Nan Hu


2023

pdf
UnifEE: Unified Evidence Extraction for Fact Verification
Nan Hu | Zirui Wu | Yuxuan Lai | Chen Zhang | Yansong Feng
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

FEVEROUS is a fact extraction and verification task that requires systems to extract evidence of both sentences and table cells from a Wikipedia dump, then predict the veracity of the given claim accordingly. Existing works extract evidence in the two formats separately, ignoring potential connections between them. In this paper, we propose a Unified Evidence Extraction model (UnifEE), which uses a mixed evidence graph to extract the evidence in both formats. With the carefully-designed unified evidence graph, UnifEE allows evidence interactions among all candidates in both formats at similar granularity. Experiments show that, with information aggregated from related evidence candidates in the fusion graph, UnifEE can make better decisions about which evidence should be kept, especially for claims requiring multi-hop reasoning or a combination of tables and texts. Thus it outperforms all previous evidence extraction methods and brings significant improvement in the subsequent claim verification step.

pdf
Enhancing Structured Evidence Extraction for Fact Verification
Zirui Wu | Nan Hu | Yansong Feng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Open-domain fact verification is the task of verifying claims in natural language texts against extracted evidence. FEVEROUS is a benchmark that requires extracting and integrating both unstructured and structured evidence to verify a given claim. Previous models suffer from low recall of structured evidence extraction, i.e., table extraction and cell selection. In this paper, we propose a simple but effective method to enhance the extraction of structured evidence by leveraging the row and column semantics of tables. Our method comprises two components: (i) a coarse-grained table extraction module that selects tables based on rows and columns relevant to the claim and (ii) a fine-grained cell selection graph that combines both formats of evidence and enables multi-hop and numerical reasoning. We evaluate our method on FEVEROUS and achieve an evidence recall of 60.01% on the test set, which is 6.14% higher than the previous state-of-the-art performance. Our results demonstrate that our method can extract tables and select cells effectively, and provide better evidence sets for verdict prediction. Our code is released at https://github.com/WilliamZR/see-st

2022

pdf
HiCLRE: A Hierarchical Contrastive Learning Framework for Distantly Supervised Relation Extraction
Dongyang Li | Taolin Zhang | Nan Hu | Chengyu Wang | Xiaofeng He
Findings of the Association for Computational Linguistics: ACL 2022

Distant supervision assumes that any sentence containing the same entity pairs reflects identical relationships. Previous works of distantly supervised relation extraction (DSRE) task generally focus on sentence-level or bag-level de-noising techniques independently, neglecting the explicit interaction with cross levels. In this paper, we propose a hierarchical contrastive learning Framework for Distantly Supervised relation extraction (HiCLRE) to reduce noisy sentences, which integrate the global structural information and local fine-grained interaction. Specifically, we propose a three-level hierarchical learning framework to interact with cross levels, generating the de-noising context-aware representations via adapting the existing multi-head self-attention, named Multi-Granularity Recontextualization. Meanwhile, pseudo positive samples are also provided in the specific level for contrastive learning via a dynamic gradient-based data augmentation strategy, named Dynamic Gradient Adversarial Perturbation. Experiments demonstrate that HiCLRE significantly outperforms strong baselines in various mainstream DSRE datasets.

pdf
Dual-Channel Evidence Fusion for Fact Verification over Texts and Tables
Nan Hu | Zirui Wu | Yuxuan Lai | Xiao Liu | Yansong Feng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Different from previous fact extraction and verification tasks that only consider evidence of a single format, FEVEROUS brings further challenges by extending the evidence format to both plain text and tables. Existing works convert all candidate evidence into either sentences or tables, thus often failing to fully capture the rich context in their original format from the converted evidence, let alone the context information lost during conversion. In this paper, we propose a Dual Channel Unified Format fact verification model (DCUF), which unifies various evidence into parallel streams, i.e., natural language sentences and a global evidence table, simultaneously. With carefully-designed evidence conversion and organization methods, DCUF makes the most of pre-trained table/language models to encourage each evidence piece to perform early and thorough interactions with other pieces in its original format. Experiments show that our model can make better use of existing pre-trained models to absorb evidence of two formats, thus outperforming previous works by a large margin. Our code and models are publicly available.