasks, which is peculiar to
TextFlint. Moreover, we are the first to provide
linguistic support for the transformations, the
designs for which were inspired by linguistics and
have been proved plausible and readable by human
annotators.

Several tools also exist concerning robustness,
which are similar to our work (Morris et al., 2020;
Zeng et al., 2020; Goel et al., 2021) and include a
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wide range of evaluation methods. However, these
tools only focus on general generalization evalu-
ations and lack quality evaluations on generated
texts or only support automatic quality constraints.
TextFlint supports both general and task-specific
evaluations and guarantees the acceptability of each
transformation method with human evaluations. In
addition, TextFlint provides a standard report that
can be displayed with visualization and tabulation.
More importantly, all of the tools and modules are
encapsulated within a unified framework, which
completely differs from Robustness Gym (Goel
et al., 2021), a simple aggregation of APIs of
various tools including Checklist (Ribeiro et al.,
2020) and Textattack (Morris et al., 2020). In
addition, all of the transformations can be realized
automatically by a simple modification to the
configuration in TextFlint, while manually defined
patterns are required by some of the functions in
Robustness Gym.

Interpretability and Error Analysis Several
works concern model evaluation from different
perspectives. AllenNLP Interpret (Wallace et al.,
2019), InterpreteML (Nori et al., 2019), LIT
(Nori et al., 2019), Manifold (Zhang et al.,
2018), and AIX360 (Arya et al., 2019) care
about model interpretability in an attempt to
understand the models’ behavior through different
evaluation methods. CrossCheck (Arendt et al.,
2020), AllenNLP Interpret (Wallace et al., 2019),
Errudite (Wu et al., 2019), and Manifold (Zhang
et al., 2018) offer visualization and cross-model
comparison for error analysis. TextFlint is
differently motivated yet complementary with these
works, which can provide comprehensive analyses
on the models’ defects, thus contributing to better
model understanding.

6 Conclusion

We introduced TextFlint, a unified multilingual
robustness evaluation toolkit that incorporates
universal text transformation, task-specific trans-
formation, adversarial attack, subpopulation, and
their combinations to provide comprehensive
robustness analyses. TextFlint enables practitioners
to evaluate their models with just a few lines of
code and then obtain complete analytical reports.
Additionally, we also performed large-scale empiri-
cal evaluations on state-of-the-art deep learning
models, classic supervised methods, and real-
world systems, with all the experimental results

reported on our website. Almost all models showed
significant performance degradation, indicating the
urgency and necessity of including robustness in
NLP model evaluations.

Ethical Considerations

In consideration of ethical concerns, we provide
the following detailed description:

(1) All of the transformed data comes from
existing datasets, which are derived from public
scientific papers. Due to the limited space, we
detailed the characteristics of the dataset and the
transformation methods in the README.md file
at https://github.com/textflint/textflint.

(2) The quality of the transformed datasets will
affect the credibility of the robustness evaluation.
Compared with previous works, we additionally
evaluated 100,000 samples from all of the transfor-
mation methods with respect to their plausibility
and grammaticality by human evaluation.

(3) TextFlint is a robustness evaluation toolkit
that does not provide any NLP models for specific
tasks, such as automated essay scoring, hate speech,
and so on. Therefore, there is no potential harm to
vulnerable populations.

(4) Our work does not contain identity character-
istics. It does not harm anyone.

(5) The subpopulation and transformation mod-
ules are executed on the CPU and do not consume
a lot of computing resources. The AttackRecipe
module is implemented based on TextAttack
(Morris et al., 2020), which is a widely used
framework for adversarial attacks and does not
cause excessive computational cost.
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Abstract

In visual storytelling, a short story is gener-
ated based on a given image sequence. Despite
years of work, most visual storytelling models
remain limited in terms of the generated sto-
ries’ fixed length: most models produce sto-
ries with exactly five sentences because five
sentence stories dominate the training data.
The fix-length stories carry limited details and
provide ambiguous textual information to the
readers. Therefore, we propose to “stretch” the
stories, which create the potential to present
in-depth visual details. This paper presents
Stretch-VST, a visual storytelling framework
that enables the generation of prolonged sto-
ries by adding appropriate knowledge, which
is selected by the proposed scoring function.
We propose a length-controlled Transformer to
generate long stories. This model introduces
novel positional encoding methods to maintain
story quality with lengthy inputs. Experiments
confirm that long stories are generated without
deteriorating the quality. The human evalua-
tion further shows that Stretch-VST can pro-
vide better focus and detail when stories are
prolonged compared to the state of the art. The
demo video is available on Youtube1, and the
live demo can be found on website2.

1 Introduction

Visual storytelling (VIST) is an interdisciplinary
task that takes a sequence of photos as input
and produces a corresponding short story as out-
put (Huang et al., 2016). Prior work explores either
end-to-end or hierarchical methods for visual sto-
rytelling, but machine-generated stories still fall
far short of human-generated stories. One obvious
limitation is the inability to generate stories with

∗* denotes equal contribution
1Demo video: https://youtu.be/-uF8IV6T1NU
2Live demo website: https://doraemon.iis.

sinica.edu.tw/acldemo/index.html

diverse length, especially to prolong a story. In
real-world applications, when pictures accompany
textual stories, the number of sentences is often
much greater than the number of images. Recent
visual storytelling frameworks demonstrate the po-
tential in prolonging visual stories, such as KG-
Story (Hsu et al., 2020), a state-of-the-art frame-
work that uses a knowledge graph to generate one
additional sentence and attach it to 5-sentence vi-
sual stories for improved coherence. However, cur-
rent models, including KG-Story, are incapable of
further “stretching” stories beyond five or six sen-
tences. In short, generating prolonged visual sto-
ries faces three main hurdles: First, as VIST—the
only existing visual storytelling dataset—is mostly
constructed as 5-photo sequences paired with 5-
sentence stories, models trained on it easily overfit
to the dominant length. Second, in visual story-
telling, the quality of the textual story must be
maintained when asking the model for more con-
text. Third, the model’s generation function must
generate stories with the desired number of sen-
tences. That is, control of the continuation and ter-
mination of natural language generation depends
on a given length factor.

