

Encoding of Phonology in an RNN model of Grounded Speech

Afra Alishahi, Marie Barking, Grzegorz Chrupała

A Realistic Language Learning Scenario

Grounded Language Learning

Analysis of Linguistic Knowledge

Roy & Pentland (2002) Yu & Ballard (2014) Harwath et al. (2016) Gelderloos & Chrupala (2016) Harwath & Glass (2017, Chrupala et al. (2017) Elman (1991) Mohamed et al. (2012) Frank et al. (2013) Kadar et al. (2016) Li et al. (2016) elderloos & Chrupala (2016) Linzen et al. (2016) Adi et al. (2017)

We are here!

A Model of Grounded Speech Perception

Joint Semantic Space

VGG-16: Simonyan & Zisserman (2014)

Speech Model

- Attention: weighted sum of last RHN layer units
- RHN: Recurrent Highway Networks (Zilly et al., 2016)
- Convolution: subsampling MFCC vector

Chrupała et al., ACL'2017

- Representation of language in a model of visually grounded speech signal
 - Using hidden layer activations in a set of auxiliary tasks
 - Predicting utterance length and content, measuring representational similarity and disambiguation of homonyms
- Main findings:
 - Encodings of form and meaning emerge and evolve in hidden layers of stacked RNNs processing grounded speech

Current Study

- Questions: how is phonology encoded in
 - MFCC features extracted from speech signal?
 - activations of the layers of the model?
- Data: Synthetically Spoken COCO dataset
- Experiments:
 - Phoneme decoding and clustering
 - Phoneme discrimination
 - Synonym discrimination

Phoneme Decoding

• Identifying phonemes from speech signal/activation patterns: supervised classification of aligned phonemes

• Speech signal was aligned with phonemic transcription using Gentle toolkit (based on Kaldi, Povey et al., 2011)

e b'3:d w'5:ks ,on e b'i:m

Phoneme Decoding

• Identifying phonemes from speech signal/activation patterns: supervised classification of aligned phonemes

Phoneme Discrimination

• ABX task (Schatz et al., 2013): discriminate minimal pairs; is X closer to A or to B?

- A, B and X are CV syllables
- (A,B) and (B,X) are minimum pairs, but (A,X) are not (34,288 tuples in total)

Phoneme Discrimination

0.9-

0.8-

Accuracy

0.6-

0.5-

Phoneme Discrimination by Class

• The task is most challenging when the target (B) and distractor (A) belong to the same phoneme class

Phoneme Discrimination by Class

• The task is most challenging when the target (B) and distractor (A) belong to the same phoneme class

i i v u
o c ic % G 3 9
αι æ Λ α αυ
jılw
m n ŋ
pbtdkg
fvθðsz∫3h
ţф

Phoneme Discrimination by Class

• The task is most challenging when the target (B) and distractor (A) belong to the same phoneme class

Organization of Phonemes

• Agglomerative hierarchical clustering of phoneme activation vectors from the first hidden layer:

Synonym Discrimination

• Distinguishing between synonym pairs in the same context:

A girl looking at a photo

A girl looking at a **picture**

• Synonyms were selected using WordNet synsets:

- The pair have the same POS tag and are interchangeable
- The pair clearly differ in form (not *donut/doughnut*)
- The more frequent token in a pair constitutes less than 95% of the occurrences.

0.3

- cut.slice make.prepare
- someone.person
 photo.picture
- picture.image
 kid.child
- photograph.picture
 slice.piece

- bicycle.bike
 photograph.photo
 couch.sofa
- tv.television
- vegetable.veggie

- sidewalk.pavement
 rock.stone
- store.shop
- purse.bag
- assortment.variety
- spot.place
- pier.dock direction.way
- carpet.rug bun.roll
- large.big small.little

Conclusion

- Phoneme representations are most salient in lower layers
- Large amount of phonological information persists up to the top recurrent layer
- The attention layer filters out and significantly attenuates encoding of phonology and makes utterance embeddings more invariant to synonymy

Code: https://github.com/gchrupala/encoding-of-phonology