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Abstract 
This paper describes an algorithm for automatically extracting multiword expressions (MWEs) from a corpus. The algorithm is node-
based, i.e. extracts MWEs that contain the item specified by the user, using a fixed window-size around the node. The main idea is to 
detect the frequency anomalies that occur at the starting and ending points of an ngram that constitutes a MWE. This is achieved by 
locally comparing matrices of observed frequencies to matrices of expected frequencies, and determining, for each individual input, one 
or more sub-sequences that have the highest probability of being a MWE. Top-performing sub-sequences are then combined in a score-
aggregation and ranking stage, thus producing a single list of score-ranked MWE candidates, without having to indiscriminately generate 
all possible sub-sequences of the input strings. The knowledge-poor and computationally efficient algorithm attempts to solve certain 
recurring problems in MWE extraction, such as the inability to deal with MWEs of arbitrary length, the repetitive counting of nested 
ngrams, and excessive sensitivity to frequency. Evaluation results show that the best-performing version generates top-50 precision 
values between 0.71 and 0.88 on Turkish and English data, and performs better than the baseline method even at n=1000. 
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1. Introduction 

Multiword expressions (MWEs) are conventionalized 
word combinations such as at the expense of …, good 
morning, execute an agreement, 31 January 2016, United 
Nations Children's Fund, or the proverbial elephant. They 
are complex structures that contain syntactic, 
morphological, phonological, semantic, pragmatic, and 
discourse-functional information (Croft and Cruse, 2004, p. 
258) and behave as single units of meaning (Sinclair, 2004, 
p. 39). 

MWEs have been defined in terms of their non-
compositionality (Villavicencio et al., 2005), lexical, 
syntactic and semantic idiosyncrasy (Sag et al., 2002; 
Baldwin and Kim, 2010; Mel'čuk, 1998), lexicalization 
(Wray, 2009; Maziarz, Szpakowicz, and Piasecki, 2015) 
semantic unity (Moon, 1998; Calzolari et al., 2002), 
syntactic unity (Kjellmer, 1987; Dias, 2003), 
institutionalization (Pawley and Syder, 1983), pragmatic 
specialization (Siepmann, 2005) and frequency (Grant and 
Bauer, 2004; Gries, 2008), among others. This diversity of 
approaches probably reflects the inherently complex nature 
of the phenomenon (Wray and Perkins, 2000, p. 3; Schmitt 
and Carter, 2004, p. 2). 

MWEs are numerous; Jackendoff (1997) estimates that 
they number on about the same order of magnitude as 
individual words (p. 156). They are frequent; Erman and 
Warren (2000) report that on average they make up 55% of 
spoken and written language (p. 37). In view of this 
pervasiveness, a MWE lexicon, i.e. a classified inventory of 
habitually co-occurring lexical items, is an essential 
component of the description of any language (Mel'čuk, 
2006, p. 3; Moon, 2008, p. 314). It is also important for 
natural language processing (NLP) and related disciplines, 
where MWEs still are an unsolved problem (Shwartz and 
Dagan, 2019; Nivre, 2021, p. 99). Despite the recent 
success of deep learning models in various NLP tasks, at 
least some of the performance issues faced by end-to-end 
pipelines like Stanza (Qi et al., 2020) and UDPipe (Straka 
and Straková, 2017) and the systems that use them seem to 
be caused by the following facts: (a) they use individual 

words as a unit of analysis, despite convincing evidence 
that “the normal primary carrier of meaning is the phrase 
and not the word” (Sinclair, 2008, p. 409), and (b) they rely 
on a strict separation of the lexical, morphological, 
syntactic, and semantic levels, ignoring the ubiquity of 
MWEs, which can be viewed as “data structure[s] that 
[integrate] all possible kinds of linguistic information in a 
single representation” (Trijp, 2018). The solution might lie 
in developing more complex data structures that recognize 
the existence of a phraseological level that crosses word 
boundaries and cuts across the traditional levels of analysis. 
MWE lexicons are essential linguistic resources in this 
regard. 

