

Coherence Modeling of Asynchronous Conversations: A Neural Entity Grid Approach

Our Contributions

Extend the existing neural grid model, propose a novel coherence model for written asynchronous conversations (e.g., forums, emails), and show its applications in coherence assessment and thread reconstruction tasks.

Entity Grid and Its Extensions

Barzilay and Lapata (2008)

- Model grammatical role transmission of nouns (heads of NPs) across sentences
- Represent documents as distributions defined over entity transition (vectors of 4^k transitions probabilities $\{S, O, X, -\}^k$)
- Assessment of text coherence as a ranking problem in an SVM preference ranking framework

Table: Entity grid representation for a WSJ article.

	INVESTORS	MILLION	FUNDS	EQUIPMENT	CORP.	PAPER	SALE	TELECOMM.	LEASE	PROGRAM	CLEVELAND	RECEIVABLES	LEASES	DATA-PROCESS.	LDI	NON-RECOURSE
s_0		0	_		S	Х	_	_			Х	Х	_		Х	
${f s}_1$	—	_	0			Х	Х			S			Х		_	
\mathbf{S}_2	S	_	_		Х	S	_	_	Х		_	Х			S	Х
S_3		—		0			—	Х	—		_			Х	S	—

Nguyen and Joty (2017)

- A neural version of the grid models
- ► Transform each grammatical role in grid into distributed representation, then employ 1D convolution to model entity transitions
- Train in end-to-end fashion on target tasks

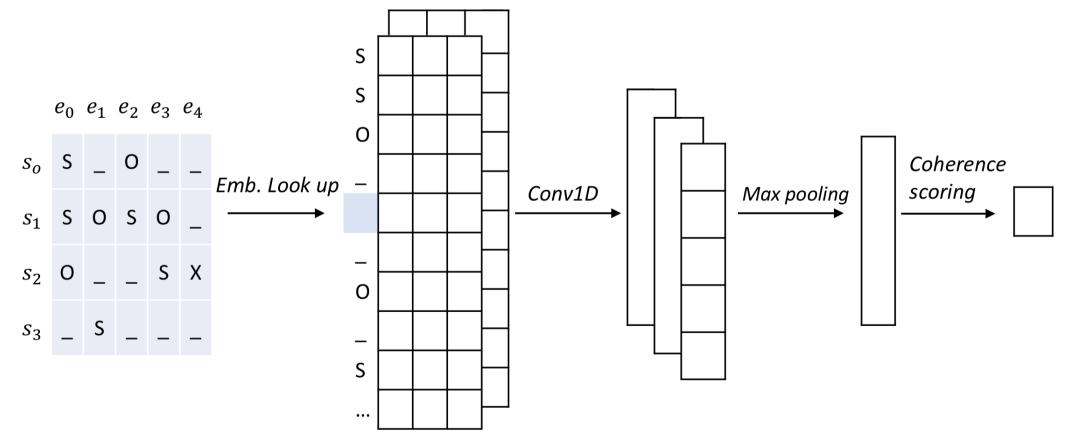
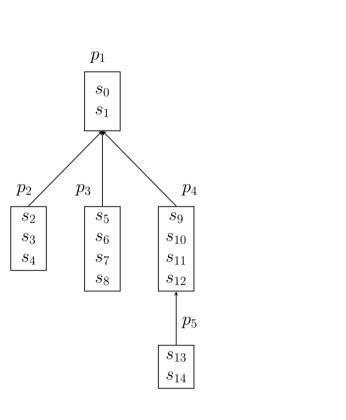
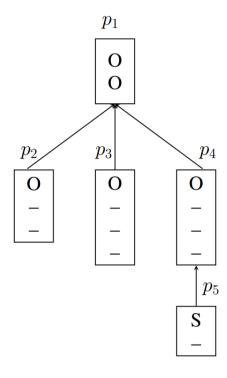


Figure: Neural entity grid model proposed by Nguyen and Joty (2017)

Limitations of entity grid models and their extensions


- Do not consider any lexical information regarding the entities
- Only focus on monologic discourse (e.g., news article)

Lexicalized Neural Entity Grid


- Attach the entity name with the grammatical roles
- ► Initialize entity-role embeddings randomly, or with pre-trained word embeddings for the entity

Tasnim Mohiuddin¹, Shafiq Joty¹, and Dat Tien Nguyen² 1 Nanyang Technological University, 2 University of Amsterdam

