Supplementary Material: Appendices

A Details of UD Treebanks

The statistics of the Universal Dependency treebanks we used are summarized in Table 1.

| Language | Lang. Family | Treebank | \#Sent. | | |
| :--- | :--- | :---: | :---: | :---: | :---: | \#Token(w/o punct)

			test	1228	15073(11846)
Norwegian (no)	IE.Germanic	Bokmaal, Nynorsk	train dev test	$\begin{gathered} 29870 \\ 4300 \\ 3450 \end{gathered}$	$\begin{gathered} 489217(432597) \\ 67619(59784) \\ 54739(48588) \end{gathered}$
Polish (pl)	IE.Slavic	$\begin{gathered} \text { LFG, } \\ \text { SZ } \end{gathered}$	$\begin{aligned} & \text { train } \\ & \text { dev } \\ & \text { test } \end{aligned}$	$\begin{aligned} & 19874 \\ & 2772 \\ & 2827 \\ & \hline \end{aligned}$	$\begin{gathered} 167251(136504) \\ 23367(19144) \\ 23920(19590) \end{gathered}$
Portuguese (pt)	IE.Romance	Bosque, GSD	$\begin{gathered} \text { train } \\ \text { dev } \\ \text { test } \end{gathered}$	$\begin{gathered} 17993 \\ 1770 \\ 1681 \end{gathered}$	$\begin{gathered} 462494(400343) \\ 42980(37244) \\ 41697(36100) \end{gathered}$
Romanian (ro)	IE.Romance	RRT	$\begin{aligned} & \text { train } \\ & \text { dev } \\ & \text { test } \end{aligned}$	$\begin{gathered} 8043 \\ 752 \\ 729 \end{gathered}$	$\begin{gathered} 185113(161429) \\ 17074(14851) \\ 16324(14241) \end{gathered}$
Russian (ru)	IE.Slavic	SynTagRus	$\begin{gathered} \text { train } \\ \text { dev } \\ \text { test } \end{gathered}$	$\begin{gathered} 48814 \\ 6584 \\ 6491 \end{gathered}$	$\begin{gathered} 870474(711647) \\ 118487(95740) \\ 117329(95799) \end{gathered}$
Slovak (sk)	IE.Slavic	SNK	train dev test	$\begin{aligned} & \hline 8483 \\ & 1060 \\ & 1061 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80575(65042) \\ & 12440(10641) \\ & 13028(11208) \\ & \hline \end{aligned}$
Slovenian (sl)	IE.Slavic	$\begin{aligned} & \text { SSJ, } \\ & \text { SST } \end{aligned}$	$\begin{gathered} \text { train } \\ \text { dev } \\ \text { test } \end{gathered}$	$\begin{gathered} 8556 \\ 734 \\ 1898 \end{gathered}$	$\begin{gathered} 132003(116730) \\ 14063(12271) \\ 24092(22017) \end{gathered}$
Spanish (es)	IE.Romance	$\begin{aligned} & \text { GSD, } \\ & \text { AnCora } \end{aligned}$	$\begin{aligned} & \text { train } \\ & \text { dev } \\ & \text { test } \end{aligned}$	$\begin{gathered} 28492 \\ 3054 \\ 2147 \end{gathered}$	$\begin{gathered} 827053(730062) \\ 89487(78951) \\ 64617(56973) \end{gathered}$
Swedish (sv)	IE.Germanic	Talbanken	train dev test	$\begin{gathered} 4303 \\ 504 \\ 1219 \end{gathered}$	$\begin{gathered} \text { 66645(59268) } \\ 9797(8825) \\ 20377(18272) \end{gathered}$
Ukrainian (uk)	IE.Slavic	IU	train dev test	$\begin{gathered} 4513 \\ 577 \\ 783 \\ \hline \end{gathered}$	$\begin{gathered} 75098(60976) \\ 10371(8381) \\ 14939(12246) \end{gathered}$

Table 1: Statistics of the UD Treebanks we used. For language family, "IE" is the abbreviation for Indo-European. "(w/o) punct" means the numbers of the tokens excluding "PUNCT" and "SYM".

B Hyper-Parameters

Table 2 summarizes the hyper-parameters that we used in our experiments. Most of them are similar to those in (Dozat and Manning, 2017) and (Ma et al., 2018).

