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Introduction

I Attention-based neural translation models

. attend to specific positions on the source side to generate translation

. improvements over pure encoder-decoder sequence-to-sequence approach

I Neural HMM has been successfully applied on top of SMT systems
[Wang & Alkhouli+ 17]

I This work explores its application in standalone decoding

. end-to-end, only with neural networks→ NMT

. LSTM structures outperform FFNN variants in [Wang & Alkhouli+ 17]
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Neural Hidden Markov Model

I Translation

. source sentence fJ1 = f1...fj...fJ

. target sentence eI1 = e1...ei...eI

. alignment i→ j = bi

I Model translation using an alignment model and a lexicon model:

p(eI1|fJ1 ) =
∑
bI1

p(eI1, b
I
1|fJ1 ) (1)

:=
∑
bI1

I∏
i=1

p(ei|bi1, ei−1
0 , fJ1 )︸ ︷︷ ︸

lexicon model

· p(bi|bi−1
1 , ei−1

0 , fJ1 )︸ ︷︷ ︸
alignment model

(2)

with p(bi|bi−1
1 , ei−1

0 , fJ1 ) := p(∆i|bi−1
1 , ei−1

0 , fJ1 )

. predicts the jump ∆i = bi − bi−1
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Neural Hidden Markov Model
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I Neural network based lexicon model
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Neural Hidden Markov Model
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I Neural network based alignment model (j′ = bi−1)
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Training

I Training criterion for sentence pairs (Fr, Er), r = 1, ..., R:

argmax
θ

{∑
r

log pθ(Er|Fr)
}

(3)

I Derivative for a single sentence pair (F,E) = (fJ1 , e
I
1):

∂

∂θ
log pθ(E|F ) =

∑
j′,j

∑
i

pi(j
′, j|fJ1 , eI1; θ)︸ ︷︷ ︸

HMM posterior weights

· ∂
∂θ

log p(j, ei|j′, ei−1
0 , fJ1 ; θ) (4)

I Entire training procedure: backpropagation in an EM framework

1. compute:
. the HMM posterior weights
. the local gradients (backpropagation)

2. update neural network weights
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Decoding

I Search over all possible target strings

max
eI1

p(eI1|fJ1 ) = max
eI1


∑
bI1

∏
i

p(bi, ei|bi−1, e
i−1
0 , fJ1 )


I Extending partial hypothesis from ei−1

0 to ei0

Q(i, j; ei0) =
∑
j′

[
p(j, ei|j′, ei−1

0 , fJ1 ) ·Q(i− 1, j′; ei−1
0 )

]
(5)

I Pruning:

Q(i; ei0) =
∑
j

Q(i, j; ei0)

argmax
ei

Q(i; ei0)← select several candidates
(6)
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Decoding

I No explicit coverage constraints

. one-to-many alignment cases and unaligned source words

I Search space in decoding

. neural HMM: consists of both alignment and translation decisions

. attention model: consists only of translation decisions

I Decoding complexity (J = source sentence length, I = target sentence length)

. neural HMM: O(J2 · I)

. attention model: O(J · I)

. in practice, neural HMM 3 times slower than attention model
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Experimental Setup

I WMT 2017 German↔English and Chinese→English translation tasks

I Quality measured with case sensitive BLEU and TER on newstests2017

I Moses tokenizer and truecasing scripts [Koehn & Hoang+ 07]

I Jieba1 segmenter for Chinese data

I 20K byte pair encoding (BPE) operations [Sennrich & Haddow+ 16]

. joint for German↔English and separate for Chinese→English

I Attention-based system are trained with Sockeye [Hieber & Domhan+ 17]

. encoder and decoder embedding layer size 620

. a bidirectional encoder layer with 1000 LSTMs with peephole connections

. Adam [Kingma & Ba 15] as optimizer with a learning rate of 0.001

. batch size 50, 30% dropout

. beam search with beam size 12

. model weights averaging

1https://github.com/fxsjy/jieba
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Experimental Setup

I Neural hidden markov model implemented in TensorFlow [Abadi & Agarwal+ 16]

. encoder and decoder embedding layer size 350

. projection layer size 800 (400+200+200)

. three hidden layers of sizes 1000, 1000 and 500 respectively

. normal softmax layer
◦ lexicon model: large output layer with roughly 25K nodes
◦ alignment model: small output layer with 201 nodes

. Adam as optimizer with a learning rate of 0.001

. batch size 20, 30% dropout

. beam search with beam size 12

. model weights averaging
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Experimental Results

WMT 2017 # free German→English English→German Chinese→English
parameters BLEU[%] TER[%] BLEU[%] TER[%] BLEU[%] TER[%]

FFNN-based neural HMM 33M 28.3 51.4 23.4 58.8 19.3 64.8
LSTM-based neural HMM 52M 29.6 50.5 24.6 57.0 20.2 63.7
Attention-based neural network 77M 29.5 50.8 24.7 57.4 20.2 63.8

I FFNN-based neural HMM: [Wang & Alkhouli+ 17] applied in decoding

I LSTM-based neural HMM: this work

I Attention-based neural network: [Bahdanau & Cho+ 15]

I All models trained without synthetic data

I Single model used for decoding

I LSTM models improve FFNN-based system by up to 1.3% BLEU and 1.8% TER

I Comparable performance with attention-based system
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Summary

I Apply NNs to conventional HMM for MT

I End-to-end with a stand-alone decoder

I Comparable performance with the standard attention-based system

. significantly outperforms the feed-forward variant

I Future work

. Speed up training and decoding

. Application in automatic post editing

. Combination with attention or transformer [Vaswani & Shazeer+ 17] model
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Thank you for your attention

Weiyue Wang

wwang@cs.rwth-aachen.de
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Appendix: Motivation

I Neural HMM compared to attention-based systems

. recurrent encoder and decoder without attention component

. replacing attention mechanism by a first-order HMM alignment model
◦ attention levels: deterministic normalized similarity scores
◦ HMM alignments: discrete random variables and must be marginalized

. separating the alignment model from the lexicon model
◦more flexibility in modeling and training
◦ avoids propagating errors from one model to another
◦ implies an extended degree of interpretability and control over the model
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Appendix: Analysis
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Neural HMM

I Attention weight and alignment matrices visualized in heat map form

I Generated by attention NMT baseline and neural HMM
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Appendix: Analysis

1

source 28-jähriger Koch in San Francisco Mall tot aufgefunden
reference 28-Year-Old Chef Found Dead at San Francisco Mall
attention NMT 28-year-old cook in San Francisco Mall found dead
neural HMM 28-year-old cook found dead in San Francisco Mall

2

source Frankie hat in GB bereits fast 30 Jahre Gewinner geritten , was toll ist .
reference Frankie ’s been riding winners in the UK for the best part of 30 years which is great to see .
attention NMT Frankie has been a winner in the UK for almost 30 years , which is great .
neural HMM Frankie has ridden winners in the UK for almost 30 years , which is great .

3

source Wer baut Braunschweigs günstige Wohnungen ?
reference Who is going to build Braunschweig ’s low-cost housing ?
attention NMT Who does Braunschweig build cheap apartments ?
neural HMM Who builds Braunschweig ’s cheap apartments ?

I Sample translations from the WMT German→English newstest2017 set

. underline source words of interest

. italicize correct translations

. bold-face for incorrect translations
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