Yincen Qu


2022

pdf
Commonsense Knowledge Salience Evaluation with a Benchmark Dataset in E-commerce
Yincen Qu | Ningyu Zhang | Hui Chen | Zelin Dai | Chengming Wang | Xiaoyu Wang | Qiang Chen | Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

In e-commerce, the salience of commonsense knowledge (CSK) is beneficial for widespread applications such as product search and recommendation. For example, when users search for “running” in e-commerce, they would like to find products highly related to running, such as “running shoes” rather than “shoes”. Nevertheless, many existing CSK collections rank statements solely by confidence scores, and there is no information about which ones are salient from a human perspective. In this work, we define the task of supervised salience evaluation, where given a CSK triple, the model is required to learn whether the triple is salient or not. In addition to formulating the new task, we also release a new Benchmark dataset of Salience Evaluation in E-commerce (BSEE) and hope to promote related research on commonsense knowledge salience evaluation. We conduct experiments in the dataset with several representative baseline models. The experimental results show that salience evaluation is a hard task where models perform poorly on our evaluation set. We further propose a simple but effective approach, PMI-tuning, which shows promise for solving this novel problem. Code is available in https://github.com/OpenBGBenchmark/OpenBG-CSK.

pdf
SQUIRE: A Sequence-to-sequence Framework for Multi-hop Knowledge Graph Reasoning
Yushi Bai | Xin Lv | Juanzi Li | Lei Hou | Yincen Qu | Zelin Dai | Feiyu Xiong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multi-hop knowledge graph (KG) reasoning has been widely studied in recent years to provide interpretable predictions on missing links with evidential paths. Most previous works use reinforcement learning (RL) based methods that learn to navigate the path towards the target entity. However, these methods suffer from slow and poor convergence, and they may fail to infer a certain path when there is a missing edge along the path. Here we present SQUIRE, the first Sequence-to-sequence based multi-hop reasoning framework, which utilizes an encoder-decoder Transformer structure to translate the query to a path. Our framework brings about two benefits: (1) It can learn and predict in an end-to-end fashion, which gives better and faster convergence; (2) Our transformer model does not rely on existing edges to generate the path, and has the flexibility to complete missing edges along the path, especially in sparse KGs. Experiments on standard and sparse KGs show that our approach yields significant improvement over prior methods, while converging 4x-7x faster.