
A Details of QA-DQN

Notations
In this section, we use game step t to denote one
round of interaction between an agent with the
QAit environment. We use ot to denote text ob-
servation at game step t, and q to denote question
text. We use L to refer to a linear transformation.
Brackets [·; ·] denote vector concatenation.

A.1 Encoder
We use a transformer-based text encoder, which
consists of an embedding layer, two stacks
of transformer blocks (denoted as encoder
transformer blocks and aggregation transformer
blocks), and an attention layer.

In the embedding layer, we aggregate both
word- and character-level information to pro-
duce a vector for each token in text. Specif-
ically, word embeddings are initialized by the
300-dimensional fastText (Mikolov et al., 2018)
word vectors trained on Common Crawl (600B
tokens), they are fixed during training. Charac-
ter level embedding vectors are initialized with
32-dimensional random vectors. A convolutional
layer with 64 kernels of size 5 is then used to ag-
gregate the sequence of characters. We use a max
pooling layer on the character dimension, then a
multi-layer perceptron (MLP) of output size 64 is
used to aggregate the concatenation of word- and
character-level representations. Highway network
(Srivastava et al., 2015) is applied on top of this
MLP. The resulting vectors are used as input to
the encoding transformer blocks.

Each encoding transformer block consists of
a stack of convolutional layers, a self-attention
layer, and an MLP. In which, each convolutional
layer has 64 filters, each kernel’s size is 7, there
are 2 such convolutional layers that share weights.
In the self-attention layer, we use a block hidden
size of 64, as well as a single head attention mech-
anism. Layernorm and dropout are applied after
each component inside the block. We add posi-
tional encoding into each block’s input. We use
one layer of such an encoding block.

At a game step t, the encoder processes text ob-
servation ot and question q, context aware encod-
ing hot ∈ RLot×H1 and hq ∈ RLq×H1 are gen-
erated, where Lot and Lq denote number of to-
kens in ot and q respectively, H1 is 64. Following
(Yu et al., 2018), we use an context-query atten-
tion layer to aggregate the two representations hot

and hq.
Specifically, the attention layer first uses two

MLPs to convert both hot and hq into the same
space, the resulting tensors are denoted as h′ot ∈
RLot×H2 and h′q ∈ RLq×H2 , in which H2 is 64.

Then, a tri-linear similarity function is used to
compute the similarities between each pair of h′ot
and h′q items:

S =W [h′ot ;h
′
q;h
′
ot � h

′
q], (1)

where � indicates element-wise multiplication,
W is trainable parameters of size 64.

Softmax of the resulting similarity matrix S
along both dimensions are computed, this pro-
duces SA and SB . Information in the two repre-
sentations are then aggregated by:

hoq = [h′ot ;P ;h
′
ot � P ;h

′
ot �Q],

P = Sqh
′>
q ,

Q = SqS
>
oth
′>
ot ,

(2)

where hoq is aggregated observation representa-
tion.

On top of the attention layer, a stack of aggre-
gation transformer blocks is used to further map
the observation representations to action represen-
tations and answer representations. The structure
of aggregation transformer blocks are the same as
the encoder transformer blocks, except the kernel
size of convolutional layer is 5, and the number of
blocks is 3.

Let Mt ∈ RLot×H3 denote the output of the
stack of aggregation transformer blocks, whereH3

is 64.

A.2 Command Generator

The command generator takes the hidden repre-
sentationsMt as input, it estimates Q-values for all
action, modifier, and object words, respectively. It
consists of a shared Multi-layer Perceptron (MLP)
and three MLPs for each of the components:

Rt = ReLU(Lshared(mean(Mt)),

Qt,action =Laction(Rt),

Qt,modifier =Lmodifier(Rt),

Qt,object =Lobject(Rt).

(3)

In which, the output size of Lshared is 64; the di-
mensionalities of the other 3 MLPs are depending
on the number of the amount of action, modifier



and object words available, respectively. The over-
all Q-value is the sum of the three components:

Qt = Qt,action +Qt,modifier +Qt,object. (4)

A.3 Question Answerer
Similar to (Yu et al., 2018), we append an extra
stacks of aggregation transformer blocks on top of
the aggregation transformer blocks to compute an-
swer positions:

U = ReLU(L0[Mt;M
′
t ]).

β = softmax(L1(U)).
(5)

In which M ′t ∈ RLot×H3 is output of the extra
transformer stack, L0, L1 are trainable parameters
with output size 64 and 1, respectively.

For location questions, the agent outputs β as
the probability distribution of each word in obser-
vation ot being the answer of the question.

For binary classification questions, we apply an
MLP, which takes weighted sum of matching rep-
resentations as input, to compute a probability dis-
tribution p(y) over both possible answers:

D =
∑
i

(βi ·M ′t),

p(y) = softmax(L4(tanh(L3(D))).

(6)

Output size of L3 and L4 are 64 and 2, respec-
tively.

A.4 Deep Q-Learning
In a text-based game, an agent takes an action a4 in
state s by consulting a state-action value function
Q(s, a), this value function is as a measure of the
action’s expected long-term reward. Q-Learning
helps the agent to learn an optimal Q(s, a) value
function. The agent starts from a random Q-
function, it gradually updates its Q-values by inter-
acting with environment, and obtaining rewards.
Following Mnih et al. (2015), the Q-value func-
tion is approximated with a deep neural network.

We make use of a replay buffer. During playing
the game, we cache all transitions into the replay
buffer without updating the parameters. We peri-
odically sample a random batch of transitions from
the replay buffer. In each transition, we update the
parameters θ to reduce the discrepancy between
the predicted value of current state Q(st, at) and

4In our case, a is a triplet contains {action, modifier, ob-
ject} as described in Section 2.4.

the expected Q-value given the reward rt and the
value of next state maxaQ(st+1, a).

We minimize the temporal difference (TD) er-
ror, δ:

δ = Q(st, at)− (rt + γmax
a

Q(st+1, a)), (7)

in which, γ indicates the discount factor. Follow-
ing the common practice, we use the Huber loss to
minimize the TD error. For a randomly sampled
batch with batch size B, we minimize:

L =
1

|B|
∑
L(δ),

where L(δ) =

{
1
2δ

2 for |δ| ≤ 1,
|δ| − 1

2 otherwise.

(8)

As described in Section 3.3.1, we design the
sufficient information bonus to teach an agent to
stop as soon as it has gathered enough information
to answer the question. Therefore we assign this
reward at the game step where the agent generates
wait command (or it is forced to stop).

It is worth mentioning that for attribute type
questions (considerably the most difficult question
type in QAit, where the training signal is very
sparse), we provide extra rewards to help QA-
DQN to learn.

Specifically, we take a reward similar to as used
in location questions: 1.0 if the agent has observed
the object mentioned in the question. we also use
a reward similar to as used in existence questions:
the agent is rewarded by the coverage of its ex-
ploration. The two extra rewards are finally added
onto the sufficient information bonus for attribute
question, both with coefficient of 0.1.

B Implementation Details

During training with vanilla DQN, we use a re-
play memory of size 500,000. We use ε-greedy,
where the value of ε anneals from 1.0 to 0.1 within
100,000 episodes. We start updating parameters
after 1,000 episodes of playing. We update our
network after every 20 game steps. During updat-
ing, we use a mini-batch of size 64. We use Adam
(Kingma and Ba, 2014) as the step rule for opti-
mization, The learning rate is set to 0.00025.

When our agent is trained with Rainbow al-
gorithm, we follow Hessel et al. (2017) on most
of the hyper-parameter settings. The four MLPs
Lshared, Laction, Lmodifier and Lobject as described



in Eqn. 3 are Noisy Nets layers (Fortunato et al.,
2017) when the agent is trained in Rainbow set-
ting. Detailed hyper-parameter setting of our
Rainbow agent are shown in Table 6.

Parameter Value

Exploration ε 0
Noisy Nets σ0 0.5

Target Network Period 1000 episodes
Multi-step returns n n ∼ Uniform[1, 3]
Distributional atoms 51

Distributional min/max values [-10, 10]

Table 6: Hyper-parameter setup for rainbow agent.

The model is implemented using PyTorch
(Paszke et al., 2017).

C Supported Text Commands

All supported text commands are listed in Table 7.

D Heuristic Conditions for Attribute
Questions

Here, we derived some heuristic conditions to de-
termine when an agent has gathered enough infor-
mation to answer a given attribute question. Those
conditions are used as part of the reward shaping
for our proposed agent (Section 3.3.1). In Table 8,
for each attribute we list all the commands for
which their outcome (pass or fail) gives enough in-
formation to answer the question correctly. Also,
in order for a command’s outcome to be informa-
tive, each command needs to be executed while
some state conditions hold. For example, to de-
termine if an object is indeed a heat source, the
agent needs to try to cook something that is cook-
able and uncooked while standing next to the given
object.

E Full results

We provide full results of our agents on fixed
map games in Table 9, and provide full results of
our agents on random map games in Table 10.
To help investigating the generalizability of the
sufficient information bonus we used in our pro-
posed agent, we also report the rewards during
both training and test phases. Note during test
phase, we do not update parameters with the re-
wards.



