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This document contains the appendix for the
paper Semi-Supervised Sequence Modeling with
Cross-View Training.

1 Detailed Results

We provide a more detailed version of the test set
results in the paper, adding two decimals of pre-
cision, standard deviations of the 5 runs for each
model, and more prior work, in Table 1.

2 Model Details

Our models use two layer CNN-BiLSTM en-
coders (Chiu and Nichols, 2016; Ma and Hovy,
2016; Lample et al., 2016) and task-specific pre-
diction modules. See Section 3 of the paper for
details. We provide a few minor details not cov-
ered in the paper below.

Sequence Tagging. For Chunking and Named En-
tity Recognition, we use a BIOES tagging scheme.
We apply label smoothing (Szegedy et al., 2016;
Pereyra et al., 2017) with a rate of 0.1 to the target
labels when training on the labeled data.

Dependency Parsing. We omit punctuation from
evaluation, which is standard practice for the PTB-
SD 3.3.0 dataset. ROOT is represented with a
fixed vector hROOT instead of using a vector from
the encoder, but otherwise dependencies coming
from ROOT are scored the same way as the other
dependencies.

Machine Translation. We apply dropout to the
output of each LSTM layer in the decoder. Our
implementation is heavily based off of the Google
NMT Tutorial1 (Luong et al., 2017). We attribute
our significantly better results to using pre-trained
word embeddings, a character-level CNN, a larger
model, stronger regularization, and better hyper-
parameter tuning. Target words occurring 5 or

1https://github.com/tensorflow/nmt

fewer times in the train set are replaced with a UNK
token (but not during evaluation). We use a beam
size of 10 when performing beam search. We
found it slightly beneficial to apply label smooth-
ing with a rate of 0.1 to the teacher’s predictions
(unlike our other tasks, the teacher only provides
hard targets to the students for translation).

Multi-Task Learning. Several of our datasets
are constructed from the Penn Treebank. How-
ever, we treat them as separate rather than provid-
ing examples labeled across multiple tasks to our
model during supervised training. Furthermore,
the Penn Treebank tasks do not all use the same
train/dev/test splits. We ensure the training split
of one task never overlaps the evaluation split of
another by discarding the overlapping examples
from the train sets.

Other Details. We apply dropout (Hinton et al.,
2012) to the word embeddings and outputs of each
Bi-LSTM. We use an exponential-moving-average
(EMA) of the model weights from training for the
final model; we found this to slightly improve ac-
curacy and significantly reduce the variance in ac-
curacy between models trained with different ran-
dom initializations. The model is trained using
SGD with momentum (Polyak, 1964; Sutskever
et al., 2013). Word embeddings are initialized with
GloVe vectors (Pennington et al., 2014) and fine-
tuned during training. The full set of model hyper-
parameters are listed in Table 2.

Baselines. Baselines were run with the same ar-
chitecture and hyperparameters as the CVT model.
For the “word dropout” model, we randomly re-
place words in the input sentence with a REMOVED
token with probability 0.1 (this value worked well
on the dev sets). For Virtual Adversarial Train-
ing, we set the norm of the perturbation to be 1.5
for CCG, 1.0 for Dependency Parsing, and 0.5 for
the other tasks (these values worked best on the
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dev sets). Otherwise, the implementation is as de-
scribed in (Miyato et al., 2017a); we base our im-
plementation off of their code.2. We were unable
to successfully apply VAT to machine translation,
perhaps because the student is provided hard tar-
gets for that task. For ELMo, we applied dropout
to the ELMo embeddings before they are incor-
porated into the rest of the model. When training
the multi-task ELMo model, each prediction mod-
ule has its own set of softmax-normalized weights
(staskj in (Peters et al., 2018)) for the ELMo emed-
dings going into the task-specific prediction mod-
ules. All tasks share the same sj weights for
the ELMo embeddings going into the shared Bi-
LSTM encoder.

2.1 CVT for Image Recognition

Although the focus of our work is on NLP, we
also applied CVT to image recognition and found
it performs competitively with existing methods.
Most of the semi-supervised image recognition
approaches we compare against rely on the in-
puts being continuous, so they would be diffi-
cult to apply to text. More specifically, consis-
tency regularization methods (Sajjadi et al., 2016;
Laine and Aila, 2017; Miyato et al., 2017b) rely
on adding continuous noise and applying image-
specific transformations like cropping to inputs,
GANs (Salimans et al., 2016; Wei et al., 2018) are
very difficult to train on text due to its discrete na-
ture, and mixup (Zhang et al., 2018; Verma et al.,
2018) requires a way of smoothly interpolating be-
tween different inputs.

Approach. Our image recognition models are
based on Convolutional Neural Networks, which
produce a set of features H(xi) ∈ Rn×n×d from
an image xi. The first two dimensions of H in-
dex into the spatial coordinates of feature vec-
tors and d is the size of the feature vectors. For
shallower CNNs, a particular feature vector cor-
responds to a region of the input image. For ex-
ample, H0,0 would be a d-dimensional vector of
features extracted from the upper left corner. For
deeper CNNs, a particular feature vector would be
extracted from the whole image, but still only use
a “region” of the representations from an earlier
layer. The CNNs in our experiments are all in the
first category.