To meet these challenges, we introduce Stretch-
VST, a modification of the KG-Story framework
that greatly increases the number of sentences in
visual stories while maintaining the quality thereof.
Story coherence and detail are improved by using
cohesive and relevant information to generate addi-
tional sentences. Illustrated in Fig. 1, Stretch-VST
has three main stages: First, it extracts represen-
tative terms (e.g., actions or objects) from each
image. Second, it finds relations between consecu-
tive images using a knowledge graph, after which
a scoring model selects the most suitable subset of
terms (“term set” hereafter) given its length, term
semantics, and cohesion. The length of the term
set for the resultant term sequence hence depends
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Figure 1: Stretch-VST extracts representative key terms (e.g., objects, people, and actions) from each image, and
uses knowledge graphs to further expand the term set. For any arbitrary subset of terms, Stretch-VST can generate
a story for it: the longer the term set, the longer the output story. The framework generates stories from 5 to 9
sentences long, and selects the best story with the lowest term perplexity (PPL score).

on the score. Finally, a length-controlled Trans-
former is used to generate the story given the term
sequence.

The proposed work generates a variable num-
ber of sentences, and finds the optimal subset of
terms given the story length. The human evalua-
tion shows that Stretch-VST generates better stories
when prolonging stories, provides more detailed
information comparing 5-sentence stories, and is
more robust in cohering story context when the
images are incoherent.

2 Related Work

Visual storytelling was proposed by Huang et al.
(2016). Two lines of work explore this task: one
focuses on model architecture for better story gener-
ation (Hsu et al., 2018; Gonzalez-Rico and Pineda,
2018; Kim et al., 2018; Huang et al., 2019; Jung
et al., 2020; Wang et al., 2020), and the other uses
adversarial training to generate more diverse sto-
ries (Chen et al., 2017; Wang et al., 2018a,b; Hu
et al., 2020). However, these methods often overfit
to the number of sentences in the stories. Stretch-
VST modifies both the source and generation mod-
ules to generate variable-length stories. On the
source side, we use knowledge graphs to expand
the term set to represent the input image sequence.
Integrating a knowledge graph into language gen-
eration is beneficial (LoBue and Yates, 2011; Bow-
man et al., 2015; Hayashi et al., 2020; Zhang et al.,
2017; Zhou et al., 2018; Yang et al., 2019; Guan
et al., 2019). On the generation side, some explore
the use of relative positional encoding (Takase and
Okazaki, 2019), adding embedding layers, and ma-
nipulating the beam search process (Kikuchi et al.,
2016). However, these methods control only the

number of words and not the number of sentences.

3 Methodology

With variable-length visual sorytelling, Stretch-
VST brings two major contributions for VIST: en-
riching the ingredients as desired (Sect. 3.1) and
enabling story generation according to the term
sequence length (Sect. 3.2).

3.1 Expanding and Scoring Term Sequences

Prolonging Term Sequences Drawing from
KG-Story (Hsu et al., 2020), we utilize their
Transformer-based model to distill the represen-
tative terms (e.g., nouns and frames) for each
image. Stretch-VST manipulates term sequence
lengths to increase the story lengths. For every
two consecutive images, we choose whether to
insert a relation into the term sequence; hence,
the sequence length ranges from 5 to 9, as il-
lustrated in Fig. 1. Given 5 images, we define
the image-extracted original term sequence as
{m1

1, ...,m
t
i, ...,m

5
N5

}, where {m1
1, ...,m

1
N1

} de-
notes first image’s term set, mt

i denotes the i-
th term from image t and Nk is the number of
terms from image k. From consecutive images,
we explore all possible relations (mt

i, r,m
t+1
j )

and (mt
i, r1,mmiddle , r2,m

t+1
j ), where mmiddle

denotes a knowledge graph entity that bridges mt
i

and mt+1
j . The chosen relation is inserted into the

original term sequence. For every 5 term sets gen-
erated from the images, the model can insert an
additional 0 to 4 term sets, resulting in 5 to 9 term
sets in total. Moreover, if no relation can be found
between two consecutive images, we also attempt
to find a relation in the reverse direction, as well
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as relations between cross images. That is, we in-
clude (mt+1

i , r,mt
j), (m

t
i, r,m

t+n
j ), and also these

for two-hop relations. Furthermore, we also ap-
plied an image-grounded relation filtering, which
is to ensure the predicted terms appear in the image.
This prevents the model from generate irrelevant
terms. Note that KG-Story is unable to expand or
manipulate the size of the term set, and can only
produce 6-sentence stories.

Rating Prolonged Term Sequences We imple-
ment a Transformer with a masked language model
objective (Devlin et al., 2019). We use spaCy 3,
Open Sesame (Swayamdipta et al., 2017), and the
FrameNet parser (Baker et al., 1998) to convert the
story text to term sequences. We iteratively mask
one position in the overall term sequence to train
the Transformer model. Then, for every possible
term, we calculate the average perplexity of it with
a mask at each position. The term sequence with
the best (lowest) average perplexity is used in the
next stage to generate stories as

P(m′) = F(m′|m1
1, ...,m

NM
Nm

), (1)

PPL(m′) = P(m′)−
1

Nm , (2)

score =
1

Nm

Nm∑

i=1

PPL(mi), (3)

where m′ is the masked term, NM is the number
of term sets, Nm is the number of terms in the
sequence, F is the Transformer language model,
and PPL denotes perplexity.

