Jingang Wang


2023

pdf
MUSTIE: Multimodal Structural Transformer for Web Information Extraction
Qifan Wang | Jingang Wang | Xiaojun Quan | Fuli Feng | Zenglin Xu | Shaoliang Nie | Sinong Wang | Madian Khabsa | Hamed Firooz | Dongfang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The task of web information extraction is to extract target fields of an object from web pages, such as extracting the name, genre and actor from a movie page. Recent sequential modeling approaches have achieved state-of-the-art results on web information extraction. However, most of these methods only focus on extracting information from textual sources while ignoring the rich information from other modalities such as image and web layout. In this work, we propose a novel MUltimodal Structural Transformer (MUST) that incorporates multiple modalities for web information extraction. Concretely, we develop a structural encoder that jointly encodes the multimodal information based on the HTML structure of the web layout, where high-level DOM nodes, and low-level text and image tokens are introduced to represent the entire page. Structural attention patterns are designed to learn effective cross-modal embeddings for all DOM nodes and low-level tokens. An extensive set of experiments are conducted on WebSRC and Common Crawl benchmarks. Experimental results demonstrate the superior performance of MUST over several state-of-the-art baselines.

pdf
Lifting the Curse of Capacity Gap in Distilling Language Models
Chen Zhang | Yang Yang | Jiahao Liu | Jingang Wang | Yunsen Xian | Benyou Wang | Dawei Song
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pretrained language models (LMs) have shown compelling performance on various downstream tasks, but unfortunately they require a tremendous amount of inference compute. Knowledge distillation finds a path to compress LMs to small ones with a teacher-student paradigm. However, when the capacity gap between the teacher and the student is large, a curse of capacity gap appears, invoking a deficiency in distilling LMs. While a few studies have been carried out to fill the gap, the curse is not yet well tackled. In this paper, we aim at lifting the curse of capacity gap via enlarging the capacity of the student without notably increasing the inference compute. Largely motivated by sparse activation regime of mixture of experts (MoE), we propose a mixture of minimal experts (MiniMoE), which imposes extra parameters to the student but introduces almost no additional inference compute. Experimental results on GLUE and CoNLL demonstrate the curse of capacity gap is lifted by the magic of MiniMoE to a large extent. MiniMoE also achieves the state-of-the-art performance at small FLOPs compared with a range of competitive baselines. With a compression rate as much as ~50×, MiniMoE preserves ~95% GLUE score of the teacher.

pdf
FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for Task-Oriented Dialogue
Weihao Zeng | Keqing He | Yejie Wang | Chen Zeng | Jingang Wang | Yunsen Xian | Weiran Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained language models based on general text enable huge success in the NLP scenario. But the intrinsical difference of linguistic patterns between general text and task-oriented dialogues makes existing pre-trained language models less useful in practice. Current dialogue pre-training methods rely on a contrastive framework and face the challenges of both selecting true positives and hard negatives. In this paper, we propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context using a self-training framework. Our intuition is that a good dialogue representation both learns local context information and predicts future information. Extensive experiments on diverse downstream dialogue tasks demonstrate the effectiveness of our model, especially the generalization, robustness, and learning discriminative dialogue representations capabilities.

pdf
Decoupling Pseudo Label Disambiguation and Representation Learning for Generalized Intent Discovery
Yutao Mou | Xiaoshuai Song | Keqing He | Chen Zeng | Pei Wang | Jingang Wang | Yunsen Xian | Weiran Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Generalized intent discovery aims to extend a closed-set in-domain intent classifier to an open-world intent set including in-domain and out-of-domain intents. The key challenges lie in pseudo label disambiguation and representation learning. Previous methods suffer from a coupling of pseudo label disambiguation and representation learning, that is, the reliability of pseudo labels relies on representation learning, and representation learning is restricted by pseudo labels in turn. In this paper, we propose a decoupled prototype learning framework (DPL) to decouple pseudo label disambiguation and representation learning. Specifically, we firstly introduce prototypical contrastive representation learning (PCL) to get discriminative representations. And then we adopt a prototype-based label disambiguation method (PLD) to obtain pseudo labels. We theoretically prove that PCL and PLD work in a collaborative fashion and facilitate pseudo label disambiguation. Experiments and analysis on three benchmark datasets show the effectiveness of our method.

