Language learning and processing in people and machines

Aida Nematzadeh Richard Futrell

Roger Levy

DeepMind UC Irvine
MIT

- How do humans communicate so well with language?

Memory Limitations

Environmental noise

Incomplete knowledge of one's interlocutors

- How do we acquire the knowledge that enables this?
- And how can we get machines to do the same?

Overview of tutorial topics

- Human language acquisition (Aida)
- Learning mechanisms
- Word learning: theory \& data
- Structure learning: theory \& data
- Human language comprehension (Roger)
- Doing cognitive science through rational analysis
- Revealing cognitive state with psycholinguistic experiments
- Theory of human language comprehension
- Cognitive evaluation of NLP systems (Richard)
- Language evolution and emergence (Richard)

Some things to keep in mind today

- NLP and cognitive science offer each other a great deal
- NLP \rightarrow cognitive science: formal theory-building for understanding human language learning \& use
- Cognitive science \rightarrow NLP: desiderata for human-like language processing systems
- We've seen impressive science \& engineering progress, but many major open questions \& problems remain
- There are great opportunities for everyone here!!!

How Do Children Learn Language?

Aida Nematzadeh
nematzadeh@google.com
(G) DeepMind

Language Acquisition in Children

Children effortlessly learn their language from a noisy and ambiguous input.

Language Acquisition in Machines

Understanding language acquisition might help us build Al systems that understand and produce natural languages.

Is Language Learned? How? Is Language Learning Effortless? Learning Mechanisms Learning about Words Learning the Structure

Nurture vs Nature

empiricism

nativism

Knowledge and reason come from experience.

Language: outcome of how children are nurtured (like table manner).

Mind has preexisting structure to interpret experience.

Language: outcome of nature -an innate endowment (like upright posture).

Empiricism vs Nativism

"The human intellect at birth is rather like a tabula rasa, a pure potentiality that is actualized through education and comes to know. Knowledge is attained through empirical familiarity with objects in this world from which one abstracts universal concepts."
"Language learning is not really something that the child does; it is something that happens to the child placed in an appropriate environment, much as the child's body grows and matures in a predetermined way when provided with appropriate nutrition and environmental stimulation."

Cognitive Revolution

behaviorism cognitivism

Can explain behavior in terms of things external to mind.

Language ~ verbal behavior

Explaining behavior requires understanding the mind.

Language ~ mental process

Domain-General vs Domain-Specific Learning

Language for Communication

functionalism formalism

Language is shaped by its communicative functions.

Language is acquired through communication (not passive observation).

Language form is independent of its function.

Acquisition of language is not affected by the fact that we use it to communicate.

Takeaways: Development vs Learnability

Modeling language development to shed light on its underlying mechanism.

Can we learn language (certain linguistic phenomena) from data?

Nature of Nature

Investigate the innateness/learnability of

- knowledge -- inborn linguistic knowledge?
- computational procedure -- domain-general or domain-specific learning mechanism?

Is Language Learned? How? Is Language Learning Effortless? Learning Mechanisms Learning about Words Learning the Structure

$0-12 \mathrm{~m}$			
prelinguistic communication	$12-24 \mathrm{~m}$ single words	$18-30 \mathrm{~m}$ telegraphic speech	24-48m grammatical development
"bobo"	"mummy"	"daddy sleep"	"I want some
eggs"			

Takes children 5 years (14,600h, 8h/day).
Would take adults 56 years (2920 weeks, 5h/week).

$0-12 \mathrm{~m}$			
prelinguistic communication	$12-24 \mathrm{~m}$ single words	$18-30 \mathrm{~m}$ telegraphic speech	24-48m grammatical development
"bobo"	"mummy"	"daddy sleep"	"I want some
	"doggy"	"orange juice"	eggs"

"Put it table"

Children make errors but learn to correct them.

[Hoff, 2004]

Takeaways

Should AI models make the same mistakes as children?

Should we model all the domains at the same time?

Is Language Learned? How? Is Language Learning Effortless? Learning Mechanisms Learning about Words Learning the Structure

Babies as Statistical Learners [saffran etal, science 1996]

8 -month-old infants learn within- and betweenword transitional probabilities from novel speech.

- bidakupadotigolabutupiropadotibidaku

Statistical learning in other domains: phonology, Syntax, \& WOrdS.[Gomez et al, 2000; Mintz et al, 2002; Smith \& Yu, 2008; Romberg \& Saffran, 2010]

Statistical learning is domain- \& species- general.

Babies as Rule Learners [marcusetal, science 1999]

Seven-month-old infants can learn simple

 "algebra-like" rules.- "ga ti ti" "li la la" (ABB) or "li la li" "ga la ga" (ABA)

Rule learning is statistical learning? זchistiansen \& curtin, 1999;

Seidenberg \& Elman, 1999; McClelland \& Plaut, 1999]

Babies as Social Learners

Sharing joint attention.
Understanding and sharing intention. [Tomasello eta, 2005]
Infants learn about phonetics by listening to native speakers but not their audio/video. [Kuhle et, 2003]

Takeaways

What type of learning does each linguistic domain require?

What modeling frameworks are suitable for each?

Is Language Learned? How? Is Language Learning Effortless? Learning Mechanisms Learning about Words Learning the Structure

Word Learning Stages
Segmenting speech to words.

Mapping a meaning to words.

Context-bound Words

Used only in one context: saying "duck" only when hitting the toy to the bathtub. [Earett, 198]

Are parts of language games.

Function-specific understanding -- different from adults' mental representations of words.

Early Words

Word Learning Errors
Underextension: using words in a more restricted fashion; "dog" to refer to spaniels.

Overextension: using words more broadly; all four-legged animals as "doggie".

- "cat": cat, cat's usual location on the top of TV when absent. Rescorla, 1980]

Cross-situational Learning

People (as young as 12-month-old infants) are

 sensitive to the statistical regularities across Situations. [Pinker 1989; Yu \& Smith 2007; Smith \& Yu, 2008]

A zant

Look at the zant!

Biases that Guide Word Learning

The input is noisy and ambiguous: many possible mappings/hypotheses for word meanings.

People learn word meanings from a few exposures.

Learned/innate biases might facilitate learning.

Biases that Guide Word Learning

mutual exclusivity bias
[Markman \& Wachtel, 1988] taxonomic bias
[Markman \& Hutchinson, 1984; Markman, 1989] basic-level bias
[Rosch et al, 1976; Markman, 1991]

social-pragmatic biases

communicative intentions
[Bloom, 2000; Tomasello, 2001]
following eye gaze
[Baldwin, 1993]
whole-object bias [Markman, 1991] shape bias [smith \& Jones, 1988]

attention

[Samuelson \& smith, 1998;
Yu et al, 2017]

syntax

[Brown, 1957;
Gelman \& Markman, 1985]
noun bias
[Gentner, 1982]

The Whole-Object Bias [markman, 1991]

What is dax?

Learn word labels for the whole object.

The Mutual Exclusivity Bias [markman \& Wactrel, 1988]

What is dax?

familiar object

unfamiliar object
Limit the number of possible word labels for a familiar object.

The Basic-Level Bias

Cross-situational statistics are consistent with all.
Why dog? A bias that focuses generalization to the basic-level (cognitively natural) categories.

Syntactic Bootstrapping

Language structure supports learning new verbs.

[Gleitman, 1990; Fisher et al, 1994]

"The rabbit is gorping the duck." or
"The rabbit and the duck are gorping."

"where is gorping now?"

Modeling Word Learning

Solving the translation problem: mapping words

 to observations. [Siskind, 1996; Yu \& Ballard, 2007; Frank et al, 2009; Fazly et al, 2010; Nematzadeh et al, 2015]"the cat is sitting on the sheep"

[Frank et al, 2009]

Is Language Learned? How? Is Language Learning Effortless? Learning Mechanisms Learning about Words Learning the Structure

Language is Productive

We have the capacity to produce and understand an infinite number of new sentences.

Two productive systems:

- Syntax: sentence structure; ordering of words.
- Morphology: structure of words \& word parts.

Syntax: Level of Abstraction
"Rita drinks milk."

- Sentence \rightarrow Rita + drinks + milk (not productive)
- Sentence \rightarrow agent of action + action + theme
"Rita resembles Ray."
- Sentence \rightarrow noun + verb + noun

What is origin of the variables and the rules?

Syntax: Type of Structure

Sentences have hierarchical structure.

- "The (clever) cat cried (a river)."
- $S \rightarrow N P+V P, N P \rightarrow(d e t)+(a d j)+N, V P \rightarrow V+N P$

Is human language use hierarchical? [Franketal, 2012]

Morphology

Adds grammatical information to words.

- Plural s in English

Children learn morphology earlier when language is morphologically rich. [peters, 1995]

Easy morphemes to learn: frequent, fixed form and relative position to stem, clear function.

Do Children Know Grammatical Rules?

Early word combinations are systematic.

- "my teddy" (possessor + possessed)
- "daddy sit" (actor + action)

Overgeneralization errors:

- "I am a good boy, amn't l" (syntax)
- "toothes"; "breaked" (morphology)

Do Children Know Syntactic Rules?

4-year old children can use novel verbs heard in one sentence structure in others. Ppinkere et,l/198; Gropen e etal 1991]
"The pig is pilking the horse" \rightarrow "The horse is being pilked by the pig"

Do Children Know Morphological Rules? [Eerro, 1958$]$

Modeling Structure

Learning abstractions through hierarchical

representations. [Alishahi \& Stevenson, 2008; Perfors et al, 2009; Barak et al, 2013]

[Perfors et al, 2009]

Generalization to Test Linguistic Knowledge

 Children's knowledge of language is examined by generalization tasks:- Mapping novel words to new/familiar objects.
- Using a new verb in "unheard" structures.
- Applying morphological rules to new words.

Can AI models pass these generalization tasks?

Nature of Nature
Abstract knowledge (priors/inductive biases/constraints) guides our generalization.

What are the origins of our abstract knowledge? Can it be learned from experience?

Language learning and processing in people and machines

Part II: Human language processing

Aida Nematzadeh, Richard Futrell, and Roger Levy

Goals of part II of tutorial

- Overview of human language processing
- Theoretically deep questions about language and mind
- Helps establish long-term benchmarks for human-like AI systems for language
- Main points:
- How we can study human language processing
- First-cut theory
- Limitations for first-cut theory:
- Memory considerations
- Character of input representations
- More advanced theory
- Open frontiers

Structure and surprise

Structure and surprise

The

Structure and surprise

The woman

Structure and surprise

The woman brought

Structure and surprise

The woman brought the

Structure and surprise

The woman brought the sandwich

Structure and surprise

The woman brought the sandwich from

Structure and surprise

The woman brought the sandwich from the

Structure and surprise

The woman brought the sandwich from the kitchen

Structure and surprise

The woman brought the sandwich from the kitchen tripped.