	Layer	Hyper-Parameter	Value
Input	Word POS	dimension dimension	$\begin{gathered} 300 \\ 50 \end{gathered}$
RNN	Encoder	encoder layer encoder size	$\begin{gathered} 3 \\ 300 \end{gathered}$
	MLP	$\begin{aligned} & \text { arc MLP size } \\ & \text { label MLP size } \end{aligned}$	$\begin{aligned} & 512 \\ & 128 \end{aligned}$
	Training	Dropout optimizer learning rate batch size	$\begin{gathered} 0.33 \\ \text { Adam } \\ 0.001 \\ 32 \end{gathered}$
Self-Attention	Encoder	$\begin{gathered} \text { encoder layer } \\ d_{\text {model }} \\ d_{f f} \end{gathered}$	$\begin{gathered} 6 \\ 350 \\ 512 \end{gathered}$
	MLP	arc MLP size label MLP size	$\begin{aligned} & 512 \\ & 128 \end{aligned}$
	Training	Dropout optimizer learning rate batch size	0.2 Adam 0.0001 80

Table 2: Hyper-parameters in our experiments.

C Details about augmented dependency types

Type	Avg. Freq. (\%)	\#Lang.	Type	Avg. Freq. (\%)	\#Lang.
(ADP, NOUN, case)	7.47	31	(PROPN, VERB, nsubj)	0.81	30
(PUNCT, VERB, punct)	6.91	30	(PRON, VERB, obj)	0.77	30
(NOUN, NOUN, nmod)	4.97	31	(NOUN, ROOT, root)	0.66	31
(ADJ, NOUN, amod)	4.92	31	(VERB, VERB, xcomp)	0.61	28
(DET, NOUN, det)	4.69	30	(VERB, VERB, ccomp)	0.60	30
(VERB, ROOT, root)	4.31	31	(ADP, PRON, case)	0.57	29
(NOUN, VERB, obl)	3.96	30	(AUX, NOUN, cop)	0.57	28
(NOUN, VERB, obj)	3.10	31	(ADV, ADJ, advmod)	0.54	29
(NOUN, VERB, nsubj)	2.89	31	(AUX, ADJ, cop)	0.50	27
(PUNCT, NOUN, punct)	2.75	30	(PROPN, VERB, obl)	0.48	29
(ADV, VERB, advmod)	2.43	31	(PRON, VERB, obl)	0.44	30
(AUX, VERB, aux)	2.29	28	(ADV, NOUN, advmod)	0.41	28
(PRON, VERB, nsubj)	1.53	30	(ADJ, ROOT, root)	0.39	29
(ADP, PROPN, case)	1.46	29	(PRON, NOUN, nmod)	0.39	0.37
(NOUN, NOUN, conj)	1.32	30	(NOUN, ADJ, obl)	22	
(VERB, NOUN, acl)	1.31	31	(PROPN, PROPN, conj)	0.35	25
(SCONJ, VERB, mark)	1.27	28	(NOUN, ADJ, nsubj)	0.35	29
(CCONJ, VERB, cc)	1.18	30	(CCONJ, ADJ, cc)	0.29	30
(PROPN, NOUN, nmod)	1.14	30	(PUNCT, NUM, punct)	0.26	28
(CCONJ, NOUN, cc)	1.13	30	(NOUN, NOUN, nsubj)	0.25	24
(NUM, NOUN, nummod)	1.11	31	(ADJ, ADJ, conj)	0.25	31
(PROPN, PROPN, flat)	1.09	26	(CCONJ, PROPN, cc)	0.22	26
(VERB, VERB, conj)	1.05	30	(PRON, VERB, iobj)	0.21	26
(PUNCT, PROPN, punct)	0.94	29	(ADV, ADV, advmod)	0.19	21
(VERB, VERB, advcl)	0.89	30	(NOUN, NOUN, appos)	0.18	21
(PUNCT, ADJ, punct)	0.89	30	(PROPN, VERB, obj)	0.17	23

Table 3: Selected augmented dependency types sorted by their average frequencies. "\#Lang." denotes in how many languages the specific type appears. Since the augmented dependency types can be in hundreds or larger than 1 k , but mostly infrequent, we prune them according to average frequency and number of appearing languages. Our pruning criterion is "Freq $>0.1 \%$ and \#Lang ≥ 20 ".

