Sudheer Chava


Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial Task & Hyperbolic Models
Ramit Sawhney | Shivam Agarwal | Vivek Mittal | Paolo Rosso | Vikram Nanda | Sudheer Chava
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The rapid spread of information over social media influences quantitative trading and investments. The growing popularity of speculative trading of highly volatile assets such as cryptocurrencies and meme stocks presents a fresh challenge in the financial realm. Investigating such “bubbles” - periods of sudden anomalous behavior of markets are critical in better understanding investor behavior and market dynamics. However, high volatility coupled with massive volumes of chaotic social media texts, especially for underexplored assets like cryptocoins pose a challenge to existing methods. Taking the first step towards NLP for cryptocoins, we present and publicly release CryptoBubbles, a novel multi- span identification task for bubble detection, and a dataset of more than 400 cryptocoins from 9 exchanges over five years spanning over two million tweets. Further, we develop a set of sequence-to-sequence hyperbolic models suited to this multi-span identification task based on the power-law dynamics of cryptocurrencies and user behavior on social media. We further test the effectiveness of our models under zero-shot settings on a test set of Reddit posts pertaining to 29 “meme stocks”, which see an increase in trade volume due to social media hype. Through quantitative, qualitative, and zero-shot analyses on Reddit and Twitter spanning cryptocoins and meme-stocks, we show the practical applicability of CryptoBubbles and hyperbolic models.

Tweet Based Reach Aware Temporal Attention Network for NFT Valuation
Ramit Sawhney | Megh Thakkar | Ritesh Soun | Atula Neerkaje | Vasu Sharma | Dipanwita Guhathakurta | Sudheer Chava
Findings of the Association for Computational Linguistics: EMNLP 2022

Non-Fungible Tokens (NFTs) are a relatively unexplored class of assets. Designing strategies to forecast NFT trends is an intricate task due to its extremely volatile nature. The market is largely driven by public sentiment and “hype”, which in turn has a high correlation with conversations taking place on social media platforms like Twitter. Prior work done for modelling stock market data does not take into account the extent of impact certain highly influential tweets and their authors can have on the market. Building on these limitations and the nature of the NFT market, we propose a novel reach-aware temporal learning approach to make predictions for forecasting future trends in the NFT market. We perform experiments on a new dataset consisting of over 1.3 million tweets and 180 thousand NFT transactions spanning over 15 NFT collections curated by us. Our model (TA-NFT) outperforms other state-of-the-art methods by an average of 36%. Through extensive quantitative and ablative analysis, we demonstrate the ability of our approach as a practical method for predicting NFT trends.

HYPHEN: Hyperbolic Hawkes Attention For Text Streams
Shivam Agarwal | Ramit Sawhney | Sanchit Ahuja | Ritesh Soun | Sudheer Chava
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Analyzing the temporal sequence of texts from sources such as social media, news, and parliamentary debates is a challenging problem as it exhibits time-varying scale-free properties and fine-grained timing irregularities. We propose a Hyperbolic Hawkes Attention Network (HYPHEN), which learns a data-driven hyperbolic space and models irregular powerlaw excitations using a hyperbolic Hawkes process. Through quantitative and exploratory experiments over financial NLP, suicide ideation detection, and political debate analysis we demonstrate HYPHEN’s practical applicability for modeling online text sequences in a geometry agnostic manner.

When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain
Raj Shah | Kunal Chawla | Dheeraj Eidnani | Agam Shah | Wendi Du | Sudheer Chava | Natraj Raman | Charese Smiley | Jiaao Chen | Diyi Yang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models have shown impressive performance on a variety of tasks and domains. Previous research on financial language models usually employs a generic training scheme to train standard model architectures, without completely leveraging the richness of the financial data. We propose a novel domain specific Financial LANGuage model (FLANG) which uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective. Additionally, the evaluation benchmarks in the field have been limited. To this end, we contribute the Financial Language Understanding Evaluation (FLUE), an open-source comprehensive suite of benchmarks for the financial domain. These include new benchmarks across 5 NLP tasks in financial domain as well as common benchmarks used in the previous research. Experiments on these benchmarks suggest that our model outperforms those in prior literature on a variety of NLP tasks. Our models, code and benchmark data will be made publicly available on Github and Huggingface.