
Natural Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog

Satwik Kottur1 and José M.F. Moura1 and Stefan Lee2,3 and Dhruv Batra3,4

1Carnegie Mellon University, 2Virginia Tech, 3Georgia Tech, 4Facebook AI Research

The supplement is organized as follows:
• Sec. 1 overviews all the settings character-

izing communication language between the
agents, along with detailed learning equa-
tions and implementation details,

• Sec. 2 gives details of learnt grounding in two
important settings,

• Sec. 3 describes the evolution of language
in detail, beginning with the structure and
construction of dialog trees, and continues
to build on top to explain the procedure to
obtain a timeline of how the agents learn
grounding for symbols at intermediate stages
of training.

1 Overview

All our findings are summarized in Tab. 1. We
show some example conversations for: (a) Over-
complete vocabularies setting (Sec.4.1 in main) in
Fig. 1, (b) Attribute and Value Vocabulary set-
ting (Sec.4.2 in main) in Fig. 2, (c) Memoryless
A-BOT, Minimal Vocabulary setting (Sec.4.3 in
main) in Fig. 3. We re-emphasize that composi-
tionality in language does not emerge without the
need for it. If multiple optimal policies are at-
tainable, the model picks policies that are easier
to learn, e.g., given a large vocabulary, the model
enumerates all possible instances, than learn to
compose instances as combinations of individual
attributes (Das et al., 2017).
Learning Policies with REINFORCE. To train
these agents, we update policy parameters θQ and
θA using the popular REINFORCE (Williams,
1992) policy gradient algorithm. Note that while
the game is fully-cooperative, we do not assume
full observability of one agent by another, opting
instead to treat each agent as part of the stochas-
tic environment when updating the other. We will
now derive the parameter gradients for our setup.

Figure 1: Example dialogs for Overcomplete vocabularies
setting (Sec.4.1 in main). As |VQ| = |VA| = 64, we
denote the tokens with just numbers where color of boxes
indicates whether they were uttered by A-BOT or Q-BOT.
The learnt mapping is highly non-human intuitive and non-
compositional.

Recall that our agents take actions – utterances (qt
and at) and attribute prediction (ŵG) – and our ob-
jective is to maximize the expected reward under
the agents’ policies:

max
θA,θQ

J(θA, θQ) where, (1a)

J(θA, θQ) = E
πQ,πA

[
R
(
ŵG, wG

)]
(1b)

Though the agents receive the reward at the end
of gameplay, all intermediate actions are assigned
the same reward R. Following the REINFORCE
algorithm, we write the gradient of this expecta-
tion as an expectation of policy gradients. For θQ,
we derive this explicitly at a time step t:



Setting
Vocab. Memory Seen (%) Unseen (%)

Characteristics
VQ VA A Q Both One Both One

Overcomplete
(Sec.4.1
main)

64 64 3 3 100 100 25.6 79.5

• Non-compositional language
• Q-BOT insignificant
• Inconsistent A-BOT grounding across rounds
• Poor generalization to unseen instances

Attr-Value
(Sec.4.2
main)

3 12 3 3 100 100 38.5 88.4

• Non-compositional language
• Q-BOT uses one round to convey task
• Inconsistent A-BOT grounding across rounds
• Poor generalization to unseen instances

NoMem-Min
(Sec.4.3
main)

3 4 7 3 100 100 74.4 94.9

• Compositional language
• Q-BOT uses both rounds to convey task
• Consistent A-BOT grounding across rounds
• Good generalization to unseen instances

Table 1: Overview of settings we explore to analyze the language learnt by two agents in a cooperative game, Task & Talk. Last
two columns measure generalization in terms of prediction accuracy of both or at least one of the attribute pair, on a held-out
test set containing unseen instances.

Figure 2: Example dialogs for Attribute and Value vocabu-
lary setting (Sec.4.2 in main). We show both the symmetric
tasks for each image to note the difference in the language
between the agents. As seen here, Q-BOT learns to map sym-
metric tasks in an order-agnostic fashion, and uses only the
first token to convey task information to A-BOT.

∇θQJ = ∇θQ
[

E
πQ,πA

[
R
(
ŵG, wG

)]]
= ∇θQ

[∑
qt,at

πQ

(
qt|sQt−1

)
πA
(
at|sAt

)
R(.)

]
=

∑
qt,at

πQ

(
qt|sQt−1

)
∇θQ log πQ

(
qt|sQt−1

)
πA
(
at|sAt

)
R(.)