D Punctuation-included Evaluation on the test sets

Language	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
en	$89.29 / 87.52$	$89.46 / 87.54$	$89.16 / 87.26$	$\mathbf{9 0 . 8 3 / 8 9 . 0 7}$
no	$78.47 / 71.38$	$78.47 / 71.50$	$78.11 / 70.84$	$\mathbf{7 9 . 6 1 / 7 2 . 1 0}$
sv	$79.70 / 72.69$	$79.94 / 72.99$	$79.24 / 72.24$	$\mathbf{8 1 . 4 4 / 7 3 . 9 8}$
fr	$75.58 / 71.05$	$\mathbf{7 6 . 1 1 / 7 1 . 7 9}$	$74.32 / 69.87$	$73.56 / 69.16$
pt	$\mathbf{7 3 . 0 7 / 6 5 . 3 0}$	$72.82 / \mathbf{6 5 . 3 8}$	$71.61 / 63.96$	$71.21 / 63.76$
da	$74.03 / 66.52$	$74.99 / 67.67$	$73.76 / 66.15$	$\mathbf{7 5 . 8 1 / 6 7 . 7 6}$
es	$70.98 / 63.84$	$\mathbf{7 1 . 5 0 / 6 4 . 4 0}$	$69.54 / 62.44$	$69.73 / 62.37$
it	$78.19 / 73.77$	$\mathbf{7 8 . 6 3 / 7 4 . 3 1}$	$76.52 / 72.11$	$78.29 / 73.84$
hr	$\mathbf{6 0 . 5 8 / 5 2 . 6 0}$	$58.60 / 50.28$	$59.03 / 50.65$	$59.27 / 50.72$
ca	$70.47 / 62.37$	$\mathbf{7 0 . 9 6 / 6 2 . 8 5}$	$68.91 / 60.87$	$68.79 / 60.45$
pl	$\mathbf{7 4 . 7 8 / 6 4 . 6 8}$	$71.73 / 60.83$	$73.82 / 63.19$	$72.24 / 62.11$
uk	$\mathbf{5 7 . 5 7 / 5 1 . 1 6}$	$56.32 / 50.25$	$54.58 / 48.18$	$57.31 / 50.81$
sl	$\mathbf{6 6 . 5 0 / 5 5 . 8 4}$	$64.55 / 53.84$	$64.83 / 53.88$	$66.07 / 55.03$
nl	$66.92 / 59.59$	$66.45 / 59.54$	$66.05 / 58.59$	$\mathbf{6 8 . 1 0 / 6 1 . 0 1}$
bg	$\mathbf{7 6 . 1 5 / 6 6 . 4 8}$	$74.85 / 65.01$	$74.92 / 65.23$	$75.69 / 65.96$
ru	$55.85 / 48.47$	$55.40 / 47.84$	$54.10 / 46.62$	$\mathbf{5 5 . 8 8} / \mathbf{4 8 . 5 2}$
de	$\mathbf{6 9 . 6 1 / 6 1 . 2 7}$	$67.60 / 58.86$	$68.18 / 59.73$	$68.02 / 59.36$
he	$\mathbf{5 3 . 5 3 / 4 6 . 9 8}$	$53.04 / 46.16$	$51.53 / 44.76$	$53.26 / 40.83$
cs	$\mathbf{6 0 . 9 5 / 5 3 . 0 3}$	$59.56 / 51.80$	$58.88 / 50.86$	$59.63 / 51.13$
ro	$\mathbf{6 3 . 1 1 / 5 3 . 5 4}$	$61.19 / 51.45$	$60.31 / 50.63$	$59.38 / 49.61$
sk	$\mathbf{6 5 . 1 1 / 5 7 . 7 6}$	$63.66 / 56.38$	$63.68 / 56.21$	$64.97 / 57.08$
id	$\mathbf{4 9 . 0 0 / \mathbf { 4 4 . 0 7 }}$	$47.08 / 42.78$	$47.03 / 42.17$	$47.12 / 42.38$
lv	$66.53 / 49.52$	$\mathbf{6 6 . 9 5 / 4 9 . 6 6}$	$64.50 / 47.72$	$65.98 / 48.46$
fi	$64.83 / 49.83$	$\mathbf{6 5 . 0 4 / 4 9 . 9 8}$	$63.41 / 48.61$	$64.97 / 49.63$
et	$\mathbf{6 3 . 5 0 / 4 5 . 8 8}$	$63.08 / 45.45$	$61.74 / 44.12$	$62.15 / 44.57$
zh*	$\mathbf{4 0 . 4 6 / \mathbf { 2 5 . 5 2 }}$	$39.54 / 24.74$	$38.37 / 23.55$	$39.26 / 24.25$
ar	$\mathbf{3 7 . 1 5 / \mathbf { 2 7 . 7 9 }}$	$32.37 / 25.42$	$31.69 / 23.46$	$32.04 / 24.73$
la	$\mathbf{4 7 . 9 6 / \mathbf { 3 5 . 2 1 }}$	$45.96 / 33.91$	$45.49 / 33.19$	$43.85 / 31.25$
ko	$\mathbf{3 3 . 9 6 / \mathbf { 1 7 . 9 9 }}$	$33.08 / 16.96$	$31.68 / 16.04$	$32.81 / 16.17$
hi	$\mathbf{3 6 . 9 0 / \mathbf { 2 8 . 5 2 }}$	$30.94 / 23.55$	$32.65 / 24.92$	$26.80 / 19.49$
ja*	$\mathbf{2 7 . 8 3 / \mathbf { 2 1 . 2 5 }}$	$18.39 / 12.59$	$20.33 / 13.56$	$15.01 / 9.75$
Average	$\mathbf{6 2 . 2 1 / 5 3 . 2 7}$	$60.91 / 52.12$	$60.26 / 51.34$	$60.62 / 51.46$

Table 4: Evaluations with punctuation included (average UAS\%/LAS\% over 5 runs) on the test sets. The patterns are similar to the punctuation-excluded evaluations in the main content. (Languages are sorted by the wordordering distance to English, '*' refers to results of delexicalized models.)

E Results on the original training sets

Language	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
en	$90.35 / 88.40$	$90.44 / 88.31$	$90.18 / 88.06$	$\mathbf{9 1 . 8 2 / 8 9 . 8 9}$
no	$80.72 / 72.45$	$80.59 / 72.41$	$80.06 / 71.60$	$\mathbf{8 1 . 4 6 / 7 2 . 7 5}$
sv	$80.07 / 71.91$	$80.42 / \mathbf{7 2 . 3 9}$	$79.45 / 71.28$	$\mathbf{8 0 . 8 7 / 7 2 . 2 5}$
fr	$79.31 / 74.73$	$\mathbf{7 9 . 9 9 / 7 5 . 5 2}$	$78.62 / 74.02$	$76.84 / 72.22$
pt	$77.06 / 69.33$	$\mathbf{7 7 . 3 3 / 6 9 . 9 1}$	$75.84 / 68.22$	$75.39 / 67.75$
da	$75.75 / 67.12$	$75.95 / 67.41$	$75.18 / 66.55$	$\mathbf{7 6 . 9 8} / \mathbf{6 7 . 5 0}$
es	$73.91 / 66.48$	$\mathbf{7 4 . 3 9 / 6 7 . 0 3}$	$72.84 / 65.38$	$72.46 / 64.78$
it	$80.37 / 75.48$	$\mathbf{8 0 . 8 9 / 7 5 . 9 9}$	$79.15 / 74.17$	$79.05 / 73.91$
hr	$\mathbf{6 1 . 5 7 / 5 2 . 4 0}$	$59.74 / 50.37$	$59.94 / 50.43$	$60.44 / 50.68$
ca	$74.40 / 65.73$	$\mathbf{7 4 . 9 4 / 6 6 . 2 1}$	$73.01 / 64.42$	$72.75 / 63.68$
pl	$\mathbf{7 5 . 3 2 / 6 3 . 2 6}$	$73.12 / 59.76$	$74.28 / 61.46$	$73.21 / 61.02$
uk	$65.70 / \mathbf{5 7 . 4 8}$	$64.77 / 56.40$	$64.10 / 55.83$	$\mathbf{6 5 . 8 2} / 57.13$
sl	$\mathbf{6 9 . 1 3 / 5 8 . 9 2}$	$67.35 / 56.87$	$67.74 / 57.08$	$68.95 / 58.26$
nl	$68.98 / 60.00$	$68.37 / 59.52$	$68.22 / 59.02$	$\mathbf{6 9 . 1 6 / 6 0 . 1 1}$
bg	$\mathbf{8 0 . 2 5 / 6 8 . 8 8}$	$78.39 / 67.03$	$79.19 / 67.66$	$79.66 / 68.22$
ru	$60.50 / 51.35$	$59.55 / 50.17$	$59.01 / 49.71$	$\mathbf{6 0 . 7 1 / 5 1 . 5 7}$
de	$\mathbf{6 7 . 2 3 / 5 8 . 2 7}$	$66.64 / 57.48$	$66.10 / 56.89$	$65.88 / 56.63$
he	$58.32 / \mathbf{4 9 . 8 0}$	$57.75 / 49.07$	$56.36 / 47.62$	$\mathbf{5 8 . 7 9} / 43.83$
cs	$\mathbf{6 3 . 0 4 / 5 3 . 9 2}$	$61.75 / 52.91$	$61.11 / 51.91$	$62.21 / 52.48$
ro	$\mathbf{6 5 . 3 1 / 5 4 . 2 2}$	$63.17 / 52.16$	$63.03 / 51.95$	$61.78 / 50.52$
sk	$\mathbf{7 6 . 0 7 / 6 2 . 7 5}$	$74.67 / 61.15$	$75.93 / 61.97$	$75.37 / 60.94$
id	$\mathbf{4 7 . 9 2 / 4 1 . 9 3}$	$45.07 / 39.91$	$46.23 / 40.16$	$45.62 / 39.67$
lv	$\mathbf{7 1 . 6 9 / 5 0 . 4 3}$	$\mathbf{7 2 . 4 8 / 5 0 . 8 5}$	$70.24 / 48.97$	$71.60 / 49.56$
fi	$\mathbf{6 4 . 6 4 / 4 6 . 2 1}$	$64.63 / \mathbf{4 6 . 2 2}$	$63.07 / 44.82$	$\mathbf{6 4 . 7 4 / 4 6 . 0 9}$
et	$\mathbf{6 6 . 6 3 / 4 5 . 5 8}$	$65.78 / 45.01$	$64.94 / 44.04$	$65.06 / 44.33$
zh*	$\mathbf{4 1 . 0 5 / \mathbf { 2 3 . 8 5 }}$	$40.11 / 23.02$	$39.49 / 22.68$	$39.89 / 22.49$
ar	$\mathbf{3 8 . 7 4 / \mathbf { 2 8 . 2 4 }}$	$33.66 / 25.44$	$34.25 / 24.69$	$33.31 / 24.86$
la	$\mathbf{4 9 . 0 4 / 3 5 . 4 8}$	$47.12 / 34.36$	$46.78 / 33.56$	$45.26 / 31.97$
ko	$\mathbf{3 4 . 6 2 / 1 5 . 1 4}$	$33.91 / 14.16$	$32.70 / 13.77$	$32.95 / 13.14$
hi	$\mathbf{3 6 . 0 1 / \mathbf { 2 7 . 2 4 }}$	$29.59 / 21.75$	$32.02 / 23.79$	$26.37 / 18.56$
ja*	$\mathbf{2 8 . 1 9 / 2 1 . 7 4}$	$18.23 / 12.68$	$20.53 / 13.78$	$15.21 / 10.37$
Average	$\mathbf{6 4 . 5 7 / 5 4 . 1 4}$	$63.25 / 52.94$	$62.88 / 52.44$	$62.88 / 52.16$

Table 5: Results (average UAS\%/LAS\% over 5 runs, excluding punctuation) on the original training sets. (Languages are sorted by the word-ordering distance to English, '*' refers to results of delexicalized models, 'en ${ }^{\circ}$ means that for English we use results on the test set since models are trained with the English training set.)

F Results on Google Universal Dependency Treebanks v2.0

We also ran our models on Google Universal Dependency Treebanks v2.0 (McDonald et al., 2013), which is an older dataset that was used by (Guo et al., 2015). The results show that our models perform better consistently.

Language	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack	(Guo et al., 2015)
German	$65.03 / 55.03$	$64.60 / 54.57$	$63.63 / 54.40$	$\mathbf{6 5 . 5 1 / 5 5 . 8 2}$	$60.35 / 51.54$
French	$74.45 / 63.28$	$\mathbf{7 6 . 7 5 / 6 5 . 2 0}$	$73.63 / 62.76$	$75.13 / 64.44$	$72.93 / 63.12$
Spanish	$72.00 / 61.50$	$73.99 / 63.46$	$71.73 / 61.42$	$\mathbf{7 4 . 1 3 / 6 4 . 0 0}$	$71.90 / 62.28$

Table 6: Comparisons (UAS\%/LAS\%) on Google Universal Dependency Treebanks v2.0.

G Results on specific dependency types for Czech

In table 7, we show results of Czech on some dependency types with evaluation breakdowns on dependency directions. We select Czech mainly for two reasons: (1) It has the largest dataset; (2) Czech is famous for relatively flexible word order. Generally, we can see that models that are more flexible on word ordering perform better. Interestingly, for objective and subjective types, we can see that LAS scores for all models are quite low even when the correct heads are predicted. The reason might be that even the relative-positional self-attention encoder can capture some positional information which further reveals word ordering information in some way.

(ADP, NOUN, case): (mod-first\% in English is 99.92\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-first	99.99\%	75.34/75.34	74.62/74.61	74.46/74.43	74.17/74.08
head-first	0.01\%				
all	100.00\%	75.33/75.33	74.61/74.61	74.45/74.43	74.17/74.07
(NOUN, NOUN, nmod): (mod-first\% in English is 4.72\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-first	0.97\%				
head-fi	. 03	21.38/17.85	18.55/16.20	20.49/16.61	22.51/19.16
all	100.00\%	21.64/17.68	18.86/16.05	20.77/16.45	22.78/18.98
(ADJ, NOUN, amod): (mod-first\% in English is 99.01\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-first	92.99\%	88.93/88.92	89.42/89.41	85.39/85.21	87.26/86.37
head-fir	7.01\%	41.80/37.03	36.52/32.36	34.82/27.19	40.59/19.85
all	100.00\%	85.63/85.29	85.72/85.41	81.85/81.14	83.98/81.71
(NOUN, VERB, obl): (mod-first\% in English is 9.62\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
m	37.80\%	48.84/40.33	46.39/38.49	48.75/41.08	50.16/41.64
head-fir	62.20\%	62.81/55.97	60.38/53.41	62.22/55.37	61.73/55.32
all	100.00\%	57.53/50.06	55.09/47.77	57.13/49.97	57.36/50.15
(NOUN, VERB, obj): (mod-first\% in English is 0.72\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-first	20.65\%	55.56/0.64	53.75/0.46	54.08/0.37	60.34/0.18
head-fir	79.35\%	73.18/65.24	71.30/62.28	72.12/63.81	72.76/64.65
all	100.00\%	69.54/51.90	67.68/49.52	68.39/50.71	70.20/51.34
(NOUN, VERB, nsubj): (mod-first\% in English is 85.07\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-fir	60.22\%	61.42/58.33	58.12/54.51	60.88/58.24	60.67/58.98
head-f	39.78\%	64.07/3.83	62.93/3.18	62.38/2.97	59.94/4.42
all	100.00\%	62.47/36.65	60.03/34.09	61.48/36.25	60.38/37.28
(ADV, VERB, advmod): (mod-first\% in English is 58.82\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-fir	70.15\%	88.23/87.49	86.43/85.48	86.65/85.30	86.64/83.72
head-fir	29.85\%	65.79/65.28	65.02/64.33	65.33/64.35	61.93/60.53
all	100.00\%	81.53/80.86	80.04/79.17	80.29/79.05	79.26/76.80
(AUX, VERB, aux): (mod-first\% in English is 99.64\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-first	83.71\%	88.78/88.19	84.44/83.52	89.03/86.59	82.54/76.33
head-fir	16.29\%	68.18/65.28	54.59/50.87	63.96/54.02	56.67/20.24
all	100.00\%	85.42/84.46	79.57/78.20	84.94/81.28	78.32/67.19
(VERB, VERB, advcl): (mod-first\% in English is 31.02\%.)					
Direction	Percentage	SelfAtt-Graph	RNN-Graph	SelfAtt-Stack	RNN-Stack
mod-first	41.75\%	57.51/55.61	56.98/55.60	57.54/55.03	54.74/51.66
head-first	58.25\%	71.52/56.68	67.39/56.08	67.27/54.17	65.93/54.13
all	100.00\%	65.67/56.23	63.04/55.88	63.21/54.53	61.26/53.10

Table 7: Evaluation breakdowns (UAS\%/LAS\%) on dependency directions for Czech on some specific dependency types. "mod-first" means the dependency edges whose modifier is before head, "head-first" means the opposite, and "all" indicates both "mod-first" and "head-first". "-" replaces results that are unstable because of rare appearance (below 1\%).

References

Timothy Dozat and Christopher D Manning. 2017. Deep biaffine attention for neural dependency parsing. Internation Conference on Learning Representations .

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. 2015. Cross-lingual dependency parsing based on distributed representations. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). volume 1, pages 1234-1244.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. 2018. Stack-pointer networks for dependency parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee. 2013. Universal dependency annotation for multilingual parsing. In Proceedings of ACL-2013. Sofia, Bulgaria, pages 92-97.