pdf
RankCSE: Unsupervised Sentence Representations Learning via Learning to Rank
Jiduan Liu | Jiahao Liu | Qifan Wang | Jingang Wang | Wei Wu | Yunsen Xian | Dongyan Zhao | Kai Chen | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised sentence representation learning is one of the fundamental problems in natural language processing with various downstream applications. Recently, contrastive learning has been widely adopted which derives high-quality sentence representations by pulling similar semantics closer and pushing dissimilar ones away. However, these methods fail to capture the fine-grained ranking information among the sentences, where each sentence is only treated as either positive or negative. In many real-world scenarios, one needs to distinguish and rank the sentences based on their similarities to a query sentence, e.g., very relevant, moderate relevant, less relevant, irrelevant, etc. In this paper, we propose a novel approach, RankCSE, for unsupervised sentence representation learning, which incorporates ranking consistency and ranking distillation with contrastive learning into a unified framework. In particular, we learn semantically discriminative sentence representations by simultaneously ensuring ranking consistency between two representations with different dropout masks, and distilling listwise ranking knowledge from the teacher. An extensive set of experiments are conducted on both semantic textual similarity (STS) and transfer (TR) tasks. Experimental results demonstrate the superior performance of our approach over several state-of-the-art baselines.

pdf
Seen to Unseen: Exploring Compositional Generalization of Multi-Attribute Controllable Dialogue Generation
Weihao Zeng | Lulu Zhao | Keqing He | Ruotong Geng | Jingang Wang | Wei Wu | Weiran Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing controllable dialogue generation work focuses on the single-attribute control and lacks generalization capability to out-of-distribution multiple attribute combinations. In this paper, we explore the compositional generalization for multi-attribute controllable dialogue generation where a model can learn from seen attribute values and generalize to unseen combinations. We propose a prompt-based disentangled controllable dialogue generation model, DCG. It learns attribute concept composition by generating attribute-oriented prompt vectors and uses a disentanglement loss to disentangle different attributes for better generalization. Besides, we design a unified reference-free evaluation framework for multiple attributes with different levels of granularities. Experiment results on two benchmarks prove the effectiveness of our method and the evaluation metric.

pdf
Fusion or Defusion? Flexible Vision-and-Language Pre-Training
Rongyi Sun | Ziran Li | Yifeng Ding | Qifan Wang | Jingang Wang | Haitao Zheng | Wei Wu | Yunsen Xian
Findings of the Association for Computational Linguistics: ACL 2023

Existing approaches in the vision-and-language pre-training (VLP) paradigm mainly deploy either fusion-based encoders or dual-encoders, failing to achieve both effectiveness and efficiency in downstream multimodal tasks. In this paper, we build a flexible VLP model by incorporating cross-modal fusions into a dual-encoder architecture, where the introduced fusion modules can be easily decoupled from the dual encoder so as to switch the model to a fusion-free one. To better absorb cross-modal features from the fusion modules, we design a cross-modal knowledge transfer strategy along with other comprehensive pre-training tasks to guide the training process, which can further strengthen both the fusion-based and fusion-free representation learning. Extensive experiments conducted on various downstream vision-language tasks show that our proposed model is well-equipped with effectiveness as well as efficiency, demonstrating a superior performance compared with other strong VLP models.

pdf
PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language Models
Zhuocheng Gong | Jiahao Liu | Qifan Wang | Yang Yang | Jingang Wang | Wei Wu | Yunsen Xian | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2023

While transformer-based pre-trained language models (PLMs) have dominated a number of NLP applications, these models are heavy to deploy and expensive to use. Therefore, effectively compressing large-scale PLMs becomes an increasingly important problem. Quantization, which represents high-precision tensors with low-bit fix-point format, is a viable solution. However, most existing quantization methods are task-specific, requiring customized training and quantization with a large number of trainable parameters on each individual task. Inspired by the observation that the over-parameterization nature of PLMs makes it possible to freeze most of the parameters during the fine-tuning stage, in this work, we propose a novel “quantize before fine-tuning” framework, PreQuant, that differs from both quantization-aware training and post-training quantization. {pasted macro ‘OUR’} is compatible with various quantization strategies, with outlier-aware parameter-efficient fine-tuning incorporated to correct the induced quantization error. We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5. We also provide an empirical investigation into the workflow of PreQuant, which sheds light on its efficacy.

