
A Crowdsourcing data collection

In this section, we provide details regarding our
the design of our annotation interfaces and the
quality control measures we took.

A.1 Language quality evaluation.

Each human annotator was shown a short sum-
mary that was generated by a system from an ar-
ticle in the CNN/Daily Mail dataset or provided
as a reference for that article. The annotators were
then asked to (a) provide Likert scale ratings of the
summary on multiple facets (fluency, redundancy
and overall quality) and (b) perform post-edits to
correct any errors (Figure 7a).

Interface design choices. We found that using
a five-level Likert scale increased annotator vari-
ance as annotators relative to a three-level Likert
scale. Annotators were provided specific cues to
calibrate their Likert ratings through a tutorial and
were reminded of these cues through tooltips on
the rating buttons (see Figure 7b for an example).
If the annotators rated a summary as lacking along
any facet, they were then forced to perform post-
edits to “improve [its] quality as much as possi-
ble”. We found that forcing annotators to provide
post-edits on examples significantly decreased the
annotator variance even on the Likert ratings.

Following the recommendations of Liu et al.
(2016a), we forced annotators to complete an in-
teractive tutorial containing 10 questions each be-
fore beginning the task (Figure 7b). The tutorial
provided guidelines and examples on how to rate
each facet (fluency, redundancy and overall qual-
ity) and tested whether they were able to identify
and correct language errors using the post-editing
interface. The tutorial took about 5–6 minutes
to complete and annotators were paid a one-time
bonus of $0.75 on completion.

We initially included additional questions to
assess focus, coherency and referential clar-
ity adapted from the DUC evaluation guide-
lines (Dang, 2006), but found that annotators were
unable to reliably identify these errors in the short
summaries. We also experimented with asking an-
notators to highlight language errors in the text to
justify their ratings, but again found that annota-
tors were unable to localize these errors reliably.

Quality control measures. We initially at-
tempted to use attention-check examples for the
Likert rating questions, but found that the ratings

on these examples were themselves quite subjec-
tive and hence were not a reliable signal to reject
work. Instead, we found that requiring post-edits
to summaries significantly reduced spam. Addi-
tionally, we rejected annotators who took too lit-
tle time to complete the task, had very low agree-
ment rates on the Likert questions or had edits that
were consistently shorter than 5 characters to pre-
vent spam.

A.2 Answer correctness evaluation.
Each annotator was shown a question from the MS
MARCO dataset and an answer that was gener-
ated by a system or provided as a reference an-
swer from the dataset. The annotators were then
asked to (a) rate if the question made sense and
the answer was plausibly correct and (b) asked to
identify which paragraphs provided in the dataset
justified the answer (Figure 8a).

Interface design choices. We found that some
of the questions in the MS MARCO dataset
were extremely ambiguous (e.g. “metatarsal what
causes”) and some system responses were im-
plausible (e.g “monogenic bone diseases”, for the
question “what genes cause osteoporosis”). In
these cases, annotators expressed confusion if they
were forced to judge if the response was correct or
incorrect. We resolved this confusion by first ask-
ing annotators if the question made sense and if
system response was even plausible.

In early pilots, we found that annotators often
rated a paragraph that correctly answered the ques-
tion but was unrelated to the system response to be
“correct”. We were able to resolve this problem by
asking annotators to double-check their work (see
the last question in Figure 8a for an example).

Once again, we forced annotators to complete
an interactive tutorial containing eight questions
each before beginning the task (Figure 8b). The
tutorial also took about 5–6 minutes to complete
and annotators were paid a one-time bonus of
$0.75 on completion.

Quality control measures. We found that re-
quiring annotators to provide justification spans
significantly spam. Additionally, we rejected an-
notators who took too little time to complete the
task or had very low agreement rates on the an-
swer correctness.
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Figure 7: Screenshot of the (a) interface and (b) instructions used by crowdworkers for the language
quality evaluation task on the CNN/Daily Mail dataset.
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Figure 8: Screenshot of the (a) interface and (b) instructions used by crowdworkers for the answer
correctness evaluation task on the MS MARCO dataset.



B Proofs

In this section, we provide proofs for the theorems stated in the main paper.

