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The neural Transformer achieves state-of-the-art performance with solely attention network. 

Thanks to its full parallelization, Transformer can be trained very fast. However, because of the 

auto-regressive architecture and self-attention in the decoder:

Transformer is slow at decoding phase.

Below lists a comparison among CNN, RNN and Self-Attention when used for the decoder:

Theoretically, Self-Attention needs O(n) previous hidden states to predict the next target word.

Could we reduce this complexity from O(n) to O(1)?

This is what our paper tries to solve.

Motivation

The Approach: Average Attention Network

Neural Transformer with AAN

We use AAN to replace the self-attention network in the decoder part of Transformer. The overall 

architecture is illustrated as follows:

Experiments

Performance on WMT14 En-De Task

Translation performance of Transformer

and Our model is almost the same.

Our model is not too sensitive to the

FFN and Gate activation.

Model Convergence on WMT14 En-De Task

The convergence of Transformer and Our 

model is similar.

Speed on WMT14 En-De Task

Training speed is similar.

Decoding of AAN is ~4 times faster than

that of Transformer.

Effects on Length (WMT14 En-De task)

The first two figures: Our model generates translations of the similar length and BLEU score 

as that of Transformer.

The third figure: As sentence length increases, AAN achieves significantly better acceleration.

Results on WMT17 Translation Tasks

On six different language pairs, our conclusion is the same.

We propose average attention network (AAN). Instead of calculating dynamic weights over all 

previous hidden states, 

AAN assumes that attention weights are equally distributed to each previous hidden state.

Its architecture and formal definition are shown below:

• Average Layer:

𝑔𝑗 = FFN
1

𝑗
σ𝑘=1
𝑗

𝑦𝑘

• Gating Layer

𝑖𝑗 , 𝑓𝑗 = 𝜎 𝑊 𝑦𝑗; 𝑔𝑗
෨ℎ𝑗 = 𝑖𝑗⨀𝑦𝑗 + 𝑓𝑗⨀𝑔𝑗

• Output

ℎ𝑗 = LayerNorm 𝑦𝑗 + ෨ℎ𝑗

Intuitively, AAN replaces the original dynamically computed weights by the self-attention 

network in the decoder of Transformer with simple and fixed average weights (
1

𝑗
).

In spite of its simplicity, the cumulative-average operation builds up dependencies with 

previous inputs so that the generated representations are not independent of each other.
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Training and Decoding Acceleration

Training Acceleration

The cumulative operation in AAN disables the model from fully parallelizable training. Thanks 

to the simplicity of average, 

cumulative-average operation can be implemented as purely matrix multiplication via mask 

trick.

For example, given four input embeddings 𝑦1, 𝑦2, 𝑦3, 𝑦4 , the average layer can be implemented 

as follows:

𝑔𝑗 = FFN
1

𝑗
σ𝑘=1
𝑗

𝑦𝑘 ⇒ 𝐺 = FFN 𝑀𝑌

Where G is the average output matrix, M is the mask matrix, Y is the input matrix. In this way, 

training with AAN will have the same computational complexity as that with Self-Attention.

Decoding Acceleration

Again, thanks to the simple average operation, 

AAN can be accelerated during decoding via dynamic programming.

Concretely, we decompose the average layer into the following two steps:

𝑔𝑗 = 𝑔𝑗−1 + 𝑦𝑗

𝑔𝑗 = 𝐹𝐹𝑁
𝑔𝑗

𝑗

Where 𝑔0 = 𝟎. In this way, decoder with AAN can compute the j-th input representation based 

on only one previous state 𝑔𝑗−1 during decoding, instead of relying on all previous states as the 

self-attention does.

Decoding with AAN requires O(1) previous state.
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Model BLEU

Transformer 26.37

Our Model 26.31

Our Model w/o FFN 26.05

Our Model w/o Gate 25.91
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Training Steps

Transformer Our Model

Transformer Our Model △𝐫

Training 0.2474 0.2464 1.00

Decoding

beam=4 0.1804 0.0488 3.70

beam=8 0.3576 0.0881 4.06

beam=12 0.5503 0.1291 4.26

beam=16 0.7323 0.1700 4.31 

beam=20 0.9172 0.2122 4.32

Case-sensitive BLEU Average Decoding Time

Winner Transformer Our Model △𝑑 Transformer Our Model △r

En→De 28.3 27.33 27.22 -0.11 0.1411 0.02871 4.91

De→En 35.1 32.63 32.73 +0.10 0.1255 0.02422 5.18

En→Fi 20.7 21.00 20.87 -0.13 0.1289 0.02423 5.32

Fi→En 20.5 25.19 24.78 -0.41 0.1285 0.02336 5.50

En→Lv 21.1 16.83 16.63 -0.20 0.1850 0.03167 5.84

Lv→En 21.9 17.57 17.51 -0.06 0.1980 0.03123 6.34

En→Ru 29.8 27.82 27.73 -0.09 0.1821 0.03140 5.80

Ru→En 34.7 31.51 31.36 -0.15 0.1595 0.02778 5.74

En→Tr 18.1 12.11 11.59 -0.52 0.2078 0.02968 7.00

Tr→En 20.1 16.19 15.84 -0.35 0.1886 0.03027 6.23

En→Cs 23.5 21.53 21.12 -0.41 0.1150 0.02425 4.74

Cs→En 30.9 27.49 27.45 -0.04 0.1178 0.02659 4.43