pdf
MixPAVE: Mix-Prompt Tuning for Few-shot Product Attribute Value Extraction
Li Yang | Qifan Wang | Jingang Wang | Xiaojun Quan | Fuli Feng | Yu Chen | Madian Khabsa | Sinong Wang | Zenglin Xu | Dongfang Liu
Findings of the Association for Computational Linguistics: ACL 2023

The task of product attribute value extraction is to identify values of an attribute from product information. Product attributes are important features, which help improve online shopping experience of customers, such as product search, recommendation and comparison. Most existing works only focus on extracting values for a set of known attributes with sufficient training data. However, with the emerging nature of e-commerce, new products with their unique set of new attributes are constantly generated from different retailers and merchants. Collecting a large number of annotations for every new attribute is costly and time consuming. Therefore, it is an important research problem for product attribute value extraction with limited data. In this work, we propose a novel prompt tuning approach with Mixed Prompts for few-shot Attribute Value Extraction, namely MixPAVE. Specifically, MixPAVE introduces only a small amount (< 1%) of trainable parameters, i.e., a mixture of two learnable prompts, while keeping the existing extraction model frozen. In this way, MixPAVE not only benefits from parameter-efficient training, but also avoids model overfitting on limited training examples. Experimental results on two product benchmarks demonstrate the superior performance of the proposed approach over several state-of-the-art baselines. A comprehensive set of ablation studies validate the effectiveness of the prompt design, as well as the efficiency of our approach.

2022

pdf
Generalized Intent Discovery: Learning from Open World Dialogue System
Yutao Mou | Keqing He | Yanan Wu | Pei Wang | Jingang Wang | Wei Wu | Yi Huang | Junlan Feng | Weiran Xu
Proceedings of the 29th International Conference on Computational Linguistics

Traditional intent classification models are based on a pre-defined intent set and only recognize limited in-domain (IND) intent classes. But users may input out-of-domain (OOD) queries in a practical dialogue system. Such OOD queries can provide directions for future improvement. In this paper, we define a new task, Generalized Intent Discovery (GID), which aims to extend an IND intent classifier to an open-world intent set including IND and OOD intents. We hope to simultaneously classify a set of labeled IND intent classes while discovering and recognizing new unlabeled OOD types incrementally. We construct three public datasets for different application scenarios and propose two kinds of frameworks, pipeline-based and end-to-end for future work. Further, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide new guidance for future GID research.

pdf
CLOWER: A Pre-trained Language Model with Contrastive Learning over Word and Character Representations
Borun Chen | Hongyin Tang | Jiahao Bu | Kai Zhang | Jingang Wang | Qifan Wang | Hai-Tao Zheng | Wei Wu | Liqian Yu
Proceedings of the 29th International Conference on Computational Linguistics

Pre-trained Language Models (PLMs) have achieved remarkable performance gains across numerous downstream tasks in natural language understanding. Various Chinese PLMs have been successively proposed for learning better Chinese language representation. However, most current models use Chinese characters as inputs and are not able to encode semantic information contained in Chinese words. While recent pre-trained models incorporate both words and characters simultaneously, they usually suffer from deficient semantic interactions and fail to capture the semantic relation between words and characters. To address the above issues, we propose a simple yet effective PLM CLOWER, which adopts the Contrastive Learning Over Word and charactER representations. In particular, CLOWER implicitly encodes the coarse-grained information (i.e., words) into the fine-grained representations (i.e., characters) through contrastive learning on multi-grained information. CLOWER is of great value in realistic scenarios since it can be easily incorporated into any existing fine-grained based PLMs without modifying the production pipelines. Extensive experiments conducted on a range of downstream tasks demonstrate the superior performance of CLOWER over several state-of-the-art baselines.