3.2 Generating Stories From Term Sequences

Most story generation models generate only 5-
sentence stories, regardless of the input length;
story quality usually decays when generating
longer stories (Guo et al., 2018). To this end,
we propose a length-controlled Transformer model
structure with unique positional encoding and his-
tory embedding to reflect the prolonged input
length, prevent story decay, and maintain topic co-
herence. The model flowchart is shown in Fig. 2.

Length-Controlled Transformer To generate a
story depending on the term sequence length, a
Transformer (Vaswani et al., 2017) is used as a
next-sentence generator to generate a story sen-
tence by sentence. Generating sentence sx, the
model is given a history embedding Hx and all

3SpaCy: https://spacy.io/
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Figure 2: Flowchart for length-controlled Transformer.
When generating sentence sx, the model is input
(s0, s1, ..., sx−1), (M1,M2, ...,MNM ), and sx−1.

images’ term sets M1, ...,MNM , where Hx =
LSTM(s0, ..., sx−1), denotes a history embed-
ding for all previous sentences, generated from
a LSTM layer; M t = {mt

1, ...,m
t
Nm

} denotes the
set of Nm terms belonging to image t. Given an
expanded term sequence with NM term sets, the
model generates NM times to obtain a story con-
sisting of NM sentences.

Positional Encoding In 5-sentence VIST train-
ing dataset, most stories only contain sentence
position up to 5. When generating such sto-
ries, naive absolute positional encoding (Vaswani
et al., 2017) doesn’t handle positions larger than
5, thus, story quality decays accordingly. To this
end, we introduce term positional encoding and
beginning-inside-ending (BIE) positional encoding
to reflect diverse input lengths. Term positional
encoding is implemented in the Transformer en-
coder to inform the model of the current term po-
sition. While generating sentence x, the model
sets input term set Mx’s position to 1 and masks
M1, ...,Mx−1,Mx+1, ...,MNM as 0. In addition,
BIE positional encoding is implemented in the
Transformer decoder to focus on the beginning
and the end of the story while generalizing the
sentences in between. Specifically, we assign po-
sition 1 and 3 to the first and last sentence, and
position 2 to the sentences in the middle.

4 System Interface

Fig. 3 illustrates the user interface of Stretch-VST.
We create a webpage for users to (A) search a story
by story ID or (B) search for stories by keyword.

In Fig.4(a), our user interface displays five im-
ages of the selected album and the visual story
with recommended length generated by Stretch-
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A B

Figure 3: User interface of Stretch-VST. User can (A)
select an story ID from the drop-down menu or (B)
search a stories by keywords.

Figure 4: (a) The panel will show 5 images and visual
story with recommended length. User can (b) drag the
bar-slider and select the desired length of visual story.

VST. The recommended story length is decided
by our scoring model (Sect. 3.1). Users can also
drag the bar-slider to select the desired story length
(Fig. 4(b)). For the keyword search, the user in-
terface displays several images and story snippets
for search results, and the searching algorithm is
an elastic search.(Fig. 5(a)). Likewise, the panel
will display the images, visual story, and the rec-
ommended story length (Fig. 5(b)), and users can
also select the desired story length.

5 Experimental Results

5.1 Evaluation Methods and Baselines
Per the literature (Wang et al., 2018a), human eval-
uation is the most reliable way to evaluate the qual-
ity of visual stories; automatic metrics often do

Figure 5: (a) The panel will provide several snippets
of visual stories that contain the keyword (e.g, dinner
in the story). (b) Selected a snippet, the panel will
show the visual story with the recommended length.
User can also drag the bar-slider to select desired story
length.

not align faithfully to human judgment (Hsu et al.,
2019). Therefore, we conducted human evalua-
tions to assess the quality of stories generated by
Stretch-VST. We randomly selected 250 stories and
evaluated each by five different workers on Ama-
zon Mechanical Turk. Each worker was presented
with the image sequence and its corresponding sto-
ries generated by different models and asked to
rank the stories. In addition, we also conduct a
questionnaire asking annotators “what makes the
story better”, based on the 6 criteria set by VIST
dataset (Huang et al., 2016). These criteria include
focus, coherence, shareability, humanness, ground-
ing, and detail. We used the same datasets and
knowledge graphs as Hsu et al. (2020), and com-
pared the proposed method with three baselines
for visual storytelling: AREL (Wang et al., 2018a),
GLAC (Kim et al., 2018), and KG-Story (Hsu et al.,
2020). Note that we did not compare the results
with KG-Story in Sect. 5.3 and 5.4, as its gen-
eration model neither handles diverse inputs nor
controls the length.

5.2 Generating Optimal-Length Stories

First, we evaluate the ability of Stretch-VST to gen-
erate better and longer stories. Given 5 candidate
sequences with distinct lengths from 5 to 9, we
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Rank #1st rank #Sentences #Tokens
VIST(Sect. 4.1)
AREL 2.47 274 5.00 41.99
GLAC 2.60 258 5.00 35.32
KG-Story 2.51 297 5.81 44.13
Stretch-VST 2.41 421 6.22 69.74
VIST w/ incoherent image (Sect. 4.2)
AREL 2.04 364 3.00 25.41
GLAC 2.08 375 3.00 22.37
Stretch-VST 1.87 511 3.83 41.56

Table 1: Average rankings (1 to 4, lower is better) and
number 1st ranked stories (larger is better) rated by hu-
man judges, along with average number of sentences
and tokens per story. (ρ value < 0.05, N=250)

selected the best sequence of terms with the lowest
perplexity as the material to tell the visual story,
as described in Sect. 3.1. The resulting average
number of sentences in the generated stories was
6.22; that is, the proposed model tends to add one
or two relations to enrich the original story.

