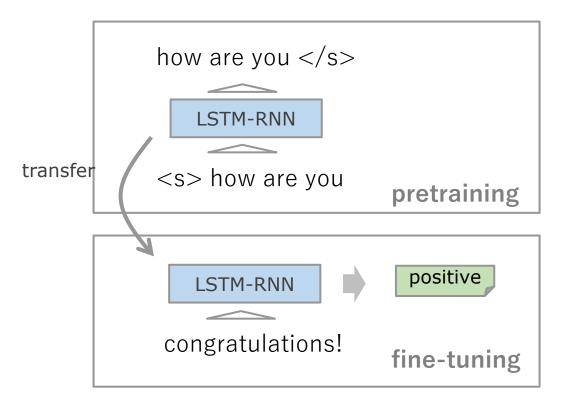


1

Pretraining Sentiment Classifiers with Unlabeled Dialog Data

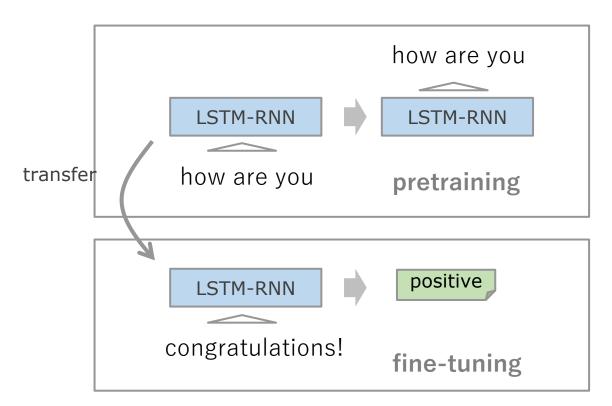
Jul. 18, 2018

<u>Toru Shimizu^{*1}</u>, Hayato Kobayashi^{*1,*2}, Nobuyuki Shimizu^{*1} ^{*1}Yahoo Japan Corporation, ^{*2}RIKEN AIP


- The amount of labeled training data
 - You will need at least 100k training records to surpass classical approaches (Hu+ 2014, Wu+ 2014)
 - Large-scale labeled datasets of document classification

	training	validation	test	total
Stanford Sentiment Tree Bank	8,544	1,101	2,210	11,855
Large Movie Review Dataset	25,000	-	25,000	50,000
SemEval 2014 Task 9 Subtask B	9,684	1,654	5,666	17,004

Previous Work


- Semi-supervised approaches
 - Language model

Previous Work

- Semi-supervised approaches
 - Sequence autoencoder (Dai and Le 2015)

Our Contributions

- Pretraining strategy with unlabeled dialog data
 - Pretrain an encoder-decoder model for sentiment classifiers
- Outperform other semi-supervised methods
 - Language model
 - Sequence autoencoder
 - Distant supervision with emoji and emoticons
- Case study based on...
 - Costly labeled sentiment dataset of 99.5K items
 - Large-scale unlabeled dialog dataset of 22.3M utteranceresponse pairs

response

Implicitly learn sentiment-handling capabilities through • learning a dialog model

Thank you! Good luck ・°・(ノД`)・° I won't forgive you, (crying emoticon) never 👊 I got home really tired Good job today!

Key Idea

utterance

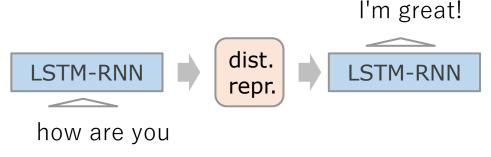
Overview of the Proposed Method

- Datasets
 - Large-scale dialog corpus: a set of a large number of unlabeled utterance-response tweet pairs
 - Labeled dataset: a set of a moderate number of tweets with a sentiment label
- Pretraining
 Istm-RNN
 Istm-RNN
 Istm-RNN
 pretraining
 Istm-RNN
 positive
 congratulations!

Data Preparation

- Dialog data
 - Extract 22.3M pairs of an utterance tweet and its response tweet from Twitter Firehose data

	training	validation	test	total
Dialog data	22,300,000	10,000	50,000	22,360,000


- Sentiment data
 - Positive: 15.0%, Negative: 18.6%, Neutral 66.4%

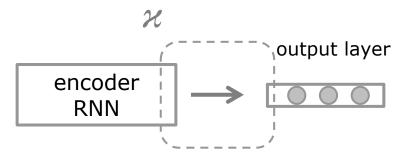
	training	validation	test	total
Sentiment data	80,591	4,000	15,000	99,591

Model: Dialog Model


- Dialog model
 - One-layer LSTM-RNN encoder-decoder
 - Embedding layer: 4000 tokens, 256 elements
 - LSTM: 1024 elements
 - Representation which encoder gives: 1024 elements
 - Decoder's readout layer: 256 elements
 - Decoder's output layer: 4000 tokens
 - LSTMs of the encoder and decoder share the parameter

56th Annual Meeting of the Association for Computational Linguistics, 15-20 July 2018, Melbourne