pdf
Structural Bias for Aspect Sentiment Triplet Extraction
Chen Zhang | Lei Ren | Fang Ma | Jingang Wang | Wei Wu | Dawei Song
Proceedings of the 29th International Conference on Computational Linguistics

Structural bias has recently been exploited for aspect sentiment triplet extraction (ASTE) and led to improved performance. On the other hand, it is recognized that explicitly incorporating structural bias would have a negative impact on efficiency, whereas pretrained language models (PLMs) can already capture implicit structures. Thus, a natural question arises: Is structural bias still a necessity in the context of PLMs? To answer the question, we propose to address the efficiency issues by using an adapter to integrate structural bias in the PLM and using a cheap-to-compute relative position structure in place of the syntactic dependency structure. Benchmarking evaluation is conducted on the SemEval datasets. The results show that our proposed structural adapter is beneficial to PLMs and achieves state-of-the-art performance over a range of strong baselines, yet with a light parameter demand and low latency. Meanwhile, we give rise to the concern that the current evaluation default with data of small scale is under-confident. Consequently, we release a large-scale dataset for ASTE. The results on the new dataset hint that the structural adapter is confidently effective and efficient to a large scale. Overall, we draw the conclusion that structural bias shall still be a necessity even with PLMs.

pdf
SMARTAVE: Structured Multimodal Transformer for Product Attribute Value Extraction
Qifan Wang | Li Yang | Jingang Wang | Jitin Krishnan | Bo Dai | Sinong Wang | Zenglin Xu | Madian Khabsa | Hao Ma
Findings of the Association for Computational Linguistics: EMNLP 2022

Automatic product attribute value extraction refers to the task of identifying values of an attribute from the product information. Product attributes are essential in improving online shopping experience for customers. Most existing methods focus on extracting attribute values from product title and description.However, in many real-world applications, a product is usually represented by multiple modalities beyond title and description, such as product specifications, text and visual information from the product image, etc. In this paper, we propose SMARTAVE, a Structure Mltimodal trAnsformeR for producT Attribute Value Extraction, which jointly encodes the structured product information from multiple modalities. Specifically, in SMARTAVE encoder, we introduce hyper-tokens to represent the modality-level information, and local-tokens to represent the original text and visual inputs. Structured attention patterns are designed among the hyper-tokens and local-tokens for learning effective product representation. The attribute values are then extracted based on the learned embeddings. We conduct extensive experiments on two multimodal product datasets. Experimental results demonstrate the superior performance of the proposed approach over several state-of-the-art methods. Ablation studies validate the effectiveness of the structured attentions in modeling the multimodal product information.

pdf
GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval
Jiduan Liu | Jiahao Liu | Yang Yang | Jingang Wang | Wei Wu | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: EMNLP 2022

Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.

pdf
Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems
Weihao Zeng | Keqing He | Zechen Wang | Dayuan Fu | Guanting Dong | Ruotong Geng | Pei Wang | Jingang Wang | Chaobo Sun | Wei Wu | Weiran Xu
Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)

Recent advances in neural approaches greatly improve task-oriented dialogue (TOD) systems which assist users to accomplish their goals. However, such systems rely on costly manually labeled dialogs which are not available in practical scenarios. In this paper, we present our models for Track 2 of the SereTOD 2022 challenge, which is the first challenge of building semisupervised and reinforced TOD systems on a large-scale real-world Chinese TOD dataset MobileCS. We build a knowledge-grounded dialog model to formulate dialog history and local KB as input and predict the system response. And we perform semi-supervised pretraining both on the labeled and unlabeled data. Our system achieves the first place both in the automatic evaluation and human interaction, especially with higher BLEU (+7.64) and Success (+13.6%) than the second place.