= E
πQ,πA

[
R(.)∇θQ log πQ

(
qt|sQt−1

)]
(2)

Similarly, gradient w.r.t. θA, i.e., ∇θAJ will be:

∇θAJ = E
πQ,πA

[
R(.)∇θA log πA

(
at|sAt

)]
(3)

As is standard practice, we estimate these expec-
tations with sample averages – sampling an en-

Figure 3: Example dialogs for Memoryless A-BOT and Min-
imal vocabulary setting (Sec.4.3 in main). Both Q-BOT and
A-BOT learn consistent and grounded language, which is
shown below each utterance. We also show negative exam-
ples on unseen instance, where the model gets either one or
both attributes incorrect in the pair. Although the predicted
attribute value is incorrect, note that it is still of the right kind
(a color attribute for color, but not a style/shape attribute).
Exact details of the mapping are present in Sec. 2

vironment (object instance and task), sampling a
dialog between Q-BOT and A-BOT, culminating
in a prediction from Q-BOT and the received re-
ward. The REINFORCE update rule above has
an intuitive interpretation – an informative dialog
(qt, at) that leads to positive reward will be made
more probable (positive gradient), while a poor ex-
change leading to negative reward will be pushed
down (negative gradient).



Implementation Details. All our models are
implemented using the Pytorch1 deep learning
framework. To represent instances, we learn a
20 dimensional embedding for every possible at-
tribute values and concatenate the three instance
attributes to obtain a final instance representation
of size 60. Tokens from VQ and VA are encoded as
one-hot vectors and then embedded into 20 dimen-
sion vectors. Both A-BOT and Q-BOT learn their
own token embeddings without sharing. The lis-
tener networks in both agents are implemented as
LSTMs with a hidden layer size of 50 dimensions.
All modules within an agent are initialized using
the Xavier method (Glorot and Bengio, 2010).
We use 1000 episodes of two-round dialogs to
compute policy gradients, and perform updates
according to Adam optimizer (Kingma and Ba,
2015), with a learning rate of 0.01. Furthermore,
gradients are clipped at [−5.0, 5.0]. For faster con-
vergence, 80% of train episodes for the next itera-
tion are from instances misclassified by the current
network, while randomly sampling the remaining
from all instances. Our code is publicly available2.

1github.com/pytorch/pytorch
2github.com/batra-mlp-lab/lang-emerge

2 Emergence of Grounded Language

We list out the language grounding learnt by both
Q-BOT and A-BOT for two settings:
Attribute and Value Vocabulary. We observe
that Q-BOT encodes tasks in an order-agnostic
fashion using first round token only, as: (color,
shape),(shape, color) → Y, (color, style),(style,
color)→ Z, and (style, shape),(shape, style)→ X.
Memoryless A-BOT, Minimal Vocab-
ulary. In case of Memoryless A-BOT

and limited vocabulary for the agents,
|VQ|=|{X,Y, Z}|=3, |VA|=|{1, 2, 3, 4}|=4,
compositional groundings emerge that are
consistent across rounds, as shown in Tab. 2.

↓ VA Attributes

VQ→
color shape style

X Y Z

1 blue triangle dotted
2 purple square filled
3 green circle dashed
4 red start solid

(a) Grounding for A-BOT ‘s responses given Q-BOT ‘s query

Task q1 q2

(color, shape) Y X
(shape, color) Y X
(shape, style) Y Z
(style, shape) Y Z
(color, style) Z X
(style, color) X Z

(b) Grounding for Q-BOT ‘s responses given a task
Table 2: Emergence of compositional grounding for lan-
guage learnt by the agents. A-BOT (Tab. 2a) learns meanings
that are consistent across rounds, depending on the query at-
tribute. Token grounding for Q-BOT (Tab. 2b) depends on
the task at hand. Notice that although compositional, Q-BOT
does not necessarily query attribute in the order of task, but
rather re-arranged accordingly at prediction time as it con-
tains memory.

From Tab. 2, we can predict the plausible dia-
log between the agents for any unseen instance
+ task combination. Notice that this is pos-
sible only due to the compositionality in the
emergent language between the two agents. As
as example, consider solving the task (color,
shape) for an unseen instance (purple, circle, dot-
ted). We can read off the likely dialog path as:
(q1=Y )→(a1=3)→(q2=X)→(a2=2).

http://github.com/pytorch/pytorch
http://github.com/batra-mlp-lab/lang-emerge


3 Evolution of Language
As demonstrated in the main paper, even though
compositional language is one of the optimal poli-
cies, the agents tend to learn other equally use-
ful forms of communication. Thus, compositional
language does not naturally emerge without an ex-
plicit need for it. Even in situations where com-
positionality does emerge, perhaps it is more in-
teresting to analyze the process of emergence than
the learnt language itself. Therefore, we present
such a study that explicitly identifies when each
symbol has been grounded by the agents in the
training timeline, along with implications thereof
on the performance on Task & Talk game.

