Using Word Embedding for Cross-Language Plagiarism Detection

Authors

Jérémy Ferrero

Frédéric Agnès

Laurent Besacier

Didier Schwab

What is Cross-Language Plagiarism Detection?

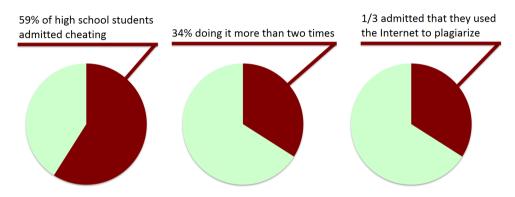
Cross-Language Plagiarism is a plagiarism by translation, i.e. a text has been plagiarized while being translated (manually or automatically).

> présentation d'un tel log qui soit à la fois concise et exploitable. L'idée de base est qu'une requête résume une autre requête et qu'un log, qui est une séquence de requêtes, résume un autre log. Nous proposons également plusieurs stratégies

for summarizing and querying OLAP query logs. The basic idea is that a query summarizes another query and that a log, which is a sequence of queries, summarizes another log. Our formal framework includes a language to declaratively specify a

From a text in a language L, we must find similar passage(s) in other text(s) from among a set of candidate texts in language L' (cross-language textual similarity).

Why is it so important?



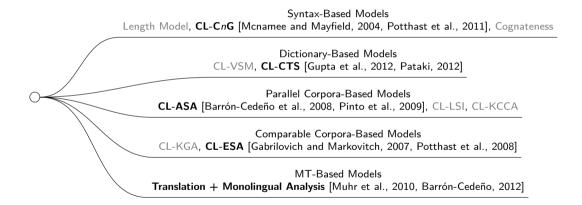
Sources:

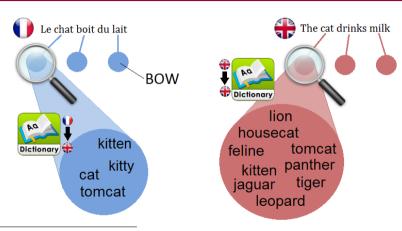
- McCabe, D. (2010). Students' cheating takes a high-tech turn. In Rutgers Business School.
- Josephson Institute. (2011). What would honest Abe Lincoln say?

Research Questions

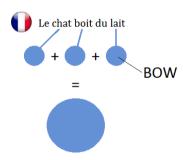
- Are Word Embeddings useful for cross-language plagiarism detection?
- Is syntax weighting in distributed representations of sentences useful for the text entailment?
- Are cross-language plagiarism detection methods complementary?

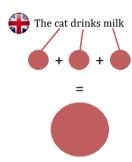
State-of-the-Art Methods

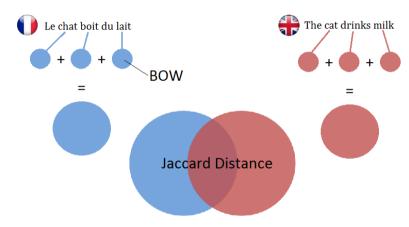


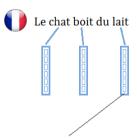


We use DBNary [Sérasset, 2015] as linked lexical resource.

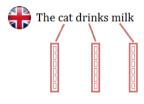


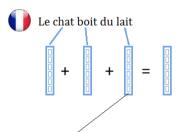




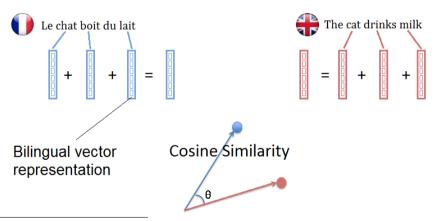


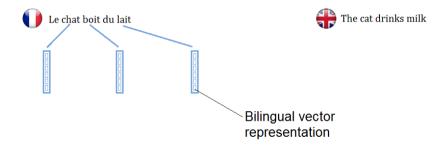
Bilingual vector representation

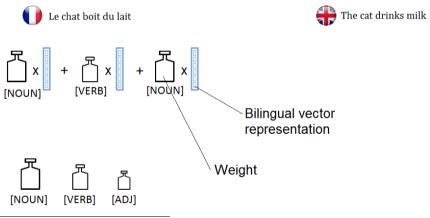


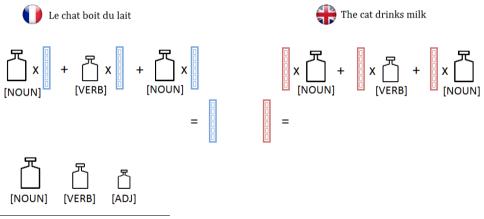


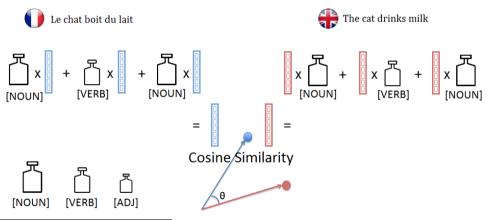
Bilingual vector representation











Evaluation Dataset

[Ferrero et al., 2016]¹

- French, English and Spanish;
- Parallel and comparable (mix of Wikipedia, conference papers, product reviews, Europarl and JRC);
- Different granularities: document level, sentence level and chunk level;
- Human and machine translated texts;
- Obfuscated (to make the similarity detection more complicated) and without added noise;
- Written and translated by multiple types of authors;
- Cover various fields.

https://github.com/FerreroJeremy/Cross-Language-Dataset

¹A Multilingual, Multi-style and Multi-granularity Dataset for Cross-language Textual Similarity Detection. In Proceedings of LREC 2016.

Evaluation Protocol

- We compared each English textual unit to its corresponding French unit and to 999 other units randomly selected;
- We threshold the obtained distance matrix to find the threshold giving the best F₁ score;
- We repeat these two steps 10 times, leading to a 10 folds:
 - 2 folds for tuning (CL-WESS) and fusion (Decision Tree)
 - 8 folds for validation

	Overall (%)						
	Chunk-Level	Sentence-Level					
Stat	State-of-the-Art Methods						
CL-C3G	50.76	49.34					
CL-CTS	42.84	47.50					
CL-ASA	47.32	35.81					
CL-ESA	14.81	14.44					
T+MA	37.12	37.42					
Ne	w Proposed Me	thods					
CL-CTS-WE	46.67	50.69					
CL-WES	41.95	41.43					
CL-WESS	53.73	56.35					
Decision Tree	89.15	88.50					

Table: Average F_1 scores of methods applied on EN \rightarrow FR sub-corpora.

- CL-CTS-WE boosts CL-CTS (+3.83% on chunks and +3.19% on sentences);
- CL-WESS boosts CL-WES (+11.78% on chunks and +14.92% on sentences);
- CL-WESS is better than CL-C3G (+2.97% on chunks and +7.01% on sentences);
- Decision Tree fusion significantly improves the results.

 $\label{lem:cl-cost} \text{CL-CTS-WE: Cross-Language Conceptual Thesaurus-based Similarity with Word-Embedding}$

	Overall (%)						
	Chunk-Level	Sentence-Level					
Stat	State-of-the-Art Methods						
CL-C3G	50.76	49.34					
CL-CTS	42.84	47.50					
CL-ASA	47.32	35.81					
CL-ESA	14.81	14.44					
T+MA	37.12	37.42					
Ne	w Proposed Me	thods					
CL-CTS-WE	46.67	50.69					
CL-WES	41.95	41.43					
CL-WESS	53.73	56.35					
Decision Tree	89.15	88.50					

Table: Average F_1 scores of methods applied on EN \rightarrow FR sub-corpora.

- CL-CTS-WE boosts CL-CTS (+3.83% on chunks and +3.19% on sentences);
- CL-WESS boosts CL-WES (+11.78% on chunks and +14.92% on sentences);
- CL-WESS is better than CL-C3G (+2.97% on chunks and +7.01% on sentences);
- Decision Tree fusion significantly improves the results.

CL-WES: Cross-Language Word Embedding-based Similarity
CL-WESS: Cross-Language Word Embedding-based Syntax Similarity

	Overall (%)						
	Chunk-Level	Sentence-Level					
Stat	State-of-the-Art Methods						
CL-C3G	50.76	49.34					
CL-CTS	42.84	47.50					
CL-ASA	47.32	35.81					
CL-ESA	14.81	14.44					
T+MA	37.12	37.42					
Ne	w Proposed Me	thods					
CL-CTS-WE	46.67	50.69					
CL-WES	41.95	41.43					
CL-WESS	53.73	56.35					
Decision Tree	89.15	88.50					

Table: Average F_1 scores of methods applied on EN \rightarrow FR sub-corpora.

- CL-CTS-WE boosts CL-CTS (+3.83% on chunks and +3.19% on sentences);
- CL-WESS boosts CL-WES (+11.78% on chunks and +14.92% on sentences);
- CL-WESS is better than CL-C3G (+2.97% on chunks and +7.01% on sentences);
- Decision Tree fusion significantly improves the results.