pdf
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification
Shengding Hu | Ning Ding | Huadong Wang | Zhiyuan Liu | Jingang Wang | Juanzi Li | Wei Wu | Maosong Sun
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tuning pre-trained language models (PLMs) with task-specific prompts has been a promising approach for text classification. Particularly, previous studies suggest that prompt-tuning has remarkable superiority in the low-data scenario over the generic fine-tuning methods with extra classifiers. The core idea of prompt-tuning is to insert text pieces, i.e., template, to the input and transform a classification problem into a masked language modeling problem, where a crucial step is to construct a projection, i.e., verbalizer, between a label space and a label word space. A verbalizer is usually handcrafted or searched by gradient descent, which may lack coverage and bring considerable bias and high variances to the results. In this work, we focus on incorporating external knowledge into the verbalizer, forming a knowledgeable prompttuning (KPT), to improve and stabilize prompttuning. Specifically, we expand the label word space of the verbalizer using external knowledge bases (KBs) and refine the expanded label word space with the PLM itself before predicting with the expanded label word space. Extensive experiments on zero and few-shot text classification tasks demonstrate the effectiveness of knowledgeable prompt-tuning.

pdf
VIRT: Improving Representation-based Text Matching via Virtual Interaction
Dan Li | Yang Yang | Hongyin Tang | Jiahao Liu | Qifan Wang | Jingang Wang | Tong Xu | Wei Wu | Enhong Chen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Text matching is a fundamental research problem in natural language understanding. Interaction-based approaches treat the text pair as a single sequence and encode it through cross encoders, while representation-based models encode the text pair independently with siamese or dual encoders. Interaction-based models require dense computations and thus are impractical in real-world applications. Representation-based models have become the mainstream paradigm for efficient text matching. However, these models suffer from severe performance degradation due to the lack of interactions between the pair of texts. To remedy this, we propose a Virtual InteRacTion mechanism (VIRT) for improving representation-based text matching while maintaining its efficiency. In particular, we introduce an interactive knowledge distillation module that is only applied during training. It enables deep interaction between texts by effectively transferring knowledge from the interaction-based model. A light interaction strategy is designed to fully leverage the learned interactive knowledge. Experimental results on six text matching benchmarks demonstrate the superior performance of our method over several state-of-the-art representation-based models. We further show that VIRT can be integrated into existing methods as plugins to lift their performances.

pdf
Watch the Neighbors: A Unified K-Nearest Neighbor Contrastive Learning Framework for OOD Intent Discovery
Yutao Mou | Keqing He | Pei Wang | Yanan Wu | Jingang Wang | Wei Wu | Weiran Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Discovering out-of-domain (OOD) intent is important for developing new skills in task-oriented dialogue systems. The key challenges lie in how to transfer prior in-domain (IND) knowledge to OOD clustering, as well as jointly learn OOD representations and cluster assignments. Previous methods suffer from in-domain overfitting problem, and there is a natural gap between representation learning and clustering objectives. In this paper, we propose a unified K-nearest neighbor contrastive learning framework to discover OOD intents. Specifically, for IND pre-training stage, we propose a KCL objective to learn inter-class discriminative features, while maintaining intra-class diversity, which alleviates the in-domain overfitting problem. For OOD clustering stage, we propose a KCC method to form compact clusters by mining true hard negative samples, which bridges the gap between clustering and representation learning. Extensive experiments on three benchmark datasets show that our method achieves substantial improvements over the state-of-the-art methods.

pdf
Making Pretrained Language Models Good Long-tailed Learners
Chen Zhang | Lei Ren | Jingang Wang | Wei Wu | Dawei Song
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Prompt-tuning has shown appealing performance in few-shot classification by virtue of its capability in effectively exploiting pre-trained knowledge. This motivates us to check the hypothesis that prompt-tuning is also a promising choice for long-tailed classification, since the tail classes are intuitively few-shot ones. To achieve this aim, we conduct empirical studies to examine the hypothesis. The results demonstrate that prompt-tuning makes pretrained language models at least good long-tailed learners. For intuitions on why prompt-tuning can achieve good performance in long-tailed classification, we carry out in-depth analyses by progressively bridging the gap between prompt-tuning and commonly used finetuning. The summary is that the classifier structure and parameterization form the key to making good long-tailed learners, in comparison with the less important input structure. Finally, we verify the applicability of our finding to few-shot classification.

