Enhanced LSTM for Natural Language Inference

Qian Chen¹, Xiaodan Zhu²³, Zhen-Hua Ling¹, Si Wei⁴, Hui Jiang⁵, Diana Inkpen⁶

¹University of Science and Technology of China ²National Research Council Canada ³Queen's University ⁴iFLYTEK Research ⁵York University ⁶University of Ottawa

Contributions

- \bigstar Propose a hybrid neural network model for natural language inference.
 - * The model achieves the best results on the SNLI dataset.
- \bigstar Our first component, Enhanced Sequential Inference Model (ESIM), has outperformed the previous best

Hybrid Neural Inference Model

results.

 \bigstar Further using tree-LSTM [Zhu, ICML-2015, Tai, ACL-2015, Le, *SEM-2015] to encode syntactic parses can improve the performance additionally.

Source code available!!!

https://github.com/lukecq1231/nli

Our implementation uses python and is based on the **Theano** library.

Analysis

1. Input Encoding

Premise: $x_1^p, x_2^p, \ldots, x_N^p$ Hypothesis: $x_1^h, x_2^h, \ldots, x_M^h$ Embedding matrix: $E \in \mathbb{R}^{V \times D_m}$

 $h^p = \operatorname{Enc}(E(x_1^p), \dots, E(x_N^p)) \in \mathbb{R}^{N \times D_e}$ (1) $h^{h} = \operatorname{Enc}(E(x_{1}^{h}), \dots, E(x_{M}^{h})) \in \mathbb{R}^{M \times D_{e}}$ (2)

where Enc is BiLSTM or Tree-LSTM [ZSG15, TSM15]. Here Enc learns to represent a word (or phrase) and its context.

- 2. Local Inference Modeling
- Local inference collected $(\mathbf{1} \ \mathcal{D} \setminus T \mathbf{1} h)$ $m N \times M$

Figure 3: A high-level view of our Hybrid Inference Model (HIM)

Intuitively, the content in h^h that is relevant to h_i^p will be selected and represented as h_i^p , and vice versa.

• Enhancement of local inference information $m^p = [h^p; \bar{h^p}; h^p - \bar{h^p}; h^p \odot \bar{h^p}] \in \mathbb{R}^{N \times 4D_e} \quad (6)$ $m^{h} = [h^{h}; \bar{h^{h}}; h^{h} - \bar{h^{h}}; h^{h} \odot \bar{h^{h}}] \in \mathbb{R}^{M \times 4D_{e}}$ (7)

3. Inference Composition

$$v^{p} = \operatorname{Cmp}(m_{1}^{p}, \dots, m_{N}^{p}) \in \mathbb{R}^{N \times D_{c}}$$
(8)

$$v^{h} = \operatorname{Cmp}(m_{1}^{h}, \dots, m_{M}^{g}) \in \mathbb{R}^{M \times D_{c}}$$
(9)
(4)
$$v = [max(v^{p}); ave(v^{p}); max(v^{h}); ave(v^{h})] \in \mathbb{R}^{4D_{c}}$$
(10)

(3)

An example

Natural language inference (NLI) aims to determine whether a natural-language hypothesis H can be inferred from a premise P.

- **Premise**: A woman wearing a black dress and green sweater is walking down the street looking at her cellphone.
- Hypothesis 1: A woman is holding her cell phone. (Entailment)
- Hypothesis 2: A woman is looking at a text on her cell phone. (Neutral)
- Hypothesis 3: A woman has her cell phone up to her ear. (Contradiction)

$$e_{ij} = (h_i^p)^T h_j^n, e \in \mathbb{R}^{N \times M}$$
$$\bar{h}_i^p = \sum_j \frac{\exp(e_{ij})}{\sum_k \exp(e_{ik})} h_j^h, \bar{h}_j^p \in \mathbb{R}^{N \times D_e}$$
$$\bar{h}_j^h = \sum_j \frac{\exp(e_{ij})}{\sum_k \exp(e_{kj})} h_i^p, \bar{h}_i^h \in \mathbb{R}^{M \times D_e}$$

where *Cmp* is BiLSTM or Tree-LSTM. Finally, (5)we put v into a final MLP classifier.

Results

• Data: Stanford Natural Language Inference (SNLI) (Training: 550k sentence pairs, heldout: 10k, testing: 10k)

Table 1: Accuracies of the models on SNLI

Model	Test
(1) Handcrafted features [BAPM15]	78.2
(2) LSTM $[BGR^+16]$	80.6
(3) GRU [VKFU15]	81.4
(4) Tree CNN $[MML^+16]$	82.1
(5) SPINN-PI $[BGR+16]$	83.2
(6) BiLSTM intra-Att [LSLW16]	84.2
(7) NSE [MY16a]	84.6
(8) Att-LSTM [RGH+15]	83.5
(9) mLSTM [WJ16]	86.1
(10) LSTMN [CDL16]	86.3
(11) Decomposable Att [PTDU16]	86.3
(12) Intra-sent Att+ (11) [PTDU16]	86.8
(13) NTI-SLSTM-LSTM [MY16b]	87.3
(14) Re-read LSTM [SCSL16]	87.5
(15) btree-LSTM $[PAD+16]$	87.6
(16) ESIM	88.0
(17) HIM (ESIM+Syn.tree-LSTM)	88.6

- Sequential Inference • Enhanced Model (ESIM) achieves an accuracy of 88.0%, which has already outperformed all the previous models.
- Hybrid Inference Model (HIM), which ensembles our ESIM model with syntactic tree-LSTMs [ZSG15] based on syntactic parse trees, achieve additional improvement.

Table 2: Ablation performance of the models

Model	Test
(17) HIM (ESIM + syn.tree)	88.6
(18) ESIM + tree	88.2
(16) ESIM	88.0
(19) ESIM - ave./max	87.1
(20) ESIM - diff./prod.	87.0
(21) ESIM - inference BiLSTM	87.3
(22) ESIM - encoding BiLSTM	86.3
(23) ESIM - P-based attention	87.2
(24) ESIM - H-based attention	86.5
(25) syn.tree	87.8

Figure 1: Attention visualization of stand-alone syntactic tree-LSTM model

Training Speed: tree-LSTM takes about 40 hours on Nvidia-Tesla K40M and ESIM takes about 6 hours.