B.1 Main Theorem

In this section, we prove the main theorem (Theorem 3.1) in the paper about the minimax optimal vari-
ance for an unbiased estimator. Theorem 3.1 will follow from the two following lemmas (Lemmas B.1
and B.2). First, we show in Lemma B.1 that for all distributions with fixed σ2f , σ2a and ρ, the variance of
µ̂cv is constant and equal to: 1

n(σ2f (1−ρ2)+σ2a). Then we give an explicit distribution, a Gaussian distri-
bution, where any estimator yields at least this variance using the theory of sufficient statistics. Together,
these show that the max variance of any estimator is at least the max variance of µ̂cv.

As a reminder, the estimator is

µ̂cv =
1

n

∑

i

y(i) − αg(z(i)) (8)

where α = Cov(f(z), g(z)).

Lemma B.1. The variance of µ̂cv is always

1

n
(σ2f (1− ρ2) + σ2a) (9)

Proof. By the law of total variance, with respect to the draws of z(i),

Var(µ̂cv) = Ez(i) [Var(µ̂cv|z(i))] + Varz(i)(E[µ̂cv|z(i)]) (10)

We will evaluate each of the two terms on the right hand side.
For the first term,

Ez(i) [Var(µ̂cv|z(i))] = Ez(i)

[
Var

(
1

n

∑

i

y(i)|z(i)
)]

(11)

Because the human responses Y (z(i)) are uncorrelated,

Ez(i) [Var(µ̂cv|z(i))] = Ez(i)

[
1

n2

∑

i

Var(Y (z(i)))|z(i)
]

(12)

=
1

n
Ez[Var(Y (z))] (13)

=
1

n
σ2a (14)

For the second term,

Varz(i)(E[µ̂cv|z(i)]) = Varz(i)

(
1

n

∑

i

f(z(i))− αg(z(i))

)
(15)

Because the z(i) are sampled independently,



Varz(i)(E[µ̂cv|z(i)]) =
1

n
Var(f(z)− αg(z)) (16)

=
1

n
[Var(f(z))− 2αCov(f(z), g(z)) + α2 Var(g(z))] (17)

Note that Var(f(z)) = σ2f , Cov(f(z), g(z)) = α, and Var(g(z)) = 1 (since it is normalized). Thus,

Varz(i)(E[µ̂cv|z(i)]) =
1

n
[σ2f − 2α2 + α2] (18)

=
1

n
[σ2f − α2] (19)

Since the correlation ρ = α
σfσg

= α
σf

,

Varz(i)(E[µ̂cv|z(i)]) =
1

n
[σ2f − σ2fρ2] (20)

=
1

n
σ2f (1− ρ2) (21)

Putting these two terms together, we find that,

Var(µ̂cv) =
1

n
σ2a +

1

n
σ2f (1− ρ2) (22)

=
1

n
(σ2f (1− ρ2) + σ2a) (23)

For the next lemma, we show that the worst-case variance for any estimator is at least that of µ̂cv. For
this, we will define a simple Gaussian distribution and use the theory of sufficient statistics. We explicitly
define a distribution over f(z), g(z), and Y (Z) − f(z). In particular, we assume these are all Gaussian
distributions with respective means, µ, 0, 0, and variances, σ2f , 1, σ

2
a. Additionally, we assume that f(z)

and g(z) have covariance α but Y (z)− f(z) is independent.

Lemma B.2. µ̂cv is the minimal variance unbiased estimate (MVUE) for the Gaussian distribution above.

Proof. The proof is straightforward: we first show that µ̂cv is a sufficient statistic using the Fisher-
Neyman factorization theorem, and then we apply the Lehman-Scheffe theorem.

For ease of notation, define gi = g(z(i)) and yi = y(i). For the purposes of statistics, only µ is a
parameter; the other “parameters” are known constants. Note that the pdf of the observed variables gi
and yi is,

∏

i

c1 exp(−1

2

[
(yi − µ)

gi

]T [
σ2f + σ2a α

α 1

]−1 [
(yi − µ)

gi

]
) (24)

= c2 exp(−1

2

∑

i

[
(yi − µ)

gi

]T [
σ2f + σ2a α

α 1

]−1 [
(yi − µ)

gi

]
) (25)

Thus, with the Fisher-Neyman factorization theorem, it suffices to show that the exponetiated term T
decomposes as a sum of a function that only depends on the data and a function that only depends on µ̂cv
and µ.