The average ranking results, shown in the first
row of Table 1 are better than baseline models.
This indicates the proposed stories are superior to
those from the baseline. Figure 6 shows the ques-
tionnaire result for the best-ranked stories. For
Stretch-VST and KG-Story’s best-ranked stories,
the Stretch-VST story counts are generally higher
in all aspects; specifically, Detailed, Coherence,
and Focused are significantly higher. As our stories
contain more sentences than KGStory, the stories
are undoubtedly more detailed. Additionally, the
increase of stories’ coherence indicates the advan-
tage of our multiple term set insertion as compare
to KGStory’s single insertion. While the prolong-
ing stories are beneficial to detailed and coherence,
we also found that story prolongation is beneficial
to topic-focus. We presume the increase number
of relevant sentences can improve the focus. Note
that we did not use automatic metrics for evaluation
because these metrics do not indicate the quality
of visual stories (Wang et al., 2018b; Hsu et al.,
2019). Figure 7(a) compares stories generated from
Stretch-VST to stories from the baselines.

5.3 Robustness to Incoherent Images

Next, we evaluated the robustness of the proposed
method story coherence by deleting the second and
fourth of the five input images. The second column
of Table 1 shows that Stretch-VST brings together
the diverse contents to generate the best story con-
text even when the input is disrupted. Figure 7(b)
is an example of such input disruption. Although

98
78

107 94
79

110

26 31

68 78
62 62

Stretch-VST KG-Story

Focus Coherence Shareability Humanness Grounding Detail

Figure 6: Aspect-wise votes for Stretch-VST and KG-
Story’s first-place stories collected via the question-
naire.

(a) Classic Example

(b) Delete 2 images

GLAC: the family was having a great time at the wedding. they were very happy
to be there. the bride was very excited.
Stretch-VST: one day my parents came to meet family members and brother
for a photo. we took a photo of it all day. [male] loved the park and today was
his big day. he got to spend more time with his dad and enjoyed it.

AREL: it was graduation day at the graduation ceremony. the students were
excited to receive their diplomas. the students were very proud of their
diplomas. i was so proud of me. the students were very proud of their diplomas.
GLAC: the graduation ceremony was a lot of fun. there were many people
there. they were all eager to receive their diplomas. everyone was very excited.
afterward we took pictures with each other.
KG-Story: the students were very excited to be graduating. they played in a
local band. the lady stood on stage and attached her band. afterwards , they all
left the stage. all of their friends were there to play. the family was very happy to
be together.
Stretch-VST: the graduates were waiting to get ready for their graduation
ceremony. [female] took pictures of everyone on their way to the stage. the man
began getting bored and said he could n't impress his diplomas. he walked
down the road. he posed for a picture with his family. he was walking along the
road. everyone seemed to have a lot of family and friends in support.

AREL: the family was so excited to be together. [male] and [male] were having
a great time. we had a great time at the party.

Figure 7: (a) Example visual stories generated by base-
lines and Stretch-VST. (b) Stories with fewer images
from baseline models and Stretch-VST.

removing two images creates an incoherence in the
photo sequence, Stretch-VST makes the best of
the knowledge graph to fill this gap and generate a
coherent story.

5.4 Robustness to Overstretched Stories
Without changing the input image sequences, does
forcing a model to generate longer stories decrease
the story quality? As no existing method generates
longer visual stories with a fixed number of input
images, we selected a strong Transformer baseline
that incorporates the length-controlling mechanism
proposed in (Kikuchi et al., 2016) as a baseline for
comparison. The baseline model takes the term se-
quence and the desired length as the encoder input.
After forwarding the encoder output to the decoder,
we obtain the baseline story from the decoder’s out-
put. The result in Fig. 8 shows that Stretch-VST is

360



R
an

k

# of sentences

Seq2Seq Stretch-VST

Figure 8: Average rankings between Stretch-VST and
baseline for prolonged stories.

better at generating longer sentence story than our
baseline model.

6 Conclusion

We propose a novel method for generating length-
controlled visual stories which includes an en-
hanced knowledge-graph reasoning module and
a length-controlled Transformer architecture. Us-
ing human evaluations, we show that the method
tells longer and better stories.

7 Ethical Considerations

Although our research aims to produce stories that
are vivid, engaging, and innocent, we are aware
of the possibilities of utilizing a similar approach
to generate inappropriate text (e.g., violent, racial,
or gender-insensitive stories). The proposed visual
storytelling technology enables people to gener-
ate stories rapidly based on photo sequences at
scale, which could also be used with malicious
intent, for example, to concoct fake stories using
real images. Finally, as the proposed methods use
external knowledge graphs, they reflect the issues,
risks, and biases of such information sources. Miti-
gating these potential risks will require continued
research.
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Abstract

Textual adversarial attacking has received
wide and increasing attention in recent years.
Various attack models have been proposed,
which are enormously distinct and imple-
mented with different programming frame-
works and settings. These facts hinder quick
utilization and fair comparison of attack mod-
els. In this paper, we present an open-
source textual adversarial attack toolkit named
OpenAttack to solve these issues. Com-
pared with existing other textual adversarial
attack toolkits, OpenAttack has its unique
strengths in support for all attack types, multi-
linguality, and parallel processing. Currently,
OpenAttack includes 15 typical attack mod-
els that cover all attack types. Its highly
inclusive modular design not only supports
quick utilization of existing attack models, but
also enables great flexibility and extensibility.
OpenAttack has broad uses including com-
paring and evaluating attack models, measur-
ing robustness of a model, assisting in devel-
oping new attack models, and adversarial train-
ing. Source code and documentation can be
obtained at https://github.com/thunlp/
OpenAttack.