Model: Dialog Model



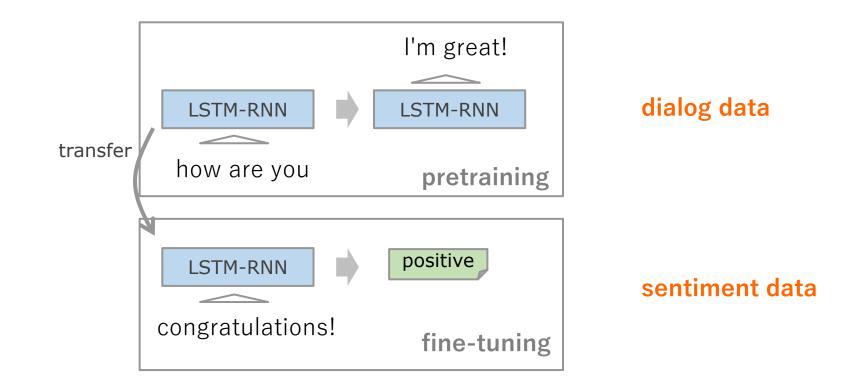
Model: Classification Model

- Classification model
 - The architecture of the encoder RNN part is identical to that of the dialog model
 - Produce a probability distribution over sentiment classes by a fully-connected layer and softmax function

Training: Dialog Model

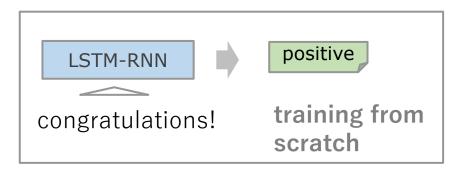
- Model pretraining with the dialog data
 - MLE training objective
 - 1 GPU (7 TFLOPS)
 - 5 epochs = 15.9 days
 - Batch size: 64
 - Optimizer: ADADELTA
 - Apply gradient clipping
 - Evaluate validation costs 10 times per epoch and pick up the best model
 - Theano-based implementation

Training: Classification Model



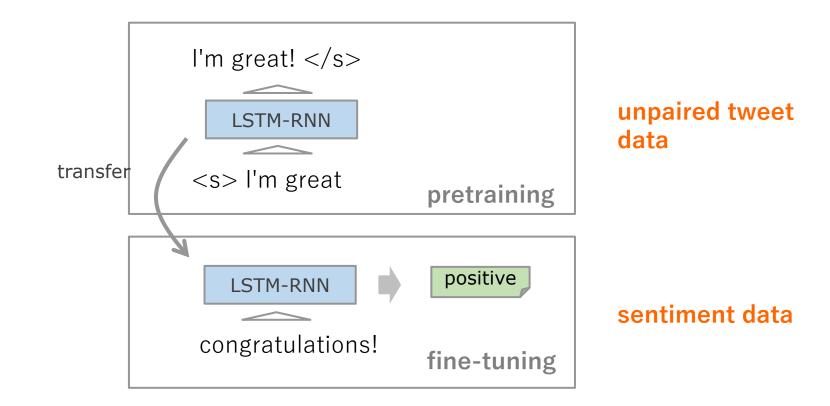
- Classifier model training with the sentiment data
 - Apply 5 different data sizes for each method
 - 5k、10k、20k、40k、80k (all)
 - 5 runs for each method/data size with varying random seeds
 - Evaluate the results by the average of f-measure scores
 - Adjust the duration so that the cost surely converges
 - Pretrained models converge very quickly but those trained from scratch converge slowly
 - The other aspects are the same with pretraining

