Jonas Belouadi


Reproducibility Issues for BERT-based Evaluation Metrics
Yanran Chen | Jonas Belouadi | Steffen Eger
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reproducibility is of utmost concern in machine learning and natural language processing (NLP). In the field of natural language generation (especially machine translation), the seminal paper of Post (2018) has pointed out problems of reproducibility of the dominant metric, BLEU, at the time of publication. Nowadays, BERT-based evaluation metrics considerably outperform BLEU. In this paper, we ask whether results and claims from four recent BERT-based metrics can be reproduced. We find that reproduction of claims and results often fails because of (i) heavy undocumented preprocessing involved in the metrics, (ii) missing code and (iii) reporting weaker results for the baseline metrics. (iv) In one case, the problem stems from correlating not to human scores but to a wrong column in the csv file, inflating scores by 5 points. Motivated by the impact of preprocessing, we then conduct a second study where we examine its effects more closely (for one of the metrics). We find that preprocessing can have large effects, especially for highly inflectional languages. In this case, the effect of preprocessing may be larger than the effect of the aggregation mechanism (e.g., greedy alignment vs. Word Mover Distance).


End-to-end style-conditioned poetry generation: What does it take to learn from examples alone?
Jörg Wöckener | Thomas Haider | Tristan Miller | The-Khang Nguyen | Thanh Tung Linh Nguyen | Minh Vu Pham | Jonas Belouadi | Steffen Eger
Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

In this work, we design an end-to-end model for poetry generation based on conditioned recurrent neural network (RNN) language models whose goal is to learn stylistic features (poem length, sentiment, alliteration, and rhyming) from examples alone. We show this model successfully learns the ‘meaning’ of length and sentiment, as we can control it to generate longer or shorter as well as more positive or more negative poems. However, the model does not grasp sound phenomena like alliteration and rhyming, but instead exploits low-level statistical cues. Possible reasons include the size of the training data, the relatively low frequency and difficulty of these sublexical phenomena as well as model biases. We show that more recent GPT-2 models also have problems learning sublexical phenomena such as rhyming from examples alone.