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Appendix A: Derivation of mean-field variational updates
Introduction. Here we derive mean field variational updates for MOMRESP. Although
this derivation is largely a mechanical exercise, it is our belief that there is a contingent
of crowdsourcing practitioners whose background is more practical than theoretical and
who may appreciate seeing the mechanics of mean-field variational inference presented
in a high level of detail for a model they are familiar with. The updates for LOGRESP
involve so much overlap with those for MOMRESP that we leave them as an exercise
for the interested reader.
Problem Setup. Given some posterior distribution p∗ over variables zzz, our goal is to
search among some family of simpler approximate tractable models Q and identify
the q(zzz) ∈ Q that most closely resembles p∗(zzz). If we choose Q to be the set of fully
factored models such that q(zzz) = ∏qi(zi) (the mean-field assumption) then the q that
minimizes KL divergence KL(q||p∗) can be shown to have the following form:

logqi(zi) = Eq−i [log p̃]+ const (8)

where p̃ is the unnormalized posterior and q−i = {qi′ : i′ 6= i}. For a derivation of this
property, see Chapter 21.3 of Kevin Murphy’s excellent reference, Machine Learning:
A Probabilistic Perpective.
Notation. We adopt slightly different notation here than is used in the paper. Variables
that represent non-scalars (e.g., vectors or matrices) after resolving subscripts are bolded.
That is, we might use zzz to denote a matrix, zzzi a vector, and zi j a scalar. Furthermore,
in order to clearly distinguish among variational distributions each is given a unique
distributional name rather than simply being distinguished by its arguments as in the
main paper. Sums are simplified by providing only a single subscript. ∑i is short for
∑i∈N , ∑ j is short for ∑ j∈J , and so on.
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Mean-Field Variational Update Equations
The unnormalized posterior p̃ required by Equation 8 is proportional to the full joint.
Therefore we begin by writing out the full (unnormalized) joint according to MOM-
RESP by starting with Equation 3 from the main paper, plugging in distributional
forms, and then simplifying by omitting constants and combining terms from conjugate
distributions:

p̃(θθθ ,γγγ,φφφ ,yyy|xxx,aaa) ∝ p(θθθ ,γγγ,φφφ ,yyy,xxx,aaa) (9)

∝
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∏
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where n(θ)k = ∑i1(yi = k), n(γ)jkk′ = ∑i ai jk′1(yi = k), and n(φ)k f = ∑i xi f1(yi = k). That is,

n(θ)k is the number of instances labeled k, n(γ)jkk′ is the number of times that annotator

j chose annotation k′ on instances with true label k, and n(φ)k f is the number of times
feature f occurs with instances having label k.

We next take the log of Equation 10 to get the unnormalized posterior p̃. Note that
in this step the multinomial coefficients consituting the last two terms of Equation 10
are absorbed into the constant of proportionality because they are constant in the context
of posterior inference of p∗(θθθ ,γγγ,φφφ ,yyy|xxx,aaa) where aaa and xxx are fixed and known.

log p̃ = ∑
k
(b(θ)k +n(θ)k −1) logθk +∑

j
∑
k

∑
k′
(b(γ)jkk′γ j +n(γ)jkk′ −1) logγ jkk′ (11)

+∑
k

∑
f
(b(φ)k f +n(φ)k f −1) logφk f

Let the approximate distribution q be fully factored:

q(θθθ ,γγγ,φφφ ,yyy) = π(θ)∏
j

∏
k

ν(γ jk)∏
k

λ (φk)∏
i

g(yi) (12)

We derive the mean-field update equation for each factor in turn. The update
equation will lead us to a concrete functional form for each variational distribution with
appropriate variational paramters. The derivations make heavy use of the following five
properties of expectations:

Ep(x,y)[a f (x)+bg(y)] = aEp(x,y)[ f (x)]+bEp(x,y)[g(y)] linearity (13)

Ep(x,y)[ f (x)] = Ep(x)[ f (x)] marginal (14)

Ep(x)[1(x = k)] = p(k) delta (15)

