Generic Axiomatization of Families of **Noncrossing Graphs in Dependency Parsing**

Anssi Yli-Jyrä (University of Helsinki) and Carlos Gómez-Rodríguez (Universidade da Coruña)

Abstract

- 1. We develop a simple linear encoding supporting general noncrossing digraphs.
- 2. We show that the encoded noncrossing digraphs form a context-free language.
- 3. We present an latent encoding that can be used to characterize various families of digraphs by forbidden local patterns.
- 4. This can be used to enable generic context-free parsers that produce different families of noncrossing graphs with the same set of inference rules.

Noncrossing Digraphs as Code Strings

Enc: NC-DIGRAPH \leftrightarrow LNC-DIGRAPH

Generic Representation for the Subfamilies of Digraphs

All elements of the L_{NC-DIGRAPH} ontology are unambiguous and closed under intersection.

Enumeration Experiment per *n* **Nodes**

Name	Sequence prefix for $n = 2, 3,$	Example	Name	Sequence prefix for $n = 2, 3,$	Example

Axioms and Forbidden Patterns in Noncrossing Digraphs

from the initial state 0 for a non-	loose chain;
nom the mitial (and only) state i	
a bidirectional chain:	$U \leftrightarrow (V \leftrightarrow) Y;$
a primarily bidirectional forward	chain: $u \leftrightarrow v \rightarrow y$;
a forward chain:	$U \rightarrow V \rightarrow Y;$
a primarily forward chain:	$U ightarrow V \leftrightarrow (\cdots ightarrow) y;$
a primarily forward 1-turn chain:	$U ightarrow V \leftarrow Y;$
a primarily forward 2-turn chain:	$U \rightarrow V \leftarrow X \rightarrow Y;$

dig	graph	$\frac{(\mathbf{KJ}): 4,64,1792,62464,2437120,101859328}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat})}$	3	weakly projective digraph	4,36,480,7744,138880,2661376 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W)$	
W.0	c.digraph	3,54,1539, 53298 ,2051406,84339468 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap C_W)$		w.p. w.c.digraph	3,26,339, 5278 ,90686,1658772 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap C_W)$	
un	amb.digr.	4,39,529, 8333 ,142995,2594378 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap U_S)$		w.p. unamb.digr.	4,29,275,3008,35884,453489 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap U_S)$	
m-	forest	4,37,469,6871,109369,1837396,32062711 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_U)$		w.p. m-forest	4,29,273,2939,34273,421336 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_U)$	
ou	t digraph	4,27,207, 1683 ,14229,123840,1102365 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap Out)$	1 2 3 4 5	w.p. out digraph	4,21,129, 867 ,6177,45840,350379 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap Out)$	1 2 3 1 3
or.	digraph	3,27,405,7533,156735,3492639,77539113 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap O)$		w.p. or.digraph	see w.p.dag $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap O)$	see w.p.dag
da	gs	$\frac{(A246756):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D)}$		w.p. dag	3,21,219, 2757 ,38523, 574725, 8967675 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D)$	
W.(c. dag	$\frac{(\mathbf{KJ}): 2,18,242, 3890, 69074, 1306466}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D \cap C_W)}$		w.p. w.c. dag	2,14,142, 1706 ,22554,316998,4480592 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D \cap C_W)$	
m	ultitree	3,19,167, 1721 ,19447,233283,2917843 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D \cap U_S)$	see oriented forest or w.c. multitree	w.p. multitree	3,17,129, 1139 ,11005,112797,1203595 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D \cap U_S)$	
or.	forest	3,19,165, 1661 ,18191,210407,2528777 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D \cup A_U)$		w.p. or.forest	3,17,127,1089,10127,99329,1010189 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D \cup A_U)$	
W.(c. multitree	(2,12,98,930,9638,105798,1201062) $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D \cap U_S \cap C_W)$		w.p. w.c. multitree	a 2,10,68, 538 ,4650,42572,404354 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D \cap U_S \cap C_W)$	
ou	t or.forest	3,16,105,756,5738,45088,363221 $h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D \cap Out)$		w.p. out or.forest	$\frac{(A003169):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D \cap Out)}$	
po	lytree	$\frac{(A153231):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D \cap C_W \cap A_U)}$		w.p. polytree	$\frac{(A027307):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D \cap C_W \cap A_U)}$	
ou	t or.tree	$\frac{(A174687):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap A_D \cap C_W \cap Out)}$		projective out or.tree	$\frac{(A006013):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap P_W \cap A_D \cap C_W \cap Out)}$	
gra	aph	$\frac{(A054726):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap I)}$		connected graph	$\frac{(A007297): 1,4,23,156,1162,9192}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap I \cap C_W)}$	
for	rest	$\frac{(\textbf{A054727}):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap I \cap A_U)}$	1 2 3 4 5	tree	$\frac{(A001764, YJ):}{h_{lat}(D_{55} \cap G_n \cap Reg_{lat} \cap I \cap A_U \cap C_W)}$	1 2 3 4 5

The correctness was verified against OEIS, the prior art, and procedural enumerate-test algorithms.