Command Description

look describe the current location
inventory display the player’s inventory
go 〈dir〉 move the player to north, east, south, or west
examine ... examine something more closely
open ... open a door or a container
close ... close a door or a container
eat ... eat edible object
drink ... drink drinkable object
drop ... drop an object on the floor
take ... take an object from the floor, a container, or a supporter
put ... put an object onto a supporter (supporter must be present at the location)
insert ... insert an object into a container (container must be present at the location)
cook ... cook an object (heat source must be present at the location)
slice ... slice cuttable object (a sharp object must be in the player’s inventory)
chop ... chop cuttable object (a sharp object must be in the player’s inventory
dice ... dice cuttable object (a sharp object must be in the player’s inventory)
wait stop interaction

Table 7: Supported command list.

Attribute Command State Pass Fail Explanation

sharp cut cuttable
holding (cuttable)

1 1
Trying to cut something cuttable

& uncut (cuttable) that hasn’t been cut yet
& holding (object) while holding the object.

take object reachable(object) 0 1 Sharp objects should be portable.

cuttable cut object holding (object) 1 1 Trying to cut the object while holding
& holding (sharp) something sharp.

take object reachable (object) 0 1 Cuttable object should be portable.

edible eat object holding (object) 1 1 Trying to eat the object.

take object reachable (object) 0 1 Edible objects should be portable.

drinkable drink object holding (object) 1 1 Trying to drink the object.

take object reachable (object) 0 1 Drinkable objects should be portable.

holder – on (portable, object) 1 0 Observing object(s) on a supporter.

in (portable, object) 1 0 Observing object(s) inside a container.

take object reachable (object) 1 0 Holder objects should not be portable.

portable – holding (object) 1 0 Holding the object means it is portable.

take object reachable (object) 1 1 Portable objects can be taken.

heat source cook cookable
holding (cookable)

1 1
Trying to cook something cookable

& uncooked (cookable) that hasn’t been cooked yet
& reachable (object) while being next to the object.

take object reachable (object) 1 0 Heat source objects should not be portable.

cookable cook object holding (object) 1 1 Trying to cook the object
& reachable (heat source) while being next to a heat source.

take object reachable(object) 0 1 Cookable objects should be portable.

openable
open object reachable (object) 1 1 Trying to open the closed object.& closed (object)

close object reachable (object) 1 1 Trying to close the open object.& open (object)

Table 8: Heuristic conditions for determining whether the agent has enough information to answer a given attribute
question. We use “object” to refer to the object mentioned in the question. Words in italics represents placeholder
that can be replaced by any object from the environment that has the appropriate attribute (e.g. carrot could be
used as a cuttable). The columns Pass and Fail represent how much reward the agent will receive given the
corresponding command’s outcome (resp. success or failure). NB: cut can mean any of the following commands:
slice, dice, or chop



Location Existence Attribute
Model Train Test Train Test Train Test

Human – 1.000 – 1.000 – 1.000
Random – 0.027 – 0.497 – 0.496

1 game

DQN 0.972(0.972) 0.122(0.160) 1.000(0.881) 0.628(0.124) 1.000(0.049) 0.500(0.035)
DDQN 0.960(0.960) 0.156(0.178) 1.000(0.647) 0.624(0.148) 1.000(0.023) 0.498(0.033)

Rainbow 0.562(0.562) 0.164(0.178) 1.000(0.187) 0.616(0.083) 1.000(0.049) 0.516(0.039)

2 games

DQN 0.698(0.698) 0.168(0.182) 0.948(0.700) 0.574(0.136) 1.000(0.011) 0.510(0.028)
DDQN 0.702(0.702) 0.172(0.178) 0.882(0.571) 0.550(0.109) 1.000(0.098) 0.508(0.036)

Rainbow 0.734(0.734) 0.160(0.168) 0.878(0.287) 0.616(0.085) 1.000(0.030) 0.524(0.022)

10 games

DQN 0.654(0.654) 0.180(0.188) 0.822(0.390) 0.568(0.156) 1.000(0.055) 0.518(0.030)
DDQN 0.608(0.608) 0.188(0.208) 0.842(0.479) 0.566(0.128) 1.000(0.064) 0.516(0.036)

Rainbow 0.616(0.616) 0.156(0.170) 0.768(0.266) 0.590(0.131) 0.998(0.059) 0.520(0.023)

100 games

DQN 0.498(0.498) 0.194(0.206) 0.756(0.139) 0.614(0.160) 0.838(0.019) 0.498(0.014)
DDQN 0.456(0.458) 0.168(0.196) 0.768(0.134) 0.650(0.216) 0.878(0.020) 0.528(0.017)

Rainbow 0.340(0.340) 0.156(0.160) 0.762(0.129) 0.602(0.207) 0.924(0.044) 0.524(0.022)

500 games

DQN 0.430(0.430) 0.224(0.244) 0.742(0.136) 0.674(0.279) 0.700(0.015) 0.534(0.014)
DDQN 0.406(0.406) 0.218(0.228) 0.734(0.173) 0.626(0.213) 0.714(0.021) 0.508(0.026)

Rainbow 0.358(0.358) 0.190(0.196) 0.768(0.187) 0.656(0.207) 0.736(0.032) 0.496(0.029)

unlimited games

DQN 0.300(0.300) 0.216(0.216) 0.752(0.119) 0.662(0.246) 0.562(0.034) 0.514(0.016)
DDQN 0.318(0.318) 0.258(0.258) 0.744(0.168) 0.628(0.134) 0.572(0.027) 0.480(0.024)

Rainbow 0.316(0.330) 0.280(0.280) 0.734(0.157) 0.692(0.157) 0.566(0.017) 0.514(0.014)

Table 9: Agent performance on fixed map games. Accuracies in percentage are shown in black. We also investigate
the sufficient information bonus used in our agent proposed in Section 3.3.1, which are shown in blue.



Location Existence Attribute
Model Train Test Train Test Train Test

Human – 1.000 – 1.000 – 0.750
Random – 0.034 – 0.500 – 0.499

2 games

DQN 0.990(0.990) 0.148(0.162) 1.000(0.779) 0.638(0.157) 1.000(0.039) 0.534(0.033)
DDQN 0.978(0.978) 0.146(0.152) 1.000(0.727) 0.602(0.158) 1.000(0.043) 0.544(0.032)

Rainbow 0.916(0.916) 0.178(0.178) 0.972(0.314) 0.602(0.136) 1.000(0.025) 0.512(0.021)

10 games

DQN 0.818(0.818) 0.156(0.160) 0.898(0.607) 0.566(0.142) 1.000(0.056) 0.518(0.036)
DDQN 0.794(0.794) 0.142(0.154) 0.868(0.575) 0.606(0.153) 1.000(0.037) 0.500(0.033)

Rainbow 0.670(0.670) 0.144(0.170) 0.828(0.468) 0.586(0.128) 1.000(0.071) 0.530(0.018)

100 games

DQN 0.550(0.550) 0.184(0.204) 0.758(0.230) 0.668(0.181) 0.878(0.021) 0.524(0.017)
DDQN 0.524(0.524) 0.188(0.204) 0.754(0.365) 0.662(0.205) 0.890(0.025) 0.544(0.019)

Rainbow 0.442(0.442) 0.174(0.184) 0.754(0.285) 0.654(0.190) 0.878(0.044) 0.504(0.032)

500 games

DQN 0.430(0.430) 0.204(0.216) 0.752(0.162) 0.678(0.214) 0.678(0.019) 0.530(0.017)
DDQN 0.458(0.458) 0.222(0.246) 0.754(0.158) 0.656(0.188) 0.716(0.024) 0.486(0.023)

Rainbow 0.370(0.370) 0.172(0.178) 0.748(0.275) 0.678(0.191) 0.636(0.020) 0.494(0.017)

unlimited games

DQN 0.316(0.316) 0.188(0.188) 0.728(0.213) 0.668(0.218) 0.812(0.055) 0.506(0.018)
DDQN 0.326(0.326) 0.206(0.206) 0.740(0.246) 0.694(0.196) 0.580(0.023) 0.482(0.017)

Rainbow 0.340(0.340) 0.258(0.258) 0.728(0.210) 0.686(0.193) 0.564(0.018) 0.470(0.017)

Table 10: Agent performance on random map games. Accuracies in percentage are shown in black. We also
investigate the sufficient information bonus used in our agent proposed in Section 3.3.1, which are shown in blue.



Figure 4: Training accuracy over episodes on location questions. Upper row: fixed map, 1/2/10/100/500/unlimited
games; Lower row: random map, 2/10/100/500/unlimited games.

Figure 5: Training accuracy over episodes on existence questions. Upper row: fixed map, 1/2/10/100/500/unlim-
ited games; Lower row: random map, 2/10/100/500/unlimited games.

Figure 6: Training accuracy over episodes on attribute questions. Upper row: fixed map, 1/2/10/100/500/unlim-
ited games; Lower row: random map, 2/10/100/500/unlimited games.


