NAVER Machine Translation System for WAT 2015

Hyoung-Gyu Lee, Jae-Song Lee, Jun-Seok Kim and Chang-Ki Lee 2015-10-16

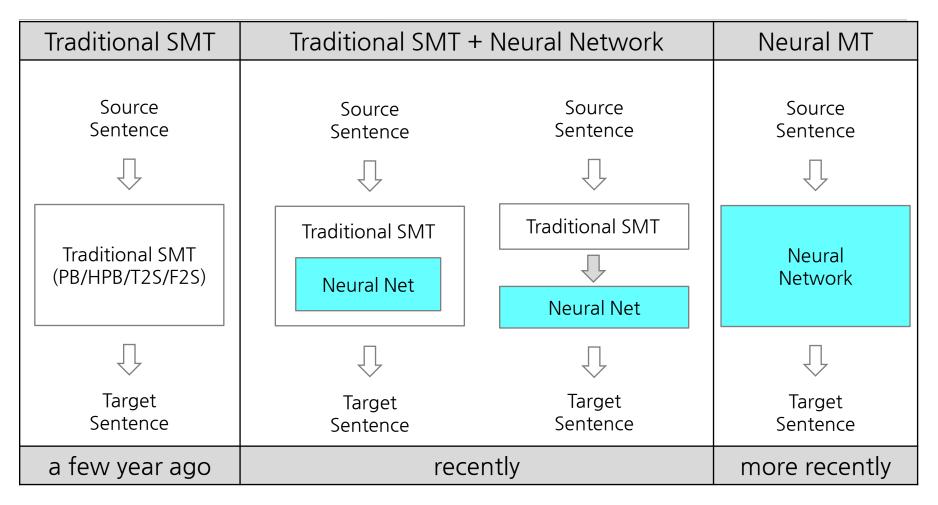
NAVER LABS

Contents

- Introduction
- English-to-Japanese MT Task
- Korean-to-Japanese MT Task
- Summary

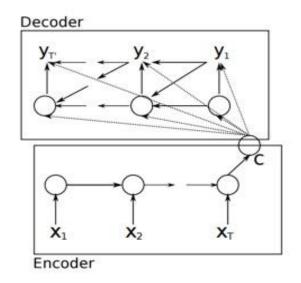
Introduction

Traditional SMT and Neural MT



Neural Machine Translation

- Proposed by Google and Montreal University in 2014
- Is called
 - Sequence-to-sequence model
 - End-to-end model
- Input sentence is encoded into fix-length vector, and from the vector translated sentence is produced. That's all
- Various extensions is emerged
 - LSTM, GRU, Bidirectional Encoding, Attention Mechanism, …

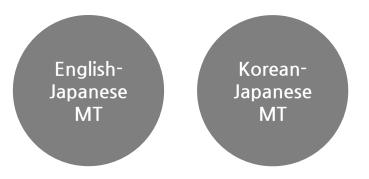


Pros and Cons of NMT

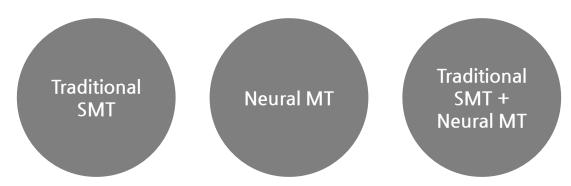
Pros	Cons
 no need domain knowledge no need to store explicit TM and LM Can jointly train multiple features Can implement decoder easily 	 ✓ Is time consuming to train NMT model ✓ Is slow in decoding, if target vocab. is large ✓ Is weak to OOV problem ✓ Is difficult to debug

At WAT 2015 ...

