Chunyou Li


2023

pdf
MT2: Towards a Multi-Task Machine Translation Model with Translation-Specific In-Context Learning
Chunyou Li | Mingtong Liu | Hongxiao Zhang | Yufeng Chen | Jinan Xu | Ming Zhou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Sentence-level translation, document-level translation, translation memory, and terminology constrained translation play an important role in machine translation. Most of the previous work uses separate models or methods to solve these tasks, which is not conducive to knowledge transfer of different tasks and increases the complexity of system construction. In this work, we explore the potential of pre-trained language model in machine translation tasks and propose a Multi-Task Machine Translation (MT2) model to integrate these translation tasks. We design a novel translation-specific In-Context Learning (ICL) paradigm for model training, in which all of the translation tasks can be modeled as context-learning tasks that integrate contextual information for performance improvement. Specifically, we propose a retrieval and alignment method to obtain a large scale context-enhancement training data, then we train the model in an in-context learning manner. Furthermore, we adopt two context-dependent training strategies to encourage the model to better understand and utilize contextual information for translation. Extensive experiments on translation memory, terminology constrained translation, document-level translation, and few-shot domain-adaptation tasks demonstrate the superior performance of our model, verifying the effectiveness of our proposed approach.

2022

pdf
BJTU-Toshiba’s Submission to WMT22 Quality Estimation Shared Task
Hui Huang | Hui Di | Chunyou Li | Hanming Wu | Kazushige Ouchi | Yufeng Chen | Jian Liu | Jinan Xu
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper presents the BJTU-Toshiba joint submission for WMT 2022 quality estimation shared task. We only participate in Task 1 (quality prediction) of the shared task, focusing on the sentence-level MQM prediction. The techniques we experimented with include the integration of monolingual language models and the pre-finetuning of pre-trained representations. We tried two styles of pre-finetuning, namely Translation Language Modeling and Replaced Token Detection. We demonstrate the competitiveness of our system compared to the widely adopted XLM-RoBERTa baseline. Our system is also the top-ranking system on the Sentence-level MQM Prediction for the English-German language pairs.