Ep(x,y)[ f (x)g(y)] = Ep(x)[ f (x)]Ep(y)[g(y)]

iff p(x,y) = p(x)p(y) independence (16)
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Ep(x)[K] = K constant (17)

Mean-field update and functional form for π(θ)

logπ(θ) = Eννν ,ggg,λλλ [log p̃] (18)

= Eννν ,ggg,λλλ [∑
k
(b(θ)k +n(θ)k −1) logθk]+ const (19)

= ∑
k

Eggg[(b
(θ)
k +n(θ)k −1)] logθk + const (20)

= ∑
k
(b(θ)k +Eggg[n

(θ)
k ]−1) logθk + const (21)

= ∑
k
(b(θ)k +∑

i
Egi [1(yi = k)]−1) logθk + const (22)

= ∑
k
(b(θ)k +∑

i
gi(k)−1) logθk + const (23)

π(θ) ∝ ∏
k

θ
b(θ)k +∑i gi(k)−1
k (24)

= Dirichlet(ααα(θ)) (25)

where α(θk) = b(θ)k +∑i gi(k).
Explanation. Equation 18 instantiates Equation 8 for π . Equation 19 plugs in

the functional form of the posterior from Equation 11 and applies the linearity of
expectations (Equation 13) to distribute the expectation over the sum. Terms not
involving θ are absorbed into a constant. Equation 20 again applies the linearity of
expectation over addition and multiplication and then applies the marginal property of
expectations (Equation 14) so that the expectation is with respect to only the variational
distribution ggg needed to compute the expectation of n(θ)k . Equation 21 applies the
linearity of expectations and simplifies the expectations of constants (Equation 17).
Equation 22 substitutes the definition of n(θ)k and applies the linearity and marginal
properties of expectations. Equation 23 simplifies expectations applied to delta functions
(Equation 15). We then recognize the kernel of a log Dirichlet distribution.

The remaining derivations follow very similar lines of reasoning, so we only offer
explanations where they differ from the patterns seen above. In particular, ν jk(γ jk) and
λk(φk) are nearly identical so no explanation will be given.

Mean-field update and functional form for ν jk(γ jk)

logν jk(γ jk) = Eννν− jk,ggg,λλλ ,π [log p̃]

= Eννν− jk,ggg,λλλ ,π [∑
j′

∑
k′′

∑
k′
(b(γ)j′k′′k′ +n(γ)j′k′′k′ −1) logγ j′k′′k′ ]+ const

= ∑
j′

∑
k′′

∑
k′

Eggg[(b
(γ)
j′k′′k′ +n(γ)j′k′′k′ −1) logγ j′k′′k′ ]+ const

= ∑
k′
(b(γ)jkk′ +Eggg[n

(γ)
jkk′ ]−1)] logγ jkk′ + const
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= ∑
k′
(b(γ)jkk′ +∑

i
ai jk′Egi [1(yi = k)]−1) logγ jkk′ + const

= ∑
k′
(b(γ)jkk′ +∑

i
ai jk′gi(k)−1) logγ jkk′ + const

ν jk(γ jk) ∝ ∏
k′

γ
b(γ)

jkk′+∑i ai jk′gi(k)−1

jkk′

= Dirichlet(ααα(γ)
jk )

where α
(γ)
jkk′ = b(γ)jkk′ +∑i ai jk′gi(k).

Mean-field update and functional form for λk(φk)

logλk(φk) = Eννν ,ggg,λλλ−k,π
[log p̃]+ const

= Eννν ,ggg,λλλ−k,π

[
∑
k′

∑
f
(b(φ)k′ f +n(φ)k′ f −1) logφk′ f

]
+ const

= Eggg,λλλ−k

[
∑

f
(b(φ)k f +n(φ)k f −1)

]
logφk f + const

= ∑
f
(b(φ)k f +Eggg[n

(φ)
k f ]−1) logφk f + const

= ∑
f
(b(φ)k f +Eggg[∑

i
xi f1(yi = k)]−1) logφk f + const

= ∑
f
(b(φ)k f +∑

i
xi f gi(k)−1) logφk f + const

λk(φk) ∝ ∏
f

φ
b(φ)k f +∑i xi f gi(k)−1
k f

= Dirichlet(ααα(φ)
k )

where αk f = b(φ)k f +∑i xi f gi(k)

Mean-field update and functional form for gi(yi)

loggi(yi) = Eννν ,ggg−i,λλλ ,π
[log p̃]+ const

= Eννν ,ggg−i,λλλ ,π
[∑

k
(b(θ)k +n(θ)k −1) logθk +∑

j
∑
k

∑
k′
(b(γ)jkk′ +n(γ)jkk′ −1) logγ jkk′

+∑
k

∑
f
(b(φ)k f +n(φ)k f −1) logφk f ]+ const

= ∑
k

Eggg−i,πk [(b
(θ)
k +n(θ)k −1) logθk]+∑

j
∑
k

∑
k′

Eν jk,ggg−i [(b
(γ)
jkk′ +n(γ)jkk′ −1) logγ jkk′ ]

+∑
k′

∑
f

Eggg−i,λk
[(b(φ)k f +n(φ)k f −1) logφk f ]+ const
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= ∑
k
(b(θ)k +Eggg−i [n

(θ)
k ]−1)Eπk [logθk]+∑

j
∑
k

∑
k′
(b(γ)jkk′ +Eggg−i [n

(γ)
jkk′ ]−1)Eν jk [logγ jkk′ ]

(26)

+∑
k

∑
f
(b(φ)k f +Eggg−i [n

(φ)
k f ]−1)Eλk

[logφk f ]+ const

= ∑
k
(b(θ)k +Eggg−i [∑

i′
1(yi′ = k)]−1)Eπk [logθk]

+∑
j
∑
k

∑
k′
(b(γ)jkk′ +Eggg−i [∑

i′
ai′ jk′1(yi′ = k)]−1)Eν jk [logγ jkk′ ]

+∑
k

∑
f

Eggg−i [∑
i′

xi′ f1(yi′ = k)]Eλk
[logφk f ]+ const

= ∑
k

Eggg−i [∑
i′
1(yi′ = k)]Eπk [logθk]

+∑
j
∑
k

∑
k′

Eggg−i [∑
i′

ai′ jk′1(yi′ = k)]Eν jk [logγ jkk′ ]

+∑
k

∑
f

xi f1(yi = k)Eλk
[logφk f ]+ const (27)

= ∑
k
1(yi = k)Eπk [logθk]+∑

j
∑
k

∑
k′

ai jk′1(yi = k)Eν jk [logγ jkk′ ]

+∑
k

∑
f

xi f1(yi = k)Eλk
[logφk f ]+ const

= ∑
k
1(yi = k)

[
Eπk [logθk]+∑

j
∑
k′

ai jk′Eν jk [logγ jkk′ ]+∑
f

xi f Eλk
[logφk f ]

]
+ const

(28)

gi(yi) ∝ ∏
k

exp
[
Eπk [logθk]+∑

j
∑
k′

ai jk′Eν jk [logγ jkk′ ]+∑
f

xi f Eλk
[logφk f ]

]
1(yi=k)

∝ ∏
k

α
(y)1(yi=k)
ik

=Categorical(ααα(y)
i )

where α
(y)
ik = Eπk [logθk] +∑ j ∑k′ ai jk′Eν jk [logγ jkk′ ] +∑ f xi f Eλk

[logφk f ]. As noted in
the main paper, the expected value of a log term with respect to a Dirichlet distribution,
such as Eπk [logθk], can be computed analytically as ψ(α

(θ)
k )−ψ(∑k′ α

(θ)
k′ ), where ψ

is the digamma function (and similarly for Eν jk [logγ jkk′ ] and Eλk
[logφk f ]).

Explanation. This derivation differs slightly in a couple of locations from what we
have seen before. In Equation 26 we use the independence property of expectations
(Equation 16) to separate expectations with repect to ggg from expectations with respect
to approximate distributions πππ , ννν , and λλλ . We can do this because all distributions in our
approximate model are independent of one another. Equation 27 distributes Dirichlet
expectation terms such as Eν jk [logγ jkk′ ] and then absorbs terms that do not involve yi
into the constant. Equation 28 combines sums over k and then factors out the common
multiplier 1(yi = k).
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Lower Bound
The mean-field variational updates we derived above are designed to minimize the
objective KL(q||p∗). Computing values of this objective is highly useful during opti-
mization. Tracking the objective’s rate of change after each iteration of the optimization
algorithm allows us to assess convergence. Second, the objective function provides a
powerful debugging tool: if the objective does not improve after an update (modulo
floating point noise after convergence) then there is a bug in that particular update. Un-
fortunately, directly computing KL(q||p∗) is intractable because it involves evaluating
the intractable denominator of p∗(θ ,γ,φ ,y|x,a) = p(θ ,γ,φ ,y,x,a)

p(a,x) = p(θ ,γ,φ ,y,x,a)∫
p(θ ,γ,φ ,y,x,a)dθ ,γ,φ ,y .

However, because KL(q||p∗) = KL(q||p)+ p(x,a) and p(x,a) is constant, minimizing
KL(q||p∗) is equivalent to minimizing KL(q||p), which is tractable to evaluate. Finally,
it is typical to treat mean-field optimization as a maximization rather than a minimization
problem. We therefore use −KL(q||p) as the objective function for the purposes of
tracking convergence and debugging. −KL(q||p) is commonly referred to as a lower
bound because it is a lower bound on the log marginal likelihood of the model p(x,a),
giving it additional theoretical interest. However, its immediate practical value is as the
objective function being optimized by mean-field variational updates.

We first break −KL(q||p) into two manageable parts: entropy H(q), and cross
entropy H(q|p):

−KL(q||p) =
∫

q(θθθ ,γγγ,φφφ ,yyy) log
p(θθθ ,γγγ,φφφ ,yyy,xxx,aaa)

q(θθθ ,γγγ,φφφ ,yyy)
dθθθ ,γγγ,φφφ ,yyy

= Eq[log p(θθθ ,γγγ,φφφ ,yyy,xxx,aaa)]−Eq[logq(θθθ ,γγγ,φφφ ,yyy)]

=−H(q|p)+H(q)

Next we simplify each term in the bound separately. An important difference between
these derivations and those we did for the mean-field updates is that we must evaluate
this function exactly and therefore cannot drop any constants. Therefore when we
plug in the log joint distribution we use the full, unsimplified form of each distribution
rather than the simplified form in Equation 11. The reasoning behind each step here is
similar enough to those in the update derivations above that no additional explanation is
provided.

The first term of the lower bound −H(q|p) is

Eq[log p(θθθ ,γγγ,φφφ ,yyy,xxx,aaa)]

= Eq

[
log p(θθθ)+∑

j
∑
k

log p(γγγ jk)+∑
k

log p(φφφ k)+∑
i

log p(yi|θθθ)

+∑
i

∑
j

log p(aaai j|yi,γγγ jyi
)+∑

i
log p(xxxi|φφφ yi

)
]

= Eq

[
− logB(bbb(θ))+∑

k
(b(θ)k −1) logθk

+∑
j
∑
k
− logB(bbb(γ)jk )+∑

k′
(b(γ)jkk′γ jk−1) logγ jkk′
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+∑
k
− logB(bbb(φ)k )+∑

f
(b(φ)k f φk−1) logφk f

+∑
i

logθyi

+∑
i

∑
j

(
log |aaai j|1!−∑

k
logai jk!

)
+∑

k
ai jk logγ jyi

+∑
i

(
log |xxxi|1!−∑

f
logxi f !

)
+∑

f
xi f logφyi f

]
= Eq

[
− logB(bbb(θ))+∑

k
(b(θ)k −1) logθk

+∑
j
∑
k
− logB(bbb(γ)jk )+∑

k′
(b(γ)jkk′γ jk−1) logγ jkk′

+∑
k
− logB(bbb(φ)k )+∑

f
(b(φ)k f φk−1) logφk f

+∑
k

n(θ)k

+∑
i

∑
j

(
log |aaai j|1!−∑

k
logai jk!