The primary prediction layers of our CNNs take

2https://github.com/tensorflow/models/
tree/master/research/adversarial_text

as input the mean of H over the first two dimen-
sions, which results in a d-dimensional vector that
is fed into a softmax layer:

pθ(y|xi) = softmax(Wglobal average pool(H) + b)

We add n2 auxiliary prediction layers to the top
of the CNN. The jth layer takes a single feature
vector as input:

pjθ(y|xi) = softmax(W jHbj/nc,j mod n + bj)

Data. We evaluated our models on the CIFAR-
10 (Krizhnevsky and Hinton, 2009) dataset. Fol-
lowing previous work, we make the datasets semi-
supervised by only using the provided labels for a
subset of the examples in the training set; the rest
are treated as unlabeled examples.

Model. We use the convolutional neural network
from Miyato et al. (2017b), adapting their Ten-
sorFlow implementation3. Their model contains
9 convolutional layers and 2 max pooling layers.
See Appendix D of Miyato et al.’s paper for more
details.

We add 36 auxiliary softmax layers to the 6 ×
6 collection of feature vectors produced by the
CNN. Each auxiliary layer sees a patch of the im-
age ranging in size from 21 × 21 pixels (the cor-
ner) to 29 × 29 pixels (the center) of the 32 × 32
pixel images. For some experiments, we combine
CVT with standard consistency regularization by
adding a perturbation (e.g., a small random vec-
tor) to the student’s inputs when computing LCVT.

Results. The results are shown in Table 3. Un-
surprisingly, adding continuous noise to the in-
puts works much better with images, where the in-
puts are naturally continuous, than with language.
Therefore we see much better results from VAT
on semi-supervised CIFAR-10 compared to on our
NLP tasks. However, we still find incorporat-
ing CVT improves over models without CVT. Our
CVT + VAT models are competitive with current
start-of-the-art approaches. We found the gains
from CVT are larger when no data augmentation
is applied, perhaps because random translations of
the input expose the model to different “views” in
a similar manner as with CVT.

3 Negative Results

We briefly describe a few ideas we implemented
that did not seem to be effective in initial experi-

3https://github.com/takerum/vat_tf
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ments. Note these findings are from early one-off
experiments. We did not pursue them further after
our first attempts did not pan out, so it is possible
that some of these approaches could be effective
with the proper adjustments and tuning.

• Hard vs soft targets: Classic self-training
algorithms train the student model with
one-hot “hard” targets corresponding to the
teacher’s highest probability prediction. In
our experiments, this decreased performance
compared to using soft targets. This finding is
consistent with research on knowledge distil-
lation (Hinton et al., 2015; Furlanello et al.,
2018) where soft targets also work notably
better than hard targets.

• Confidence thresholding: Classic self-
training often only trains the student on a
subset of the unlabeled examples on which
the teacher has confident predictions (i.e., the
output distribution has low entropy). We
tried both “hard” (where the student ig-
nores low-confidence examples) and “soft”
(where examples are weighted according to
the teacher’s confidence) versions of this for
training our models, but they did not seem to
improve performance.

• Mean Teacher: The Mean Teacher method
(Tarvainen and Valpola, 2017) tracks an ex-
ponential moving average (EMA) of model
weights, which are used to produce targets
for the students. The idea is that these tar-
gets may be better quality due to a self-
ensembling effect. However, we found this
approach to have little to no benefit in our
experiments, although using EMA model
weights at test time did improve results
slightly.

• Purely supervised CVT: Lastly, we ex-
plored adding cross-view losses to purely su-
pervised classifiers. We hoped that adding
auxiliary softmax layers with different views
of the input would act as a regularizer on
the model. However, we found little to no
benefit from this approach. This negative re-
sult suggests that the gains are from CVT are
from the improved semi-supervised learning
mechanism, not the additional prediction lay-
ers regularizing the model.
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Method
CCG Chunking NER FGN POS Dependency Parsing Translation
Acc. F1 F1 F1 Acc. UAS LAS BLEU

LSTM-CNN-CRF (Ma and Hovy, 2016) 91.21 97.55
LSTM-CNN (Chiu and Nichols, 2016) 91.62 ± 0.33 86.28 ± 0.26
ID-CNN-CRF (Strubell et al., 2017) 90.65 ± 0.15 86.84 ± 0.19
Tri-Trained LSTM (Lewis et al., 2016) 94.7
Shortcut LSTM (Wu et al., 2017) 95.08 97.53
JMT* (Hashimoto et al., 2017) 95.77 97.55 94.67 92.90
LM-LSTM-CNN-CRF (Liu et al., 2017) 95.96 ± 0.08 91.71 ± 0.10 97.53 ± 0.03
TagLM† (Peters et al., 2017) 96.37 ± 0.05 91.93 ± 0.19
ELMo† (Peters et al., 2018) 92.22 ± 0.10

NPM (Ma and Hovy, 2017) 94.9 93.0
Deep Biaffine (Dozat and Manning, 2017) 95.74 94.08
Stack Pointer (Ma et al., 2018) 95.87 94.19

