Yanlin Feng


2023

pdf
Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity Typing
Yanlin Feng | Adithya Pratapa | David Mortensen
Findings of the Association for Computational Linguistics: EMNLP 2023

Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference speed. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets.

2020

pdf
Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering
Yanlin Feng | Xinyue Chen | Bill Yuchen Lin | Peifeng Wang | Jun Yan | Xiang Ren
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the model’s prediction rationale. In this paper, we propose a novel knowledge-aware approach that equips pre-trained language models (PTLMs) has with a multi-hop relational reasoning module, named multi-hop graph relation network (MHGRN). It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs. The proposed reasoning module unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability. We also empirically show its effectiveness and scalability on CommonsenseQA and OpenbookQA datasets, and interpret its behaviors with case studies, with the code for experiments released.

2019

pdf
Learning Bilingual Sentiment-Specific Word Embeddings without Cross-lingual Supervision
Yanlin Feng | Xiaojun Wan
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Word embeddings learned in two languages can be mapped to a common space to produce Bilingual Word Embeddings (BWE). Unsupervised BWE methods learn such a mapping without any parallel data. However, these methods are mainly evaluated on tasks of word translation or word similarity. We show that these methods fail to capture the sentiment information and do not perform well enough on cross-lingual sentiment analysis. In this work, we propose UBiSE (Unsupervised Bilingual Sentiment Embeddings), which learns sentiment-specific word representations for two languages in a common space without any cross-lingual supervision. Our method only requires a sentiment corpus in the source language and pretrained monolingual word embeddings of both languages. We evaluate our method on three language pairs for cross-lingual sentiment analysis. Experimental results show that our method outperforms previous unsupervised BWE methods and even supervised BWE methods. Our method succeeds for a distant language pair English-Basque.

pdf
Towards a Unified End-to-End Approach for Fully Unsupervised Cross-Lingual Sentiment Analysis
Yanlin Feng | Xiaojun Wan
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Sentiment analysis in low-resource languages suffers from the lack of training data. Cross-lingual sentiment analysis (CLSA) aims to improve the performance on these languages by leveraging annotated data from other languages. Recent studies have shown that CLSA can be performed in a fully unsupervised manner, without exploiting either target language supervision or cross-lingual supervision. However, these methods rely heavily on unsupervised cross-lingual word embeddings (CLWE), which has been shown to have serious drawbacks on distant language pairs (e.g. English - Japanese). In this paper, we propose an end-to-end CLSA model by leveraging unlabeled data in multiple languages and multiple domains and eliminate the need for unsupervised CLWE. Our model applies to two CLSA settings: the traditional cross-lingual in-domain setting and the more challenging cross-lingual cross-domain setting. We empirically evaluate our approach on the multilingual multi-domain Amazon review dataset. Experimental results show that our model outperforms the baselines by a large margin despite its minimal resource requirement.