)
+∑

i
∑

j
∑
k′

n(γ)jkk′ logγ jkk′

+∑
i

(
log |xxxi|1!−∑

f
logxi f !

)
+∑

k
∑

f
n(φ)k f logφk f

]
= Eq

[
− logB(bbb(θ))+∑

k
(b(θ)k +n(θ)k −1) logθk

+∑
j
∑
k
− logB(bbb(γ)jk )+∑

k′
(b(γ)jkk′ +n(γ)jkk′ −1) logγ jkk′

+∑
k
− logB(bbb(φ)k )+∑

f
(b(φ)k f +n(φ)k f −1) logφk f

+∑
i

∑
j

(
log |aaai j|1!−∑

k
logai jk!

)
+∑

i

(
log |xxxi|1!−∑

f
logxi f !

)]
=− logB(bbb(θ))+∑

k
Eπ,ggg[(b

(θ)
k +n(θ)k −1) logθk]

+∑
j
∑
k
− logB(bbb(γ)jk )+∑

k′
Eν jk,ggg[(b

(γ)
jkk′ +n(γ)jkk′ −1) logγ jkk′ ]

+∑
k
− logB(bbb(φ)k )+∑

f
Eλk,hhh[(b

(φ)
k f +n(φ)k f −1) logφk f ]

+∑
i

∑
j

(
log |aaai j|1!−∑

k
logai jk!

)
+∑

i

(
log |xxxi|1!−∑

f
logxi f !

)
=− logB(bbb(θ))+∑

k
(b(θ)k +∑

i
gi(k)−1)Eπ [logθk]

+∑
j
∑
k
− logB(bbb(γ)jk )+∑

k′
(b(γ)jkk′ +∑

i
ai jk′gi(k)−1)Eν jk [logγ jkk′ ]
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+∑
k
− logB(bbb(φ)k )+∑

f
(b(φ)k f +∑

i
xi f hi(k)−1)Eλk

[logφk f ]

+∑
i

∑
j

(
log |aaai j|1!−∑

k
logai jk!

)
+∑

i

(
log |xxxi|1!−∑

f
logxi f !

)
where B(·) is the multivariate Beta function that normalizes a Dirichlet distribution.

The second term of the lower bound H(q) is

Eq[logq(θ ,γγγ,φφφ ,yyy)]

= Eq

[
logπ(θθθ)+∑

j
∑
k

ν jk(γγγ jk)+∑
k

λk(φφφ k)+∑
i

gi(yi)
]

= Eq

[
−B(ααα(θ))+∑

k
(α

(θ)
k −1) logθk

+∑
j
∑
k
− logB(ααα(γ)

jk )+∑
k′
(α

(γ)
jk −1) logγ jkk′

+∑
k
− logB(ααα(φ)

k )+∑
f
(α

(φ)
k f −1) logφk f

+∑
i

logα
(y)
yi

]
=−B(ααα(θ))+∑

k
(α

(θ)
k −1)Eπ [logθk]

+∑
j
∑
k
− logB(ααα(γ)

jk )+∑
k′
(α

(γ)
jk −1)Eν jk [logγ jkk′ ]

+∑
k
− logB(ααα(φ)

k )+∑
f
(α

(φ)
k f −1)Eλk

[logφk f ]

+∑
i

Egi [logα
(y)
yi ]

=−B(ααα(θ))+∑
k
(α

(θ)
k −1)Eπ [logθk]

+∑
j
∑
k
− logB(ααα(γ)

jk )+∑
k′
(α

(γ)
jk −1)Eν jk [logγ jkk′ ]

+∑
k
− logB(ααα(φ)

k )+∑
f
(α

(φ)
k f −1)Eλk

[logφk f ]

+∑
i

∑
k

α
(y)
k logα

(y)
k
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