Policy Gradient as a Proxy for Dynamic Oracles in Constituency Parsing

Daniel Fried and Dan Klein

Parsing by Local Decisions

Non-local Consequences

Loss-Evaluation Mismatch

 $\Delta(y, \hat{y})$: -F1 (y, \hat{y})

Exposure Bias

True
Parsey $(S \rightarrow (NP \rightarrow The \rightarrow cat \rightarrow ...)$ Prediction \hat{y} $(S \rightarrow (NP \rightarrow (VP \rightarrow ??))$

[Ranzato et al. 2016; Wiseman and Rush 2016]

Dynamic Oracle Training

Explore at training time. Supervise each state with an expert policy.

True Parse
$$y$$
 (S \rightarrow (NP \rightarrow The \rightarrow cat \rightarrow ...
addresses
exposure
bias $\begin{cases}
Prediction \\
(sample, or greedy) \\
Oracle \\
y^*
\end{cases}$ (S \rightarrow (NP \rightarrow (VP \rightarrow The \rightarrow ...
(NP \rightarrow The \rightarrow ...
The cat
 $L(\theta) = \sum_{t} \log p(y_t^* | \hat{y}_{1:t-1}, x; \theta)$ choose y_t^* to maximize
addresses
achievable F1 (typically) \rightarrow loss
mismatch

[Goldberg & Nivre 2012; Ballesteros et al. 2016; inter alia]

Expert Policies / Dynamic Oracles

Daume III et al., 2009; Ross et al., 2011; Choi and Palmer, 2011; Goldberg and Nivre, 2012; Chang et al., 2015; Ballesteros et al., 2016; Stern et al. 2017

mostly - dependency parsing

PTB Constituency Parsing F1

System	Static Oracle	Dynamic Oracle
Coavoux and Crabbé, 2016	88.6	89.0
Cross and Huang, 2016	91.0	91.3
Fernández-González and Gómez-Rodríguez, 2018	91.5	91.7

What if we don't have a dynamic oracle? Use reinforcement learning

Policy Gradient Training

Minimize expected sequence-level cost:

$$R(\theta) = \sum_{\hat{y}} p(\hat{y}|x;\theta) \Delta(y,\hat{y})$$

$$True Parse y \quad Prediction \hat{y}$$

$$\int_{\hat{y}} p(\hat{y}|x;\theta) \Delta(y,\hat{y}) \nabla \log p(\hat{y}|x;\theta)$$

$$\int_{\hat{y}} p(\hat{y}|x;\theta) \Delta(y,\hat{y}) \nabla \log p(\hat{y}|x;\theta)$$

$$\frac{\Delta(y,\hat{y})}{\int_{\hat{y}} ddresses} \quad ddresses \quad compute in exposure bias \quad loss \quad the same way (compute by mismatch \quad as for the sampling) \quad (compute F1) \quad true tree$$

[Williams, 1992]

idea

Policy Gradient Training

$$\nabla R(\theta) = \sum_{\hat{y}} p(\hat{y}|x;\theta) \,\Delta(y,\hat{y}) \,\nabla \log p(\hat{y}|x;\theta)$$

Input, x The cat took a nap.

Experiments

Setup

Χ

Parsers

Span-Based [Cross & Huang, 2016] Top-Down [Stern et al. 2016] RNNG [Dyer et al. 2016] In-Order [Liu and Zhang, 2017]

Training

Static oracle Dynamic oracle Policy gradient

English PTB F1

Training Efficiency

PTB learning curves for the Top-Down parser

- Local decisions can have non-local consequences
 - Loss mismatch
 - Exposure bias
- How to deal with the issues caused by local decisions?
 - Dynamic oracles: efficient, model specific
 - Policy gradient: slower to train, but general purpose

Thank you!

