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Q1: Are all languages equally
hard to model?

Not with current models, all models we
test have very different performance on
different languages.

Q2: So what makes a language
hard to model?

Hypothesis: inflectional morphology.

→ LM performance negatively correlated
with morphological counting complexity
(MCC; Sagot, 2013)

→ Correlation disappears when modeling
lemmata (obtained using UDPipe
(Straka et al., 2016)) instead of forms
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Words− Lemmata
Inflection
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Each point is a language, the cost of modeling is plotted against the MCC of a language.

Lemmata vs forms
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All languages are below y = x .
Richer morphology (darker
circles)  farther from it.

Differing corpora are unfair
→ Multi-text

Domain differences impact estimates, so use
aligned parallel text, 21 usable languages in
Europarl (Koehn, 2005):

bg/cs/da/de/el/en/es/fr/it
lt/lv/nl/pl/pt/ro/sk/sl/sv

Indo-European

et/fi/hu
Uralic

Translationese (Baker, 1993, translations is
stylistically different from “native” text) only
underestimates the difficulty of non-English
languages—and we find the opposite!

Closed-vocab is unfair
→ Open-vocab LMs

Replacing rare words with UNK leads to unfairly good
scores for languages with many word types (e.g.,
morphologically rich languages).
So instead use open-vocabulary LMs like:

1 Kneser-Ney smoothed n-gram LM over “flat”
hybrid representations (Bisani and Ney, 2005):

the G A N EOW trains

3-gram

EOS

2 A character-level LSTM LM (Sundermeyer et al.,
2012; Zaremba et al., 2014):

p(ct | c<i) = softmax(Whi + b)
hi = LSTM(hi−1, ci−1)

BPC is unfair→ Bits per English character

BPC (i.e., the information contained in one character) values depend on a language
and cannot be compared. Example: these three strings that contain equal
information (total cross-entropy is around 6 bits for each of them), but different BPC:

Sentence/word/lemma Σ bits BPC BPEC

EN c o u p ≈ 6 6/4
= 1.5

6/4
= 1.5

DE P u t s c h ≈ 6 6/6
= 1.0

6/4
= 1.5

CZ p u č ≈ 6 6/3
= 2.0

6/4
= 1.5

We normalize the total number of bits (i.e., information) for length, arbitrarily
choosing the number of English characters in the utterance, obtaining bits per
English character (BPEC).