Proposed Method

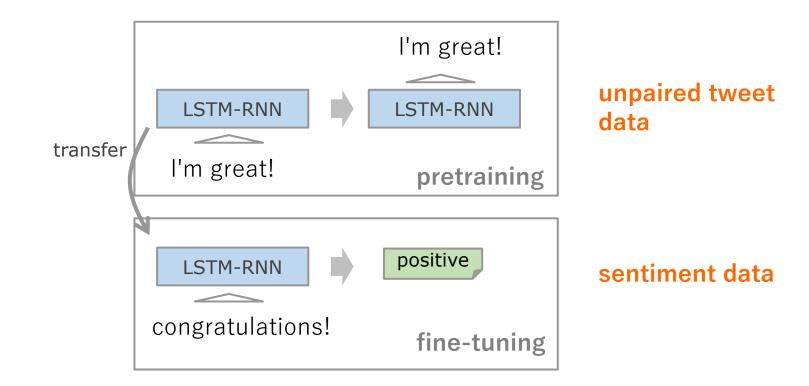

The proposed method: Dial

• Default

- No pretraining
- Directly trained by the sentiment data

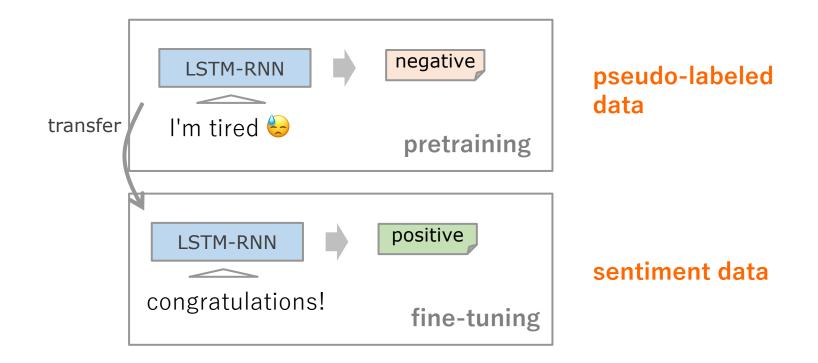


sentiment data


• Lang

- Pretrain an LSTM-RNNs as a language model

- SeqAE
 - Pretrain an LSTM-RNNs as a sequence autoencoder (Dai and Le 2015)

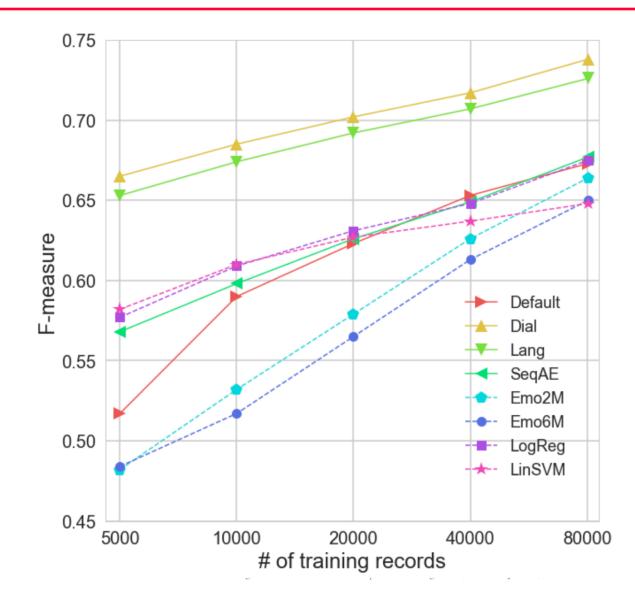


- Emoji and emoticon-based distant supervision
 - Prepare large-scale datasets utilizing emoticons or emoji as pseudo labels (Go+ 2009)
 - Positive emoticon examples
 - 😊 😂 😁 🥶 🤩 💗 👍 💞 🂖 🌟 (^^) (^_^) (// ∀ //) o(^-^)o
 - Negative emoticon examples
 - 😂 💢 🎧 🅺 🥸 🍪 🈓 💔 😰 (ТДТ) (`^´*) (/--) (、ン、) (´ △`) orz

- Emo2M and Emo6M
 - Pretrain models as classifier models using pseudo-labeled data

Baselines with Linear Models

Data


- Use only the sentiment data
- Preprocessing
 - Segment text with a defact-standard morphological analyzer, MeCab
 - 50,000 unigrams and 50,000 bigrams
 - +233 emoji and emoticons

• LogReg

- Logistic regression (LIBLINEAR)
- LinSVM
 - Linear SVM (LIBLINEAR)

Results: F-measure

Original text		English translations		
Source tweet	Generated reply	Source tweet	Generated reply	
明日は待ちに待ったコンサートだ	いいね!	Tomorrow I have a concert I've	That's nice!	
よ		been really looking forward to		
私もっ♪(´∀`)人(´∀`)♪	(*^*)	Me too \checkmark (high five emoticon) \checkmark	:)	
残念だったね	(΄ • ω • `)	I'm sorry to hear that	:(
後でそっちに行くよ	おっけー!	I'm coming later	OK!	
頭痛いよ	うそ、、お大事	I have a headache	Really? Take	
	に…		care of your-	
			self	
アメトーク見たかった~	おもろいよね~	I missed Ame Talk (a TV program)	Watching it is	
			fun	
もう、ごめんじゃ済まされないだ	それはそれで困	Sorry doesn't cut it anymore. I gave	That's too bad	
ろ、呆れる	る。。	up on you.		
大学 合格したよ!	おめでとう!!	I was admitted by the university!	Congratula-	
			tions!!	
もうだめだ	そんなことない	It's all over for me	I don't think so	
	よ(´・ω・')		:(
嘘つきめ。	ひどい	You liar.	You nasty	
ちょうどいいね	まじかー あり	That's just right	Really?	
	がとう!!!		Thanks!!!	
それ、すごい好き	うん、かっこい	I really like it	Yeah, it's so	
	いよね		cool	

Replies generated by the pretrained encoder-decoder model

- Effectiveness of the pretraining strategy using paired dialog data for sentiment analysis
 - Even more effective in extremely low-resource situations
 - Character-based processing
- Future work
 - Explore combinations of a large-scale unlabeled dataset and a supervised task
 - Exploit other kinds of structures