pdf
UniNL: Aligning Representation Learning with Scoring Function for OOD Detection via Unified Neighborhood Learning
Yutao Mou | Pei Wang | Keqing He | Yanan Wu | Jingang Wang | Wei Wu | Weiran Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Detecting out-of-domain (OOD) intents from user queries is essential for avoiding wrong operations in task-oriented dialogue systems. The key challenge is how to distinguish in-domain (IND) and OOD intents. Previous methods ignore the alignment between representation learning and scoring function, limiting the OOD detection performance. In this paper, we propose a unified neighborhood learning framework (UniNL) to detect OOD intents. Specifically, we design a KNCL objective for representation learning, and introduce a KNN-based scoring function for OOD detection. We aim to align representation learning with scoring function. Experiments and analysis on two benchmark datasets show the effectiveness of our method.

pdf
XPrompt: Exploring the Extreme of Prompt Tuning
Fang Ma | Chen Zhang | Lei Ren | Jingang Wang | Qifan Wang | Wei Wu | Xiaojun Quan | Dawei Song
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Prompt tuning learns soft prompts to condition the frozen Pre-trained Language Models (PLMs) for performing downstream tasks in a parameter-efficient manner. While prompt tuning has gradually reached the performance level of fine-tuning as the model scale increases, there is still a large performance gap between prompt tuning and fine-tuning for models of moderate and small scales (typically less than 11B parameters). In this paper, we empirically show that the trained prompt tokens can have a negative impact on a downstream task and thus degrade its performance. To bridge the gap, we propose a novel Prompt tuning model with an eXtremely small scale (XPrompt) under the regime of lottery tickets hypothesis. Specifically, XPrompt eliminates the negative prompt tokens at different granularity levels through a hierarchical structured pruning, yielding a more parameter-efficient prompt yet with a competitive performance. Comprehensive experiments are carried out on the SuperGLUE tasks, and the results indicate that XPrompt is able to close the performance gap at smaller model scales.

2021

pdf
Improving Document Representations by Generating Pseudo Query Embeddings for Dense Retrieval
Hongyin Tang | Xingwu Sun | Beihong Jin | Jingang Wang | Fuzheng Zhang | Wei Wu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recently, the retrieval models based on dense representations have been gradually applied in the first stage of the document retrieval tasks, showing better performance than traditional sparse vector space models. To obtain high efficiency, the basic structure of these models is Bi-encoder in most cases. However, this simple structure may cause serious information loss during the encoding of documents since the queries are agnostic. To address this problem, we design a method to mimic the queries to each of the documents by an iterative clustering process and represent the documents by multiple pseudo queries (i.e., the cluster centroids). To boost the retrieval process using approximate nearest neighbor search library, we also optimize the matching function with a two-step score calculation procedure. Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results while still remaining high efficiency.

pdf
ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction
Jiahao Bu | Lei Ren | Shuang Zheng | Yang Yang | Jingang Wang | Fuzheng Zhang | Wei Wu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset ASAP including 46, 730 genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a 5-star scale rating, each review is manually annotated according to its sentiment polarities towards 18 pre-defined aspect categories. We hope the release of the dataset could shed some light on the field of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.

2018

pdf
Alibaba’s Neural Machine Translation Systems for WMT18
Yongchao Deng | Shanbo Cheng | Jun Lu | Kai Song | Jingang Wang | Shenglan Wu | Liang Yao | Guchun Zhang | Haibo Zhang | Pei Zhang | Changfeng Zhu | Boxing Chen
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes the submission systems of Alibaba for WMT18 shared news translation task. We participated in 5 translation directions including English ↔ Russian, English ↔ Turkish in both directions and English → Chinese. Our systems are based on Google’s Transformer model architecture, into which we integrated the most recent features from the academic research. We also employed most techniques that have been proven effective during the past WMT years, such as BPE, back translation, data selection, model ensembling and reranking, at industrial scale. For some morphologically-rich languages, we also incorporated linguistic knowledge into our neural network. For the translation tasks in which we have participated, our resulting systems achieved the best case sensitive BLEU score in all 5 directions. Notably, our English → Russian system outperformed the second reranked system by 5 BLEU score.

2015

pdf
LDTM: A Latent Document Type Model for Cumulative Citation Recommendation
Jingang Wang | Dandan Song | Zhiwei Zhang | Lejian Liao | Luo Si | Chin-Yew Lin
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing