Binyuan Hui


2023

pdf
TrojanSQL: SQL Injection against Natural Language Interface to Database
Jinchuan Zhang | Yan Zhou | Binyuan Hui | Yaxin Liu | Ziming Li | Songlin Hu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The technology of text-to-SQL has significantly enhanced the efficiency of accessing and manipulating databases. However, limited research has been conducted to study its vulnerabilities emerging from malicious user interaction. By proposing TrojanSQL, a backdoor-based SQL injection framework for text-to-SQL systems, we show how state-of-the-art text-to-SQL parsers can be easily misled to produce harmful SQL statements that can invalidate user queries or compromise sensitive information about the database. The study explores two specific injection attacks, namely boolean-based injection and union-based injection, which use different types of triggers to achieve distinct goals in compromising the parser. Experimental results demonstrate that both medium-sized models based on fine-tuning and LLM-based parsers using prompting techniques are vulnerable to this type of attack, with attack success rates as high as 99% and 89%, respectively. We hope that this study will raise more concerns about the potential security risks of building natural language interfaces to databases.

pdf
An Investigation of LLMs’ Inefficacy in Understanding Converse Relations
Chengwen Qi | Bowen Li | Binyuan Hui | Bailin Wang | Jinyang Li | Jinwang Wu | Yuanjun Laili
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have achieved remarkable success in many formal language oriented tasks, such as structural data-to-text and semantic parsing. However current benchmarks mostly follow the data distribution of the pre-training data of LLMs. Therefore, a natural question rises that do LLMs really understand the structured semantics of formal languages. In this paper, we investigate this problem on a special case, converse binary relation. We introduce a new benchmark ConvRe focusing on converse relations, which contains 17 relations and 1240 triples extracted from popular knowledge graph completion datasets. Our ConvRE features two tasks, Re2Text and Text2Re, which are formulated as multi-choice question answering to evaluate LLMs’ ability to determine the matching between relations and associated text. For the evaluation protocol, apart from different prompting methods, we further introduce variants to the test text and few-shot example text. We conduct experiments on three popular LLM families and have observed various scaling trends. The results suggest that LLMs often resort to shortcut learning and still face challenges on our proposed benchmark.

pdf
History Semantic Graph Enhanced Conversational KBQA with Temporal Information Modeling
Hao Sun | Yang Li | Liwei Deng | Bowen Li | Binyuan Hui | Binhua Li | Yunshi Lan | Yan Zhang | Yongbin Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Context information modeling is an important task in conversational KBQA. However, existing methods usually assume the independence of utterances and model them in isolation. In this paper, we propose a History Semantic Graph Enhanced KBQA model (HSGE) that is able to effectively model long-range semantic dependencies in conversation history while maintaining low computational cost. The framework incorporates a context-aware encoder, which employs a dynamic memory decay mechanism and models context at different levels of granularity. We evaluate HSGE on a widely used benchmark dataset for complex sequential question answering. Experimental results demonstrate that it outperforms existing baselines averaged on all question types.

pdf
PaCE: Unified Multi-modal Dialogue Pre-training with Progressive and Compositional Experts
Yunshui Li | Binyuan Hui | ZhiChao Yin | Min Yang | Fei Huang | Yongbin Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Perceiving multi-modal information and fulfilling dialogues with humans is a long-term goal of artificial intelligence. Pre-training is commonly regarded as an effective approach for multi-modal dialogue. However, due to the limited availability of multi-modal dialogue data, there is still scarce research on multi-modal dialogue pre-training. Yet another intriguing challenge emerges from the encompassing nature of multi-modal dialogue, which involves various modalities and tasks. Moreover, new forms of tasks may arise at unpredictable points in the future. Hence, it is essential for designed multi-modal dialogue models to possess sufficient flexibility to adapt to such scenarios. This paper proposes PaCE, a unified, structured, compositional multi-modal dialogue pre-training framework. It utilizes a combination of several fundamental experts to accommodate multiple dialogue-related tasks and can be pre-trained using limited dialogue and extensive non-dialogue multi-modal data. Furthermore, we propose a progressive training method where old experts from the past can assist new experts, facilitating the expansion of their capabilities. Experimental results demonstrate that PaCE achieves state-of-the-art results on eight multi-modal dialog benchmarks.

pdf bib
Improving Situated Conversational Agents with Step-by-Step Multi-modal Logic Reasoning
Yuxing Long | Huibin Zhang | Binyuan Hui | Zhenglu Yang | Caixia Yuan | Xiaojie Wang | Fei Huang | Yongbin Li
Proceedings of The Eleventh Dialog System Technology Challenge

To fulfill complex user requirements in a situated conversational scenario, the agent needs to conduct step-by-step multi-modal logic reasoning, which includes locating objects, querying information and searching objects. However, existing methods omit this multi-step procedure and therefore constitutes the risk of shortcuts when making predictions. For example, they may directly copy the information from the dialogue history or simply use the textual description without perform visual reasoning. To address this issue and further boost the system performance, we apply the dual process theory to plug a reasoner into the original transformer based model for step-by-step reasoning. When system 2 completes multi-step reasoning, its output is regarded as final prediction. Our proposed method achieved the 1st rank on the summing scores across all four DSTC-11 SIMMC 2.1 sub-tasks.

