Domain Adaptation with Adversarial Training and Graph Embeddings

Firoj Alam @ firojalam 04

Shafiq Joty†

Muhammad Imran
@mimran15

Qatar Computing Research Institute (QCRI), HBKU, Qatar School of Computer Science and Engineering† Nanyang Technological University (NTU), Singapore†

Time Critical Events

- Food, water
- Shelter
- Medical assistance
- Donations
- Service and utilities

Information gathering in real-time is the most challenging part

Relief operations

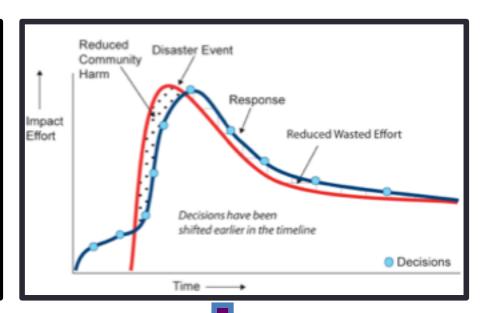
Humanitarian organizations and local administration need information to help and launch response

Artificial Intelligence for Digital Response (AIDR)

Response time-line today

Impact Effort Community Harm Response Untimely Response Decisions

Response time-line our target

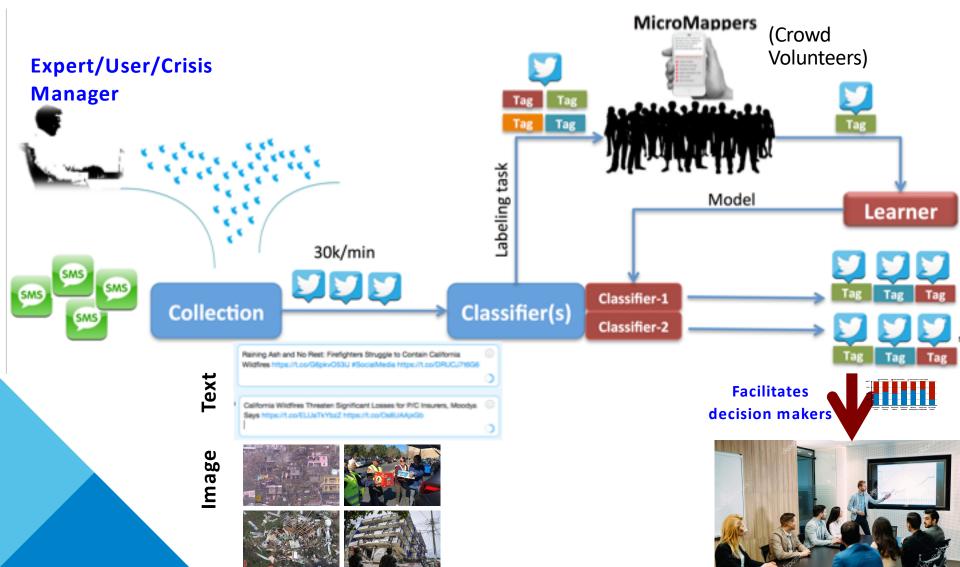


- Delayed decision-making
- Delayed crisis response

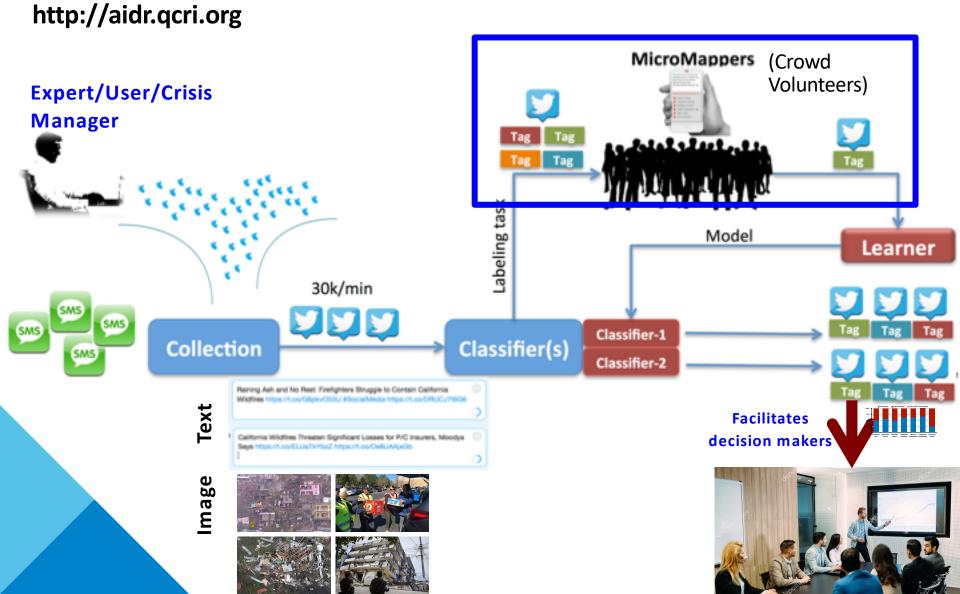
- Early decision-making
- Rapid crisis response

Artificial Intelligence for Digital Response

http://aidr.qcri.org

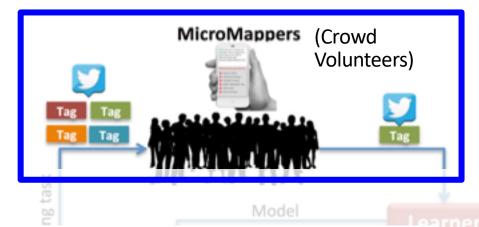


Artificial Intelligence for Digital Response



Artificial Intelligence for Digital Response

Expert/User/Crisis Manager



- Small amount of labeled data and large amount of unlabeled data at the beginning of the event
- Labeled data from the past event. Can we use them? What about domain shift?

Our Solutions/Contributions

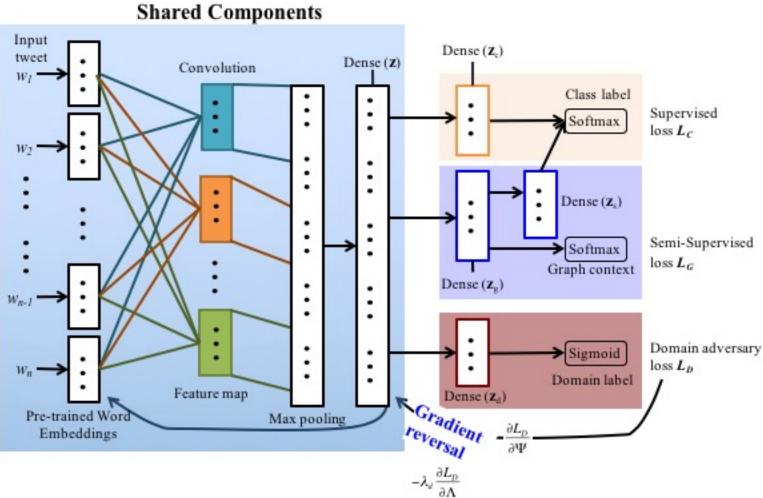
- How to use large amount of unlabeled data and small amount of labeled data from the same event?
 - ⇒ Graph-based semi-supervised

