Orthographic features for bilingual lexicon induction

Parker Riley and Daniel Gildea

University of Rochester

$$
\text { July 17, } 2018
$$

Outline

- Overview
- Research question
- Task and general approach
- Baseline system
- Proposed modifications
- Results
- Conclusion

Overview - Research question

- Can orthographic (spelling) information enable better word translations in low-resource contexts?
- Languages with common ancestors and/or borrowing exhibit increased lexical similarity
- Spelling of words can carry signal for translation
- Low-resource pairs are most in need of additional signal

Overview - Task and general approach

- Bilingual lexicon induction: single-word translations (modern-moderno)
- Operate on word embeddings
- Haghigi et al. (2008): orthographic features
- Mikolov et al. (2013): word2vec, linear mapping
- Minimal supervision

Baseline: Artetxe et al. (2017)

- Start with dictionary D (inferred from numerals)
- Learn matrix W minimizing Euclidean distance between target (Z) and mapped source (XW) embeddings of pairs in D
- Use nearest neighbors as entries in new dictionary
- Repeat until convergence

Baseline: Artetxe et al. (2017) - Problems

Language	English Word	Baseline's Prediction	Reference
German	unevenly	gleichmäßig (evenly)	ungleichmäßig
German	Ethiopians	Afrikaner (Africans)	Äthiopier
Italian	autumn	primavera (spring)	autunno
Finnish	Latvians	ukrainalaiset (Ukrainians)	latvialaiset

- Suffers from clustering problems present in word2vec
- Similar distributions \rightarrow similar embeddings
- Hints of correct translation present in spelling

Proposed modifications

1. Use normalized edit distance in nearest-neighbor calculation

- During dictionary induction, distances between similarly-spelled words are reduced

2. Extend embedding vectors with character counts

- Extend vectors with scaled counts of letters in both language's alphabets (scale constant $k \leq 1$)

Word	d_{1}	d_{2}
$a b a$	0.123	0.456

\downarrow

Word	d_{1}	d_{2}	a	b
$a b a$	0.123	0.456	$2 k$	$1 k$

Quantitative results

English Word Translation Accuracy

- Universally outperform baseline
- Best when combined; largest contribution from embedding extension
- Improvement less pronounced for English-Finnish (linguistic dissimilarity)

Qualitative results

Language	English Word	Baseline's Prediction	Our Prediction
German	unevenly	gleichmäßig (evenly)	ungleichmäßig
German	Ethiopians	Afrikaner (Africans)	Äthiopier
Italian	autumn	primavera (spring)	autunno
Finnish	Latvians	ukrainalaiset (Ukrainians)	latvialaiset

- Use orthographic information to disambiguate semantic clusters
- Significant gains in adequacy

Conclusion

- Orthographic information can improve unsupervised bilingual lexicon induction, especially for language pairs with high lexical similarity.
- These techniques can be incorporated into other embedding-based frameworks.

Results with Identity

English Word Translation Accuracy w/ Identity

Proof of optimal W

$$
\begin{aligned}
W^{*} & =\underset{W}{\arg \min } \sum_{i=1}^{\left|V^{X}\right|\left|V^{Z}\right|} \sum_{j=1} D_{i j}\left\|X_{i *} W-Z_{j *}\right\|^{2} \\
& =\underset{W}{\arg \min } \sum_{i=1}^{\left|V^{x}\right|}\left\|X_{i *} W-(D Z)_{i *}\right\|^{2} \\
& =\underset{W}{\arg \min } \sum_{i=1}^{\left|V^{x}\right|}\left\|X_{i *} W\right\|^{2}+\left\|(D Z)_{i *}\right\|^{2}-2 X_{i *} W\left((D Z)_{i *}\right)^{\top} \\
& =\underset{W}{\arg \min } \sum_{i=1}^{\left|V^{x}\right|}-2 X_{i *} W\left((D Z)_{i *}\right)^{\top}=\underset{W}{\arg \max } \sum_{i=1}^{\left|V^{x}\right|} X_{i *} W\left((D Z)_{i *}\right)^{\top} \\
& =\underset{W}{\arg \max } \operatorname{Tr}\left(X W Z^{\top} D^{\top}\right)
\end{aligned}
$$

Proof of optimal W, continued

$$
\begin{aligned}
W^{*} & =\underset{W}{\arg \max } \operatorname{Tr}\left(X W Z^{\top} D^{\top}\right) \\
& =\underset{W}{\arg \max } \operatorname{Tr}\left(Z^{\top} D^{\top} X W\right) \\
& =\underset{W}{\arg \max } \operatorname{Tr}\left(U \Sigma V^{\top} W\right) \quad\left[U \Sigma V^{\top}=\operatorname{SVD}\left(Z^{\top} D^{\top} X\right)\right] \\
& =\underset{W}{\arg \max } \operatorname{Tr}\left(\Sigma V^{\top} W U\right) \\
& =V U^{\top}
\end{aligned}
$$

Method	English-German	English-Italian	English-Finnish
Artetxe et al. (2017)	40.27	39.40	26.47
Artetxe et al. (2017)+id	51.73	44.07	42.63
Embedding extension	50.33	48.40	29.63
Embedding extension+id	55.40	47.13	$\mathbf{4 3 . 5 4}$
Edit distance	43.73	39.93	28.16
Edit distance+id	52.20	44.27	41.99
Combined	53.53	$\mathbf{4 9 . 1 3}$	32.51
Combined+id	$\mathbf{5 5 . 5 3}$	46.27	41.78