Two tasks



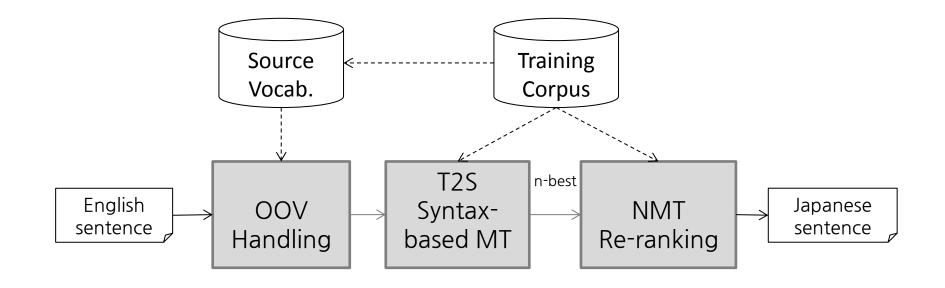
Methods of MT



English-to-Japanese

Machine Translation Task

Outline of ENG-JPN MT Task

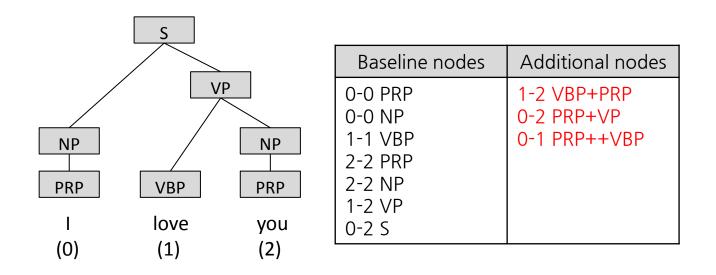


Tree-to-String Syntax-based MT

- Training Corpus
 - Translation model :
 - 1 million sentence pairs (train-1.txt)
 - Language model :
 - 3 million Japanese sentences (train-1.txt, train-2.txt)
- Tokenizer
 - English: Moses tokenizer
 - Japanese: In-house tokenizer and POS tagger
- T2S model
 - Assign linguistic syntax label to X hole of HPB model
 - Use Berkeley parser

Tree-to-String Syntax-based MT 2/2

- Rule Augmentation
 - Proposed by CMU's venugopal and Zollmann in 2006
 - Extract more rules by modifying parse trees
 - Use relax-parser in Moses toolkit (option: SAMT 2)

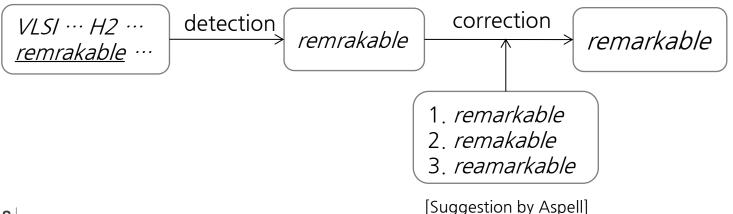


Handling OOV

1) Hyphen word split

- Ex.) nano-laminate -> nano laminate
- 2) English spell correction
 - Use open source spell checker, 'Aspell'

Detection Phrase	 ✓ Based on skip rules ✓ Skip the word containing capital, number or symbol
Correction Phrase	 ✓ Based on edit distance ✓ Because large gap causes wrong correction ✓ Select one with shortest distance among top-3 suggestion



Neural Machine Translation (1/2)

• RNN with an attention mechanism [Bahdanau, 2015]

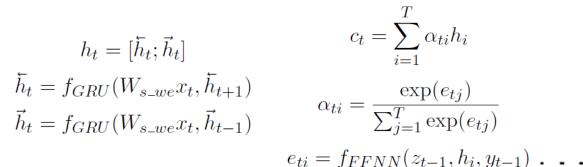
Provide the second s		
Tokenization	English: word-level Japanese: char-level	
# of vocab.	English: 245k Japanese: 6k	
BI representation	Use Ex) 大学生 => 大/B 学/I 生/I	
Dim. of word-embedding	200	\mathbf{y}_{t-1} \mathbf{y}_{t}
Size of recurrent unit	1000	$\cdots \rightarrow S_{t-1} \rightarrow S_t \rightarrow \cdots$
Optimization	Stochastic gradient descent(SGD)	a _{t,1}
Drop-out	Don't use	
Time of training	10 days (4 epoch)	$\vec{h_1}$ $\vec{h_2}$ $\vec{h_3}$ $\vec{h_T}$

ĥ_⊤

X

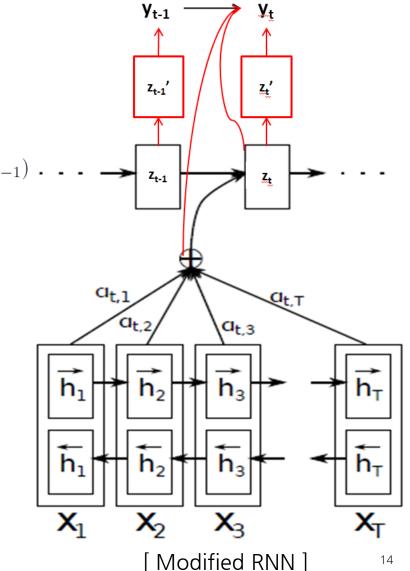
X₁

Neural Machine Translation (2/2)



- New hidden state of the decoder $z_t = f_{GRU}(y_{t-1}, z_{t-1}, c_t)$
- Prob. of the next target word $p(y_t|y_{<t}, x) = y_t^T f_{softmax} \{ W_{z'y} z'_t + W_{zy} z_t + W_{cy} c_t + W_{yy} (W_{t_we} y_{t-1}) + b_y \}$ $z'_t = f_{ReLU} (W_{zz'} z_t)$