Because unaided speakers cannot reliably discover 
significant recurring patterns in their native language 
through conscious reflection (Church et al., 1991, p. 1; 
Stubbs, 2002, p. 219), MWE lexicons must be created 
automatically or semi-automatically, using large amounts 
of usage data. The task of MWE extraction, then, can be 
defined as “a process that takes as input a text and generates 
a list of MWE candidates, which can be further filtered by 
human experts before their integration into lexical 
resources.” (Constant et al., 2017, p. 847) 

A large number of methods have been proposed for the 
automatic extraction of MWEs from corpora during the last 
fifty years (Section 2). Most of the focus has been on 
resource-rich Indo-European languages like English, 
German and French. This paper reports on an effort to 
develop a MWE extraction algorithm that requires as little 
linguistic knowledge as possible. Although the algorithm 
was primarily designed for Turkish, a language whose 
complex morphology has proven to be challenging for NLP 
(Oflazer, 2014, p . 639), preliminary results show that it 
performs equally well on English data (Section 4.3), 
suggesting that it is to some extent language-independent. 

After discussing existing methods in Section 2, I will 
describe the proposed algorithm in Section 3, present the 
results of an experiment to evaluate its performance in 
Section 4, and discuss results and make concluding remarks 
in Section 5. 
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2. Existing Extraction Algorithms 

The majority of MWE extraction algorithms are based on 
the statistical manipulation of ngrams, i.e. sequences of n 
(continuous or discontinuous) items, usually words or 
morphemes, obtained from a corpus. In most applications, 
the relevance (i.e. ‘MWEhood’) of a given ngram is 
determined using some measure of the strength of the 
attraction between the items (known as an association 
measure; see Pecina (2005) and Hoang, Kim, and Yan, 
(2009) for reviews). Additional linguistic and/or statistical 
filters and thresholds can be used to improve results. The 
output is a score-ranked list of MWE candidates. 

Extraction methods can be classified along several axes: 
Some methods are designed to extract any type of MWE 
(Choueka, Klein, and Neuwitz, 1983), while others focus 
on specific types such as verb-particle constructions 
(Ramisch et al., 2008) or preposition-noun constructions 
(Keßelmeier et al., 2009). Some extract only MWEs that 
contain a specific word/lemma (Kilgarriff and Tugwell, 
2001; Cheng et al., 2009), while others extract MWEs 
without regard to their lexical content (Banerjee and 
Pedersen, 2003). Another basic parameter is whether or not 
a given method can deal with discontinuity, i.e. the 
interruption of a MWEs elements by additional material. 
Most methods only deal with continuous MWEs (Aires, 
Lopes, and Silva, 2008), but some deal with both 
continuous and discontinuous ones (da Silva et al., 1999). 

Most extraction algorithms combine statistical methods 
with linguistic knowledge, which can be integrated into the 
system in one or more pre- or post-processing steps. This 
can take several forms such as POS-tagging (Justeson and 
Katz, 1995; Lossio-Ventura et al., 2014), lemmatization 
(Daille, 1994; Evert and Krenn, 2001), morphological 
analysis (Al-Haj and Wintner, 2010; Kumova-Metin and 
Karaoğlan, 2010), syntactic parsing (Smadja, 1993; Uhrig, 
Evert, and Proisl, 2018), stop lists (Frantzi and Ananiadou, 
1999; Banerjee and Pedersen, 2003), synsets (Pearce, 
2001), morphosyntactic patterns (Ramisch, Villavicencio, 
and Boitet, 2010; Passaro and Lenci, 2016), and semantic 
tags (Piao et al., 2003; Dunn, 2017). Combining statistical 
methods with linguistic knowledge involves a trade-off: 
Methods that use linguistic knowledge may perform better 
(Wermter and Hahn, 2006, p. 791), but are more language-
dependent; while methods that do not use linguistic 
knowledge are more language-independent, but might have 
more limited performance. 

There are at least four persistent challenges MWE 
extraction systems faced in their more than fifty-year 
history. The first is that, although MWEs frequently are 
longer than two words, virtually all association measures 
used in MWE extraction are designed to only extract 
bigrams, i.e. sequences of two items (Wahl and Gries, 
2020, p. 88). Several techniques have been proposed to 
generalize association measures to ngrams longer than two 
(da Silva et al., 1999; van de Cruys, 2011; Dunn, 2018). 

A second challenge is that extraction methods do not 
behave identically at different frequency ranges (Evert and 
Krenn, 2001, Section 4.3). For example, the association 
measure pointwise mutual information is known to produce 
                                                           
1 A Python implementation of the proposed algorithm is available at 

https://github.com/melanuria/mwe_extractor. 

extremely high association scores for low-frequency 
MWEs, while t-score does the same for high-frequency 
MWEs (Gries, 2010, p. 14). This is a problem even if one 
tries to use the appropriate measure for the appropriate 
frequency range. First, it is not easy to accurately describe 
how a given association measure behaves at different 
frequencies. Second, determining the exact point where one 
measure stops being useful and another measure would 
perform better requires experimentation, and is therefore 
prone to error. Reduced or zero sensitivity to frequency is 
a desirable property for an extraction method. 

A third problem is that most extraction methods require the 
setting of one or more parameters for optimum 
performance. This is problematic because setting a 
parameter accurately requires experimentation, which is 
prone to error and introduces the risk of data overfitting. 
Moreover, the correct value of a parameter depends on 
various factors such as the language and size of the corpus, 
the association measures used for extraction, and the 
type(s) of MWE being extracted (da Silva et al., 1999). 

The fourth persistent challenge has been variously referred 
to as nested terms (Frantzi, Ananiadou, and Mima, 2000, p. 
117), overlapping chains (Mason, 2006, p. 155) and 
included components (O’Donnel, 2011, p. 166). Consider 
the expression strawberry ice cream. Any sentence that 
contains this trigram also contains the two bigrams 
strawberry ice and ice cream. A method that extracts 
strawberry ice cream as a valid MWE because its 
frequency is high enough would tend to extract the two 
bigrams as well, since their frequencies will, by definition, 
be at least as high as that of the original trigram. The 
problem is that one of the bigrams (ice cream) is a valid 
MWE, while the other (strawberry ice) is not, and a purely 
frequency-based extraction method has no mechanisms to 
make the correct decision. Several methods have been 
proposed to deal with this problem (Kita et al., 1994, p. 25; 
Ren et al., 2009, p. 49; Wei and Li, 2013, p. 519). 

3. Proposed Algorithm1 

3.1 General Characteristics 

This paper proposes an algorithm for extracting 
continuous, i.e. uninterrupted MWEs from a corpus. The 
algorithm relies on the concept of co-selection in line with 
Sinclair’s (1987) idiom principle, according to which 
“speakers and writers co-select the words they speak and 
write in order to produce units of meaning, even though the 
words might appear to be analysable into segments” 
(quoted in Cheng et al., 2009, p. 239). Since co-selection is 
a cognitive phenomenon that cannot be observed directly, 
the algorithm uses textual co-occurrence as a proxy. 
Therefore, as is the case with other statistical extraction 
techniques, the results are valid only to the extent this 
approximation is valid. 

The main idea behind the algorithm is to detect the 
frequency anomalies that occur at the starting and ending 
points of a MWE, which, for purposes of this paper, is 
defined as a recurring sequence of linguistic units, i.e. 
words and/or morphemes. The algorithm detects these 
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anomalies by manipulating several matrices of ngram 
frequencies. 

The proposed algorithm is node-based, i.e. extracts MWEs 
that contain the item specified by the user, using a fixed 
window-size around the node. It uses a candidate 
generation and ranking approach, where the input is a set 
of concordances containing the node, and the output is a 
score-ranked list of MWE candidates. It is knowledge-poor, 
i.e. does not require linguistic knowledge, except as may be 
necessary for segmenting the raw input into words or 
morphemes (Section 3.2). According to the experiment in 
Section 4, the algorithm seems to be language-
independent, at least to some extent. Finally, it is 
computationally efficient, with a time complexity of O(n). 

3.2 From Concordances to Ngrams 

The raw input consists of N concordance lines that contain 
the node specified by the user. Although the node is usually 
a simplex content word, also bound morphemes, complex 
word-forms and even multiple word-forms can be used as 
node. The user also specifies two window sizes, WL and WR, 
for the left and right context of the node, respectively.2 A 
pre-processor then converts each of the N concordance 
lines into a sequence of WL+1+WR elements (e.g. a 7-gram 
with the node in the middle, if window size is three on both 
sides). 

The next step is to identify sentence boundaries and 
punctuation marks, which are treated as boundary tokens 
that MWEs cannot cross. All boundary tokens and any 
other tokens that are farther away from the node are 
replaced by the dummy string ###. Finally, position 
prefixes are added to all tokens, where Ln and Rn represent 
the nth token in the left and right contexts, respectively, and 
KW represents the node. Table 1 shows three raw 
concordance lines and ngrams for English, for a window 
size of three on both sides.3 

Concordance1: and global warming at the same time provide 

alternative livelihood for the hill indigenous people. 

Ngram1 = {L3_at, L2_the, L1_same, KW_time, R1_provide, 

R2_alternative, R3_livelihood} 

Concordance2: the vehicles will drive ahead and have our 

camp set up by the time you arrive. 

Ngram2 = {L3_up, L2_by, L1_the, KW_time, R1_you, 

R2_arrive, R3_###} 

Concordance3: profiles the director and looks at his life and 

work, including time spent with son noel. 

Ngram3 = {L3_###, L2_###, L1_including, KW_time, 

R1_spent, R2_with, R3_son} 

Table 1: Raw data and ngrams for WL=3 and WR=3 

                                                           
2 A typical setting would be ±5 (see Smadja, 1993, p. 151; Martin, 1983, 

quoted in Smadja, 1989, p. 6). 
3 Examples are in Turkish and English since the algorithm has been tested 

on these two languages (Section 4). All examples are based on data 

obtained from the trTenTen12 and enTenTen20 corpora available at 
sketchengine.co.uk. 
4 The notation used to describe Turkish morphology cannot be covered 

here in any depth. The following list of glosses are intended to assist the 
interpretation of the examples in this paper: 

Case markers: ACC (accusative), DAT (dative), LOC (locative), ABL 

(ablative), GEN (genitive) 
Possessive markers on nouns: P1S, P2S, P3S, P1P, P2P, P3P 

An important question arises at this point: What is the 
proper unit of analysis for the MWE extraction task, i.e. 
what should individual ngram elements consist of? Using 
word-forms may be appropriate for an analytic language 
like English, because, compared to a less analytic language, 
an average English lemma has fewer word-forms grouped 
under it. Consider the light-verb construction have a hard 
time, which has four variants: has/had/have/having a hard 
time. An obvious solution would be to group these word-
forms under the lemma HAVE, which would allow us to 
abstract away from the syntactically motivated surface 
variation, and represent the MWE as HAVE a hard time. 

Although lemmatisation is a viable option, the cost of not 
lemmatising is not prohibitively high in English. In the 
absence of lemmatisation, the total frequency of the 
construction is divided among the four versions, resulting 
in some data sparsity, which makes it somewhat harder to 
extract the construction, and also causing some 
fragmentation, which means that the candidate list contains 
four separate entries for the four versions (assuming the 
algorithm manages to extract them all). 

An agglutinating language like Turkish presents a radically 
different picture. Consider the N-V collocation -e zaman 
ayır, -DAT time spare, ‘to spare time for something’.4 This 
construction requires the object to carry a dative marker, 
which means that, every time the construction is used with 
a different noun, a different, complex word-form occurs at 
position L1: aileme, family-P1S-DAT, ‘to my family’; 
ailelerinize, family-PL-P2P-DAT, ‘to your families’; 
uykuya, sleep-DAT, ‘to sleep’, etc. Moreover, like many 
other Turkish verbs, ayır- has several thousand different 
realizations5, depending on the sequence of suffixes 
attached to it: ayırdık, spare-PAST-1P, ‘we spared’; 
ayıramıyorum, spare-ABIL-NEG-PRES-1S, ‘I cannot 
spare’; ayırabilirler, spare-ABIL-AOR-3P, ‘they can 
spare’, etc. This means that, when word-forms are used as 
units, the total frequency of -e zaman ayır- is divided 
among thousands of different word-form trigrams, 
resulting in extreme data sparsity, which makes it difficult, 
if not impossible, to extract the construction. Also the 
fragmentation problem is exacerbated by several orders of 
magnitude compared to English, meaning that the 
candidate list contains a very large number of different 
entries that instantiate the same construction, once again 
assuming the algorithm manages to extract them. Similar 
problems caused by the morphology of Turkish have been 
discussed by several authors in information extraction 
contexts (Tür, Hakkani-Tür, and Oflazer (2003); Yeniterzi 
(2011); Eryiğit et al. (2015, pp. 71-72). 

In view of the above, it seems appropriate to use word-
forms as ngram elements for English data, and individual 

Plural marker: PL 

Negation marker: NEG 

Compound marker: CM (identical to P3S in form) 

Tense/aspect/modality markers: ABIL (abilitative), AOR (aorist), CAUS 
(causative), COND (conditional), DES (desiderative), EVID (evidential), 

FUT (future), IMP (imperative), NEC (necessitative), OPT (optative), 

PAST (past), PRES (present) 
Relativizers: OBJREL (object), SUBJREL (subject) 

Person markers on verbs: 1S, 2S, 3S, 1P, 2P, 3P 
5 Although the exact figure is difficult to calculate, a quick corpus query 

suggests that the trTenTen12 corpus at sketchengine.co.uk contains more 

than 2,000 unique word-forms (types) based on this verb. 



morphemes for Turkish data.6 To achieve this, Turkish 
concordance lines have been processed by the 
morphological analyser described by Çöltekin (2010), 
which generates all possible analyses for each word-form. 
And this brings us to the problem of morphological 
ambiguity. Consider the following sentence: 

Ürünü istediği zaman alabileceğini bilen müşteri, alımı erteler. 

‘Knowing that he/she can purchase the product any time he/she 

wants, the customer postpones the purchase.’ 

For the node zaman, ‘time’, and a window size of five on 
both sides, the word-forms ürünü, istediği and 
alabileceğini are morphologically ambiguous, each having 
two possible morphological analyses. This results in eight 
possible morpheme sequences (ambiguities underlined): 

ürün-ACC iste-OBJREL-ACC zaman al-ABIL-FUT-CM-ACC 

ürün-CM iste-OBJREL-ACC zaman al-ABIL-FUT-CM-ACC 

ürün-ACC iste-OBJREL-CM zaman al-ABIL-FUT-CM-ACC 

ürün-CM iste-OBJREL-CM zaman al-ABIL-FUT-CM-ACC 

ürün-ACC iste-OBJREL-ACC zaman al-ABIL-FUT-P2S-ACC 

ürün-CM iste-OBJREL-ACC zaman al-ABIL-FUT-P2S-ACC 

ürün-ACC iste-OBJREL-CM zaman al-ABIL-FUT-P2S-ACC 

ürün-CM iste-OBJREL-CM zaman al-ABIL-FUT-P2S-ACC 

To be able to use individual morphemes rather than word-
forms as their unit of analysis, several studies on 
information extraction in Turkish (Küçük and Yazıcı, 
2009; Kumova-Metin and Karaoğlan, 2010; Yeniterzi, 
2011; Şeker and Eryiğit, 2012; Kazkılınç, 2013, Güngör, 
Güngör, and Üsküdarlı, 2019) have resorted to 
morphological disambiguation (i.e. a mechanism that 
selects one of the available morphological analyses as the 
“correct”, or at least the most probable, one). But this is 
dangerous in a MWE extraction setting because 
morphological disambiguation in agglutinating languages 
is not a trivial task and its performance relies, among 
several other factors, on the proper handling of MWEs. In 
other words, using a morphological disambiguator in a 
MWE extraction algorithm amounts to using the output of 
a task to perform another task when the outcome of the 
former depends on the latter. This is why the proposed 
algorithm refrains from disambiguating the morphological 
analyses. Instead, whenever there are more than n possible 
analyses, it randomly chooses n of them. This is an 
obviously more inferior but more cautious approach. 

In an experimental step to deal with morphological 
variability in Turkish, possessive markers on nouns are 
replaced by the ‘super-tag’ POSS. To draw a parallel to 
English, this allows the system to treat, say, for the first 
time in my/your/his/her/its/our/their life/lives as instances 
of the abstract MWE for the first time in one’s life. 

The last step for both English and Turkish is to pre-
calculate the following global frequencies: 

 Position-specific frequency of every token (e.g. 
frequency of spent at position R1); and 

 position-specific frequency of each of the 
(WL+1)×(WR+1) uninterrupted, node-containing 

                                                           
6 This is not a dichotomy but a continuum. It seems safe to assume that 

the more synthetic a language is, the more it would benefit from a 
morpheme-based treatment. 

sub-sequences of the N concordance lines (e.g. 
frequencies of same time, same time provide, etc.) 

3.3 Observed Frequencies 

The co-selection matrix of observed frequencies, O, is a 
WL+1 by WR+1 matrix that stores the observed ngram 
frequencies the algorithm uses to extract MWEs: 

 

 

 

Row and column indices correspond to the left and right 
context of the node, respectively. Each matrix element 
stores the observed frequency of an uninterrupted sub-
sequence that starts at the token represented by the row-
index and terminates at the token represented by the 
column-index. For instance, matrix element O4,3 for 
Ngram1 in Table 1 stores the observed frequency of the 6-
gram that starts at L3 and ends at R2 (shorthand notation 
L3…R2), i.e. the sub-sequence at the same time provide 
alternative. In other words, each matrix element shows 
how many times the corresponding sub-sequence of an 
individual ngram occurs in the entire input. 