Coherence Models for Asynchronous Conversations

⁽b) Entity role transition

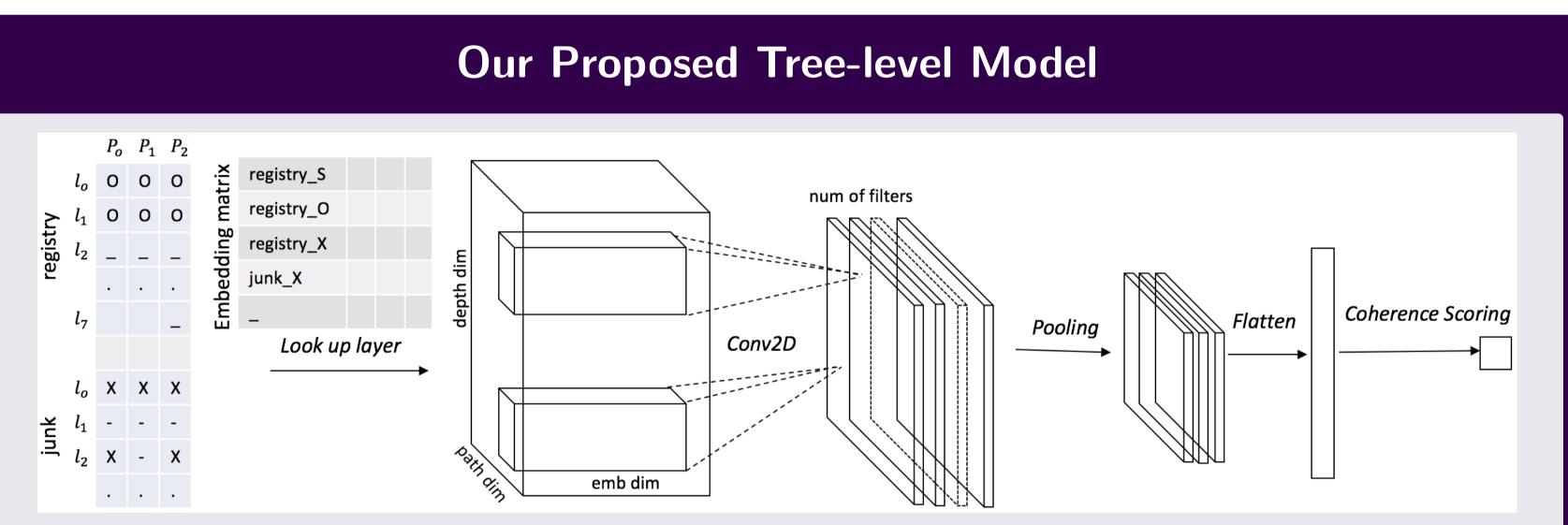


Figure: Conversational Neural Grid model for assessing coherence in asynchronous conversations

- Key hypothesis: In coherent conversations, entities exhibit certain local patterns in the conversation tree in terms of their distribution and syntactic realization
- ► Model conversational discourse structure using tree representation
- ► A 3D grid *(entities, tree-depth and paths)* for representing entity roles
- Employ 2D convolution to model two-dimensional spatial entity transitions in a conversation tree

Baselines:

- ► Temporal: disregarding tree structure, and consider a conversation as a monologue
- Path-level: disregarding left-to-right (*breadth*) structure of a tree
- ▷ Consider each path in a conversation separately
- Coherence score is computed by averaging scores of its paths

Thread Reconstruction Task

- **Goal:** building a predictive model to uncover the thread structure of a conversation from its posts \triangleright A model can recover the tree structure in Figure (a) from the sequence of posts (p1, p2, ..., p5)
- Training: a tree-level coherence model that distinguishes a gold tree (original reply structure) from a set of false candidate trees (respecting chronological order of the comments but false reply structure)
- ► Inference: selecting the structure with the highest coherence score

Dataset

	Sections	# Doc /	Avg. # Ser	H Pairs		#Thread	Avg Com	Avg Sen	<pre>#Pairs (tree)</pre>	<pre>#Pairs (path)</pre>
	Jections	# DUC. F	$\neg vg. + Jei$		Train	2,400	6.01	28.76	47,948	106,122
Train	00-13	1,378	21.5	26,422	Test	750	5.75	27.79	14,986	33,852
Test	14-24	1,053	22.3	20,411	Dev	675	6.27	30.70	13,485	28,897
					Total	3,825	5.98	28.77	76,419	168,871
	Table [,]	Statistics on	the WSI da	taset						

TADIE. JUAUSUUS ON LITE VYJJ UAUASEL

		D	D
	P_0	P_1	P_2
l_0	0	0	0
l_1	0	0	0
l_2	0	0	0
l_3	-	-	-
l_4	-	-	-
l_5	ϕ	-	-
l_6	ϕ	ϕ	S
l_7	ϕ	ϕ	-

(c) 2D role transition matrix

Table: Statistics on the CNET dataset

	Model	Emb.	Std (F_1)	Inv (F_1)
I	Grid (E&C) Ext. Grid (E&C)		81.60 84.95	75.78 80.34
	Neural Grid (N&J)	Random	84.36	83.94
	Ext. Neural Grid (N&J)	Random	85.93	83.00
	Lex. Neural Grid	Random	87.03 [†]	86.88 [†]
	Lex. Neural Grid	Google	88.56 †	88.23 †

Table: Discrimination results on the CNET dataset							
Conv. Rep	Model	Emb.	Std (F_1)	Inv (F_1)			
	Neural Grid (N&J)	random	82.28	70.53			
Temporal	Lex. Neural Grid	random	86.63	80.40			
	Lex. Neural Grid	Google	87.17	80.76			
	Neural Grid (N&J)	random	82.39	75.68^{\dagger}			
Path-level	Lex. Neural Grid	random	88.13	88.38^{\dagger}			
	Lex. Neural Grid	Google	88.44	89.31 [†]			
	Neural Grid (N&J)	random	83.98 [†]	77.33 [†]			
Tree-level	Lex. Neural Grid	random	89.87^{\dagger}	89.23 [†]			
	Lex. Neural Grid	Google	91.29 [†]	90.40 [†]			

Evaluation on Thread Reconstruction

Table: Thread reconstruction results						
	Thread-level Edge-level					
	Acc	$\overline{F_1}$	Acc			
All-previous	27.00	52.00	61.83			
All-first	25.67	48.23	58.19			
COS-sim	27.66	50.56	60.30			
Conv. Entity Grid	30.33 [†]	53.59 [†]	62.81 [†]			

- Extend existing neural grid model by lexicalizing its entity transitions Adapt the model to conversational discourse
- Design a 3D grid representation for capturing spatio-temporal entity transitions in a conversation tree
- ► Yield state-of-the-art results on standard coherence assessment tasks in monologues and conversations

Future work:

https://ntunlpsg.github.io/demo/project/coherence/n-coh-acl18/

Experimental Results

Conclusion

► Generate new conversations based on coherence degree

Code and Data