Our Solutions/Contributions

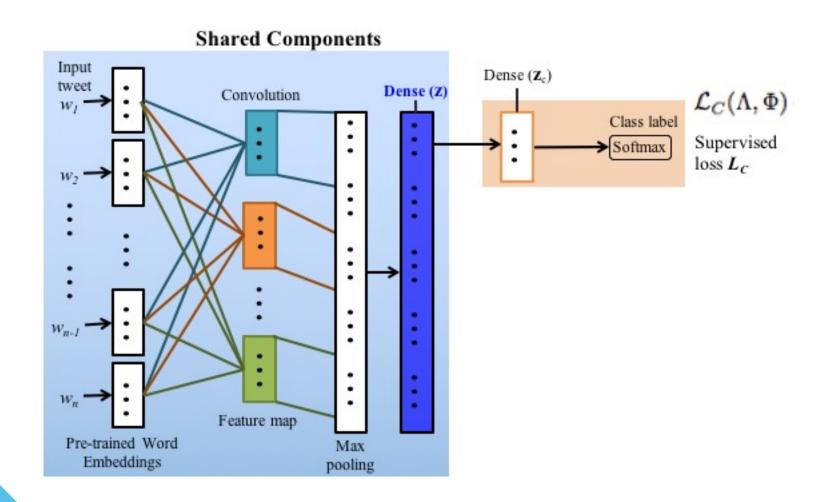
- How to use large amount of unlabeled data and small amount of labeled data from the same event?
 - ⇒ Graph-based semi-supervised

- How to transfer knowledge from the past events
 - => Adversarial domain adaptions

Domain Adaptation with Adversarial Training and Graph Embeddings

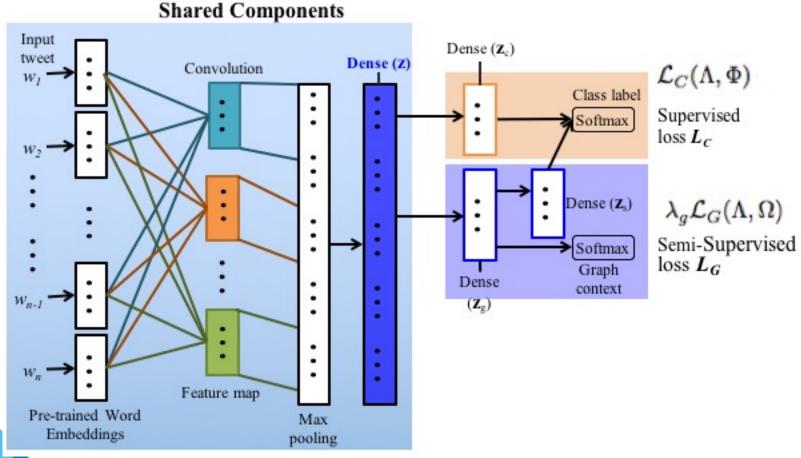


Supervised Learning



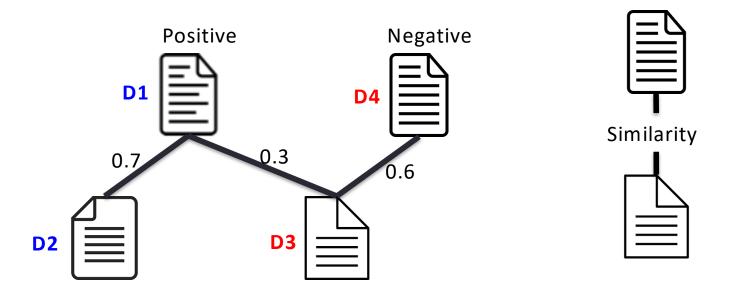
Semi-Supervised Learning

Semi-Supervised component

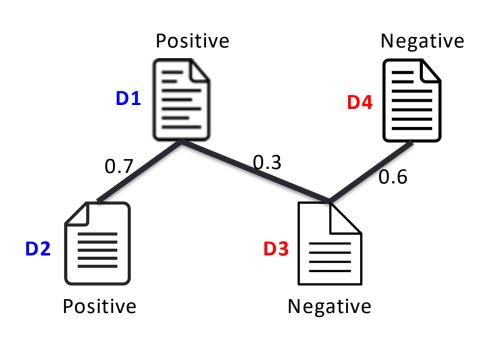


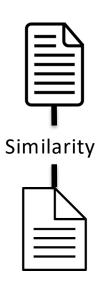
Semi-Supervised Learning

- L: number of labeled instances (x_{1:L}, y_{1:L})
- *U*: number of unlabeled instances (**x**_{L+1:L+U})
- Design a classifier $f: X \rightarrow y$



Assumption: If two instances are similar according to the graph, then class labels should be similar





