Fuli Feng


2022

pdf
Learning to Generate Question by Asking Question: A Primal-Dual Approach with Uncommon Word Generation
Qifan Wang | Li Yang | Xiaojun Quan | Fuli Feng | Dongfang Liu | Zenglin Xu | Sinong Wang | Hao Ma
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Automatic question generation (AQG) is the task of generating a question from a given passage and an answer. Most existing AQG methods aim at encoding the passage and the answer to generate the question. However, limited work has focused on modeling the correlation between the target answer and the generated question. Moreover, unseen or rare word generation has not been studied in previous works. In this paper, we propose a novel approach which incorporates question generation with its dual problem, question answering, into a unified primal-dual framework. Specifically, the question generation component consists of an encoder that jointly encodes the answer with the passage, and a decoder that produces the question. The question answering component then re-asks the generated question on the passage to ensure that the target answer is obtained. We further introduce a knowledge distillation module to improve the model generalization ability. We conduct an extensive set of experiments on SQuAD and HotpotQA benchmarks. Experimental results demonstrate the superior performance of the proposed approach over several state-of-the-art methods.

pdf
Learning to Imagine: Integrating Counterfactual Thinking in Neural Discrete Reasoning
Moxin Li | Fuli Feng | Hanwang Zhang | Xiangnan He | Fengbin Zhu | Tat-Seng Chua
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural discrete reasoning (NDR) has shown remarkable progress in combining deep models with discrete reasoning. However, we find that existing NDR solution suffers from large performance drop on hypothetical questions, e.g. “what the annualized rate of return would be if the revenue in 2020 was doubled”. The key to hypothetical question answering (HQA) is counterfactual thinking, which is a natural ability of human reasoning but difficult for deep models. In this work, we devise a Learning to Imagine (L2I) module, which can be seamlessly incorporated into NDR models to perform the imagination of unseen counterfactual. In particular, we formulate counterfactual thinking into two steps: 1) identifying the fact to intervene, and 2) deriving the counterfactual from the fact and assumption, which are designed as neural networks. Based on TAT-QA, we construct a very challenging HQA dataset with 8,283 hypothetical questions. We apply the proposed L2I to TAGOP, the state-of-the-art solution on TAT-QA, validating the rationality and effectiveness of our approach.

2021

pdf
TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance
Fengbin Zhu | Wenqiang Lei | Youcheng Huang | Chao Wang | Shuo Zhang | Jiancheng Lv | Fuli Feng | Tat-Seng Chua
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Hybrid data combining both tabular and textual content (e.g., financial reports) are quite pervasive in the real world. However, Question Answering (QA) over such hybrid data is largely neglected in existing research. In this work, we extract samples from real financial reports to build a new large-scale QA dataset containing both Tabular And Textual data, named TAT-QA, where numerical reasoning is usually required to infer the answer, such as addition, subtraction, multiplication, division, counting, comparison/sorting, and the compositions. We further propose a novel QA model termed TAGOP, which is capable of reasoning over both tables and text. It adopts sequence tagging to extract relevant cells from the table along with relevant spans from the text to infer their semantics, and then applies symbolic reasoning over them with a set of aggregation operators to arrive at the final answer. TAGOP achieves 58.0% inF1, which is an 11.1% absolute increase over the previous best baseline model, according to our experiments on TAT-QA. But this result still lags far behind performance of expert human, i.e.90.8% in F1. It is demonstrated that our TAT-QA is very challenging and can serve as a benchmark for training and testing powerful QA models that address hybrid form data.

pdf
Counterfactual Inference for Text Classification Debiasing
Chen Qian | Fuli Feng | Lijie Wen | Chunping Ma | Pengjun Xie
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Today’s text classifiers inevitably suffer from unintended dataset biases, especially the document-level label bias and word-level keyword bias, which may hurt models’ generalization. Many previous studies employed data-level manipulations or model-level balancing mechanisms to recover unbiased distributions and thus prevent models from capturing the two types of biases. Unfortunately, they either suffer from the extra cost of data collection/selection/annotation or need an elaborate design of balancing strategies. Different from traditional factual inference in which debiasing occurs before or during training, counterfactual inference mitigates the influence brought by unintended confounders after training, which can make unbiased decisions with biased observations. Inspired by this, we propose a model-agnostic text classification debiasing framework – Corsair, which can effectively avoid employing data manipulations or designing balancing mechanisms. Concretely, Corsair first trains a base model on a training set directly, allowing the dataset biases ‘poison’ the trained model. In inference, given a factual input document, Corsair imagines its two counterfactual counterparts to distill and mitigate the two biases captured by the poisonous model. Extensive experiments demonstrate Corsair’s effectiveness, generalizability and fairness.

pdf
Empowering Language Understanding with Counterfactual Reasoning
Fuli Feng | Jizhi Zhang | Xiangnan He | Hanwang Zhang | Tat-Seng Chua
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021