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Logical form：𝜆𝑥. 𝐶𝑖𝑡𝑦(𝑥) ∧ 𝑃𝑙𝑎𝑐𝑒𝑂𝑓𝐵𝑖𝑟𝑡ℎ(Barack_Obama，𝑥)
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process

 Strengths

− End-to-end

− Powerful prediction ability

 Challenges

− Hard to capture structure 
information

− Ignore the relatedness to KB

Semantic Graph Based Sequence-to-Sequence Based
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Seq2Act: synthesizes their advantages 

 Use semantic graphs to represent sentence meanings

− tight-coupling with knowledge bases 

 Leverage the powerful prediction ability of RNN models

− End-to-End
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Action Set

A
next_to

type
statereturn

texas:st

 Which states border Texas?

Node: A (variable), texas:st (entity), state (type)

Edge: next_to

Return node: A



Action Set

 Add variable node

− E.g., A

 Add entity node

− E.g., texas:st

 Add type node

− E.g., state

 Add edge

− E.g., next_to

 Operation action

− E.g., argmax, argmin, count

 Argument action

− For type node, edge and operation

Sentence: Which river runs through the most states?
Semantic Graph:

Action Sequence:
      

most

arg_for_1 arg_for_2

A B

state

traverse 

typetype

river

return

Structure Semantic Arg 

add_operation most  

add_variable A  

add_type river A 

add_variable B  

add_type state B 

add_edge traverse A, B 

end_operation most A, B 

return A  
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add_edge next_to:

add_edge loc:

Structure part Semantic part

Φ (add_edge:next to ) = [Φ (add_edge); Φ (next_to )] 
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Structure & Semantic Constraints

 Structure constraints

− Ensure action sequence will form a connected acyclic graph

 Semantic constraints

− Ensure the constructed graph must follow the schema of 
knowledge bases



Structure & Semantic Constraints

Sentence: Which states border Texas?
Partial Semantic Graph:

 

A

next_to

type
state

texas:st

 Structure Semantic Arg Validity 

Generated 

Actions 

add_variable A   

add_type state A  

add_entity texas:st   

Candidate 

Next 

Action 

add_type city texas:st  

add_edge loc A, texas:st  

add_edge next_to A, A  

add_edge next_to A, texas:st  

…
 

…
 

…
 

…
 

 

Action 1: violate type conflict

Action 2: violate selectional preference constraint

Action 3: structure constraint

Action 4: YES
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Experiments

 Datasets: GEO[Zelle and Mooney, 1996], ATIS[He and Young, 2005], 
OVERNIGHT[Wang et al., 2015b]

 We generate the action sequences from logical forms 
automatically. 

compiler generator

compilergenerator

 Action 
Sequence

Semantic 
Graph

Logical 
Form

what is the population of illinois ?

add_node:-:B add_node:-:A add_edge:-:_population arg_node:-:B 

arg_node:-:A  add_entity_node:-:illinois:=:state arg_node:-:B return:-:A



Baselines

 Traditional Methods

− Zettlemoyer and Collins, 2005

− Zettlemoyer and Collins, 2007

− Liang et al., 2011

− Zhao et al., 2015

− Wang et a., 2015

 Sequence-to-Sequence Models

− Dong and Lapata, 2016

− Jia and Liang, 2016

− Xiao et al., 2016

− Rabinovich et al., 2017
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Seq2Act+C1+C2 outperforms Seq2Act+C1
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33.3

25.8

18.2

46.6

28.4

28.2

0 5 10 15 20 25 30 35 40 45 50

OVERNIGHT

ATIS

GEO

Average len of logical forms Average len of action sequences

Average Length of Logical Forms and Action Sequences 

35.5%

9.2%

28.5%



Error Analysis

 Un-covered Sentence Structure

− Iowa borders how many states? (Formal Form: How many states 
does Iowa border?)

 Under Mapping

− Please show me first class flights from indianapolis to memphis
one way leaving before 10am



Conclusion

 Sequence-to-Action: End-to-End Semantic Graph Generation

− Representation ability of semantic graphs

− Sequence prediction ability of RNN models

 Achieve competitive results on GEO, ATIS and OVERNIGHT



Future work

 Weak supervised learning algorithm for Seq2Act

− So our method can be applied to (q, a) pair datasets such as 
WebQuestions

 Apply Seq2Act model to other parsing tasks (e.g., AMR parsing)



Thanks!

82

Data and code available:
https://github.com/dongpobeyond/Seq2Act

Email: chenbo42424@gmail.com

https://github.com/dongpobeyond/Seq2Act