1 Introduction

Deep neural networks (DNNs) have been found
to be susceptible to adversarial attacks (Szegedy
et al., 2014; Goodfellow et al., 2015). The attacker
uses adversarial examples, which are maliciously
crafted by imposing small perturbations on original
input, to fool the victim model. With the wide appli-
cation of DNNs to practical systems accompanied
by growing concern about their security, research
on adversarial attacking has become increasingly
important. Moreover, adversarial attacks are also

∗Indicates equal contribution
†Work done during internship at Tsinghua University
‡Corresponding author. Email: liuzy@tsinghua.edu.cn

helpful to improve robustness and interpretability
of DNNs (Wallace et al., 2019a).

In the field of natural language processing (NLP),
diverse adversarial attack models have been pro-
posed (Zhang et al., 2020). These models vary in
accessibility to the victim model (ranging from hav-
ing full knowledge to total ignorance) and perturba-
tion level (character-, word- or sentence-level). In
addition, they are originally proposed to attack dif-
ferent victim models on different NLP tasks under
different evaluation protocols.

This immense diversity causes serious difficulty
for fair and apt comparison between different attack
models, which is unfavourable to the development
of textual adversarial attacking. Further, although
most attack models are open-source, they use differ-
ent programming frameworks and settings, which
lead to unnecessary time and effort when imple-
menting them.

To tackle these challenges, a textual adversarial
attacking toolkit named TextAttack (Morris et al.,
2020) has been developed. It implements several
textual adversarial attack models under a unified
framework and provides interfaces for utilizing ex-
isting attack models or designing new attack mod-
els. So far, TextAttack has attracted considerable
attention and facilitated the birth of new attack mod-
els such as BAE (Garg and Ramakrishnan, 2020).

In this paper, we present OpenAttack, which
is also an open-source toolkit for textual adversarial
attacking. Similar to TextAttack, OpenAttack
adopts modular design to assemble various attack
models, in order to enable quick implementation of
existing or new attack models. But OpenAttack
is different from and complementary to TextAttack
mainly in the following three aspects:

(1) Support for all attacks. TextAttack utilizes
a relatively rigorous framework to unify different at-
tack models. However, this framework is naturally
not suitable for sentence-level adversarial attacks,
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Model Accessibility Perturbation Main Idea

SEA (Ribeiro et al., 2018) Decision Sentence Rule-based paraphrasing
SCPN (Iyyer et al., 2018) Blind Sentence Paraphrasing
GAN (Zhao et al., 2018) Decision Sentence Text generation by encoder-decoder
TextFooler (Jin et al., 2020) Score Word Greedy word substitution
PWWS (Ren et al., 2019) Score Word Greedy word substitution
Genetic (Alzantot et al., 2018) Score Word Genetic algorithm-based word substitution
SememePSO (Zang et al., 2020) Score Word Particle swarm optimization-based word substitution
BERT-ATTACK (Li et al., 2020) Score Word Greedy contextualized word substitution
BAE (Garg and Ramakrishnan, 2020) Score Word Greedy contextualized word substitution and insertion
FD (Papernot et al., 2016b) Gradient Word Gradient-based word substitution
TextBugger (Li et al., 2019) Gradient, Score Word+Char Greedy word substitution and character manipulation
UAT (Wallace et al., 2019a) Gradient Word, Char Gradient-based word or character manipulation
HotFlip (Ebrahimi et al., 2018) Gradient Word, Char Gradient-based word or character substitution
VIPER (Eger et al., 2019) Blind Char Visually similar character substitution
DeepWordBug (Gao et al., 2018) Score Char Greedy character manipulation

Table 1: Textual adversarial attack models involved in OpenAttack, among which the three sentence-level
models SEA, SCPN and GAN together with FD, UAT and VIPER are not included in TextAttack for now. “Ac-
cessibility” is the accessibility to the victim model, and “Perturbation” refers to perturbation level. “Sentence”,
“Word” and “Char” denote sentence-, word- and character-level perturbations. In the columns of Accessibility and
Perturbation, “A, B” means that the attack model supports both A and B , while “A+B” means that the attack model
conducts A and B simultaneously.

an important and typical kind of textual adversarial
attacks. Thus, no sentence-level attack models are
included in TextAttack. In contrast, OpenAttack
adopts a more flexible framework that supports all
types of attacks including sentence-level attacks.

(2) Multilinguality. TextAttack only covers En-
glish textual attacks while OpenAttack supports
English and Chinese now. And its extensible design
enables quick support for more languages.

(3) Parallel processing. Running some attack
models maybe very time-consuming, e.g., it takes
over 100 seconds to attack an instance with the
SememePSO attack model (Zang et al., 2020). To
address this issue, OpenAttack additionally pro-
vides support for multi-process running of attack
models to improve attack efficiency.

Moreover, OpenAttack is fully integrated
with HuggingFace’s transformers1 and datasets2

libraries, which allows convenient adversarial at-
tacks against thousands of NLP models (espe-
cially pre-trained models) on diverse datasets.
OpenAttack also has great extensibility. It can
be easily used to attack any customized victim
model, regardless of the used programming frame-
work (PyTorch, TensorFlow, Keras, etc.), on any
customized dataset.
OpenAttack can be used to (1) provide vari-

1https://github.com/huggingface/
transformers

2https://github.com/huggingface/
datasets

ous handy baselines for attack models; (2) compre-
hensively evaluate attack models using its thorough
evaluation metrics; (3) assist in quick development
of new attack models; (4) evaluate the robustness of
an NLP model against various adversarial attacks;
and (5) conduct adversarial training (Goodfellow
et al., 2015) to improve model robustness by en-
riching the training data with generated adversarial
examples.

