Hao Huang


2022

pdf
Correctable-DST: Mitigating Historical Context Mismatch between Training and Inference for Improved Dialogue State Tracking
Hongyan Xie | Haoxiang Su | Shuangyong Song | Hao Huang | Bo Zou | Kun Deng | Jianghua Lin | Zhihui Zhang | Xiaodong He
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recently proposed dialogue state tracking (DST) approaches predict the dialogue state of a target turn sequentially based on the previous dialogue state. During the training time, the ground-truth previous dialogue state is utilized as the historical context. However, only the previously predicted dialogue state can be used in inference. This discrepancy might lead to error propagation, i.e., mistakes made by the model in the current turn are likely to be carried over to the following turns.To solve this problem, we propose Correctable Dialogue State Tracking (Correctable-DST). Specifically, it consists of three stages: (1) a Predictive State Simulator is exploited to generate a previously “predicted” dialogue state based on the ground-truth previous dialogue state during training; (2) a Slot Detector is proposed to determine the slots with an incorrect value in the previously “predicted” state and the slots whose values are to be updated in the current turn; (3) a State Generator takes the name of the above-selected slots as a prompt to generate the current state.Empirical results show that our approach achieves 67.51%, 68.24%, 70.30%, 71.38%, and 81.27% joint goal accuracy on MultiWOZ 2.0-2.4 datasets, respectively, and achieves a new state-of-the-art performance with significant improvements.

pdf
Understand before Answer: Improve Temporal Reading Comprehension via Precise Question Understanding
Hao Huang | Xiubo Geng | Guodong Long | Daxin Jiang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

This work studies temporal reading comprehension (TRC), which reads a free-text passage and answers temporal ordering questions. Precise question understanding is critical for temporal reading comprehension. For example, the question “What happened before the victory” and “What happened after the victory” share almost all words except one, while their answers are totally different. Moreover, even if two questions query about similar temporal relations, different varieties might also lead to various answers. For example, although both the question “What usually happened during the press release?” and “What might happen during the press release” query events which happen after “the press release”, they convey divergent semantics.To this end, we propose a novel reading comprehension approach with precise question understanding. Specifically, a temporal ordering question is embedded into two vectors to capture the referred event and the temporal relation. Then we evaluate the temporal relation between candidate events and the referred event based on that. Such fine-grained representations offer two benefits. First, it enables a better understanding of the question by focusing on different elements of a question. Second, it provides good interpretability when evaluating temporal relations. Furthermore, we also harness an auxiliary contrastive loss for representation learning of temporal relations, which aims to distinguish relations with subtle but critical changes. The proposed approach outperforms strong baselines and achieves state-of-the-art performance on the TORQUE dataset. It also increases the accuracy of four pre-trained language models (BERT base, BERT large, RoBERTa base, and RoBETRa large), demonstrating its generic effectiveness on divergent models.

2021

pdf
Reasoning over Entity-Action-Location Graph for Procedural Text Understanding
Hao Huang | Xiubo Geng | Jian Pei | Guodong Long | Daxin Jiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Procedural text understanding aims at tracking the states (e.g., create, move, destroy) and locations of the entities mentioned in a given paragraph. To effectively track the states and locations, it is essential to capture the rich semantic relations between entities, actions, and locations in the paragraph. Although recent works have achieved substantial progress, most of them focus on leveraging the inherent constraints or incorporating external knowledge for state prediction. The rich semantic relations in the given paragraph are largely overlooked. In this paper, we propose a novel approach (REAL) to procedural text understanding, where we build a general framework to systematically model the entity-entity, entity-action, and entity-location relations using a graph neural network. We further develop algorithms for graph construction, representation learning, and state and location tracking. We evaluate the proposed approach on two benchmark datasets, ProPara, and Recipes. The experimental results show that our method outperforms strong baselines by a large margin, i.e., 5.0% on ProPara and 3.2% on Recipes, illustrating the utility of semantic relations and the effectiveness of the graph-based reasoning model.

2020

pdf
RatE: Relation-Adaptive Translating Embedding for Knowledge Graph Completion
Hao Huang | Guodong Long | Tao Shen | Jing Jiang | Chengqi Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especially when extended to complex vector space, they show the capability in handling various relation patterns including symmetry, antisymmetry, inversion and composition. However, previous translating embedding approaches defined in complex vector space suffer from two main issues: 1) representing and modeling capacities of the model are limited by the translation function with rigorous multiplication of two complex numbers; and 2) embedding ambiguity caused by one-to-many relations is not explicitly alleviated. In this paper, we propose a relation-adaptive translation function built upon a novel weighted product in complex space, where the weights are learnable, relation-specific and independent to embedding size. The translation function only requires eight more scalar parameters each relation, but improves expressive power and alleviates embedding ambiguity problem. Based on the function, we then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple. Moreover, a novel negative sampling method is proposed to utilize both prior knowledge and self-adversarial learning for effective optimization. Experiments verify RatE achieves state-of-the-art performance on four link prediction benchmarks.