Structure and surprise

Structure and surprise

The woman who was given the sandwich from the kitchen tripped.

Structure and surprise

The woman given the sandwich from the kitchen tripped.

Structure and surprise

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

Structure and surprise

The woman brought the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

Structure and surprise

The woman brought the sandwich from the kitchen tripped.

The woman brought the sandwich from the kitchen tripped.
who was
The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

Structure and surprise

The woman brought the sandwich from the kitchen tripped.

The woman brought the sandwich from the kitchen tripped. who was

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.
who was
Simple past Past participle

bring brought brought	
give gave	given

Structure and surprise

The woman brought the sandwich from the kitchen tripped.

The woman brought the sandwich from the kitchen tripped. who was

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

Simple past Past participle
bring brought brought
give gave given

Meaning can help us avoid surprise, too:

```
The evidence examined by the lawyer from the firm was unreliable.
```


Anatomy of pe ofe garden path sentence

The woman brought the sandwich from the kitchen tripped.

Anatomy of pe olde garsen path sentence

- Classic example of incrementality in comprehension

The woman brought the sandwich from the kitchen tripped.

Anatomy of pe olfe garden path sentence

- Classic example of incrementality in comprehension
"Main Verb"

The woman brought the sandwich from the kitchen tripped.

Anatomy of pe olde garden path sentence

- Classic example of incrementality in comprehension
"Main Verb"

The woman brought the sandwich from the kitchen tripped.

Anatomy of pe olde garden path sentence

- Classic example of incrementality in comprehension

The woman brought the sandwich from the kitchen tripped.

Anatomy of pe olde garden path sentence

- Classic example of incrementality in comprehension

Anatomy of pe olde garden path sentence

- Classic example of incrementality in comprehension

Anatomy of pe olde garden path sentence

- Classic example of incrementality in comprehension

Anatomy of pe olde garden path sentence

- Classic example of incrementality in comprehension

- People fail to understand it most of the time

Anatomy of pe olde garden path sentence

- Classic example of incrementality in comprehension

The woman brought the sandwich from the kitchen tripped.

- People fail to understand it most of the time
- People are likely to misunderstand it-e.g.,
- The woman who brought the sandwich from the kitchen tripped
- The woman brought the sandwich from the kitchen and tripped
- "What's a kitchen tripped?"

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading
- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)
- functional Magnetic Resonance Imaging (fMRI)
- Electrocorticography (ECoG)

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading

Behavioral

- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)
- functional Magnetic Resonance Imaging (fMRI)
- Electrocorticography (ECoG)

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading

Behavioral

- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)
- functional Magnetic Resonance Imaging (fMRI)
- Electrocorticography (ECoG)

Eye movements in the visual world

A visual world experiment

A visual world experiment

Instruction to experimental participant:

A visual world experiment

Instruction to experimental participant:

"Pick up the beaker"

Data from human eye movements

Target = beaker

Cohort = beetle

Unrelated = carriage

Data from human eye movements

${ }^{1}$
${ }^{2}$

Trial Number ${ }^{3}$
${ }^{4}$
5
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements
"Look at the cross."

Trial Number ${ }^{3}$
${ }^{4}$
5
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements
"Look at the cross."

Trial Number ${ }^{3}$

4
5
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

2

Trial Number ${ }^{3}$

4

5

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

200 ms

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

200 ms

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

200 ms

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

200 ms

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

200 ms

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

4

5

200 ms
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

4

5

200 ms
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

4

5

200 ms
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

4

5

200 ms
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

4

5

200 ms
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

4

5

200 ms
Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

Time

Target = beaker

Cohort = beetle

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

Time

Target = beaker

Cohort = beetle

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker

Cohort = beetle

Trial Number ${ }^{3}$

Time

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number ${ }^{3}$

200 ms

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."

"Pick up the beaker."

Target = beaker
 Cohort = beetle

Unrelated = carriage

Time

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker
 Cohort = beetle

Unrelated = carriage

Data from human eye movements

"Look at the cross."

"Pick up the beaker."

Target = beaker
 Cohort = beetle

Unrelated = carriage

Allopenna, Magnuson \& Tanenhaus (1998)

Self-paced reading

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:
while

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:
the

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:

clouds

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:
crackled,

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:
- Readers aren't allowed to backtrack

Self-paced reading

- Participant presses a button to reveal each successive word and mask previous words:
- Readers aren't allowed to backtrack
- Duration between button presses="reading time" for each word

Language processing signal from the eyes

Pere are advantages and disadvantages of both electronic and hardoopy joumals. Hardcopy journals are more easily browsed, more portable and, of course people are very much used to their format. Electronic journals save on paper and their format has improved considerably over the past few years, but there are still problems over managing copyright restrictions and persuading people to use electronic instead of hardcopy journals. There is also the problem of portability. More and more journals are now being published in electronic format, although some publishers will only let you subscribe to an electronic journal provided you also subscribe to the hardcopy (more money for the same thing). Some electronic journals cost over 100% more than their equivalent hardoopy. With all these factors in mind I have been discussing individual and shared-subscriptions with the Biochemistry Department, the RSL and Blackwell's. Whilst I feel that a move from hardoopy to electronic journals will be a very slow process in the ULP Library, electronic publishing is being carefully monitored and I would hope to introduce a few electronic texts into the Library alongside the journats which are already available for free over the Internet.
(movie by Piers Cornelissen)

Leaves a fine-grained trace of the real-time language comprehension record - we will put this to use later in the tutorial!

Language processing signal from the eyes

Pere are advantages and disadvantages of both electronic and hardoopy joumals. Hardcopy journals are more easily browsed, more portable and, of course people are very much used to their format. Electronic journals save on paper and their format has improved considerably over the past few years, but there are still problems over managing copyright restrictions and persuading people to use electronic instead of hardcopy journals. There is also the problem of portability. More and more journals are now being published in electronic format, although some publishers will only let you subscribe to an electronic journal provided you also subscribe to the hardcopy (more money for the same thing). Some electronic journals cost over 100% more than their equivalent hardoopy. With all these factors in mind I have been discussing individual and shared-subscriptions with the Biochemistry Department, the RSL and Blackwell's. Whilst I feel that a move from hardoopy to electronic journals will be a very slow process in the ULP Library, electronic publishing is being carefully monitored and I would hope to introduce a few electronic texts into the Library alongside the journats which are already available for free over the Internet.
(movie by Piers Cornelissen)

Leaves a fine-grained trace of the real-time language comprehension record - we will put this to use later in the tutorial!

Electroencephalography (EEG/ERP)

Rapid Serial Visual Presentation

Rapid Serial Visual Presentation

The N400 ERP component in language comprehension

- Differing degrees of semantic congruity:
- He took a sip from the drink. (normal)
- He took a sip from the waterfall. (moderate incongruity)
- He took a sip from the transmitter. (strong incongruity)

C Semantic-strong

(Kutas \& Hillyard, I980, I 984)

The P600 ERP component in language comprehension

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herself for the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

"Definitional" mismatch (man...herself)

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

"Definitional" mismatch (man...herself)
- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepared himself for the operation.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

"Definitional" mismatch (man...herself)
- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepareo himself for the operation.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

Stereotypical mismatch
"Definitional" mismatch (man...herself)

- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepareo himself for the operation.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

Stereotypical mismatch
"Definitional" mismatch
(man...herself)

- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepareo himself for the operation.

fMRI recordings during comprehension

- MRI measures changes in brain associated with blood flow
- Slow, but good spatial resolution for which parts of the brain are active in processing

fMRI recordings during comprehension

- MRI measures changes in brain associated with blood flow
- Slow, but good spatial resolution for which parts of the brain are active in processing

Sentences condition

Nonwords condition

fMRI recordings during comprehension

- MRI measures changes in brain associated with blood flow
- Slow, but good spatial resolution for which parts of the brain are active in processing

Sentences condition
A

Nonwords condition

Expt 3 (Verbal WM): Sample trial (hard condition)

Response
Feedback

Functional brain specificity for language

Language and Verbal WM

Electrocorticography

- Pre-surgical epilepsy patients get electrode arrays directly implanted on the surface of the cortex

https://commons.wikimedia.org/wiki/
File:Intracranial_electrode_grid_for_electrocorticography.png

- During pre-surgical monitoring many patients generously donate their energy \& attention for experiments

Neural phonemic representations

Neural consonant representations

Scientific opportunity:

Comprehensive theory to account for patterns of human language use \& representation

Engineering opportunity:

Better prediction of human language understanding, and more human-like AI language-using agents

Rational analysis

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given 1-3
5. Compare predictions with empirical data
6. If necessary, iterate 1-5

Incrementality and Rationality

- Real-time language understanding is hard
- But lots of information sources can be usefully brought to bear to help with the task
- Therefore, it would be rational for people to use all the information available, whenever possible
- This is what incrementality is
- We have lots of evidence that people do this often

"Put the apple on the towel in the box."

(Tanenhaus et al., 1995, Science)
- Enter probabilistic grammars from computational linguistics...

Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFG) consists of a tuple (N, V, S, R, P) such that:

- N is a finite set of non-terminal symbols;
- V is a finite set of terminal symbols;
- S is the start symbol;
- R is a finite set of rules of the form $X \rightarrow \alpha$ where $X \in N$ and α is a sequence of symbols drawn from $N \cup V$;
- P is a mapping from R into probabilities, such that for each $X \in N$,

$$
\sum_{[X \rightarrow \alpha] \in R} P(X \rightarrow \alpha)=1
$$

PCFG derivations and derivation trees are just like for CFGs.
The probability $P(T)$ of a derivation tree is simply the product of the probabilities of each rule application.

Example PCFG

1	S
0.8	\rightarrow NP VP
0.2	$\mathrm{NP} \rightarrow$ Det N
0.2	$\mathrm{NP} \rightarrow$ NP PP
1	$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$
1	$\mathrm{VP} \rightarrow \mathrm{V}$

1	Det \rightarrow the
0.5	$\mathrm{N} \rightarrow$ dog
0.5	$\mathrm{N} \rightarrow$ cat
1	$\mathrm{P} \rightarrow$ near
1	V \rightarrow growled

$$
\begin{aligned}
\mathrm{P}(\mathrm{~T}) & =1 \times 0.2 \times 0.8 \times 1 \times 0.5 \times 1 \times 1 \times 0.8 \times 1 \times 0.5 \times 1 \times 1 \\
& =0.032
\end{aligned}
$$

$$
\begin{array}{lll}
& & 1 \\
\text { Det } \rightarrow \text { the } \\
\frac{2}{3} & \text { NP } \rightarrow \text { Det N } & \frac{2}{3} \\
\mathrm{~N} \rightarrow \text { dog } \\
\frac{1}{3} & \mathrm{NP} \rightarrow \text { NP PP } & \frac{1}{3} \\
1 & \mathrm{~N} \rightarrow \text { cat } \\
1 & 1 & \mathrm{P} \rightarrow \mathrm{P} \mathrm{NP}
\end{array}
$$

Incrementality: you can think of a partial tree as marginalizing over all completions of the partial tree.
It has a corresponding marginal probability in the PCFG.

the

A zeroth-cut theory of incremental comprehension

- Human knowledge described by a probabilistic grammar

1	$S \rightarrow N P$ VP	1		\rightarrow the
0.8	$N \mathrm{P} \rightarrow$ Det N	0.5	N	\rightarrow dog
0.2	$N P \rightarrow N P$ PP	0.5	N	$\rightarrow \mathrm{cat}$
1	$\mathrm{PP} \rightarrow \mathrm{P}$ NP	1	P	\rightarrow near
1	$\mathrm{VP} \rightarrow \mathrm{V}$	1	v	\rightarrow growled

- Incremental input interpretation follows Bayes Rule:
$P(\mathrm{~T} \mid$ words $) \propto P($ words $\mid T) P(T)$

Strong garden-pathing

Strong garden-pathing

The woman brought

Strong garden-pathing

The woman brought

Strong garden-pathing

The woman brought the sandwich

Strong garden-pathing

The woman brought the sandwich

Strong garden-pathing

The woman brought the sandwich from the kitchen

Strong garden-pathing

The woman brought the sandwich from the kitchen

Strong garden-pathing

The woman brought the sandwich from the kitchen tripped.

Strong garden-pathing

The woman brought the sandwich from the kitchen tripped.

Strong garden-pathing

The woman brought the sandwich from the kitchen tripped.

Strong garden-pathing

The woman brought the sandwich from the kitchen tripped.

Strong garden-pathing

The woman brought the sandwich from the kitchen tripped.

Strong garden-pathing

The woman brought the sandwich from the kitchen tripped.

Strong garden-pathing

The woman brought the sandwich from the kitchen tripped.

But not all garden paths are catastrophic:

When the dog scratched the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.
difficulty here
(68ms/char)

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.
difficulty here
(68ms/char)

- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.
difficulty here
(68ms/char)

- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.
difficulty here
(68ms/char)

- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.
difficulty here
(68ms/char)

- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

But not all garden paths are catastrophic:

- Here's another type of local syntactic ambiguity:

When the dog scratched the vet and his new assistant removed the muzzle.
difficulty here
(68ms/char)

- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.
easier
(50ms/char)

A first-cut theory of incremental comprehension:

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 . \ldots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to...

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat?

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash?

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines! my brother came inside to... chat? wash? get warm?

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm? the children went outside to...

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm? the children went outside to... play

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1} \ldots i-1\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm?
the children went outside to... play
- Predictable words are read faster (Ehrlich \& Rayner, 1981) and have distinctive EEG responses (Kutas \& Hillyard 1980)

A first-cut theory of incremental comprehension:

- Stick with probabilistic grammars and Bayesian inference
- But let a word's difficulty be its surprisal given its context:

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \ldots i-1}\right)}\right] }
\end{aligned}
$$

- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm?
the children went outside to... play
- Predictable words are read faster (Ehrich \& Rayner, 1981) and have distinctive EEG responses (Kutas \& Hillyard 1980)
- Probabilistic grammars give grammatical expectations

The surprisal graph

A small PCFG for this sentence type

S	\rightarrow SBAR S	0.3	Conj \rightarrow and	1	Adj	\rightarrow new	1
S	\rightarrow NP VP	0.7	Det \rightarrow the	0.8	VP	\rightarrow V NP	0.5
SBAR	\rightarrow COMPL S	0.3	Det \rightarrow its	0.1	VP	\rightarrow V	0.5
SBAR	\rightarrow COMPL S COMMA	0.7	Det \rightarrow his	0.1	V	\rightarrow scratched	0.25
COMPL \rightarrow When	1	N	\rightarrow dog	0.2	V	\rightarrow removed	0.25
NP	\rightarrow Det N	0.6	N	\rightarrow vet	0.2	V	\rightarrow arrived
NP	\rightarrow Det Adj N	0.2	$\mathrm{~N} \rightarrow$ assistant	0.2	COMMA \rightarrow,	1	
NP	\rightarrow NP Conj NP	0.2	N	\rightarrow muzzle	0.2		
			$\mathrm{~N} \rightarrow$ owner	0.2			

A small PCFG for this sentence type

S	\rightarrow SBAR S	0.3	Conj \rightarrow and	1	Adj	\rightarrow new	1
S	\rightarrow NP VP	0.7	Det \rightarrow the	0.8	VP	\rightarrow V NP	0.5
SBAR	\rightarrow COMPL S	0.3	Det \rightarrow its	0.1	VP	$\rightarrow \mathrm{V}$	0.5
SBAR	\rightarrow COMPL S COMMA	0.7	Det \rightarrow his	0.1	V	\rightarrow scratched	0.25
COMPL	\rightarrow When	1	$\mathrm{N} \rightarrow$ dog	0.2	V	\rightarrow removed	0.25
NP	\rightarrow Det N	0.6	$\mathrm{N} \rightarrow$ vet	0.2	V	\rightarrow arrived	0.5
NP	\rightarrow Det Adj N	0.2	$\mathrm{N} \rightarrow$ assistant	0.2	COMMA \rightarrow		
NP	\rightarrow NP Conj NP	0.2	$\mathrm{N} \rightarrow$ muzzle	0.2			
			$\mathrm{N} \rightarrow$ owner	0.2			

Two incremental trees

Two incremental trees

- "Garden-path" analysis:

Two incremental trees

- "Garden-path" analysis:

Two incremental trees

- "Garden-path" analysis:

Two incremental trees

- "Garden-path" analysis:

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.826
$$

- Ultimately-correct analysis
s

Two incremental trees

- "Garden-path" analysis:

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.826
$$

- Ultimately-correct analysis

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.174
$$

Two incremental trees

- "Garden-path" analysis:

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.826
$$

- Ultimately-correct analysis

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.174
$$

Two incremental trees

- "Garden-path" analysis:

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.826
$$

- Ultimately-correct analysis

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.174
$$

Two incremental trees

- "Garden-path" analysis:

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.826
$$

Disambiguating word probability marginalizes over incremental trees:

- Ultimately-correct analysis

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.174
$$

Two incremental trees

- "Garden-path" analysis:

Disambiguating word probability marginalizes over incremental trees:

$$
P\left(\text { removed } \mid w_{1 \ldots 10}\right)=\sum_{T} P(\text { removed } \mid T) P\left(T \mid w_{1 \ldots 10}\right)
$$

- Ultimately-correct analysis

$$
=0 \times 0.826+0.25 \times 0.174
$$

$$
P\left(T \mid w_{1 \ldots 10}\right)=0.174
$$

Preceding context can disambiguate

- "its owner" takes up the object slot of scratched

$\begin{array}{lr}\text { Condition } & \text { Surprisal at Resolution } \\ \text { NP absent } & 4.2 \\ \text { NP present } & 2\end{array}$

Sensitivity to verb argument structure

- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

Sensitivity to verb argument structure

- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

Easier here

Sensitivity to verb argument structure

- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.
But harder here!
Easier here
(Staub, 2007)

Sensitivity to verb argument structure

- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

Easier here
(c.f. When the dog scratched the vet and his new assistant removed the muzzle.)

Modeling argument-structure sensitivity

S	\rightarrow SBAR S	0.3	Conj \rightarrow and	1	Adj	\rightarrow new	1
S	\rightarrow NP VP	0.7	Det \rightarrow the	0.8	VP	\rightarrow V NP	0.5
SBAR	\rightarrow COMPL S	0.3	Det \rightarrow its	0.1	VP	\rightarrow V	0.5
SBAR	\rightarrow COMPL S COMMA	0.7	Det \rightarrow his	0.1	V	\rightarrow scratched	0.25
COMPL \rightarrow When	1	N	\rightarrow dog	0.2	V	\rightarrow removed	0.25
NP	\rightarrow Det N	0.6	N	\rightarrow vet	0.2	V	\rightarrow arrived
NP	\rightarrow Det Adj N	0.2	$\mathrm{~N} \rightarrow$ assistant	0.2	COMMA \rightarrow,	1	
NP	\rightarrow NP Conj NP	0.2	$\mathrm{~N} \rightarrow$ muzzle	0.2			
			$\mathrm{~N} \rightarrow$ owner	0.2			

Modeling argument-structure sensitivity

S	\rightarrow SBAR S	0.3	Conj \rightarrow and	1	Adj	\rightarrow new	1
S	\rightarrow NP VP	0.7	Det \rightarrow the	0.8	VP	$\rightarrow \mathrm{V}$ NP	0.5
SBAR	\rightarrow COMPL S	0.3	Det \rightarrow its	0.1	VP	$\rightarrow \mathrm{V}$	0.5
SBAR	\rightarrow COMPL S COMMA	0.7	Det \rightarrow his	0.1	V	\rightarrow scratched	0.25
COMPL \rightarrow When	1	N	\rightarrow dog	0.2	V	\rightarrow removed	0.25
NP	\rightarrow Det N	0.6	N	\rightarrow vet	0.2	V	\rightarrow arrived
NP	\rightarrow Det Adj N	0.2	N	0.5			
NP assistant	0.2	COMMA \rightarrow,	1				
	\rightarrow NP Conj NP	0.2	N	\rightarrow muzzle	0.2		

- The "context-free" assumption doesn't preclude relaxing probabilistic locality:

Modeling argument-structure sensitivity

S	\rightarrow SBAR S	0.3	Conj \rightarrow and	1	Adj	\rightarrow new	1
S	\rightarrow NP VP	0.7	Det \rightarrow the	0.8	VP	\rightarrow V NP	0.5
SBAR	\rightarrow COMPL S	0.3	Det \rightarrow its	0.1	VP	\rightarrow V	0.5
SBAR	\rightarrow COMPL S COMMA	0.7	Det \rightarrow his	0.1	V	\rightarrow scratched	0.25
COMPL \rightarrow When	1	N	\rightarrow dog	0.2	V	\rightarrow removed	0.25
NP	\rightarrow Det N	0.6	N	\rightarrow vet	0.2	V	\rightarrow arrived
NP	\rightarrow Det Adj N	0.2	N	\rightarrow assistant	0.2	COMMA \rightarrow,	1
NP	\rightarrow NP Conj NP	0.2	N	\rightarrow muzzle	0.2		
			N	\rightarrow owner	0.2		

- The "context-free" assumption doesn't preclude relaxing probabilistic locality:

Modeling argument-structure sensitivity

S	\rightarrow SBAR S	0.3	Conj \rightarrow and	1	Adj	\rightarrow new	1
S	\rightarrow NP VP	0.7	Det \rightarrow the	0.8	VP	\rightarrow V NP	0.5
SBAR	\rightarrow COMPL S	0.3	Det \rightarrow its	0.1	VP	$\rightarrow \mathrm{V}$	0.5
SBAR	\rightarrow COMPL S COMMA	0.7	Det \rightarrow his	0.1	V	\rightarrow scratched	0.25
COMPL \rightarrow When	1	$\mathrm{~N} \rightarrow$ dog	0.2	V	\rightarrow removed	0.25	
NP	\rightarrow Det N	0.6	N	\rightarrow vet	0.2	V	\rightarrow arrived
NP	\rightarrow Det Adj N	0.2	N	\rightarrow assistant	0.2	COMMA \rightarrow,	1
NP	\rightarrow NP Conj NP	0.2	N	\rightarrow muzzle	0.2		
			N	\rightarrow owner	0.2		

- The "context-free" assumption doesn't preclude relaxing probabilistic locality:

$\mathrm{VP} \rightarrow \mathrm{V}$ NP	0.5	Replaced by \Rightarrow	VP	\rightarrow Vtrans NP	0.45
$\mathrm{VP} \rightarrow \mathrm{V}$	0.5		VP	\rightarrow Vtrans	0.05
$\mathrm{V} \rightarrow$ scratched	0.25		VP	\rightarrow Vintrans	0.45
$\vee \rightarrow$ removed	0.25		VP	\rightarrow Vintrans NP	0.05
$\vee \rightarrow$ arrived	0.5		Vtrans	\rightarrow scratched	0.5
			Vtrans	\rightarrow removed	0.5
			Vintrans	\rightarrow arrived	1

(Johnson, 1998; Klein \& Manning, 2003)

Result

When the dog arrived the vet and his new assistant removed the muzzle.

ambiguity onset

ambiguity resolution

When the dog scratched the vet and his new assistant removed the muzzle.

Transitivity-distinguishing PCFG		
Condition	Ambiguity onset	Resolution
Intransitive (arrived)	2.11	3.20
Transitive (scratched)	0.44	8.04

Surprisal vs. predictability in general

$$
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
$$

- But is there evidence for surprisal as the specific function relating probability to processing difficulty?

Estimating probability/time curve shape

Estimating probability/time curve shape

- As a proxy for "processing difficulty," reading time in two different methods: self-paced reading \& eye-tracking

Estimating probability/time curve shape

- As a proxy for "processing difficulty," reading time in two different methods: self-paced reading \& eye-tracking
- Challenge: we need big data to estimate curve shape, but probability correlated with confounding variables

Estimating probability/time curve shape

- As a proxy for "processing difficulty," reading time in two different methods: self-paced reading \& eye-tracking
- Challenge: we need big data to estimate curve shape, but probability correlated with confounding variables

Brown data availability

Dundee data availability

Hypothesized curve shapes

Proposed relationships between predictability and reading time

Estimating probability/time curve shape

- GAM regression: total contribution of word (trigram) probability to RT near-linear over 6 orders of magnitude!
(Smith \& Levy, 2013; more recent validation by Goodkind \& Bicknell, 2018)

$10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}$ P (word |context)

Gaze durations in eye-tracking

P(word |context)

Integration with deep learning

- Humans condition extremely flexibly on context
- Goal: symbolic grammars + neural generatization
- Enabling step: action sequence for structure building

(S (NP the hungry cat) (VP chased (NP me)))

Action	Meaning	String gloss
$\mathbf{N T}(\mathbf{X})$	Push a new open non-terminal on top of the stack	(X
Gen (\boldsymbol{w})	Generate word w as a terminal node and put it on top of the stack (as a closed node)	w
REDUCE	Pop closed nodes $N_{1} \ldots i-1$ from the top of the stack until encountering open node $N_{i} ;$ close N_{i})
END	Finish parsing (iff the sole stack element is a closed S)	n/a

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

Action
Stack

(S (NP the hungry cat) (VP chased (NP me)))

S

Action
Stack
(S

(S (NP the hungry cat) (VP chased (NP me)))

Action	Stack
NT(S)	$(S$
NT(NP)	$(\mathrm{S} \mid$ (NP

(S (NP the hungry cat) (VP chased (NP me)))

Action	Stack	
NT(S)	$(\mathrm{S}$	the
NT(NP)	$(\mathrm{S} \mid(N P$	
Gen(the) $)$	$(S \mid(N P \mid$ the	

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

Action	Stack			
$\mathrm{NT}(\mathrm{S})$	$(\mathrm{S}$			
NT (NP)	$(\mathrm{S} \mid(\mathrm{NP}$			
Gen(the)	(S \| (NP	the		
Gen(hungry)	(S \| (NP	the	hungry	
Gen(cat)	(S \| (NP	the	hungry	cat

(S (NP the hungry cat) (VP chased (NP me)))

Action	Stack			
$\mathrm{NT}(\mathrm{S})$	$(\mathrm{S}$			
$\mathrm{NT}(\mathrm{NP})$	$(\mathrm{S} \mid(\mathrm{NP}$			
Gen(the)	$(\mathrm{S} \mid$ (NP \| the			
Gen(hungry)	$(\mathrm{S} \mathrm{\mid} \mathrm{(NP} \mathrm{\mid} \mathrm{the} \mathrm{\mid} \mathrm{hungry}$			
Gen(cat)	(S \| NP	the	hungry	cat
REDUCE	(S \| (NP the hungry cat)			

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

				S		
		NP			VP	
Action NT(S)	Stack (S	the	hungry	cat	chased	NP
NT(NP)	(S \| (NP					
Gen(the)	(S) (NP					
Gen(hungry)	(S \| (NP	ungry				
Gen(cat)	(S \| (NP	ungry \|				
REDUCE	(S \| (NP	gry cat				
NT(VP)	(S \| (NP	gry cat				
Gen(chased)	(S \| (NP	gry cat	(VP \| chas			
NT(NP)	(S \| (NP	gry cat	(VP \| chas	(NP		

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

(S (NP the hungry cat) (VP chased (NP me)))

Action
$\left.\begin{array}{l}\text { NT(S) } \\ \text { NT(NP) } \\ \text { Gen(the) } \\ \text { Gen(hungry) }\end{array}\right)$
Gen(cat)
REDUCE
NT(VP)
Gen(chased)
NT(NP)
Gen(me)
REDUCE
REDUCE
REDUCE
END

(S (NP the hungry cat) (VP chased (NP me)))

Gen(away) REDUCE

Gen(away) REDUCE

Gen(away) REDUCE

Knowledge characterization: P(actionlcontext)

Knowledge characterization: P(actionlcontext)

Knowledge characterization: P(actionlcontext)

Recurrent Neural Network Grammars (RNNGs)

NT(S) NT(NP) GEN(The) GEN(hungry) GEN(cat) REDUCE NT(VP) ?

(Dyer et al., 2016;
Kuncoro et al., 2017)

Stack
History
Evidence of human-like language processing:

Kuncoro et al., 2018 (ACL)
Hale et al., 2018 (ACL)

Futrell et al., 2019 (NAACL)
Wilcox et al., 2019 (NAACL)

An inferential challenge

(S (NP I) (VP saw

An inferential challenge

(S (NP I) (VP saw (NP the

An inferential challenge

(S (NP I) (VP saw (NP the I saw the child

An inferential challenge

(S (NP I) (VP saw (NP the	I saw the child
(S (NP I) (VP saw (NP (NP the	I saw the child's dog

An inferential challenge

(S (NP I) (VP saw (NP the	I saw the child
(S (NP I) (VP saw (NP (NP the	I saw the child's dog
(S (NP I) (VP saw (S (NP the	I saw the child leave

An inferential challenge

(S (NP I) (VP saw (NP the	I saw the child
(S (NP I) (VP saw (NP (NP the	I saw the child's dog
(S (NP I) (VP saw (S (NP the	I saw the child leave
(S (NP I) (VP saw (S (NP (NP the	I saw the child's dog leave

An inferential challenge

(S (NP I) (VP saw (NP the	I saw the child
(S (NP I) (VP saw (NP (NP the	I saw the child's dog
(S (NP I) (VP saw (S (NP the	I saw the child leave
(S (NP I) (VP saw (S (NP (NP the	I saw the child's dog leave
(S (NP I) (VP saw (SBAR (NP the	I saw the child left

An inferential challenge

(S (NP I) (VP saw (NP the	I saw the child
(S (NP I) (VP saw (NP (NP the	I saw the child's dog
(S (NP I) (VP saw (S (NP the	I saw the child leave
(S (NP I) (VP saw (S (NP (NP the	I saw the child's dog leave
(S (NP I) (VP saw (SBAR (NP the	I saw the child left
(S (NP I) (VP saw (SBAR (NP (NP the I saw the child's dog left	

An inferential challenge

(S (NP I) (VP saw (NP the I saw the child
(S (NP I) (VP saw (NP (NP the I saw the child's dog
(S (NP I) (VP saw (S (NP the I saw the child leave
(S (NP I) (VP saw (S (NP (NP the I saw the child's dog leave
(S (NP I) (VP saw (SBAR (NP the I saw the child left
(S (NP I) (VP saw (SBAR (NP (NP the I saw the child's dog left

There is a potentially unbounded number of treegeneration operations just to get to the next word!

Inference using beam search
(S (NP I) (VP saw (NP the
(S (NP I) (VP saw (NP (NP the
(S (NP I) (VP saw (S (NP the
(S (NP I) (VP saw (S (NP (NP the
(S (NP I) (VP saw (SBAR (NP the
(S (NP I) (VP saw (SBAR (NP (NP the
A "word-synchronous" beam, beam size=4
Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):
The needed analysis "falls off the beam"

Inference using beam search

Context C
(S (NP I) (VP saw (NP the
(S (NP I) (VP saw (NP (NP the
(S (NP I) (VP saw (S (NP the
(S (NP I) (VP saw (S (NP (NP the
(S (NP I) (VP saw (SBAR (NP the
(S (NP I) (VP saw (SBAR (NP (NP the
A "word-synchronous" beam, beam size=4

Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):
The needed analysis "falls off the beam"

Inference using beam search

Context C
(S (NP I) (VP saw (NP the
(S (NP I) (VP saw (NP (NP the
(S (NP I) (VP saw (S (NP the
(S (NP I) (VP saw (S (NP (NP the
(S (NP I) (VP saw (SBAR (NP the
(S (NP I) (VP saw (SBAR (NP (NP the
A "word-synchronous" beam, beam size=4

Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):
The needed analysis "falls off the beam"

Inference using beam search

Context C
(S (NP I) (VP saw (NP the
(S (NP I) (VP saw (NP (NP the
(S (NP I) (VP saw (S (NP the
(S (NP I) (VP saw (S (NP (NP the
(S (NP I) (VP saw (SBAR (NP the
(S (NP I) (VP saw (SBAR (NP (NP the
A "word-synchronous" beam, beam size=4

Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):
The needed analysis "falls off the beam"

Inference using beam search

Context C
(S (NP I) (VP saw (NP the
(S (NP I) (VP saw (NP (NP the
(S (NP I) (VP saw (S (NP the
(S (NP I) (VP saw (S (NP (NP the
(S (NP I) (VP saw (SBAR (NP the
(S (NP I) (VP saw (SBAR (NP (NP the
A "word-synchronous" beam, beam size=4
$\log P(A \mid C)$
-5.1
-6.3
-5.8
-7.2
-6.2
-7.8

Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):
The needed analysis "falls off the beam"

Inference using beam search

Context C

$\log P(A \mid C)$ Rank on beam

$$
\begin{array}{ll}
-5.1 & 1
\end{array}
$$

$$
-6.3
$$4

$$
\begin{equation*}
-5.8 \tag{2}
\end{equation*}
$$

$$
-7.2
$$$x$

$$
-6.2
$$3

$$
-7.8
$$$x$

Natural account of strong garden-pathing effects (the woman brought the sandwich tripped):
The needed analysis "falls off the beam"

Challenges for surprisal theory

- Limitations in the memory representations available during real-time comprehension
- Accounting for input uncertainty from noise \& speaker error

Structural Forgetting and the Noisy Channel

(Futrell \& Levy, 2017)

Structural Forgetting and the Noisy Channel

1. The apartment that the maid who the cleaning service sent over was well-decorated.

Structural Forgetting and the Noisy Channel

1. The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. \mathcal{F}

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. \mathcal{F}

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. \mathcal{F}^{β}

- Structural forgetting effect: part of the sentence is forgotten by the time you get to the end (Gibson \& Thomas, 1999; Frazier, 1985; Fodor, p.c.)

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. \mathcal{F}

- Structural forgetting effect: part of the sentence is forgotten by the time you get to the end (Gibson \& Thomas, 1999; Frazier, 1985; Fodor, p.c.)
- The ungrammatical sentence seems better than the grammatical one.
- A "grammaticality illusion": how could we define grammaticality in this case?

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. \mathcal{F}

- But the effect is language-dependent (Vasishth et al., 2010; Frank et al., 2016).

Structural Forgetting

1. *Die Wohnung, die das Zimmermädchen, das der Reinigungsdienst übersandte, war gut eingerichtet. \mathcal{F}
2. Die Wohnung, die das Zimmermädchen, das der

Reinigungsdienst übersandte, reinigte, war gut eingerichtet.

- But the effect is language-dependent (Vasishth et al., 2010; Frank et al., 2016).
- In German (and Dutch), people prefer 2 over 1.

Structural Forgetting

1. *Die Wohnung, die das Zimmermädchen, das der Reinigungsdienst übersandte, war gut eingerichtet. $\mathcal{F}^{\mathcal{F}}$
2. Die Wohnung, die das Zimmermädchen, das der

Reinigungsdienst übersandte, reinigte, war gut eingerichtet.

- But the effect is language-dependent (Vasishth et al., 2010; Frank et al., 2016).
- In German (and Dutch), people prefer 2 over 1.
- What is the difference between English and German?

Structural Forgetting

1. *Die Wohnung, die das Zimmermädchen, das der Reinigungsdienst übersandte, war gut eingerichtet.
2. Die Wohnung, die das Zimmermädchen, das der

Reinigungsdienst übersandte, reinigte, war gut eingerichtet.

- But the effect is language-dependent (Vasishth et al., 2010; Frank et al., 2016).
- In German (and Dutch), people prefer 2 over 1.
- What is the difference between English and German?
- Frank et al. (2016) show that at recurrent neural network gives higher probability to (1) in English, but (2) in German.

Structural Forgetting

1. *Die Wohnung, die das Zimmermädchen, das der Reinigungsdienst übersandte, war gut eingerichtet.
2. Die Wohnung, die das Zimmermädchen, das der

Reinigungsdienst übersandte, reinigte, war gut eingerichtet.

- But the effect is language-dependent (Vasishth et al., 2010; Frank et al., 2016).
- In German (and Dutch), people prefer 2 over 1.
- What is the difference between English and German?
- Frank et al. (2016) show that at recurrent neural network gives higher probability to (1) in English, but (2) in German.
- But why?

Structural Forgetting

1.*The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. \mathcal{F}

Structural Forgetting

1.*The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. \mathcal{F}

- These contexts are more common in German than English (Roland et al., 2007).

Structural Forgetting

1.*The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

- These contexts are more common in German than English (Roland et al., 2007).
- English: the maid [that cleaned the apartment] the apartment [that the maid cleaned]

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

- These contexts are more common in German than English (Roland et al., 2007).
- English: the maid [that cleaned the apartment] $\mathbf{8 0 \%}$ the apartment [that the maid cleaned]

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

- These contexts are more common in German than English (Roland et al., 2007).
- English: the maid [that cleaned the apartment] $\mathbf{8 0 \%}$ the apartment [that the maid cleaned] 20\%

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

- These contexts are more common in German than English (Roland et al., 2007).
- English: the maid [that cleaned the apartment] $\mathbf{8 0 \%}$ the apartment [that the maid cleaned]
- German: das Dienstmädchen, [das die Wohnung reinigte] die Wohnung, [die das Dienstmädchen reinigte]

An incremental inference puzzle for surprisal

- Try to understand this sentence:

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.
(d) The coach smiled at the player who was tossed the frisbee.

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.
(d) The coach smiled at the player who was tossed the frisbee.
- Readers boggle at "tossed" in (a), but not in (b-d)

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.
(d) The coach smiled at the player who was tossed the frisbee.
- Readers boggle at "tossed" in (a), but not in (b-d)

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.
(d) The coach smiled at the player who was tossed the frisbee.
- Readers boggle at "tossed" in (a), but not in (b-d)

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.
(d) The coach smiled at the player who was tossed the frisbee.
- Readers boggle at "tossed" in (a), but not in (b-d)

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.
(d) The coach smiled at the player who was tossed the frisbee.
- Readers boggle at "tossed" in (a), but not in (b-d)

Why is tossed/thrown interesting?

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped

> verb?
participle?

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped verb? participle?

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped

$$
\begin{gathered}
\text { verb? } \\
\text { participle? }
\end{gathered}
$$

- But now context "should" rule out the garden path:

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped verb?
participle?

- But now context "should" rule out the garden path:
- The coach smiled at the player tossed...

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped verb?
participle?

- But now context "should" rule out the garden path:
- The coach smiled at the player tossed...

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped verb? participle?

- But now context "should" rule out the garden path:
- The coach smiled at the player tossed...
verb? participle?

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped verb? participle?

- But now context "should" rule out the garden path:
- The coach smiled at the player tossed...
verb? participle?

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped verb? participle?

- But now context "should" rule out the garden path:
- The coach smiled at the player tossed...

- A challenge for rational models: failure to condition on relevant context

Rational analysis

Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given $1-3$
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

Rational analysis

Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given $1-3$
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

Rational analysis

Background assumption: cognitive agent is optimized via somehow evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given $1-3$
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

Rational analysis

Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given $1-3$
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

Our case study: revise \#2, the model of the environment to which the cognitive agent is adapted

Uncertain input in language comprehension

Uncertain input in language comprehension

- Previous state of the art models for ambiguity resolution \approx probabilistic incremental parsing

Uncertain input in language comprehension

- Previous state of the art models for ambiguity resolution \approx probabilistic incremental parsing
- Simplifying assumption:
- Input is clean and perfectly-formed
- No uncertainty about input is admitted

Uncertain input in language comprehension

- Previous state of the art models for ambiguity resolution \approx probabilistic incremental parsing
- Simplifying assumption:
- Input is clean and perfectly-formed
- No uncertainty about input is admitted
- Intuitively seems patently wrong...
- We sometimes misread things
- We can also proofread

Uncertain input in language comprehension

- Previous state of the art models for ambiguity resolution \approx probabilistic incremental parsing
- Simplifying assumption:
- Input is clean and perfectly-formed
- No uncertainty about input is admitted
- Intuitively seems patently wrong...
- We sometimes misread things
- We can also proofread
- Leads to two questions:

1. What might a model of sentence comprehension under uncertain input look like?
2. What interesting consequences might such a model have?
$P(\mathrm{~T} \mid$ words $) \propto P($ words $\mid T) P(T)$

Levy (2008, EMNLP); Futrell \& Levy (2017, EACL)

Noisy-channel language comprehension

- Standard probabilistic language comprehension
$P(\mathrm{~T} \mid$ words $) \propto P($ words $\mid T) P(T)$

Levy (2008, EMNLP); Futrell \& Levy (2017, EACL)

Noisy-channel language comprehension

- Standard probabilistic language comprehension $P(\mathrm{~T} \mid$ words $) \propto P($ words $\mid T) P(T)$
- Revision: probabilistic language comprehension where the input is subject to noise and imperfect memory

Levy (2008, EMNLP); Futrell \& Levy (2017, EACL)

Noisy-channel language comprehension

- Standard probabilistic language comprehension $P(\mathrm{~T} \mid$ words $) \propto P($ words $\mid T) P(T)$
- Revision: probabilistic language comprehension where the input is subject to noise and imperfect memory

$$
P(\mathrm{~T} \mid \text { input }) \propto P(\text { input } \mid T) P(T)
$$

Levy (2008, EMNLP); Futrell \& Levy (2017, EACL)

Noisy-channel language comprehension

- Standard probabilistic language comprehension $P(\mathrm{~T} \mid$ words $) \propto P($ words $\mid T) P(T)$
- Revision: probabilistic language comprehension where the input is subject to noise and imperfect memory
$P(\mathrm{~T} \mid$ input $) \propto P($ input $\mid T) P(T)$

$$
=\sum_{w} P(\text { input } \mid w, T) P(w, T)
$$

Levy (2008, EMNLP); Futrell \& Levy (2017, EACL)

Incremental inference under uncertain input

The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":
(and?)
The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":
(and?)
The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":
(and?)
(and?)
The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

(and?)	(and?)
(as?)	(that?)

The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

	(and?)
(and?)	(that?)
(as?)	(who?)

The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

		(and?)
(that?)	(and?)	(that?)
	(as?)	(who?)

The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

		(and?)
(that?)	(and?)	(that?)
(who?)	(as?)	(who?)

The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

The coach smiled at the player tossed the frisbee

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

The coach smiled at the player tossed the frisbee

- Hypothesis: the boggle at "tossed" involves what the comprehender wonders whether she might have seen

The core of the intuition

the coach smiled...

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

as/and
(unlikely)

...the player...

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

as/and
(unlikely)

...the player...

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:

the coach smiled...

as/and
(unlikely)

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

$$
\begin{gathered}
\text { as/and } \\
\text { (unlikely) }
\end{gathered}
$$

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

as/and
(unlikely)

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

as/and
(unlikely)

...the player...

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

as/and
(unlikely)

...the player...

- tossed is more likely to happen along the bottom path
- This creates a large shift in belief in the tossed condition

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

as/and
(unlikely)

...the player...

- tossed is more likely to happen along the bottom path
- This creates a large shift in belief in the tossed condition

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

$$
\begin{aligned}
& \text { as/and } \\
& \text { (unlikely) }
\end{aligned}
$$

- tossed is more likely to happen along the bottom path
- This creates a large shift in belief in the tossed condition

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

$$
\begin{aligned}
& \text { as/and } \\
& \text { (unlikely) }
\end{aligned}
$$

- tossed is more likely to happen along the bottom path
- This creates a large shift in belief in the tossed condition

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

$$
\begin{aligned}
& \text { as/and } \\
& \text { (unlikely) }
\end{aligned}
$$

thrown

...the player...

- tossed is more likely to happen along the bottom path
- This creates a large shift in belief in the tossed condition

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
(line thickness \approx probability)
the coach smiled...

$$
\begin{aligned}
& \text { as/and } \\
& \text { (unlikely) }
\end{aligned}
$$

thrown

...the player...

- tossed is more likely to happen along the bottom path
- This creates a large shift in belief in the tossed condition
- thrown is very unlikely to happen along the bottom path
- As a result, there is no corresponding shift in belief

Experimental design

Experimental design

- In a free-reading eye-tracking study, we crossed at/toward with tossed/thrown:

Experimental design

- In a free-reading eye-tracking study, we crossed at/toward with tossed/thrown:

The coach smiled at the player tossed the frisbee The coach smiled at the player thrown the frisbee The coach smiled toward the player tossed the frisbee The coach smiled toward the player thrown the frisbee

Experimental design

- In a free-reading eye-tracking study, we crossed at/toward with tossed/thrown:
The coach smiled at the player
The coach smiled at the player
The coach smiled toward the player
The coach smiled toward the player

tossed	the frisbee
thrown	the frisbee
tossed	the frisbee
thrown the frisbee	

Experimental design

- In a free-reading eye-tracking study, we crossed at/toward with tossed/thrown:
The coach smiled at the player
The coach smiled at the player
The coach smiled toward the player
The coach smiled toward the player

tossed	the frisbee
thrown	the frisbee
tossed	the frisbee
thrown	the frisbee

- Prediction: interaction between preposition \& part-ofspeech ambiguity in eye movements upon encountering participle

Experimental design

- In a free-reading eye-tracking study, we crossed at/toward with tossed/thrown:

The coach smiled
The coach smiled at
The coach smiled toward
The coach smiled toward the player
the frisbee the trisbee the frisbee the frisbee

- Prediction: interaction between preposition \& part-ofspeech ambiguity in eye movements upon encountering participle

Experimental results

The coach smiled at the player tossed...

Experimental results

The coach smiled at the player th srd...

Experimental results

The coach smiled at the playor t! srd...

Experimental results

The coach smiled at the player $t=\underline{d} . .$.

First-pass
RT

Experimental results

The coach smiled at the player tos...

First-pass

Experimental results

The coach smiled at the player \pm srd...

First-pass
RT

Experimental results

First-pass

Experimental results

First-pass
RT

Regressions
out

Experimental results

First-pass RT

Regressions
out

Experimental results

The coach smiled at the layer \pm ser ...

First-pass RT

Regressions
out

Experimental results

The coach smiled atthe layer \pm sed...

First-pass RT

Regressions
out

Experimental results

The coach smiled atthe layert scc.

First-pass RT

Regressions
out

Experimental results

The coach smiled at the layert:

First-pass RT

Regressions
out

Experimental results

The coach smiled at the layert sc

First-pass RT

Regressions
out

Experimental results

The coach smiled at the layort scd

First-pass RT

Regressions
out

Go-past
RT

Experimental results

The coach smiled at the layer t scc

First-pass RT

Regressions
out

Go-past
RT

Experimental results

The coach smiled at the layert ss

First-pass RT

Regressions
out

Go-past
RT

Experimental results

?
 The coach smiled at the layerti ss

First-pass
RT

Regressions
out

Go-past
RT

Experimental results

?
 The coach smiled at the layerti ss

First-pass RT

Regressions
out

Go-past
RT

Go-past
regressions

Experimental results

?
 The coach smiled at the layerti ss

First-pass RT

Regressions
out

Go-past
RT

Go-past
regressions

Experimental results

The coach smiled at the player tossed...

First-pass RT

Regressions
out

Go-past
RT

Go-past
regressions

Experimental results

The coach smiled at the player tossed...

First-pass
RT

Regressions
out

Go-past
RT

Go-past regressions

Comprehension accuracy

Experimental results

The coach smiled at the player tossed...

First-pass
RT

Regressions
out

Go-past
RT

Go-past regressions

Comprehension accuracy

Application to structural forgetting

$$
\begin{aligned}
P\left(w_{i} \mid C\right) & =\sum_{w_{1 \ldots i-1}} P\left(w_{i} \mid w_{1 \ldots i}\right) P\left(w_{1 \ldots i-1} \mid C\right) \\
\operatorname{Cost}\left(w_{i} \mid C\right) & =\log \frac{1}{P\left(w_{i} \mid C\right)}
\end{aligned}
$$

Application to structural forgetting

- Noisy channel + surprisal = noisy-context surprisal: for a noisy input context C and next encountered word w_{i} :

$$
\begin{aligned}
P\left(w_{i} \mid C\right) & =\sum_{w_{1 \ldots i-1}} P\left(w_{i} \mid w_{1 \ldots i}\right) P\left(w_{1 \ldots i-1} \mid C\right) \\
\operatorname{Cost}\left(w_{i} \mid C\right) & =\log \frac{1}{P\left(w_{i} \mid C\right)}
\end{aligned}
$$

Application to structural forgetting

- Noisy channel + surprisal = noisy-context surprisal: for a noisy input context C and next encountered word w_{i} :

$$
\begin{aligned}
P\left(w_{i} \mid C\right) & =\sum_{w_{1 \ldots i-1}} P\left(w_{i} \mid w_{1 \ldots i}\right) P\left(w_{1 \ldots i-1} \mid C\right) \\
\operatorname{Cost}\left(w_{i} \mid C\right) & =\log \frac{1}{P\left(w_{i} \mid C\right)}
\end{aligned}
$$

- Comparison with humans: is the ungrammatical version of the sentence costlier?
Cost (The apartment that the maid who the cleaning service sent over was well-decorated.) <
Cost (The apartment that the maid who the cleaning service sent over cleaned was well-decorated.)

Application to structural forgetting

- Noisy channel + surprisal = noisy-context surprisal: for a noisy input context C and next encountered word w_{i} :

$$
\begin{aligned}
P\left(w_{i} \mid C\right) & =\sum_{w_{1 \ldots i-1}} P\left(w_{i} \mid w_{1 \ldots i}\right) P\left(w_{1 \ldots i-1} \mid C\right) \\
\operatorname{Cost}\left(w_{i} \mid C\right) & =\log \frac{1}{P\left(w_{i} \mid C\right)}
\end{aligned}
$$

- Comparison with humans: is the ungrammatical version of the sentence costlier?

Cost(noun that noun that noun verb verb) <
Cost(noun that noun that noun verb verb verb)

Application to structural forgetting

- Noisy channel + surprisal = noisy-context surprisal: for a noisy input context C and next encountered word w_{i} :

$$
\begin{aligned}
P\left(w_{i} \mid C\right) & =\sum_{w_{1 \ldots i-1}} P\left(w_{i} \mid w_{1 \ldots i}\right) P\left(w_{1 \ldots i-1} \mid C\right) \\
\operatorname{Cost}\left(w_{i} \mid C\right) & =\log \frac{1}{P\left(w_{i} \mid C\right)}
\end{aligned}
$$

- Comparison with humans: is the ungrammatical version of the sentence costlier?

Noisy-Context Surprisal Account of Structural Forgetting

- This turns out to work for toy grammars of English and German!

Rule	Probability
S -> NP verb	1
NP -> noun	1-m
NP -> noun RC	$m r$
NP -> noun PP	$m(1-r)$
PP -> Prep NP	1
RC -> that verb NP	s
RC -> that NP verb	1-s

Generates sequences like:

NOUN VERB
NOUN PREP NOUN VERB
NOUN THAT VERB NOUN VERB
NOUN THAT NOUN VERB VERB
NOUN THAT NOUN THAT NOUN...

English: s=0.8 (Roland et al., 2007)
German $s=0.0$ (obligatorily verb-final)

3-verb (grammatical) version preferred

Human reading time differences

Summary \& open questions

- NLP and cognitive science offer each other a great deal
- NLP \rightarrow cognitive science: formal theory-building for understanding human language processing
- Cognitive science \rightarrow NLP: desiderata for human-like language processing systems
- Experimental methods can probe human cognitive state during language processing in remarkable detail
- Principles of rational analysis provide us guidance in theory building
- Scientific progress good, but many open questions:
- How to fully characterize memory constraints in language?
- Key principles of human conversational interaction?
- Neural implementation of linguistic computations?
- These are great opportunities for everyone here!!!

References I

© Allopenna, P. D., Magnuson, J. S., \& Tanenhaus, M. K. (1998).
Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38, 419-439.
(Anderson, J. R. (1990). The adaptive character of human thought. Hillsdale, NJ: Lawrence Erlbaum.
䍰 Bever, T. (1970). The cognitive basis for linguistic structures. In
J. Hayes (Ed.), Cognition and the development of language (pp. 279-362). New York: John Wiley \& Sons.
(i) Duffy, S. A., \& Keir, J. A. (2004). Violating stereotypes: Eye movements and comprehension processes when text conflicts with world knowledge. Memory \& Cognition, 32(4), 551-559.

References II

E Dyer, C., Kuncoro, A., Ballesteros, M., \& Smith, N. A. (2016). Recurrent Neural Network Grammars. In Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
© Fedorenko, E., Behr, M. K., \& Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108(39), 16428-16433.
: Frank, S. L., Trompenaars, T., \& Vasishth, S. (2016).
Cross-linguistic differences in processing double-embedded relative clauses: Working-memory constraints or language statistics? Cognitive Science, 40(3), 554-578.
-i Frazier, L. (1985). Syntactic complexity. Natural language parsing: Psychological, computational, and theoretical perspectives, 129-189.

References III

嗇 Frazier, L., \& Rayner, K. (1982). Making and correcting errors during sentence comprehension: Eye movements in the analysis of structurally ambiguous sentences. Cognitive Psychology, 14, 178-210.
Rutrell, R., \& Levy, R. (2017). Noisy-context surprisal as a human sentence processing cost model. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL) (pp. 688-698).
(i) Futrell, R., Wilcox, E., Morita, T., Qian, P., Ballesteros, M., \& Levy, R. (2019). Neural language models as psycholinguistic subjects: Representations of syntactic state. In Proceedings of the 18th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

References IV

R Gibson, E., \& Thomas, J. (1999). The perception of complex ungrammatical sentences as grammatical. Language \& Cognitive Processes, 14(3), 225-248.
(- Goodkind, A., \& Bicknell, K. (2018). Predictive power of word surprisal for reading times is a linear function of language model quality. In Proceedings of the 8th workshop on cognitive modeling and computational linguistics (cmcl 2018) (pp. 10-18).

囯 Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Proceedings of the second meeting of the north american chapter of the Association for Computational Linguistics (pp. 159-166). Pittsburgh, Pennsylvania.
R Henderson, J. (2004). Discriminative training of a neural network statistical parser. In Proceedings of the 42nd meeting of the association for computational linguistics (ACL'04), main volume (pp. 95-102).

References V

圊 Johnson, M. (1998). PCFG models of linguistic tree representations. Computational Linguistics, 24(4), 613-632.
(1) Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access and disambiguation. Cognitive Science, 20(2), 137-194.
Elein, D., \& Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of acl.
E Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., Neubig, G., \& Smith, N. A. (2017). What do Recurrent Neural Network Grammars learn about syntax? In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL).

References VI

Ein Kuncoro, A., Dyer, C., Hale, J., Yogatama, D., Clark, S., \& Blunsom, P. (2018). LSTMs can learn syntax-sensitive dependencies well, but modeling structure makes them better. In Proceedings of the 56th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 1426-1436). Melbourne, Australia: Association for Computational Linguistics.
目 Kutas, M., \& Hillyard, S. A. (1980). Reading senseless
sentences: Brain potentials reflect semantic incongruity.
Science, 207(4427), 203-205.

- Kutas, M., \& Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307, 161-163.

References VII

Revy, R. (2008a). A noisy-channel model of rational human sentence comprehension under uncertain input. In Proceedings of the 13th conference on Empirical Methods in Natural Language Processing (pp. 234-243). Waikiki, Honolulu.
围 Levy, R. (2008b). Expectation-based syntactic comprehension.
Cognition, 106(3), 1126-1177.
Eevy, R. (2013). Memory and surprisal in human sentence comprehension. In R. P. G. van Gompel (Ed.), Sentence processing (pp. 78-114). Hove: Psychology Press.
[- Levy, R., Reali, F., \& Griffiths, T. L. (2009). Modeling the effects of memory on human online sentence processing with particle filters. In Proceedings of the 22nd conference on Neural Information Processing Systems (NIPS).
囯 Mesgarani, N., Cheung, C., Johnson, K., \& Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 1245994.

References VIII

(1984). An evaluation of subject-paced reading tasks and other methods for investigating immediate processes in reading. In D. Kieras \& M. A. Just (Eds.), New methods in reading comprehension. Hillsdale, NJ: Earlbaum.
睩 Osterhout, L., Bersick, M., \& McLaughlin, J. (1997). Brain potentials reflect violations of gender stereotypes. Memory \& Cognition, 25(3), 273-285.

- Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.
(R) Roland, D., Dick, F., \& Elman, J. L. (2007). Frequency of basic English grammatical structures: A corpus analysis. Journal of Memory and Language, 57, 348-379.
國 Staub, A. (2007). The parser doesn't ignore intransitivity, after all. Journal of Experimental Psychology: Learning, Memory, \& Cognition, 33(3), 550-569.

References IX

雷 Stern，M．，Fried，D．，\＆Klein，D．（2017）．Effective inference for generative neural parsing．In Proceedings of the 2017 conference on empirical methods in natural language processing（pp．1695－1700）．
囯 Sturt，P．（2003）．The time－course of the application of binding constraints in reference resolution．Journal of Memory and Language，48，542－562．
（ Tabor，W．，Galantucci，B．，\＆Richardson，D．（2004）．Effects of merely local syntactic coherence on sentence processing． Journal of Memory and Language，50（4），355－370．
圊 Tanenhaus，M．K．，Spivey－Knowlton，M．J．，Eberhard，K．，\＆ Sedivy，J．C．（1995）．Integration of visual and linguistic information in spoken language comprehension．Science， 268，1632－1634．

References X

嗇 Vasishth, S., Suckow, K., Lewis, R. L., \& Kern, S. (2010). Short-term forgetting in sentence comprehension: Crosslinguistic evidence from verb-final structures. Language \& Cognitive Processes, 25(4), 533-567.
Wilcox, E., Qian, P., Futrell, R., Ballesteros, M., \& Levy, R.
(2019). Structural supervision improves learning of non-local grammatical dependencies. In Proceedings of the 18th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Cognitive Evaluation and

Language Evolution and Emergence

Richard Futrell
UC Irvine
rfutrell@uci.edu
@rljfutrell

Goals of Part III

- Two sections:
- Cognitive Evaluation:
- Applying methods from psycholinguistics and cognitive science to analyze neural networks
- Characterizing complex human behavior around language as a target for NLP systems
- Language Evolution and Emergence
- A recently-emerging exciting problem in NLP
- Some highlights from 20 years of research from the field of Language Evolution about under what circumstances language-like codes emerge in agent-based models

Cognitive Evaluation

Psycholinguistic Assessment

Battery of behavioral tests

Conclusions about...
form of linguistic knowledge, data structures used in online processing,
sources of difficulty in production \& comprehension

What Psycholinguists Do

Fig. 2. Reading-time results as a function of region and condition for Experiment 1. Onset of the relative clause (first four words) is boxed.

Psycholinguistic Assessment

Battery of behavioral tests

Conclusions about...
form of linguistic knowledge, data structures used in online processing,
sources of difficulty in production \& comprehension

Psycholinguistic Assessment

Conclusions about... form of linguistic knowledge, data structures used in online processing, sources of difficulty in production \& comprehension

Probing NN Behavior

(a) *"The keys to the cabinet is on the table"

(a) is SURPRISING!
(b) is UNSURPRISING

Probing NN Behavior

Linzen et al. (2016)

Filler-Gap Dependencies

Island Constraints

NPI Licensing
? \checkmark
(Linzen et al., 2016; Gulordava et al., 2018)

(van Schijndel \& Linzen, 2018a,b; Futrell et al., 2018, 2019)

$? \checkmark \checkmark$

(Chowdhury \& Zamparelli, 2018; McCoy et al, 2018; Wilcox et al., 2018, 2019)

$$
? \sqrt{\text { (some) }}
$$

(Chowdhury \& Zamparelli, 2018; Wilcox et al., 2018)
(Marvin \& Linzen, 2018; Futrell et al., 2018)

(Marvin \& Linzen, 2018; Futrell et al., 2018)

What syntactic structures are easy vs. hard for NN language models?

- They find this contrast easy (Filler-Gap Dependencies: Wilcox et al., 2018, 2019).
- I know what the lion standing in the Serengeti devoured _ at sunrise.
- *I know what the lion standing in the Serengeti devoured a gazelle at sunrise.
- They find this contrast hard (Reflexive Anaphora: Marvin \& Linzen, 2018; Futrell et al., 2018)
- The king standing next to the queen saw himself
- *The king standing next to the queen saw herself
- They don't generalize in a clear way across constructions that humans find similar.

Targeted Evaluation Datasets

- Marvin \& Linzen (2018)
- Used in e.g. Shen et al. (2019) [Ordered Neurons]

	ON-LSTM	LSTM
Short-Term Dependency		
SUBJECT-VERB AGREEMENT:		
Simple	0.99	$\mathbf{1 . 0 0}$
In a sentential complement	0.95	$\mathbf{0 . 9 8}$
Short VP coordination	0.89	$\mathbf{0 . 9 2}$
In an object relative clause	0.84	$\mathbf{0 . 8 8}$
In an object relative (no that)	0.78	$\mathbf{0 . 8 1}$
REFLEXIVE ANAPHORA:		
Simple	$\mathbf{0 . 8 9}$	0.82
In a sentential complement	$\mathbf{0 . 8 6}$	0.80
NEGATIVE POLARITY ITEMS:		
Simple (grammatical vs. intrusive)	0.18	$\mathbf{1 . 0 0}$
Simple (intrusive vs. ungrammatical)	$\mathbf{0 . 5 0}$	0.01
Simple (grammatical vs. ungrammatical)	0.07	$\mathbf{0 . 6 3}$
Long-Term Dependency		
SUBJECT-VERB AGREEMENT:		
Long VP coordination	$\mathbf{0 . 7 4}$	$\mathbf{0 . 7 4}$
Across a prepositional phrase	0.67	$\mathbf{0 . 6 8}$
Across a subject relative clause	$\mathbf{0 . 6 6}$	0.60
Across an object relative clause	$\mathbf{0 . 5 7}$	0.52
Across an object relative (no that)	$\mathbf{0 . 5 4}$	0.51
REFLEXIVE ANAPHORA:		
Across a relative clause	0.57	$\mathbf{0 . 5 8}$
NEGATIVE POLARITY ITEMS:		
Across a relative clause (grammatical vs. intrusive)	0.59	$\mathbf{0 . 9 5}$
Across a relative clause (intrusive vs. ungrammatical)	$\mathbf{0 . 2 0}$	0.00
Across a relative clause (grammatical vs. ungrammatical)	$\mathbf{0 . 1 1}$	0.04

Probing Classifiers

- Alain \& Bengio (2016); Belinkov et al. (2018); Hupkes, Veldhoen \& Zuidema (2018)

(a) Morphology

(b) Syntax

Similar to neuroscience methods: Wallis (2018)

Other Methods of Peering In

- Hewitt \& Manning (2019): Structural probe: Does there exist a linear transformation of the contextual word embedding space such that the distances reflect syntactic parse trees?

Sequence (to Sequence) Models

- Do generic sequence (to sequence) models show humanlike generalization?

```
jump
jump left
jump around right
turn left twice
jump thrice
jump opposite left and walk thrice
jump opposite left after walk around left
# JUMP
# LTURN JUMP
| RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
# LTURN LTURN
# JUMP JUMP JUMP
| LTURN LTURN JUMP WALK WALK WALK
| LTURN WALK LTURN WALK LTURN WALK LTURN WALK
                        LTURN LTURN JUMP
```


Lake \& Baroni (2018)

Sequence (to Sequence) Models

Figure 5. Zero-shot generalization after adding the primitive "jump" and some compositional "jump" commands. The model that performed best in generalizing from primitive "jump" only was retrained with different numbers of composed "jump" commands (x-axis) in the training set, and generalization was measured on new composed "jump" commands (y-axis). Each bar shows the mean over 5 runs with varying training commands along with the corresponding ± 1 SEM.

Embedding Spaces

- Standard modern approach in NLP is to embed words and sentences into a metric space.
- Are human intuitions about word similarity well-modeled by a (Euclidean) metric space?

Word Similarity

vanish disappear behave obey belief impression muscle bone modest flexible hole agreement

- Other human word similarity datasets:
- Free-association Nelson Norms (Nelson et al., 1998)
- Small World of Words (smallworldofwords.org)

Embedding Spaces

- Standard modern approach in NLP is to embed words and sentences into a metric space.
- Are human intuitions about word similarity well-modeled by a (Euclidean) metric space?

Minimality:

$$
\delta(\mathrm{a}, \mathrm{~b}) \geq \delta(\mathrm{a}, \mathrm{a})=0 .
$$

Symmetry:

$$
\delta(\mathrm{a}, \mathrm{~b})=\delta(\mathrm{b}, \mathrm{a})
$$

The triangle inequality:

$$
\delta(\mathrm{a}, \mathrm{~b})+\delta(\mathrm{b}, \mathrm{c}) \geq \delta(\mathrm{a}, \mathrm{c})
$$

- keg, beer
- vs. beer, keg
- cobra, snake
- vs. snake, cobra
- meow, cat
- vs. cat, meow

Tversky (1977); Griffiths, Steyvers \& Tenenbaum (2007)

Semantic Networks

- Human word similarity judgments are best modeled using semantic networks (Steyvers \& Tenenbaum, 2005).

Semantic Networks

- Degree distributions in human-derived semantic networks follow a power law:

Semantic Networks

- Degree distributions in semantic networks extracted from distributional embeddings follow an exponential law:

Fig. 8. The degree distributions for networks based on thresholded LSA spaces. For the ε-method, degree distribu-
tions of undirected networks are shown. For the k-nn method, the in-degree distributions are shown.

Embedding Spaces

- Distributionally-derived metric spaces do not capture human intuitions about word similarity, nor human free associations between words.
- Human data violates symmetry and the triangle inequality, but follows minimality.
- Human data implies a power-law degree distribution in semantic networks, but distributional methods give an exponential degree distribution.
- Premetric spaces (such as defined by KL divergence in information geometry) may be compatible with the human data.
- There is a rich modeling and experimental literature to draw from to define these spaces.

Tversky (1977); Steyvers \& Tenenbaum (2005); Griffiths, Steyvers \& Tenenbaum (2007)

Theory of Mind

Theory of Mind as a Question Answering Challenge

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A: office

Second-order False Belief
Anne entered the kitchen.
Sally entered the kitchen.
The milk is in the fridge.
Sally exited the kitchen.
Anne moved the milk to the pantry.
Anne exited the kitchen.
Sally entered the kitchen.

Memory	Where was the milk at the beginning?
Reality	Where is the milk really?
First-order	Where will Sally look for the milk?
Second-order	Where does Anne think that Sally searches for the milk?

bAbi (Weston et al., 2006)

Nematzadeh et al. (2018)

Question Answering

(d) Multiple Observer Model with memory size 50 evaluated on the ToM dataset.

Cognitive Evaluation

- Behavioral work in cognitive science can feed into NLP in two ways:
- Providing careful analytical techniques for evaluating blackbox models.
- Reveals structural representations and inductive biases in neural models.
- Providing challenging datasets and phenomena.
- Compositionality \& systematicity
- Non-metric nature of human similarity judgments
- Question answering involving Theory of Mind
- Many more!

Language Evolution and Emergence

Language Evolution and Emergence

- If you have something like deep reinforcement learning agents trying to cooperate to solve a task, when will they evolve a language-like code for communication?
- Havrylov \& Titov (2017); Lazaridou et al. (2017, 2018); Mordatch \& Abbeel (2017); Chaabouni et al. (2019); Lee et al. (2018)
- A potential new way to model what language is.
- I'll present some high-level takeaways from over 20 years of research in agent-based models of Evolution of Language.

Emergence of Symbols

- Simplest setting: David Lewis's Signaling Game

Lewis (1969). Convention: A Philosophical Study

Emergence of Symbols

- Three requirements for emergence of learned signalling:
- Availability of referential-interpretative information
- Bias against ambiguity
- Information loss

Spike, Stadler, Kirby \& Smith (2017)

From Symbols to Linguistic Structure

- Two hallmarks of human language:
- Combinatoriality
- Compositionality
- Combinatoriality:
- A small set of meaningless units (phonemes/letters) combine together to form a large set of meaningful units (morphemes/words) according to an arbitrary function.
/k/ + /æ/ + /t/ = /kæt/, "cat"

From Symbols to Linguistic Structure

- Two hallmarks of human language:
- Combinatoriality
- Compositionality
- Compositionality:
- A large set of meaningful units (morphemes/words) combine together to form an infinite set of meaningful sentences (Montague, 1970) according to a simple function.

The + cat + meows
Meaning $=f(f($ the, cat $)$, meows $)$
Duality of patterning

Emergence of Combinatoriality

- Nowak \& Krakauer (1999)
- Imagine you are communicating about K objects in a Lewis signaling game.
- Imagine it is hard to perceive the difference between signals.
- Then it is better for a signal to consist of multiple discriminable parts (for redundancy), rather than each signal consisting of one
 atomic part.

Emergence of Combinatoriality

- Related: Chaabouni et al. (2019) find that emergent languages in deep reinforcement learning agents favor long utterances due to discriminability.

Defining Compositionality

Compositionality In intuitive terms, the representations computed by f are compositional if each $f(x)$ is determined by the structure of $D(x)$. Most discussions of compositionality, following Montague (1970), make this precise by defining a composition operation $\theta_{a} * \theta_{b} \mapsto \theta$ in the space of representations. Then the model f is compositional if it is a homomorphism from inputs to representations: we require that for any x with $D(x)=\left\langle D\left(x_{a}\right), D\left(x_{b}\right)\right\rangle$,

$$
\begin{equation*}
f(x)=f\left(x_{a}\right) * f\left(x_{b}\right) . \tag{1}
\end{equation*}
$$

Emergence of Compositionality

- Iterated language learning experiments
- Compositionality emerges from a transmission bottleneck - which implements a simplicity constraint.
- Compositionality = Simplicity + Communicativity

Kirby, Cornish \& Smith (2008)

Simple Compositionality in Agent-Based Modeling

In the above step-by-step run, at $\mathrm{t}=0$ the red agent says a word corresponding to the red landmark (center right), then at $\mathrm{t}=1$ says a word that is equivalent to 'Goto', then in $\mathrm{t}=2$ says 'green-agent'. The green-agent hears its instructions and immediately moves to the red landmark.

- An implementation of compositionality $=$ simplicity + communicativity

High-level Generalizations about Human Language

- Modeling targets for language emergence experiments beyond combinatoriality \& compositionality.
- The set of phonemes used in any language is much smaller than the set of all pronounceable phonemes used in all languages.
- The set of phonemes in a language has a lot of repeated substructure in terms of phonetic features.
- The set of phonemes in a language has a pressure to be maximally acoustically distinct.

High-level Generalizations about Human Language

- Languages usually have on the order of 10^1 phonemes and on the order of 10^4 morphemes: relatively invariant sequences of phonemes which correspond to atomic components of the meaning of an utterance.
- A "hierarachy problem" for natural language.
- In contrast, animal communication systems usually have 10^1 symbols with no internal structure.
- Morphemes vary in length; frequent/more predictable morphemes are shorter (Zipf, 1949; Piantadosi et al., 2011)
- Compare Chaabouni et al. (2019)
- Morphemes contain a great deal of repeated substructure in their sequences of phonemes (phonotactics).
- Phonotactics is formally characterizable as \boldsymbol{k}-tier-based strictly local languages with $k=\sim 2$ (Heinz, 2011)

High-level Generalizations about Human Language

- Utterances consist of sequences of multiple morphemes.
- Utterances vary in length.
- The overall meaning of an utterance is compositional: it is a simple function of the meanings of the morphemes and their order.
- There are an unbounded number of possible utterances.
- Utterances have tree-like hierarchical structure
- In these structures, one word composes typically with one other word in the computation of the meaning of the utterance (defining the dependency tree). This property is called endocentricity (Jakobson, 1961).
- The set of possible utterances is characterizable as a Multiple Context Free Language (Seki et al., 1991), with block degree ~2 (Weir, 1988; Kuhlmann, 2013).

Language Evolution

- There is a vast literature! (see evolang.org)
- Evolution of Language Conference every 2 years
- Requirements for learned signaling: referential feedback, ambiguity avoidance, information loss
- Requirements for combinatoriality: noise in communication
- Requirements for compositionality: simplicity + communicativity
- Natural language provides a number of modeling targets!

Wrapping Up

Wrapping Up

- Cognitive modeling provides inspiration, challenges, and analytical tools for NLP.
- Language is a human object-created by humans, for humans.
- The human cognitive side is especially important!
- A vast unexplored territory in characterizing human language learning, human language processing, and emergence of language
- The bottleneck in the field is a lack of computationallyskilled researchers!

Thanks all!