Recent years have witnesses the rapid devel-
opment of adversarial attacks in computer vision
(Akhtar and Mian, 2018), which is promoted by
many visual attack toolkits such as CleverHans (Pa-
pernot et al., 2018), Foolbox (Rauber et al., 2017),
AdvBox (Goodman et al., 2020), etc. We hope
OpenAttack, together with TextAttack and other
similar toolkits, can play a constructive role in the
development of textual adversarial attacks.

2 Formalization and Categorization of
Textual Adversarial Attacking

We first formalize the task of textual adversarial
attacking for text classification, and the following
formalization can be trivially adapted to other NLP
tasks. For a given text sequence x that is correctly
classified as its ground-truth label y by the vic-
tim model F , the attack model A is supposed to
transform x into x̂ by small perturbations, whose
ground-truth label is still y but classification result
given by F is ŷ 6= y. Next, we introduce the catego-
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rization of textual adversarial attack models from
three perspectives.

According to the attack model’s accessibility
to the victim model, existing attack models can
be categorized into four classes, namely gradient-
based, score-based, decision-based and blind mod-
els. First, gradient-based attack models are also
called white-box attack models, which require full
knowledge of the victim model to conduct gradi-
ent update. Most of them are inspired by the fast
gradient sign method (Goodfellow et al., 2015) and
forward derivative method (Papernot et al., 2016a)
in visual adversarial attacking.

In contrast to white-box attack models, black-
box models do not need to have complete informa-
tion on the victim model, and can be subcategorized
into score-based, decision-based and blind mod-
els. Blind models are ignorant of the victim model
at all. Score-based models require the prediction
scores (e.g., classification probabilities) of the vic-
tim model, while decision-based models only need
the final decision (e.g., predicted class).

According to the level of perturbations imposed
on original input, textual adversarial attack mod-
els can be classified into sentence-level, word-
level and character-level models. Sentence-level
attack models craft adversarial examples mainly by
adding distracting sentences (Jia and Liang, 2017),
paraphrasing (Iyyer et al., 2018; Ribeiro et al.,
2018) or text generation by encoder-decoder (Zhao
et al., 2018). Word-level attack models mostly con-
duct word substitution, namely substituting some
words in the original input with semantically iden-
tical or similar words such as synonyms (Jin et al.,
2020; Ren et al., 2019; Alzantot et al., 2018). Some
word-level attack models also use operations in-
cluding deleting and adding words (Zhang et al.,
2019; Garg and Ramakrishnan, 2020). Character-
level attack models usually carry out character ma-
nipulations including swap, substitution, deletion,
insertion and repeating (Eger et al., 2019; Ebrahimi
et al., 2018; Belinkov and Bisk, 2018).

Finally, adversarial attack models can also be cat-
egorized into targeted and untargeted models based
on whether the wrong classification result given by
the victim model (ŷ) is pre-specified (mainly for
the multi-class classification models). Most exist-
ing attack models support (by minor adjustment)
both targeted and untargeted attacks, and we give
no particular attention to this attribute of attack
models in this paper.
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Figure 1: Overall architecture of OpenAttack.

Currently OpenAttack includes 15 different
attack models, which cover all the victim model
accessibility and perturbation level types. Table 1
lists the attack models involved in OpenAttack.

3 Toolkit Design and Architecture

In this section, we describe the design philosophy
and modular architecture of OpenAttack.

We extract and properly reorganize the com-
monly used components from different attack mod-
els, so that any attack model can be assembled
by them. Considering the significant distinctions
among different attack models, especially those
between the sentence-level and word/char-level at-
tack models, it is hard to embrace all attack models
within a unified framework like TextAttack. There-
fore, we leave considerable freedom for the skele-
ton design of attack models, and focus more on
streamlining the general processing of adversarial
attacking and providing common components used
in attack models. Next we introduce the modules of
OpenAttack one by one, and Figure 1 illustrates
an overview of all the modules.

• TextProcessor. This module is aimed at pro-
cessing the original input so as to assist at-
tack models in generating adversarial exam-
ples. It consists of several functions used for
tokenization, lemmatization, delemmatization,
word sense disambiguation (WSD), named en-
tity recognition (NER) and dependency parsing.
Currently it supports English and Chinese, and
support for other languages can be realized sim-
ply by rewriting the TextProcessor base class.

• Victim. This module wraps the victim model.
It supports both neural network-based model
implemented by any programming framework
(especially the HuggingFace’s transformers) and
traditional machine learning model. It is mainly
composed of three functions that are used to
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obtain the gradient with respect to the input, pre-
diction scores and predicted class of a victim
model.

• Attacker. This is the core module of
OpenAttack. It comprises various attack
models and can generate adversarial examples
for given input against a victim model.

• AttackAssist. This is an assistant module of
Attacker. It mainly packs different word and
character substitution methods that are widely
used in word- and character-level attack mod-
els. Attacker queries this module to get substi-
tutions for a word or character. Now it includes
word embedding-based (Alzantot et al., 2018;
Jin et al., 2020), synonym-based (Ren et al.,
2019) and sememe-based (Zang et al., 2020)
word substitution methods, and visual character
substitution method (Eger et al., 2019). In addi-
tion, some useful components used in sentence-
level attack models are also included, such as
paraphrasing based on back-translation.

• Metric. This module provides several adversar-
ial example quality metrics which can serve as ei-
ther the constraints on the adversarial examples
during attacking or evaluation metrics for eval-
uating adversarial attacks. It currently includes
following metrics: (1) language model predic-
tion score for a given word in a context given by
Google one-billion words language model (Joze-
fowicz et al., 2016) (this metric can be used as
the constraint on adversarial examples only); (2)
word modification rate, the percentage of modi-
fied words of an adversarial example compared
with the original example; (3) formal similar-
ity between the adversarial example and origi-
nal example, which is measured by Levenshtein
edit distance (Levenshtein, 1966), character- and
word-level Jaccard similarity (Jaccard, 1912)
and BLEU score (Papineni et al., 2002); (4)
semantic similarity between the adversarial ex-
ample and original example measured by Uni-
versal Sentence Encoder (Cer et al., 2018) and
Sentence Transformers (Reimers and Gurevych,
2019); (5) adversarial example fluency measured
with perplexity computed by GPT-2 (Radford
et al., 2019); and (6) grammaticality measure by
the grammatical errors given by LanguageTool.3

3https://www.languagetool.org

Perspective Metric Better?

