Zhenhua Dong


2022

pdf
Semantic Sentence Matching via Interacting Syntax Graphs
Chen Xu | Jun Xu | Zhenhua Dong | Ji-Rong Wen
Proceedings of the 29th International Conference on Computational Linguistics

Studies have shown that the sentence’s syntactic structures are important for semantic sentence matching. A typical approach is encoding each sentence’s syntactic structure into an embedding vector, which can be combined with other features to predict the final matching scores. Though successes have been observed, embedding the whole syntactic structures as one vector inevitably overlooks the fine-grained syntax matching patterns, e.g. the alignment of specific term dependencies relations in the two inputted sentences. In this paper, we formalize the task of semantic sentence matching as a problem of graph matching in which each sentence is represented as a directed graph according to its syntactic structures. The syntax matching patterns (i.e. similar syntactic structures) between two sentences, therefore, can be extracted as the sub-graph structure alignments. The proposed method, referred to as Interacted Syntax Graphs (ISG), represents two sentences’ syntactic alignments as well as their semantic matching signals into one association graph. After that, the neural quadratic assignment programming (QAP) is adapted to extract syntactic matching patterns from the association graph. In this way, the syntactic structures fully interact in a fine granularity during the matching process. Experimental results on three public datasets demonstrated that ISG can outperform the state-of-the-art baselines effectively and efficiently. The empirical analysis also showed that ISG can match sentences in an interpretable way.

pdf
Optimal Partial Transport Based Sentence Selection for Long-form Document Matching
Weijie Yu | Liang Pang | Jun Xu | Bing Su | Zhenhua Dong | Ji-Rong Wen
Proceedings of the 29th International Conference on Computational Linguistics

One typical approach to long-form document matching is first conducting alignment between cross-document sentence pairs, and then aggregating all of the sentence-level matching signals. However, this approach could be problematic because the alignment between documents is partial — despite two documents as a whole are well-matched, most of the sentences could still be dissimilar. Those dissimilar sentences lead to spurious sentence-level matching signals which may overwhelm the real ones, increasing the difficulties of learning the matching function. Therefore, accurately selecting the key sentences for document matching is becoming a challenging issue. To address the issue, we propose a novel matching approach that equips existing document matching models with an Optimal Partial Transport (OPT) based component, namely OPT-Match, which selects the sentences that play a major role in matching. Enjoying the partial transport properties of OPT, the selected key sentences can not only effectively enhance the matching accuracy, but also be explained as the rationales for the matching results. Extensive experiments on four publicly available datasets demonstrated that existing methods equipped with OPT-Match consistently outperformed the corresponding underlying methods. Evaluations also showed that the key sentences selected by OPT-Match were consistent with human-provided rationales.

pdf
MINER: Multi-Interest Matching Network for News Recommendation
Jian Li | Jieming Zhu | Qiwei Bi | Guohao Cai | Lifeng Shang | Zhenhua Dong | Xin Jiang | Qun Liu
Findings of the Association for Computational Linguistics: ACL 2022

Personalized news recommendation is an essential technique to help users find interested news. Accurately matching user’s interests and candidate news is the key to news recommendation. Most existing methods learn a single user embedding from user’s historical behaviors to represent the reading interest. However, user interest is usually diverse and may not be adequately modeled by a single user embedding. In this paper, we propose a poly attention scheme to learn multiple interest vectors for each user, which encodes the different aspects of user interest. We further propose a disagreement regularization to make the learned interests vectors more diverse. Moreover, we design a category-aware attention weighting strategy that incorporates the news category information as explicit interest signals into the attention mechanism. Extensive experiments on the MIND news recommendation benchmark demonstrate that our approach significantly outperforms existing state-of-the-art methods.

pdf
How Pre-trained Language Models Capture Factual Knowledge? A Causal-Inspired Analysis
Shaobo Li | Xiaoguang Li | Lifeng Shang | Zhenhua Dong | Chengjie Sun | Bingquan Liu | Zhenzhou Ji | Xin Jiang | Qun Liu
Findings of the Association for Computational Linguistics: ACL 2022

Recently, there has been a trend to investigate the factual knowledge captured by Pre-trained Language Models (PLMs). Many works show the PLMs’ ability to fill in the missing factual words in cloze-style prompts such as ”Dante was born in [MASK].” However, it is still a mystery how PLMs generate the results correctly: relying on effective clues or shortcut patterns? We try to answer this question by a causal-inspired analysis that quantitatively measures and evaluates the word-level patterns that PLMs depend on to generate the missing words. We check the words that have three typical associations with the missing words: knowledge-dependent, positionally close, and highly co-occurred. Our analysis shows: (1) PLMs generate the missing factual words more by the positionally close and highly co-occurred words than the knowledge-dependent words; (2) the dependence on the knowledge-dependent words is more effective than the positionally close and highly co-occurred words. Accordingly, we conclude that the PLMs capture the factual knowledge ineffectively because of depending on the inadequate associations.