T =
∑

i

[
(yi − µ)

gi

]T [
σ2f + σ2a α

α 1

]−1 [
(yi − µ)

gi

]
(26)

Letting c3 be the inverse determinant (which is constant),

T = c3
∑

i

[
(yi − µ)

gi

]T [
1 −α
−α σ2f + σ2a

] [
(yi − µ)

gi

]
(27)

= c3

[∑

i

(yi − µ)2 − 2α
∑

i

(yi − µ)gi + (σ2f + σ2a)
∑

i

g2i

]
(28)

= c3

[∑

i

y2i − 2µ
∑

i

yi + nµ2 − 2α
∑

i

yigi + 2αµ
∑

i

gi + (σ2f + σ2a)
∑

i

g2i

]
(29)

= −2c3µ

[∑

i

yi − α
∑

i

gi

]
+ c3nµ

2 + c3

[∑

i

y2i − 2α
∑

i

yigi + (σ2f + σ2a)
∑

i

g2i

]
(30)

= −2nc3µµ̂cv + c3nµ
2 + c3

[∑

i

y2i − 2α
∑

i

yigi + (σ2f + σ2a)
∑

i

g2i

]
(31)

Thus, we see the decomposition into the function of only the data on the right and only µ and µ̂cv on
the left. Thus, µ̂cv is a sufficient statistic.

Further, µ̂cv is an unbiased estimate of µ since E[gi] = 0 and E[yi] = µ.
Further, since µ̂cv is normally distributed with mean dependent on µ, it is complete.
Thus, by the Lehmann-Scheffe theorem, µ̂cv is the minimal variance unbiased estimate (MVUE).

Theorem 3.1. Among all unbiased estimators that are functions of y(i) and g(z(i)), and for all distribu-
tions with a given σ2f , σ2a, and α,

Var(µ̂cv) =
1

n
(σ2f (1− ρ2) + σ2a), (32)

and no other estimator has a lower worst-case variance.

Proof. From Lemma B.1 we have that the max variance of µ̂cv over all distributions with fixed variances,
is exactly,

1

n
(σ2f (1− ρ2) + σ2a) (33)

Further, from Lemma B.2, we know that µ̂cv is the MVUE for a particular class of distributions, thus,
any estimator has a larger max variance over all distributions.

Combining these two facts, we get that the minimax variance is the variance of µ̂cv.

B.2 Added Bias
Proposition 3.1. The estimator in Algorithm 1 has O(1/n) bias.

Proof. The bias B is

B = |E[µ̃]− µ| (34)

=

∣∣∣∣∣E[
1

n

∑

i

y(i) − α̂g(z(i))]− µ
∣∣∣∣∣ (35)



Since E[y(i)] = µ,

B =

∣∣∣∣∣µ−
1

n

∑

i

E[α̂g(z(i))]− µ
∣∣∣∣∣ (36)

=

∣∣∣∣∣
1

n

∑

i

E[α̂g(z(i))]

∣∣∣∣∣ (37)

=

∣∣∣∣∣∣
1

n2

∑

i,j

E[(y(j) − y)g(z(j))g(z(i))]

∣∣∣∣∣∣
(38)

=

∣∣∣∣∣∣
1

n2

∑

i,j

E[y(j)g(z(j))g(z(i))]− 1

n3

∑

i,j,k

E[y(k)g(z(j))g(z(i))]

∣∣∣∣∣∣
(39)

Because Y (z) is independent and has mean f(z),

B =

∣∣∣∣∣∣
1

n2

∑

i,j

E[f(z(j))g(z(j))g(z(i))]− 1

n3

∑

i,j,k

E[f(z(k))g(z(j))g(z(i))]

∣∣∣∣∣∣
(40)

Because g(z) is mean zero and the z(i) are drawn independently,

B =

∣∣∣∣∣∣
1

n2

∑

i

E[f(z(i))g(z(i))2]− 1

n3

∑

i,k

E[f(z(k))g(z(i))2]

∣∣∣∣∣∣
(41)

=

∣∣∣∣∣∣
1

n2

∑

i

O(1)− 1

n3

∑

i,k

O(1)

∣∣∣∣∣∣
(42)

=

∣∣∣∣
1

n2
O(n)− 1

n3
O(n2)

∣∣∣∣ (43)

=

∣∣∣∣O
(

1

n

)
−O

(
1

n

)∣∣∣∣ (44)

= O

(
1

n

)
(45)