CL-C3G: Cross-Language Character 3-Gram
CL-WESS: Cross-Language Word Embedding-based Syntax Similarity

Overall (%)				
	Chunk-Level	Sentence-Level		
Stat	e-of-the-Art Me	ethods		
CL-C3G	50.76	49.34		
CL-CTS	42.84	47.50		
CL-ASA	47.32	35.81		
CL-ESA	14.81	14.44		
T + M A	37.12	37.42		
New Proposed Methods				
CL-CTS-WE	46.67	50.69		
CL-WES	41.95	41.43		
CL-WESS	53.73	56.35		
Decision Tree	89.15	88.50		

Table: Average F_1 scores of methods applied on EN \rightarrow FR sub-corpora.

- CL-CTS-WE boosts CL-CTS (+3.83% on chunks and +3.19% on sentences);
- CL-WESS boosts CL-WES (+11.78% on chunks and +14.92% on sentences);
- CL-WESS is better than CL-C3G (+2.97% on chunks and +7.01% on sentences);
- Decision Tree fusion significantly improves the results.

Decision Tree fusion: C4.5 [Quinlan, 1993]

Conclusion

- Augmentation of several baseline approaches using word embeddings instead of lexical resources;
- CL-WESS beats in overall the precedent best state-of-the-art methods;
- Methods are complementary and their fusion significantly helps cross-language textual similarity detection performance;
- Winning method at SemEval-2017 Task 1 track 4a, i.e. the task on Spanish-English Cross-lingual Semantic Textual Similarity detection.

Thank you for your attention. Do you have any questions?

- **☞** @FerreroJeremy
- github.com/FerreroJeremy
- in fr.linkedin.com/in/FerreroJeremy
- R⁶ researchgate.net/profile/Jeremy_Ferrero

- CL-CTS-WE uses the top 10 closest words in the embeddings model to build the BOW of a word;
- A BOW of a sentence is a merge of the BOW of its words;
- Jaccard distance between the two BOW.

The similarity between two sentences S and S' is calculated by Cosine Distance between the two vectors V and V', built such as:

$$V(S) = \sum_{i=1}^{|S|} (vector(u_i))$$
 (1)

- u_i is the i^{th} word of S;
- vector is the function which gives the word embedding vector of a word.

This feature is available in MultiVec² [Berard et al., 2016].

²https://github.com/eske/multivec

$$V(S) = \sum_{i=1}^{|S|} (weight(pos(u_i)).vector(u_i))$$
 (2)

- u_i is the i^{th} word of S;
- pos is the function which gives the universal part-of-speech tag of a word;
- weight is the function which gives the weight of a part-of-speech;
- vector is the function which gives the word embedding vector of a word;
- . is the scalar product.

Complementarity

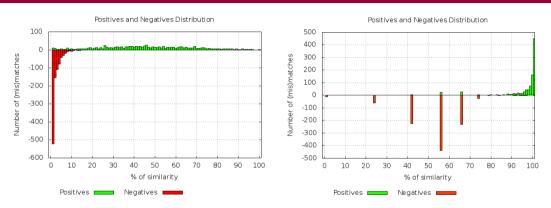


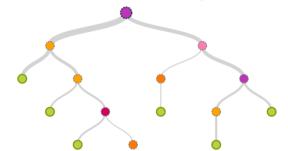
Figure: Distribution histograms of *CL-CNG* (left) and *CL-ASA* (right) for 1000 positives and 1000 negatives (mis)matches.

Fusions

Weighted Average Fusion

•+•+•+•

Decision Tree Fusion C4.5 [Quinlan, 1993]



Weighted Fusion

$$fus(M) = \frac{\sum_{j=1}^{|M|} (w_j * m_j)}{\sum_{j=1}^{|M|} w_j}$$
 (3)

- *M* is the set of the scores of the methods for one match:
- m_i and w_i are the score and the weight of the j^{th} method respectively.

Results at Chunk-Level

Chunk level						
Methods	Wikipedia (%)	TALN (%)	JRC (%)	APR (%)	Europarl (%)	Overall (%)
CL-C3G	63.04	40.80	36.80	80.69	53.26	50.76
CL-CTS	58.05	33.66	30.15	67.88	45.31	42.84
CL-ASA	23.70	23.24	33.06	26.34	55.45	47.32
CL-ESA	64.86	23.73	13.91	23.01	13.98	14.81
T+MA	58.26	38.90	28.81	73.25	36.60	37.12
CL-CTS-WE	58.00	38.04	31.73	73.13	49.91	46.67
CL-WES	37.53	21.70	32.96	39.14	46.01	41.95
CL-WESS	52.68	34.49	45.00	56.83	57.06	53.73
Average fusion	81.34	65.78	61.87	91.87	79.77	75.82
Weighed fusion	84.61	69.69	67.02	94.38	83.74	80.01
Decision Tree	95.25	74.10	72.19	97.05	95.16	89.15

Table: Average F_1 scores of cross-language similarity detection methods applied on chunk-level EN \rightarrow FR sub-corpora – 8 folds validation.

Results at Sentence-Level

Sentence level						
Methods	Wikipedia (%)	TALN (%)	JRC (%)	APR (%)	Europarl (%)	Overall (%)
CL-C3G	48.24	48.19	36.85	61.30	52.70	49.34
CL-CTS	46.71	38.93	28.38	51.43	53.35	47.50
CL-ASA	27.68	27.33	34.78	25.95	36.73	35.81
CL-ESA	50.89	14.41	14.45	14.18	14.09	14.44
T + M A	50.39	37.66	32.31	61.95	37.70	37.42
CL-CTS-WE	47.26	43.93	31.63	57.85	56.39	50.69
CL-WES	28.48	24.37	33.99	39.10	44.06	41.43
CL-WESS	45.65	40.45	48.64	58.08	58.84	56.35
Decision Tree	80.45	80.89	72.70	78.91	94.04	88.50

Table: Average F_1 scores of cross-language similarity detection methods applied on sentence-level EN \rightarrow FR sub-corpora – 8 folds validation.

References I

Barrón-Cedeño, A. (2012).
On the Mono- and Cross-Language Detection of Text Re-Use and Plagiarism.
In *PhD thesis*, València, Spain.

Barrón-Cedeño, A., Rosso, P., Pinto, D., and Juan, A. (2008).
On Cross-lingual Plagiarism Analysis using a Statistical Model.
In Benno Stein and Efstathios Stamatatos and Moshe Koppel, editor, *Proceedings of the ECAI'08 PAN Workshop: Uncovering Plagiarism, Authorship and Social Software Misuse*, pages 9–13, Patras, Greece.

References II

Ferrero, J., Agnès, F., Besacier, L., and Schwab, D. (2016). A Multilingual, Multi-style and Multi-granularity Dataset for Cross-language Textual Similarity Detection.

In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 4162–4169, Portoroz, Slovenia. European Language Resources Association (ELRA).

References III

Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis.

In Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI'07), pages 1606–1611, Hyderabad, India. Morgan Kaufmann Publishers Inc.

Gupta, P., Barrón-Cedeño, A., and Rosso, P. (2012). Cross-language High Similarity Search using a Conceptual Thesaurus. In *Information Access Evaluation. Multilinguality, Multimodality, and Visual Analytics*, pages 67–75, Rome, Italy. Springer Berlin Heidelberg.

References IV

Muhr, M., Kern, R., Zechner, M., and Granitzer, M. (2010). External and Intrinsic Plagiarism Detection Using a Cross-Lingual Retrieval and Segmentation System - Lab Report for PAN at CLEF 2010. In Braschler, M., Harman, D., and Pianta, E., editors, *CLEF Notebook*, Padua, Italy.

References V

- Pataki, M. (2012).
 - A New Approach for Searching Translated Plagiarism.
 - In *Proceedings of the 5th International Plagiarism Conference*, pages 49–64, Newcastle, UK.
- Pinto, D., Civera, J., Juan, A., Rosso, P., and Barrón-Cedeño, A. (2009).

 A Statistical Approach to Crosslingual Natural Language Tasks.

 In CEUR Workshop Proceedings, volume 64 of Journal of Algorithms, pages 51–60.
- Potthast, M., Barrón-Cedeño, A., Stein, B., and Rosso, P. (2011). Cross-Language Plagiarism Detection.
 In Language Resources and Evaluation, volume 45, pages 45–62.

References VI

Potthast, M., Stein, B., and Anderka, M. (2008).

A Wikipedia-Based Multilingual Retrieval Model.

In 30th European Conference on IR Research (ECIR'08), volume 4956 of LNCS of Lecture Notes in Computer Science, pages 522–530, Glasgow, Scotland. Springer.

Quinlan, J. R. (1993).

C4.5: Programs for Machine Learning.

The Morgan Kaufmann series in machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

References VII

Sérasset, G. (2015).

DBnary: Wiktionary as a Lemon-Based Multilingual Lexical Resource in RDF. In *Semantic Web Journal (special issue on Multilingual Linked Open Data)*, volume 6, pages 355–361.