pdf
Multimodal Recommendation Dialog with Subjective Preference: A New Challenge and Benchmark
Yuxing Long | Binyuan Hui | Caixia Yuan | Fei Huang | Yongbin Li | Xiaojie Wang
Findings of the Association for Computational Linguistics: ACL 2023

Existing multimodal task-oriented dialog data fails to demonstrate the diverse expressions of user subjective preferences and recommendation acts in the real-life shopping scenario. This paper introduces a new dataset SURE (Multimodal Recommendation Dialog with Subjective Preference), which contains 12K shopping dialogs in complex store scenes. The data is built in two phases with human annotations to ensure quality and diversity. SURE is well-annotated with subjective preferences and recommendation acts proposed by sales experts. A comprehensive analysis is given to reveal the distinguishing features of SURE. Three benchmark tasks are then proposed on the data to evaluate the capability of multimodal recommendation agents. Basing on the SURE, we propose a baseline model, powered by a state-of-the-art multimodal model, for these tasks.

2022

pdf
SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for Task-Oriented Dialog Understanding
Wanwei He | Yinpei Dai | Binyuan Hui | Min Yang | Zheng Cao | Jianbo Dong | Fei Huang | Luo Si | Yongbin Li
Proceedings of the 29th International Conference on Computational Linguistics

Pre-training methods with contrastive learning objectives have shown remarkable success in dialog understanding tasks. However, current contrastive learning solely considers the self-augmented dialog samples as positive samples and treats all other dialog samples as negative ones, which enforces dissimilar representations even for dialogs that are semantically related. In this paper, we propose SPACE-2, a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised contrastive pre-training. Concretely, we first define a general semantic tree structure (STS) to unify the inconsistent annotation schema across different dialog datasets, so that the rich structural information stored in all labeled data can be exploited. Then we propose a novel multi-view score function to increase the relevance of all possible dialogs that share similar STSs and only push away other completely different dialogs during supervised contrastive pre-training. To fully exploit unlabeled dialogs, a basic self-supervised contrastive loss is also added to refine the learned representations. Experiments show that our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks.

pdf
SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers
Bowen Qin | Lihan Wang | Binyuan Hui | Bowen Li | Xiangpeng Wei | Binhua Li | Fei Huang | Luo Si | Min Yang | Yongbin Li
Proceedings of the 29th International Conference on Computational Linguistics

This paper aims to improve the performance of text-to-SQL parsing by exploring the intrinsic uncertainties in the neural network based approaches (called SUN). From the data uncertainty perspective, it is indisputable that a single SQL can be learned from multiple semantically-equivalent questions. Different from previous methods that are limited to one-to-one mapping, we propose a data uncertainty constraint to explore the underlying complementary semantic information among multiple semantically-equivalent questions (many-to-one) and learn the robust feature representations with reduced spurious associations. In this way, we can reduce the sensitivity of the learned representations and improve the robustness of the parser. From the model uncertainty perspective, there is often structural information (dependence) among the weights of neural networks. To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms strong competitors and achieves new state-of-the-art results.

pdf
S2SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers
Binyuan Hui | Ruiying Geng | Lihan Wang | Bowen Qin | Yanyang Li | Bowen Li | Jian Sun | Yongbin Li
Findings of the Association for Computational Linguistics: ACL 2022

The task of converting a natural language question into an executable SQL query, known as text-to-SQL, is an important branch of semantic parsing. The state-of-the-art graph-based encoder has been successfully used in this task but does not model the question syntax well. In this paper, we propose S2SQL, injecting Syntax to question-Schema graph encoder for Text-to-SQL parsers, which effectively leverages the syntactic dependency information of questions in text-to-SQL to improve the performance. We also employ the decoupling constraint to induce diverse relational edge embedding, which further improves the network’s performance. Experiments on the Spider and robustness setting Spider-Syn demonstrate that the proposed approach outperforms all existing methods when pre-training models are used, resulting in a performance ranks first on the Spider leaderboard.

pdf
STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing
Zefeng Cai | Xiangyu Li | Binyuan Hui | Min Yang | Bowen Li | Binhua Li | Zheng Cao | Weijie Li | Fei Huang | Luo Si | Yongbin Li
Findings of the Association for Computational Linguistics: EMNLP 2022

In this paper, we propose a novel SQL guided pre-training framework STAR for context-dependent text-to-SQL parsing, which leverages contextual information to enrich natural language (NL) utterance and table schema representations for text-to-SQL conversations. Concretely, we propose two novel pre-training objectives which respectively explore the context-dependent interactions of NL utterances and SQL queries within each text-to-SQL conversation: (i) schema state tracking (SST) objective that tracks and explores the schema states of context-dependent SQL queries in the form of schema-states by predicting and updating the value of each schema slot during interaction; (ii) utterance dependency tracking (UDT) objective that employs weighted contrastive learning to pull together two semantically similar NL utterances and push away the representations of semantically dissimilar NL utterances within each conversation. In addition, we construct a high-quality large-scale context-dependent text-to-SQL conversation corpus to pre-train STAR. Extensive experiments show that STAR achieves new state-of-the-art performance on two downstream benchmarks (SParC and CoSQL), significantly outperforming previous pre-training methods and ranking first on the leaderboard. We believe the release of the constructed corpus, codebase and pre-trained STAR checkpoints would push forward the research in this area.