Application to Generic Parsing

Local automata *Looseness* and *Covered* select the initial state and some further edge subtypes in *Chains*, respectively. The subtypes of edges are defined according to the chains they cover. The bracket types I, Q, q and the brackets A, a, C, C, E, e indicate arcs that constitute a cycle with the chain they cover and the bracket types v and v indicate arcs that cover 2-turn chains:

Deciding Forbidden Patterns in Digraphs via Star-Free Finite State Constraints

The forbidden patterns become star-free (FO local) and decidable in deterministic linear time.

- ▶ *n*-Node Digraphs: $L_{\text{NC-DIGRAPH}} \cap G_n$ where $G_n = \overline{B}^* (\{\}\overline{B}^*)^{n-1}$ and $B = \{\text{curly brackets}\}$.
- Arc-Factored Parsing: Each possible arc (i, j) has a positive weight defined e.g. by $w_{ii} = \mathbf{w} \cdot \Phi(sentence, (i, j))$. The parsing maximises the total weight of arcs:

$$A = \arg \max_{A \in L_{\text{family of NC-DIGRAPHs}} \cap G_n} \sum_{(i,j) \in A} w_{i,j}$$

• Indexed brackets: Edges in $[_1[_1{}]_2[_2{}]_4]_4$ get weights from a Dyck grammar:

$$S \rightarrow \epsilon \mid \{\}; S \stackrel{w_{12}}{\rightarrow} [_1S]_2S; S \stackrel{w_{13}}{\rightarrow} [_1S]_3S; S \stackrel{w_{14}}{\rightarrow} [_1S]_4S; S \stackrel{w_{23}}{\rightarrow} [_2S]_3S; S \stackrel{w_{24}}{\rightarrow} [_2S]_4S; S \stackrel{w_{34}}{\rightarrow} [_3S]_4S.$$

▶ Intersection: $(D_{55} \cap Reg_{lat} \cap G_n \cap Constraints)$ gives a weighted CFG.

Dynamic Programming: The arg max inference reduces to WCFG parsing.

• Lexicalized Search Space: The axioms and lexical contraints on the feasible brackets for each token can be implemented in lexical entries (compare: multi-modal CCG) that refine G_n .

Conclusion: Four Contributions

Linear Encoding (*Enc*):

Noncrossing digraphs encoded bijectively as strings that constitute a context-free subset of D_4 .

2. Context-Free Axioms:

The current MSO definable axioms become unambiguous CF languages

- axioms become star-free (mostly local) constraints for latent bracketing
- ► cf. linear time and LOGSPACE testability of MSO under bounded treewidth (Courcelle 1990; Elberfeld et al. 2010)

3. Ontology of Digraphs:

The axioms generate a semi-lattice containing 12 known categories plus many new ones.

4. Generic parsing:

One parser or enumeration algorithm for all families of noncrossing digraphs.

Three Representations for LNC-DIGRAPH

 $L_{\text{NC-GRAPH}}$ is an unambiguous CFL and a subset of D_2 , a **Dyck** language over letters [,], {, }.

derivational representation: $S \rightarrow BS \mid \left\{ \right\} S \mid \epsilon; S' \rightarrow BT \mid \left\{ \right\} S; T \rightarrow BS \mid \left\{ \right\} S; B \rightarrow \left[S' \right]$

1st morphic representation:

There are similar representations for $L_{\text{NC-DIGRAPH}} \subset D_4$ having letters [,], /, >, <, \, {, }. Latent edge types are distinguished in the **internal language**

 $L_{\text{NC-DIGRAPH}_{\text{lat}}} = D_{55} \cap (Reg' \cap Chains \cap Looseness \cap Covered)$

This give rise to the third representation for L_{NC-DIGRAPH}:

2nd morphic $(D_5$ representation:

$$h_{55} \cap \textit{Reg}_{\mathsf{lat}}) \circ h_{\mathsf{lat}} = L_{\mathsf{NC}} \cdot \textit{DIGRAPH}_{\mathsf{lat}} \circ h_{\mathsf{lat}}$$

- Weighted CF parsing with dynamic programming
- Inference with constraint relaxation
- Lexical control over digraph properties

Contact Information

[':[[:[{:{]':]]:] }:}

anssi.yli-jyra@helsinki.fi Department of Modern Languages ----University of Helsinki

carlos.gomez@udc.es Departamento de Computación Universidade da Coruña

Acknowledgements

► The Academy of Finland (dec. No 270354 - A Usable Finite-State Model for Adequate Syntactic Complexity) ► The University of Helsinki (dec. RP 137/2013 - SMT based on D-Tree Contraction Grammars and FSTs) ► The European Research Council (ERC): Horizon 2020 (agr. No 714150 - FASTPARSE)

► TELEPARES-UDC project (FFI2014-51978-C2-2-R) from MINECO.