Two Steps:

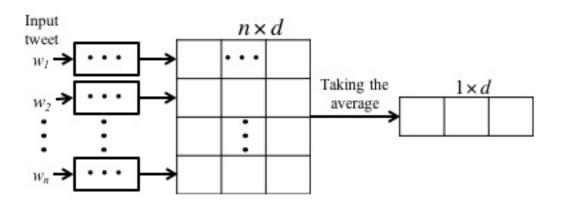
- Graph Construction
- Classification

Graph Representation

- Nodes: Instances (labeled and unlabeled)
- Edges: n x n similarity matrix
- Each entry a_{i,j} indicates a similarity between instance i and j

Graph Construction

- We construct the graph using k-nearest neighbor (k=10)
 - Euclidian distance
 - Requires n(n-1)/2 distance computation
 - K-d tree data structure to reduce the computational complexity O(logN)
 - Feature Vector: taking the averaging of the word2vec vectors



Semi-Supervised component: Loss function

$$\mathcal{L}(\Lambda, \Phi, \Omega) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega)$$

Graph context loss

$$\mathcal{L}_G(\Lambda, \Omega) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathbb{E}_{(j,\gamma)} \log \sigma \left(\gamma C_j^T \mathbf{z}_g(i) \right) \text{ (Yang et al., 2016)}$$

Learns the internal representations (embedding) by predicting a node in the graph context

Semi-Supervised component: Loss function

$$\mathcal{L}_G(\Lambda, \Omega) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathbb{E}_{(j,\gamma)} \log \sigma \left(\gamma C_j^T \mathbf{z}_g(i) \right) \text{ (Yang et al., 2016)}$$

Two types of context

 Context is based on the graph to encode structural (distributional) information

Semi-Supervised component: Loss function

$$\mathcal{L}_G(\Lambda, \Omega) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathbb{E}_{(j,\gamma)} \log \sigma \left(\gamma C_j^T \mathbf{z}_g(i) \right) \text{ (Yang et al., 2016)}$$

Two types of context

- 1. Context is based on the graph to encode structural (distributional) information
- 2. Context is based on the labels to inject label information into the embeddings

Semi-Supervised component: Loss function

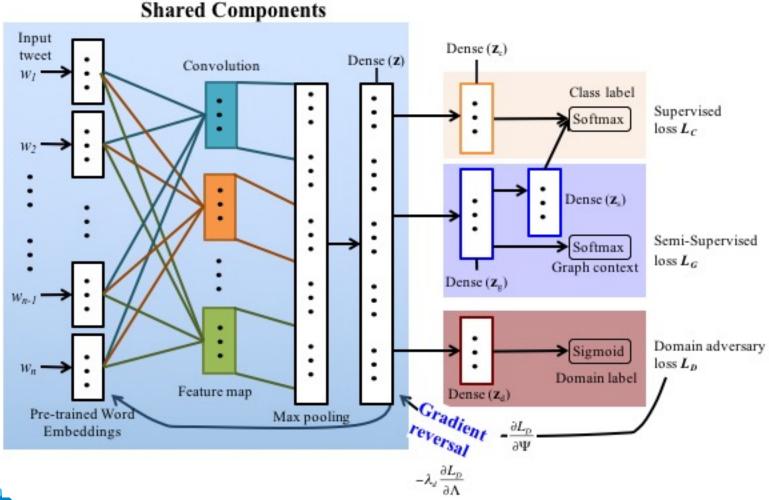
$$\mathcal{L}(\Lambda, \Phi, \Omega) = \mathcal{L}_C(\Lambda, \Phi) + \lambda_g \mathcal{L}_G(\Lambda, \Omega)$$

 $\Lambda = \{U, V\}$ Convolution filters and dense layer parameters

 $\Phi = \{V_c, W\}$ Parameters specific to the supervised part

 $\Omega = \{V_{\sigma}, C\}$ Parameters specific to the semi-supervised part

Domain Adaptation with Adversarial Training and Graph Embeddings



Domain Adaptation with Adversarial Training

Domain discriminator is defined by:

$$\hat{\delta} = p(d = 1 | \mathbf{t}, \Lambda, \Psi) = \text{sigm}(\mathbf{w}_d^T \mathbf{z}_d)$$

