Max Glockner


2022

pdf
Missing Counter-Evidence Renders NLP Fact-Checking Unrealistic for Misinformation
Max Glockner | Yufang Hou | Iryna Gurevych
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Misinformation emerges in times of uncertainty when credible information is limited. This is challenging for NLP-based fact-checking as it relies on counter-evidence, which may not yet be available. Despite increasing interest in automatic fact-checking, it is still unclear if automated approaches can realistically refute harmful real-world misinformation. Here, we contrast and compare NLP fact-checking with how professional fact-checkers combat misinformation in the absence of counter-evidence. In our analysis, we show that, by design, existing NLP task definitions for fact-checking cannot refute misinformation as professional fact-checkers do for the majority of claims. We then define two requirements that the evidence in datasets must fulfill for realistic fact-checking: It must be (1) sufficient to refute the claim and (2) not leaked from existing fact-checking articles. We survey existing fact-checking datasets and find that all of them fail to satisfy both criteria. Finally, we perform experiments to demonstrate that models trained on a large-scale fact-checking dataset rely on leaked evidence, which makes them unsuitable in real-world scenarios. Taken together, we show that current NLP fact-checking cannot realistically combat real-world misinformation because it depends on unrealistic assumptions about counter-evidence in the data.

2021

pdf
AdapterDrop: On the Efficiency of Adapters in Transformers
Andreas Rücklé | Gregor Geigle | Max Glockner | Tilman Beck | Jonas Pfeiffer | Nils Reimers | Iryna Gurevych
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transformer models are expensive to fine-tune, slow for inference, and have large storage requirements. Recent approaches tackle these shortcomings by training smaller models, dynamically reducing the model size, and by training light-weight adapters. In this paper, we propose AdapterDrop, removing adapters from lower transformer layers during training and inference, which incorporates concepts from all three directions. We show that AdapterDrop can dynamically reduce the computational overhead when performing inference over multiple tasks simultaneously, with minimal decrease in task performances. We further prune adapters from AdapterFusion, which improves the inference efficiency while maintaining the task performances entirely.

2020

pdf
Why do you think that? Exploring Faithful Sentence-Level Rationales Without Supervision
Max Glockner | Ivan Habernal | Iryna Gurevych
Findings of the Association for Computational Linguistics: EMNLP 2020

Evaluating the trustworthiness of a model’s prediction is essential for differentiating between ‘right for the right reasons’ and ‘right for the wrong reasons’. Identifying textual spans that determine the target label, known as faithful rationales, usually relies on pipeline approaches or reinforcement learning. However, such methods either require supervision and thus costly annotation of the rationales or employ non-differentiable models. We propose a differentiable training–framework to create models which output faithful rationales on a sentence level, by solely applying supervision on the target task. To achieve this, our model solves the task based on each rationale individually and learns to assign high scores to those which solved the task best. Our evaluation on three different datasets shows competitive results compared to a standard BERT blackbox while exceeding a pipeline counterpart’s performance in two cases. We further exploit the transparent decision–making process of these models to prefer selecting the correct rationales by applying direct supervision, thereby boosting the performance on the rationale–level.

2018

pdf
Breaking NLI Systems with Sentences that Require Simple Lexical Inferences
Max Glockner | Vered Shwartz | Yoav Goldberg
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We create a new NLI test set that shows the deficiency of state-of-the-art models in inferences that require lexical and world knowledge. The new examples are simpler than the SNLI test set, containing sentences that differ by at most one word from sentences in the training set. Yet, the performance on the new test set is substantially worse across systems trained on SNLI, demonstrating that these systems are limited in their generalization ability, failing to capture many simple inferences.