
Supplementary Material

A Optimization Problem in Finding Hidden Topics

We first show that problem (2) is equivalent to the optimization problem (4). The reconstruction of word
wi is ˜wi, and ˜wi = W ˜↵i where

˜↵i = argmin

↵i2RK

kwi �H↵ik22. (11)

Problem (11) is a standard quadratic optimization problem which is solved by ˜↵i = H†wi, where H†

is the pseudoinverse of H. With the orthonormal constraints on H, we have H†
= HT . Therefore,

˜↵i = HTwi, and ˜wi = H↵i = HHTwi.
Given the topic vectors H, the reconstruction error E is defined as:

E(H) =

nX

i=1

min

↵i
kwi �H↵ik22

=

nX

i=1

kwi �HHTwik22

= kW �HHTWk22, (12)

where W = [w1, . . . ,wn] is a matrix stacked by word vectors {wi}ni=1 in a document. Now the equiv-
alence has been shown between problem (2) and (4).

Next we show how to derive hidden topic vectors from the optimization problem (4) via Singular Value
Decomposition. The optimization problem is:

min

H
kW �HHTWk2

s.t. HTH = I

Let HHT
= P. Then we have:

nX

i=1

kwi �Pwik2 =
nX

i=1

(wi �Pwi)
T
(wi �Pwi)

=

nX

i=1

(wT
i wi � 2wT

i Pwi +wT
i P

TPwi).

Since PTP = HHTHHT
= P, we only need to minimize:

nX

i=1

(�2wT
i Pwi +wT

i Pwi) =

nX

i=1

(�wT
i Pwi).

It is equivalent to the maximization of
nP

i=1
wT

i Pwi.

Let tr(X) be the trace of a matrix X, we can see that

nX

i=1

wT
i Pwi = tr(WTPW) = tr(WTHHTW) (13)

= tr(HTWWTH) (14)

=

KX

k=1

hT
kWWThk (15)



Eq. (14) is based on one property of trace: tr(XTY) = tr(XYT
) for two matrices X and Y.

The optimization problem (4) now can be rewritten as:

max

{hk}Kk=1

KX

k=1

hT
kWWThk

s.t. hT
i hj = 1(i=j), 8i, j (16)

We apply Lagrangian multiplier method to solve the optimization problem (16). The Lagrangian
function L with multipliers {�k}Kk=1 is:

L =

KX

k=1

hT
kWWThk �

KX

k=1

(�kh
T
k hk � �k)

=

KX

k=1

hT
k (WWT � �kI)hk +

KX

k=1

�k

By taking derivative of L with respect to hk, we can get

@L

@hk
= 2(WWT � �kI)hk = 0.

If h⇤
k is the solution to the equation above, we have

WWTh⇤
k = �kh

⇤
k, (17)

which indicates that the optimal topic vector h⇤
k is the set of eigenvectors of WWT .

The eigenvector of WWT can be computed using Singular Value Decomposition (SVD). SVD de-
composes matrix W can be decomposed as W = U⌃VT , where UTU = I, VTV = I, and ⌃ is a
diagonal matrix. Because

WWTU = U⌃⌃

TUTU = U⌃0,

where ⌃0
= ⌃⌃T , and it is also a diagonal matrix. As is seen, U gives eigenvectors of WWT , and the

corresponding eigenvalues are the diagonal elements in ⌃0.
We note that not all topics are equally important, and the topic which recover word vectors W with

smaller error are more important. When K = 1, we can find the most important topic which minimizes
the reconstruction error E among all vectors. Equivalently, the optimization in (16) can be written as:

h⇤
1 = argmax

h1:kh1k=1
hT
1 WWTh1 = argmax

h1:kh1k=1
�1h

T
1 h1 = argmax

h1

�1 (18)

The formula (18) indicates that the most important topic vector is the eigenvector corresponds to the
maximum eigenvalue. Similarly, we can find that the larger the eigenvalue �⇤

k is, the smaller reconstruc-
tion error the topic h⇤

k achieves, and the more important the topic is.
Also we can find that

�⇤
k = h⇤

k
TWWTh⇤

k = kh⇤
k
TWk22.

As we can see, kh⇤
k
TWk22 can be used to quantify the importance of the topic hk, and it is the unnormal-

ized importance score ik we define in Eq. (6).
Henceforth, the K vectors in U corresponding to the largest eigenvalues are the solution to optimal

hidden vectors {h⇤
1, . . . ,h

⇤
K}, and the topic importance is measured by {kh⇤

1
TWk22, . . . , kh⇤

K
TWk22}.



(a) Graph model to cluster senses (b) Finite-state automaton as language analyzer

Figure 8: Topic Word Visualization to Interpret Hidden Topics

B Interpretation of Hidden Topics

Mathematically the hidden topics are orthonormal vectors, and do not carry physical meaning. To gain a
deeper insight of these hidden topics, we can establish the connections between topics and words. For a
given paper, we can extract several hidden topics H⇤ by solving the optimization problem (2).

For each word wi in the document, we reconstruct ˜wi with hidden topic vectors {hk}Kk=1 as below:

˜wi = HHTwi

The reconstruction error for word wi is kwi � ˜wik22. We select words with small reconstruction errors
since they are closely relevant to extract topic vectors, and could well explain the hidden topics. We
collect these highly relevant words from papers in the same category, which are natural interpretations
of hidden topics. The cloud of these topic words are shown in Figure 8. The papers are about graph
modeling to cluster word senses in Figure 8(a). As we can see, topic words such as graph, clusters,
semantic, algorithms well capture the key ideas of those papers. Similarly, Figure 8(b) presents the
word cloud for papers on finite-state automaton and language analyzer. Core concepts such as language,
context, finite-state, transducer and linguistics are well preserved by the extracted hidden topics.


