Shruti Bhosale


2022

pdf
Multilingual Machine Translation with Hyper-Adapters
Christos Baziotis | Mikel Artetxe | James Cross | Shruti Bhosale
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multilingual machine translation suffers from negative interference across languages. A common solution is to relax parameter sharing with language-specific modules like adapters. However, adapters of related languages are unable to transfer information, and their total number of parameters becomes prohibitively expensive as the number of languages grows. In this work, we overcome these drawbacks using hyper-adapters – hyper-networks that generate adapters from language and layer embeddings. While past work had poor results when scaling hyper-networks, we propose a rescaling fix that significantly improves convergence and enables training larger hyper-networks. We find that hyper-adapters are more parameter efficient than regular adapters, reaching the same performance with up to 12 times less parameters. When using the same number of parameters and FLOPS, our approach consistently outperforms regular adapters. Also, hyper-adapters converge faster than alternative approaches and scale better than regular dense networks. Our analysis shows that hyper-adapters learn to encode language relatedness, enabling positive transfer across languages.

pdf
Few-shot Learning with Multilingual Generative Language Models
Xi Victoria Lin | Todor Mihaylov | Mikel Artetxe | Tianlu Wang | Shuohui Chen | Daniel Simig | Myle Ott | Naman Goyal | Shruti Bhosale | Jingfei Du | Ramakanth Pasunuru | Sam Shleifer | Punit Singh Koura | Vishrav Chaudhary | Brian O’Horo | Jeff Wang | Luke Zettlemoyer | Zornitsa Kozareva | Mona Diab | Veselin Stoyanov | Xian Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Large-scale generative language models such as GPT-3 are competitive few-shot learners. While these models are known to be able to jointly represent many different languages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work, we train multilingual generative language models on a corpus covering a diverse set of languages, and study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion parameters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 directions with 32 training examples, while surpassing the official supervised baseline in 45 directions. We conduct an in-depth analysis of different multilingual prompting approaches, showing in particular that strong few-shot learning performance across languages can be achieved via cross-lingual transfer through both templates and demonstration examples.

pdf
Efficient Large Scale Language Modeling with Mixtures of Experts
Mikel Artetxe | Shruti Bhosale | Naman Goyal | Todor Mihaylov | Myle Ott | Sam Shleifer | Xi Victoria Lin | Jingfei Du | Srinivasan Iyer | Ramakanth Pasunuru | Giridharan Anantharaman | Xian Li | Shuohui Chen | Halil Akin | Mandeep Baines | Louis Martin | Xing Zhou | Punit Singh Koura | Brian O’Horo | Jeffrey Wang | Luke Zettlemoyer | Mona Diab | Zornitsa Kozareva | Veselin Stoyanov
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation. This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings: in- and out-of-domain language modeling, zero- and few-shot priming, and full-shot fine-tuning. With the exception of fine-tuning, we find MoEs to be substantially more compute efficient. At more modest training budgets, MoEs can match the performance of dense models using ~4 times less compute. This gap narrows at scale, but our largest MoE model (1.1T parameters) consistently outperforms a compute-equivalent dense model (6.7B parameters). Overall, this performance gap varies greatly across tasks and domains, suggesting that MoE and dense models generalize differently in ways that are worthy of future study. We make our code and models publicly available for research use.

pdf
Data Selection Curriculum for Neural Machine Translation
Tasnim Mohiuddin | Philipp Koehn | Vishrav Chaudhary | James Cross | Shruti Bhosale | Shafiq Joty
Findings of the Association for Computational Linguistics: EMNLP 2022

Neural Machine Translation (NMT) models are typically trained on heterogeneous data that are concatenated and randomly shuffled. However, not all of the training data are equally useful to the model. Curriculum training aims to present the data to the NMT models in a meaningful order. In this work, we introduce a two-stage training framework for NMT where we fine-tune a base NMT model on subsets of data, selected by both deterministic scoring using pre-trained methods and online scoring that considers prediction scores of the emerging NMT model. Through comprehensive experiments on six language pairs comprising low- and high-resource languages from WMT’21, we have shown that our curriculum strategies consistently demonstrate better quality (up to +2.2 BLEU improvement) and faster convergence (approximately 50% fewer updates).

pdf
Tricks for Training Sparse Translation Models
Dheeru Dua | Shruti Bhosale | Vedanuj Goswami | James Cross | Mike Lewis | Angela Fan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Multi-task learning with an unbalanced data distribution skews model learning towards high resource tasks, especially when model capacity is fixed and fully shared across all tasks. Sparse scaling architectures, such as BASELayers, provide flexible mechanisms for different tasks to have a variable number of parameters, which can be useful to counterbalance skewed data distributions. We find that that sparse architectures for multilingual machine translation can perform poorly out of the box and propose two straightforward techniques to mitigate this — a temperature heating mechanism and dense pre-training. Overall, these methods improve performance on two multilingual translation benchmarks compared to standard BASELayers and Dense scaling baselines, and in combination, more than 2x model convergence speed.

2021

pdf
Facebook AI’s WMT21 News Translation Task Submission
Chau Tran | Shruti Bhosale | James Cross | Philipp Koehn | Sergey Edunov | Angela Fan
Proceedings of the Sixth Conference on Machine Translation

We describe Facebook’s multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources — WMT, large-scale data mining, and in-domain backtranslation — to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year’s winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation.

2020

pdf
Language Models not just for Pre-training: Fast Online Neural Noisy Channel Modeling
Shruti Bhosale | Kyra Yee | Sergey Edunov | Michael Auli
Proceedings of the Fifth Conference on Machine Translation

Pre-training models on vast quantities of unlabeled data has emerged as an effective approach to improving accuracy on many NLP tasks. On the other hand, traditional machine translation has a long history of leveraging unlabeled data through noisy channel modeling. The same idea has recently been shown to achieve strong improvements for neural machine translation. Unfortunately, na ̈ıve noisy channel modeling with modern sequence to sequence models is up to an order of magnitude slower than alternatives. We address this issue by introducing efficient approximations to make inference with the noisy channel approach as fast as strong ensembles while increasing accuracy. We also show that the noisy channel approach can outperform strong pre-training results by achieving a new state of the art on WMT Romanian-English translation.

2013

pdf
Detecting Promotional Content in Wikipedia
Shruti Bhosale | Heath Vinicombe | Raymond Mooney
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing