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A Candidate Generation Details

We compute Pprior(e | m) using a surface-title in-
dex by counting how often the surface of m links
to entity e in Wikipedia hyperlinks. Redirect title
surfaces are also treated as hyperlink surfaces and
added to the surface to link counts. To generate
candidates from mentions in another language (e.g.,
Chinese), we first generate candidates as described
above in the Wikipedia of that language (Chinese
Wikipedia), and then use inter-language links to
map candidate titles to English titles.

To improve recall, we also keep counts of a ver-
sion of the hyperlink surface with its non-ascii char-
acters replaced (e.g., “Algebre” vs “Algèbre”). For
Chinese, we keep counts of a version converted to
simplified Chinese. For foreign languages with a
latin script (e.g., Spanish, Turkish), we also use
a BACKOFF-TO-ENGLISH strategy – if querying
the target language surface-to-link index for the
mention surface does not generate any candidates,
we query the English surface-to-link index.

B Implemention and Tuning Details.

All models were implemented using PyTorch.1

We used ADAM (Kingma and Ba, 2014) opti-
mizer with a learning rate of 1e-3 in all our ex-
periments. For all experiments, we limit the can-
didate generator to output the top-20 candidates.
Local context window was set to W = 25 tokens.
The convolutional filter width was set to k = 5.
The mention surface vocabulary V was limited
to size 1M for both monolingual and joint train-
ing. The multilingual embeddings (d=300) were
scaled to a fixed norm R (=5.0), and were not up-
dated during training. Dropout (Srivastava et al.,
2014) was separately applied to local context and
document context feature, each being tuned over
{0.4, 0.45, · · · , 0.7}. The size of entity, type and

1github.com/pytorch

context vectors was fixed to h = 100. Batch size
was tuned over {128, 256, 512, 1024}.

The Wikipedia dumps were parsed using the
WikiExtractor script.2 Stanford segmenter was
used for Arabic (Monroe et al., 2014) and Chinese
segmentation (Tseng et al., 2005).
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