Stanford (Luong and Manning, 2015) 23.3
Google (Luong et al., 2017) 26.1

Supervised 94.94 ± 0.02 95.10 ± 0.06 91.16 ± 0.09 87.48 ± 0.08 97.60 ± 0.02 95.08 ± 0.03 93.27 ± 0.03 28.88 ± 0.12
Virtual Adversarial Training* 95.07 ± 0.04 95.06 ± 0.06 91.75 ± 0.10 87.91 ± 0.11 97.64 ± 0.03 95.44 ± 0.06 93.72 ± 0.07 –
Word Dropout* 95.20 ± 0.04 95.79 ± 0.08 92.14 ± 0.11 88.06 ± 0.09 97.66 ± 0.01 95.56 ± 0.05 93.80 ± 0.08 29.33 ± 0.10
ELMo* 95.79 ± 0.04 96.50 ± 0.03 92.24 ± 0.09 88.49 ± 0.12 97.72 ± 0.01 96.22 ± 0.05 94.44 ± 0.06 29.34 ± 0.11
ELMo + Multi-task*† 95.91 ± 0.05 96.83 ± 0.03 92.32 ± 0.12 88.37 ± 0.16 97.79 ± 0.03 96.40 ± 0.04 94.79 ± 0.05 –
CVT* 95.65 ± 0.04 96.58 ± 0.04 92.34 ± 0.06 88.68 ± 0.14 97.70 ± 0.03 95.86 ± 0.03 94.06 ± 0.02 29.58 ± 0.07
CVT + Multi-Task*† 95.97 ± 0.04 96.85 ± 0.05 92.42 ± 0.08 88.42 ± 0.13 97.76 ± 0.02 96.44 ± 0.04 94.83 ± 0.06 –
CVT + Multi-Task + Large*† 96.05 ± 0.03 96.98 ± 0.05 92.61 ± 0.09 88.81 ± 0.09 97.74 ± 0.02 96.61 ± 0.04 95.02 ± 0.04 –

Table 1: Results on the test sets for all tasks. We report the means and standard deviations of 5 runs. The +Larger
model has four times as many hidden units as the others, making it similar in size to the models when ELMo is
included. For dependency parsing, we omit results from Choe and Charniak (2016), Kuncoro et al. (2017), and Liu
and Zhang (2017) because these train constituency parsers and convert the system outputs to dependency parses.
They produce higher scores, but have access to more information during training and do not apply to datasets
without constituency annotations. * denotes semi-supervised and † denotes multi-task.

Parameter Value

Word Embeddings Initializiation 300d GloVe 6B
Character Embedding Size 50
Character CNN Filter Widths [2, 3, 4]
Character CNN Num Filters 300 (100 per filter width)
Encoder LSTM sizes 1024 for the first layer, 512 for the second one
Encoder LSTM sizes, “Large” model 4096 for the first layer, 2048 for the second one
LSTM projection layer size 512
Hidden layer sizes 512
Dropout 0.5 for labeled examples, 0.8 for unlabeled examples
EMA coefficient 0.998
Learning rate 0.5/(1 + 0.005t0.5) (t is number of SGD updates so far)
Momentum 0.9
Batch size 64 sentences

Table 2: Hyperparameters for the model.



Method
CIFAR-10 CIFAR-10+

4000 labels

GAN (Salimans et al., 2016) – 18.63 ± 2.32
Stochastic Transformations (Sajjadi et al., 2016) – 11.29 ± 0.24
Π model (Laine and Aila, 2017) 16.55 ± 0.29 12.36 ± 0.31
Temporal Ensemble (Laine and Aila, 2017) – 12.16 ± 0.24
Mean Teacher (Tarvainen and Valpola, 2017) – 12.31 ± 0.28
Complement GAN (Dai et al., 2017) 14.41 ± 0.30 –
VAT (Miyato et al., 2017b) 13.15 10.55
VAdD (Park et al., 2017) – 11.68 ± 0.19
VAdD + VAT (Park et al., 2017) – 10.07 ± 0.11
SNGT + Π model (Luong et al., 2017) 13.62 ± 0.17 11.00 ± 0.36
SNGT + VAT (Luong et al., 2017) 12.49 ± 0.36 9.89 ± 0.34
Consistency + WGAN (Wei et al., 2018) – 9.98 ± 0.21
Manifold Mixup (Verma et al., 2018) – 10.26 ± 0.32

Supervised 23.61 ± 0.60 19.61 ± 0.56
VAT (ours) 13.29 ± 0.33 10.90 ± 0.31
CVT, no input perturbation 14.63 ± 0.20 12.44 ± 0.27
CVT, random input perturbation 13.80 ± 0.30 11.10 ± 0.26
CVT, adversarial input perturbation 12.01 ± 0.11 10.11 ± 0.15

Table 3: Error rates on semi-supervised CIFAR-10. We report means and standard deviations from 5 runs. CIFAR-
10+ refers to results where data augmentation (random translations of the input image) was applied. For some of
our models we add a random or adversarially chosen perturbation to the student model’s inputs, which is done in
most consistency regularization methods.