Attack
Effectiveness

Attack Success Rate Higher

Adversarial
Example
Quality

Word Modification Rate Lower
Formal Similarity Higher

Semantic Similarity Higher
Fluency (GPT-2 perplexity) Lower

Grammaticality (Grammatical Errors) Lower
Attack

Efficiency
Average Victim Model Query Times Lower

Average Running Time Lower

Table 2: Evaluation metrics in OpenAttack.
“Higher” and “Lower” mean the higher/lower the met-
ric is, the better an attack model performs.

• AttackEval. This module is used to evaluate
textual adversarial attacks from different per-
spectives including attack effectiveness, adver-
sarial example quality and attack efficiency: (1)
the attack effectiveness metric is attack success
rate, the percentage of the attacks that success-
fully fool the victim model; (2) adversarial exam-
ple quality is measured by the last five metrics
in the Metric module; and (3) attack efficiency
has two metrics including average victim model
query times and average running time of attack-
ing one instance. Table 2 lists all the evaluation
metrics in OpenAttack.

The realization of multi-processing is incorpo-
rated in this module, with the help of Python
multiprocessing library. In addition, this
module can also visualize and save attack re-
sults, e.g., display original input and adversarial
examples and emphasize their differences.

• DataManager. This module manages all the
data as well as saved models that are used
in other modules. It supports accessing and
downloading data/models. Specifically, it deals
with the data used in the AttackAssist module
such as character embeddings, word embeddings
and WordNet synonyms, the models used in
the TextProcessor module such as NER model
and dependency parser, the built-in trained vic-
tim models, and auxiliary models used in At-
tacker such as the paraphrasing model for the
paraphrasing-based attack models. This module
helps efficiently and handily utilize data.

4 Toolkit Usage

OpenAttack provides a set of easy-to-use inter-
faces that can meet almost all the needs in textual
adversarial attacking, such as preprocessing text,
generating adversarial examples to attack a victim
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Figure 2: Part of attack results for individual instances.

model and evaluating attack models. Moreover,
OpenAttack has great flexibility and extensibil-
ity and supports easy customization of victim mod-
els and attack models. Next, we showcase some
basic usages of OpenAttack.

4.1 Built-in Attack and Evaluation

OpenAttack builds in some commonly used
NLP models such as LSTM (Hochreiter and
Schmidhuber, 1997) and BERT (Devlin et al.,
2019) that have been trained on commonly used
NLP datasets. Users can use the built-in victim
models to quickly conduct adversarial attacks. The
following code snippet shows how to use Genetic
(Alzantot et al., 2018) to attack BERT on the test
set of SST-2 (Socher et al., 2013) with 4-process
parallel running:

import OpenAttack as oa
import datasets # HuggingFace’s datasets library
import multiprocessing
# choose a trained victim model
victim = oa.loadVictim(’BERT.SST’)
# choose a evaluation dataset from datasets
dataset = datasets.load_dataset(’sst’, ’test’)
# choose Genetic as the attacker
attacker = oa.attackers.GeneticAttacker()
# prepare for multi-process attacking
attack_eval = oa.attack_evals.

MultiProcessAttackEval(attacker, victim,
num_process=4)

# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)

Figure 2 displays the printed attack results for
individual instances from above code. We can see
OpenAttack prints the original input as well as
the word-aligned adversarial example, where the
perturbed words are colored. In addition, a series
of attack evaluation results are listed. At the end of
individual attack results, OpenAttack provides
an attack summary composed of average evaluation
results of specified metrics among all instances, as
shown in Figure 3.

Figure 3: Summary of attack results.

4.2 Customized Victim Models

It is very common for users to launch attacks
against their own models that have been trained
on specific datasets, particularly when evaluating
the robustness of a victim model. It is impossible to
exhaustively build in all victim models. Thus, easy
customization for victim models is very important.
OpenAttack provides simple and convenient

interfaces for victim model customization. For a
trained model implemented with whichever pro-
gramming framework, users just need to configure
some model access interfaces that provide accessi-
bility required for the attack model under the Vic-
tim class. The following code snippet shows how
to use Genetic to attack a customized sentiment
analysis model, a statistical model in NLTK (Bird
et al., 2009), on the test set of SST.

import OpenAttack as oa
import numpy as np
import datasets
from nltk.sentiment.vader import

SentimentIntensityAnalyzer

# configure access interface of customized model
class MyModel(oa.Victim):

def __init__(self):
self.model = SentimentIntensityAnalyzer()

def get_prob(self, input_):
rt = []
for sent in input_:

rs = self.model.polarity_scores(sent)
prob = rs["pos"] / (rs["neg"] + rs["

pos"])
rt.append(np.array([1 - prob, prob]))

return np.array(rt)
# choose evaluation dataset
dataset = datasets.load_dataset(’sst’,’test’)
# choose the customized victim model
victim = MyModel()
# choose Genetic as the attack model
attacker = oa.attackers.GeneticAttacker()
# prepare for attacking
attack_eval = oa.attack_evals.DefaultAttackEval(

attacker, victim)
# launch attacks and print attack results
attack_eval.eval(dataset, visualize=True)

In addition, OpenAttack supports easy cus-
tomization of attack models thanks to its inclusive
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Model
Type Effectiveness Adversarial Example Quality Attack Efficiency