3.1 Dialog Trees

When two agents–Q-BOT and A-BOT–converse
with each other, they can be seen as traversing
through a dialog tree, a subtree of which is de-
picted in Fig. 4. Simply put, a dialog tree is an enu-
meration of all possible dialogs represented in the
form of tree, with levels of the tree corresponding
to the round of interaction. To elaborate, consider
a partial dialog tree for (shape, color) task shown
in Fig. 4 for the setting in Sec.4.3 of main. For
Q-BOT’s first token q1 = Y , A-BOT has |VA| = 4
plausible replies shown as a 4-way branch off. In
general, the dialog tree for Task & Talk contains a
total of |VQ|2|VA|2 leaves and is 4 levels deep. We
use the dialog between the agents to descend and
land in one of these leaves.
Dialog trees offer an interesting alternate view of
our learning problem. The goal of learning com-
munication between the two agents can be equiv-
alently seen as mapping (instance, task) pairs to
one of the dialog tree leaves. Each leaf is la-
beled with an attribute pair used to accomplish the
prediction task. For example, if solving (shape,
color) for (blue, triangle, solid) results in the di-
alog Y→1→X→1, we descend the dialog tree
along the corresponding path and assign the tuple
(blue, triangle, solid, shape, color) to the resulting
leaf. In case of a compositional, grounded dia-
log, all tuples of the form (blue, triangle, ∗, shape,
color) would get mapped to the same leaf, which
can then be labeled as (triangle, blue) to success-
fully solve the task. Note the wildcard style at-
tribute in the tuple above, as it is irrelevant for this
particular task.
In the following section, we use dialog trees to ex-
plore the evolution of language as learnt by the two

Figure 4: Dialog tree for memoryless A-BOT and minimal
vocabulary setting (Sec.4.3), shown only for one task (shape,
color). Every dialog between the agents results in a tree
traversal beginning from the root, e.g., Y→1→X→1 lands
us in the top-right leaf. See text for more details.

agents in the memoryless A-bot, minimal vocabu-
lary setting in Sec.4.3 of main.

3.2 Evolution Timeline

To gain further insight into the languages learned,
we create a language evolution plot shown in
Fig. 5. Specifically, at regular intervals during pol-
icy learning, we construct dialog trees. At some
point in the learning, the nodes in the tree be-
come and stay ‘pure’ (all (instance, task) at the
node are identical), at which point we can say that
the agents have learned this dialog subsequence.
Fig. 5 depicts a timeline of concepts learned at var-
ious nodes of the trees during training. We next
describe the procedure to identify when a particu-
lar ‘concept’ has been grounded by the agents in
their language.
Construction. After constructing dialog trees at
regular intervals, we identify ‘concepts’ at each
node/leaf using the dialog tree of the completely
trained model, which achieves a perfect accuracy
on train set. A concept is simply the common
trend among all the (instance, task) tuples either
assigned to a leaf or contained within the sub-
tree with a node as root. To illustrate, the con-
cept of the top right leaf in Fig. 4 is (blue, trian-
gle, ∗, shape, color), i.e., all instances assigned
to that leaf for (shape, color) task are blue trian-
gles. Next, given a resultant concept for each of
the node/leaf, we backtrack in time and check for
the first occurrence when only tuples which satisfy



Figure 5: Evolution of Language: timeline shows groundings learned by the agents during training, overlaid on the accuracy.
Note that Q-BOT learns encodings for all tasks early (around epoch 20) except (style, color). Improvement in accuracy is
strongly correlated with groundings learnt.

the corresponding concept are assigned to that par-
ticular node/leaf. In other words, we compute the
earliest time when a node/leaf is ‘pure’ with re-
spect to its final learned concept. Finally, we plot
these leaves/nodes and the associated concept with
their backtracked time to get Fig. 5.
Observations. We highlight the key observations
from Fig. 5 below:
(a) The agents ground most of the tasks initially

at around epoch 20. Specifically, Q-BOT as-
signs Y to both (shape, style), (style, shape),
(shape,color) and (color, shape), while (color,
style) is mapped to Z. Hence, Q-BOT learns its
first token very early into the training proce-
dure at around 20 epochs.

(b) The only other task (style, color) is grounded
towards the end (around epoch 170) using X,
leading to an immediate convergence.

(c) We see a strong correlation between improve-
ment in performance and when agents learn a
language grounding. In particular, there is an
improvement from 40% to 80% within a span
of 25 epochs where most of the grounding is
achieved, as seen from Fig. 5.

References

Abhishek Das, Satwik Kottur, José M.F. Moura, Ste-
fan Lee, and Dhruv Batra. 2017. Learning Cooperative
Visual Dialog Agents with Deep Reinforcement Learn-
ing. arXiv preprint arXiv:1703.06585 .

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In AISTATS.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In ICLR.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning 8(3-4):229–256.


