David Alfonso-Hermelo

Also published as: David Alfonso Hermelo, David Alfonso-hermelo


2023

pdf
MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages
Xinyu Zhang | Nandan Thakur | Odunayo Ogundepo | Ehsan Kamalloo | David Alfonso-Hermelo | Xiaoguang Li | Qun Liu | Mehdi Rezagholizadeh | Jimmy Lin
Transactions of the Association for Computational Linguistics, Volume 11

MIRACL is a multilingual dataset for ad hoc retrieval across 18 languages that collectively encompass over three billion native speakers around the world. This resource is designed to support monolingual retrieval tasks, where the queries and the corpora are in the same language. In total, we have gathered over 726k high-quality relevance judgments for 78k queries over Wikipedia in these languages, where all annotations have been performed by native speakers hired by our team. MIRACL covers languages that are both typologically close as well as distant from 10 language families and 13 sub-families, associated with varying amounts of publicly available resources. Extensive automatic heuristic verification and manual assessments were performed during the annotation process to control data quality. In total, MIRACL represents an investment of around five person-years of human annotator effort. Our goal is to spur research on improving retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have traditionally been underserved. MIRACL is available at http://miracl.ai/.

pdf
Evaluating Embedding APIs for Information Retrieval
Ehsan Kamalloo | Xinyu Zhang | Odunayo Ogundepo | Nandan Thakur | David Alfonso-hermelo | Mehdi Rezagholizadeh | Jimmy Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

The ever-increasing size of language models curtails their widespread access to the community, thereby galvanizing many companies and startups into offering access to large language models through APIs. One particular API, suitable for dense retrieval, is the semantic embedding API that builds vector representations of a given text. With a growing number of APIs at our disposal, in this paper, our goal is to analyze semantic embedding APIs in realistic retrieval scenarios in order to assist practitioners and researchers in finding suitable services according to their needs. Specifically, we wish to investigate the capabilities of existing APIs on domain generalization and multilingual retrieval. For this purpose, we evaluate the embedding APIs on two standard benchmarks, BEIR, and MIRACL. We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective on English, in contrast to the standard practice, i.e., employing them as first-stage retrievers. For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best albeit at a higher cost. We hope our work lays the groundwork for thoroughly evaluating APIs that are critical in search and more broadly, in information retrieval.

2022

pdf
Refining an Almost Clean Translation Memory Helps Machine Translation
Shivendra Bhardwa | David Alfonso-Hermelo | Philippe Langlais | Gabriel Bernier-Colborne | Cyril Goutte | Michel Simard
Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

While recent studies have been dedicated to cleaning very noisy parallel corpora to improve Machine Translation training, we focus in this work on filtering a large and mostly clean Translation Memory. This problem of practical interest has not received much consideration from the community, in contrast with, for example, filtering large web-mined parallel corpora. We experiment with an extensive, multi-domain proprietary Translation Memory and compare five approaches involving deep-, feature-, and heuristic-based solutions. We propose two ways of evaluating this task, manual annotation and resulting Machine Translation quality. We report significant gains over a state-of-the-art, off-the-shelf cleaning system, using two MT engines.

2020

pdf
Human or Neural Translation?
Shivendra Bhardwaj | David Alfonso Hermelo | Phillippe Langlais | Gabriel Bernier-Colborne | Cyril Goutte | Michel Simard
Proceedings of the 28th International Conference on Computational Linguistics

Deep neural models tremendously improved machine translation. In this context, we investigate whether distinguishing machine from human translations is still feasible. We trained and applied 18 classifiers under two settings: a monolingual task, in which the classifier only looks at the translation; and a bilingual task, in which the source text is also taken into consideration. We report on extensive experiments involving 4 neural MT systems (Google Translate, DeepL, as well as two systems we trained) and varying the domain of texts. We show that the bilingual task is the easiest one and that transfer-based deep-learning classifiers perform best, with mean accuracies around 85% in-domain and 75% out-of-domain .