Negative log probability of the discriminator loss:

$$\mathcal{J}_i(\Lambda, \Psi) = -d_i \log \hat{\delta} - (1 - d_i) \log \left(1 - \hat{\delta}\right)$$

Domain adversary loss is defined by:

$$\mathcal{L}_D(\Lambda, \Psi) = -\frac{1}{L_s + U_s} \sum_{i=1}^{L_s + U_s} \mathcal{J}_i(\Lambda, \Psi) - \frac{1}{U_t} \sum_{i=1}^{U_t} \mathcal{J}_i(\Lambda, \Psi)$$

 $d \in \{0,1\}$ represents the domain of the input tweet t

 $\Lambda = \{U, V\}$ Convolution filters and dense layer parameters

 $\Psi = \{V_d, w_d\}$ Parameters specific to the domain discriminator part

Domain Adaptation with Adversarial Training and Graph Embeddings

Combined loss

Supervised Domain adversarial loss
$$\mathcal{L}(\Lambda,\Phi,\Omega,\Psi) = \mathcal{L}_C(\Lambda,\Phi) + \lambda_g \mathcal{L}_G(\Lambda,\Omega) + \lambda_d \mathcal{L}_D(\Lambda,\Psi)$$
 Semi-Supervised

We seek parameters that minimizes the classification loss of the class labels and maximizes domain discriminator loss

$$\theta^* = \operatorname*{argmin}_{\Lambda,\Phi,\Omega} \max_{\Psi} \mathcal{L}(\Lambda,\Phi,\Omega,\Psi)$$

 $\Lambda = \{U, V\}$ Convolution filters and dense layer parameters

 $\Phi = \{V_c, W\}$ Parameters specific to the supervised part

 $\Omega = \{V_g, C\}$ Parameters specific to the semi-supervised part

 $\Psi = \{V_d, w_d\}$ Parameters specific to the domain discriminator part

Model Training

Algorithm 1: Model Training with SGD

```
Input : data \mathcal{D}_{S}^{l}, \mathcal{D}_{S}^{u}, \mathcal{D}_{T}^{u}; graph G
Output: learned parameters \theta = \{\Lambda, \Phi\}

    Initialize model parameters {E, Λ, Φ, Ω, Ψ};

2. repeat
     // Semi-supervised
    for each batch sampled from p(j, \gamma | i, \mathcal{D}_S^l, \mathcal{D}_S^u, G) do
         a) Compute loss \mathcal{L}_G(\Lambda, \Omega)

 Take a gradient step for L<sub>G</sub>(Λ, Ω);

    end
     // Supervised & domain adversary
     for each batch sampled from \mathcal{D}_{S}^{l} do
         a) Compute \mathcal{L}_C(\Lambda, \Phi) and \bar{\mathcal{L}}_D(\Lambda, \Psi)
         b) Take gradient steps for \mathcal{L}_C(\Lambda, \Phi) and
          \mathcal{L}_D(\Lambda, \Psi);
    end
     // Domain adversary
    for each batch sampled from \mathcal{D}_T^u do
         a) Compute \mathcal{L}_D(\Lambda, \Psi)

 Take a gradient step for L<sub>D</sub>(Λ, Ψ);

    end
until convergence;
```


Corpus

Collected during:

- 2015 Nepal earthquake
- 2013 Queensland flood
- A small part of the tweets has been annotated using crowdflower
 - Relevant: injured or dead people, infrastructure damage, urgent needs of affected people, donation requests
 - Irrelevant: otherwise

Dataset	Relevant	Irrelevant	Train (60%)	Dev (20%)	Test (20%)
Nepal earthquake	5,527	6,141	7,000	1,167	3,503
Queensland flood	5,414	4,619	6,019	1,003	3,011