NAVER**LABS**



Experimental Results (T2S Syntax-based MT)

SYS	BLEU	#Rules
T2S SB MT	31.34	250M
+ Rule augmentation	32.48	1950M
+ Parameter modification	32.63	1950M
+ OOV handling	32.76	1950M

- Rule augmentation increases both BLEU and #Rules
- OOV handling improves the performance

Experimental Results (Neural MT)

NMT Model	BLEU
RNN (target word-level)	29.78
RNN (target char-level)	31.25
RNN (target char-level with BI)	32.05
Modified RNN (target char-level with BI)	33.14

- Char-level of target language is better than word-level
- BI representation is helpful
- Modified RNN is better than original RNN

Experimental Results (/w Human evaluation)

SYS	ENG-JPN	
	BLEU	Human
T2S SB MT* only	32.76	-
NMT** only	33.14	48.50
T2S SB MT* + NMT** re-ranking	34.60	53.25

- NMT only outperform T2S SB MT
- NMT re-ranking gives the best

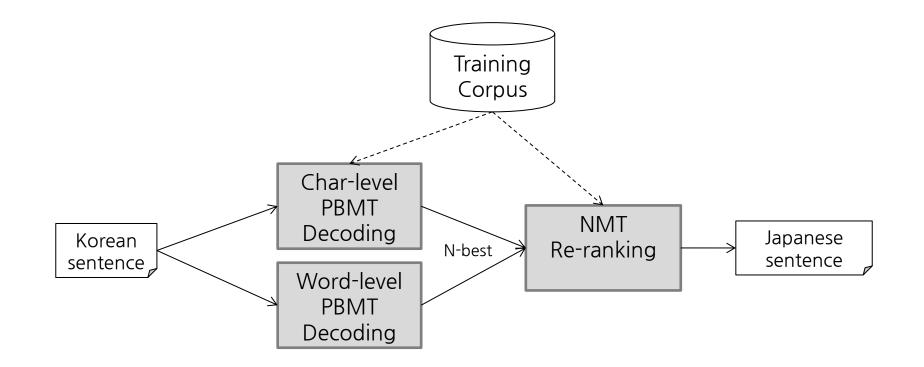
- T2S SB MT* : Rule augmentation + Parameter modification + OOV handling
- NMT** : Modified NMT using target char. seg. with B/I

NAVER $|\mathbf{L}|\mathbf{A}|\mathbf{B}|\mathbf{S}|$

Korean-to-Japanese

Machine Translation Task

Outline of KOR-JPN MT Task



Phrase-based MT system

- Training Corpus
 - Translation model & Language model
 - 1 million sentence pairs (JPO corpus)
- Word-level PB MT
 - use Mecab-ko and Juman for tokenization
 - 5-gram LM
- Char-level PB MT
 - tokenize Korean and Japanese into char-level
 - 10-gram LM
 - Max-phrase length : 10

Neural Machine Translation

• RNN using attention mechanism [Bahdanau, 2015]

Tokenization	Korean: word-level Japanese: char-level
# of vocab.	Korean: 60k Japanese: 5k
BI representation	Use Ex) 大学生 => 大/B 学/I 生/I
Dim. of word-embedding	200
Size of recurrent unit	1000
Optimization	Stochastic gradient descent(SGD)
Drop-out	Don't use
Time of training	10 days (4 epoch)

Combination of PBMT+ NMT

- Rule-based
 - Choose the result of char-based PB if there is OOV in word-level
 - Choose the result of word-based PB, otherwise
- NMT-based
 - Re-rank simply by NMT score

Experimental Results

SYS	BLEU
Word PB	70.36
Character PB	70.31
Word PB + Character PB	70.91

- Character-level PB is comparable to Word-level PB
- Combined system has the best result

Experimental Results (/w human evaluation)

SYS	KOR-JPN	
	BLEU	Human
Word PB + Character PB	70.91	6.75
NMT only	65.72	-
Word PB + Character PB + NMT re-ranking	71.38	14.75

- NMT only doesn't outperform PBMT
- NMT re-ranking gives the best

Summary

- We apply different MT models for each task
- T2S/PB SMT + NMT Re-ranking is best in both tasks
- Char-level tokenization of target language is useful for NMT
 - Speed up the time of training
 - Vanish OOV problem
 - Give the better BLEU score
- BI representation of char-level tokenization is helpful also for NMT
- In the future, we will apply our method to other language-pair; CHN-JPN