Yi Cheng


CARE: Causality Reasoning for Empathetic Responses by Conditional Graph Generation
Jiashuo Wang | Yi Cheng | Wenjie Li
Findings of the Association for Computational Linguistics: EMNLP 2022

Recent approaches to empathetic response generation incorporate emotion causalities to enhance comprehension of both the user’s feelings and experiences. However, these approaches suffer from two critical issues. First, they only consider causalities between the user’s emotion and the user’s experiences, and ignore those between the user’s experiences. Second, they neglect interdependence among causalities and reason them independently. To solve the above problems, we expect to reason all plausible causalities interdependently and simultaneously, given the user’s emotion, dialogue history, and future dialogue content. Then, we infuse these causalities into response generation for empathetic responses. Specifically, we design a new model, i.e., the Conditional Variational Graph Auto-Encoder (CVGAE), for the causality reasoning, and adopt a multi-source attention mechanism in the decoder for the causality infusion. We name the whole framework as CARE, abbreviated for CAusality Reasoning for Empathetic conversation. Experimental results indicate that our method achieves state-of-the-art performance.

Improving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning
Yi Cheng | Wenge Liu | Wenjie Li | Jiashuo Wang | Ruihui Zhao | Bang Liu | Xiaodan Liang | Yefeng Zheng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Providing Emotional Support (ES) to soothe people in emotional distress is an essential capability in social interactions. Most existing researches on building ES conversation systems only considered single-turn interactions with users, which was over-simplified. In comparison, multi-turn ES conversation systems can provide ES more effectively, but face several new technical challenges, including: (1) how to adopt appropriate support strategies to achieve the long-term dialogue goal of comforting the user’s emotion; (2) how to dynamically model the user’s state. In this paper, we propose a novel system MultiESC to address these issues. For strategy planning, drawing inspiration from the A* search algorithm, we propose lookahead heuristics to estimate the future user feedback after using particular strategies, which helps to select strategies that can lead to the best long-term effects. For user state modeling, MultiESC focuses on capturing users’ subtle emotional expressions and understanding their emotion causes. Extensive experiments show that MultiESC significantly outperforms competitive baselines in both dialogue generation and strategy planning.


Guiding the Growth: Difficulty-Controllable Question Generation through Step-by-Step Rewriting
Yi Cheng | Siyao Li | Bang Liu | Ruihui Zhao | Sujian Li | Chenghua Lin | Yefeng Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper explores the task of Difficulty-Controllable Question Generation (DCQG), which aims at generating questions with required difficulty levels. Previous research on this task mainly defines the difficulty of a question as whether it can be correctly answered by a Question Answering (QA) system, lacking interpretability and controllability. In our work, we redefine question difficulty as the number of inference steps required to answer it and argue that Question Generation (QG) systems should have stronger control over the logic of generated questions. To this end, we propose a novel framework that progressively increases question difficulty through step-by-step rewriting under the guidance of an extracted reasoning chain. A dataset is automatically constructed to facilitate the research, on which extensive experiments are conducted to test the performance of our method.


Zero-shot Chinese Discourse Dependency Parsing via Cross-lingual Mapping
Yi Cheng | Sujian Li
Proceedings of the 1st Workshop on Discourse Structure in Neural NLG

Due to the absence of labeled data, discourse parsing still remains challenging in some languages. In this paper, we present a simple and efficient method to conduct zero-shot Chinese text-level dependency parsing by leveraging English discourse labeled data and parsing techniques. We first construct the Chinese-English mapping from the level of sentence and elementary discourse unit (EDU), and then exploit the parsing results of the corresponding English translations to obtain the discourse trees for the Chinese text. This method can automatically conduct Chinese discourse parsing, with no need of a large scale of Chinese labeled data.