Unlabeled Instances

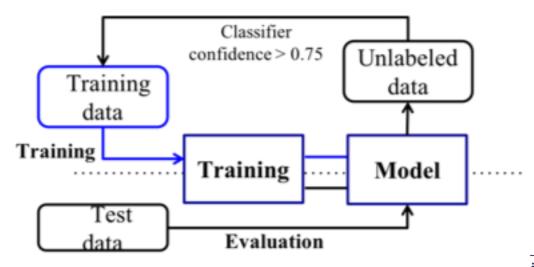
Nepal earthquake: 50K Queensland flood: 21K

Supervised baseline:

Model trained using Convolution Neural Network (CNN)

Semi-Supervised baseline (Self-training):

- Model trained using CNN were used to automatically label unlabeled data
- Instances with classifier confidence >= 0.75 were used to retrain a new model



Semi-Supervised baseline (Self-training)

Experiments	AUC	P	R	F1
Nepal	Earthqual	ke	I	
Supervised	61.22	62.42	62.31	60.89
Semi-Supervised (Self-training)	61.15	61.53	61.53	61.26
Semi-Supervised (Graph-based)	64.81	64.58	64.63	65.11
Queen	sland Floo	od	1	
Supervised	80.14	80.08	80.16	80.16
Semi-Supervised (Self-training)	81.04	80.78	80.84	81.08
Semi-Supervised (Graph-based)	92.20	92.60	94.49	93.54

 Domain Adaptation Baseline (Transfer Baseline): Trained CNN model on source (an event) and tested on target (another event)

Source	Target	AUC	P	R	F 1
	In-Domai	n Superv	rised Mo	odel	
Nepal	Nepal	61.22	62.42	62.31	60.89
Queensland	Queensland	80.14	80.08	80.16	80.16
	Tra	nsfer Bas	seline		
Nepal	Queensland	58.99	59.62	60.03	59.10
Queensland	Nepal	54.86	56.00	56.21	53.63

Domain Adaptation

Source	Target	AUC	P	R	F 1
	In-Doi	main Superv	vised Model		
Nepal	Nepal	61.22	62.42	62.31	60.89
Queensland	Queensland	80.14	80.08	80.16	80.16
	r	Transfer Ba	seline		
Nepal	Queensland	58.99	59.62	60.03	59.10
Queensland	Nepal	54.86	56.00	56.21	53.63
	D	omain Adve	rsarial		
Nepal	Queensland	60.15	60.62	60.71	60.94
Queensland	Nepal	57.63	58.05	58.05	57.79

Combining all the components of the network

Source	Target	AUC	P	R	F 1		
In-Domain Supervised Model							
Nepal	Nepal	61.22	62.42	62.31	60.89		
Queensland	Queensland	80.14	80.08	80.16	80.16		
Transfer Baseline							
Nepal	Queensland	58.99	59.62	60.03	59.10		
Queensland	Nepal	54.86	56.00	56.21	53.63		
Domain Adversarial							
Nepal	Queensland	60.15	60.62	60.71	60.94		
Queensland	Nepal	57.63	58.05	58.05	57.79		
Domain Adversarial with Graph Embedding							
Nepal	Queensland	66.49	67.48	65.90	65.92		
Queensland	Nepal	58.81	58.63	59	59.05		

Summary

- We have seen how graph-embedding based semi-supervised approach can be useful for small labeled data scenario
- How can we use existing data and apply domain adaptation technique
- We propose how both techniques can be combined

Limitation and Future Study

Limitations:

- Graph embedding is computationally expensive
- Graph constructed using averaged vector from word2vec
- Explored binary class problem

Future Study

- Convoluted feature for graph construction
- Hyper-parameter tuning
- Domain adaptation: labeled and unlabeled data from target

Thank you!

To get the data: http://crisisnlp.qcri.org/

Please follow us

@aidr_qcri

Firoj Alam, Shafiq Joty, Muhammad Imran. *Domain Adaptation with Adversarial Training and Graph Embeddings*. ACL, 2018, Melbourne, Australia.

