Zhuowen Tu


The Geometry of Multilingual Language Model Representations
Tyler Chang | Zhuowen Tu | Benjamin Bergen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We assess how multilingual language models maintain a shared multilingual representation space while still encoding language-sensitive information in each language. Using XLM-R as a case study, we show that languages occupy similar linear subspaces after mean-centering, evaluated based on causal effects on language modeling performance and direct comparisons between subspaces for 88 languages. The subspace means differ along language-sensitive axes that are relatively stable throughout middle layers, and these axes encode information such as token vocabularies. Shifting representations by language means is sufficient to induce token predictions in different languages. However, we also identify stable language-neutral axes that encode information such as token positions and part-of-speech. We visualize representations projected onto language-sensitive and language-neutral axes, identifying language family and part-of-speech clusters, along with spirals, toruses, and curves representing token position information. These results demonstrate that multilingual language models encode information along orthogonal language-sensitive and language-neutral axes, allowing the models to extract a variety of features for downstream tasks and cross-lingual transfer learning.


Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models
Tyler Chang | Yifan Xu | Weijian Xu | Zhuowen Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this paper, we detail the relationship between convolutions and self-attention in natural language tasks. We show that relative position embeddings in self-attention layers are equivalent to recently-proposed dynamic lightweight convolutions, and we consider multiple new ways of integrating convolutions into Transformer self-attention. Specifically, we propose composite attention, which unites previous relative position encoding methods under a convolutional framework. We conduct experiments by training BERT with composite attention, finding that convolutions consistently improve performance on multiple downstream tasks, replacing absolute position embeddings. To inform future work, we present results comparing lightweight convolutions, dynamic convolutions, and depthwise-separable convolutions in language model pre-training, considering multiple injection points for convolutions in self-attention layers.