Accessibility Perturbation ASR WMR LES SemSim Fluency Grm #Query T1 T2 S

SEA Decision Sentence 0.12 – 14.7 0.90 398 2.2 2.0 37.1 – –
SCPN Blind Sentence 0.68 – 55.6 0.56 432 2.7 11.0 3.58 2.30 1.56
GAN Decision Sentence 0.41 – 68.8 0.26 512 4.2 2.0 0.60 2.00 0.30

TextFooler Score Word 0.90 0.11 14.1 0.87 621 4.6 130.5 5.75 3.25 1.77
PWWS Score Word 0.78 0.20 17.9 0.84 613 2.9 124.8 5.26 2.88 1.83
Genetic Score Word 0.36 0.11 13.4 0.88 689 4.7 242.1 54.11 27.56 1.96

SememePSO Score Word 0.82 0.14 2.9 0.89 711 2.9 177.9 102.44 52.41 1.95
BERT-ATTACK Score Word 0.87 0.31 4.2 0.86 796 4.4 51.9 2.38 1.57 1.51

BAE Score Word 0.77 0.68 5.4 0.82 1147 4.3 103.0 2.97 1.79 1.66
FD Gradient Word 0.16 0.24 17.9 0.85 908 3.1 10.9 34.57 28.36 1.22

TextBugger Gradient Word+Char 0.25 0.15 10.6 0.61 512 7.1 150.0 8.49 4.37 1.94
UAT Gradient Word 0.43 0.15 24.0 0.85 620 2.8 2.0 0.08 – –

HotFlip Gradient Word 0.47 0.08 8.9 0.93 333 2.7 105.4 2.77 1.82 1.52
VIPER Blind Char 0.27 – 24.2 0.22 347 15.8 3.0 4.01 2.04 1.97

DeepWordBug Score Char 0.46 – 7.9 0.73 731 6.1 22.0 0.97 0.62 1.56

Table 3: Evaluation results of different attack models when attacking BERT on SST-2. ASR = Attack Success
Rate, WMR = Word Modification Rate that is only applicable to word-level attacks, LES = Levenshterin Edit
Distance, SemSim = Semantic Similarity measured by Universal Sentence Encoder, Fluency = GPT-2 perplexity,
Grm = number of grammatical errors, #Query = average victim model query times, T1 and T2 represent average
running time of attacking one instance (seconds) with single and dual process, S = T1/T2 is speedup. Notice that it
is meaningless to run SEA and UAT with multi-process because they learn and conduct global perturbations.

modular design. Due to limited space, please visit
the GitHub project page for more examples includ-
ing attacking HuggingFace’s pre-trained models,
using customized evaluation metrics and conduct-
ing adversarial training.4

5 Evaluation

In this section, we conduct evaluations for all the
attack models included in OpenAttack.

We use SST-2 as the evaluation dataset and
choose BERT, specifically BERTBASE, as the vic-
tim model. After fine-tuning on the training set,
BERT achieves 90.31 accuracy on the test set. Due
to great diversity of attack models, it is hard to
impose many constraints on attacks like previous
work that focuses on a specific kind of attack. We
only restrict the maximum victim model query
times to 500. In addition, to improve evaluation
efficiency, we randomly sample 1, 000 correctly
classified instances from the test set as the original
input to be perturbed. We use the original default
hyper-parameter settings of all attack models.

Table 3 shows the evaluation results. By compar-
ison with originally reported results, we confirm
the correctness of our implementation. We also
observe that multi-processing can effectively im-
prove attack efficiency of most attack models (the
speedup is greater than 1). For some very efficient
attack models whose average running time is quite

4https://github.com/thunlp/OpenAttack/
tree/master/examples

short (like GAN), the additional time cost from
multi-processing may reduce efficiency instead.

6 Related Work

There have been quite a few open-source libraries
of generating adversarial examples for continuous
data, especially images, such as CleverHans (Pa-
pernot et al., 2018), Foolbox (Rauber et al., 2017),
Adversarial Robustness Toolbox (ART) (Nicolae
et al., 2018) and AdvBox (Goodman et al., 2020).
These libraries enable practitioners to easily make
adversarial attacks with different methods and have
greatly facilitated the development of adversarial
attacking for continuous data.

As for discrete data, particularly text, there ex-
ist few adversarial attack libraries. As far as we
know, TextAttack (Morris et al., 2020) is the only
such library. It utilizes a relatively rigorous frame-
work to unify many attack models and provides
interfaces for using the existing attack models or
designing new attack models. As mentioned in
Introduction, our OpenAttack is mainly differ-
ent from and complementary to TextAttack in all-
attack-type support, multilinguality and parallel
processing.

There are also some other toolkits concerned
with textual adversarial attacking. TEAPOT
(Michel et al., 2019) is an open-source toolkit
to evaluate the effectiveness of textual adversar-
ial examples from the perspective of preservation
of meaning. It is mainly designed for the attacks
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against sequence-to-sequence models, but can also
be geared towards text classification models. Al-
lenNLP Interpret (Wallace et al., 2019b) is a frame-
work for explaining the predictions of NLP models,
where adversarial attacking is one of its interpreta-
tion methods. It focuses on interpretability of NLP
models and only incorporates two attack models.

7 Conclusion and Future Work

In this paper, we present OpenAttack, an open-
source textual adversarial attack toolkit that pro-
vides a wide range of functions in textual adversar-
ial attacking. It is a great complement to existing
counterparts because of its unique strengths in all-
attack-type support, multilinguality and parallel
processing. Moreover, it has great flexibility and
extensibility and provides easy customization of
victim models and attack models. In the future,
we will keep OpenAttack updated to incorpo-
rate more up-to-date attack models and support
more functions to facilitate the research on textual
adversarial attacks.
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