The topological organization of the matrix is such that 
moving from a given matrix element to the element on the 
right represents adding a new token to the right of the 
original sequence, and moving to the element below 
represents adding a new token to its left. The top-left 
element, O1,1, which represents the bare node, is the starting 
point, and the sub-sequences get incrementally longer as 
one moves from there to the bottom-right element, which 
represents the longest sequence determined by WL and WR. 

Critically, each of the N concordance lines included in the 
analysis has its own co-selection matrix. The co-selection 
matrix is a local artefact that allows the algorithm to select 
the best-performing sub-sequence(s) of a single ngram, 
using global frequency values obtained from the entire 
input data. 

3.4 Adjusting Observed Frequencies 

The next step is to deal with the nesting problem discussed 
in Section 2 by adjusting the co-selection matrix of 
observed frequencies. In mathematical terms, the problem 
is that every sub-sequence Lm…Rn contains ((m+1) × (n+1)) 
- 1 shorter sub-sequences, which means that, whenever the 
frequency of Lm…Rn is incremented, the frequencies of 
each of those shorter sub-sequences are incremented as 
well. To prevent this repetitive counting, matrix O is 
processed element-by-element, starting at the bottom-right 
corner and proceeding diagonally to the shorter sub-
sequences, until the top-left corner is reached. At every 
step, the frequency of the sub-sequence being processed is 
deducted from the frequencies of all shorter sub-sequences. 
The end result is O', the adjusted co-selection matrix of 
observed frequencies. 

Below is an example for Ngram1 in Table 1: 



3.5 Expected Frequencies and Aggregate 
Matrix 

3.5.1 Definitions 

The proposed algorithm works by comparing O' to either 
the co-selection matrix of expected frequencies (E), or to 
the aggregate matrix (A). The following definitions are 
needed to describe these two methods: 

Definition 1: The probability of observing a given token at 
a given position is approximated by dividing the number of 
times that token occurs at that position by the number of 
ngrams included in the analysis: 

 

 

Definition 2: The probability of not observing a given token 
at a given position is approximated by taking the 
complement of the probability of observing that token in 
that position: 

 

 

Definition 3: The expected probability of observing a 
sequence Lm…Rn is approximated by multiplying the 
probabilities of observing each token in the sequence, the 
probability of not observing Lm+1, and the probability of not 
observing Rn+1.7 For example, in relation to Ngram1 in 
Table 1: 

 

 

         8 

Definition 4: The co-selection matrix of expected 
frequencies (E) is calculated by applying Definition 3 to 
each sub-sequence in O', and multiplying the resulting 
matrix by the scalar N, to convert expected probabilities to 
expected frequencies: 

 

 

 

Definition 5: The aggregate matrix A is equal to the matrix-
sum of the N adjusted co-selection matrices of observed 
frequencies: 

 

 

                                                           
7 When m=WL and/or n=WR (i.e. along the bottom and right edges of the 

matrix), the probabilities of not observing Lm+1 and Rn+1 are undefined, 
and are thus assumed to be 1.0. 
8 p(KW) can be omitted because it is by definition equal to 1.0 (all ngrams 

contain the node KW in the middle). 

3.5.2 Using the Co-selection Matrix of Expected 
Frequencies to Detect Anomalies 

The co-selection matrix of expected frequencies of a given 
ngram (E) contains the expected frequencies of each sub-
sequence in O'. Just as every individual ngram has its own 
O', every individual ngram has its own E. The expected 
frequencies matrix provides a baseline for detecting 
anomalies in an O' matrix: 

 

 

 

According to ENgram1, the expected frequency of 
L3…KWNgram1 (the sub-sequence at the same time) is zero. 
Since the corresponding frequency in O'Ngram1 (f=1754, 
Section 3.4) is significantly higher than zero, the sequence 
at the same time has a high probability of being a MWE. 

3.5.3 Using the Aggregate Matrix to Detect 
Anomalies 

The aggregate matrix A shows how the total probability 
mass is distributed among matrix elements in the 
aggregate. There is only one aggregate matrix for every 
node word, and the sum of its elements is always equal to 
1.0. Just like E, A provides a baseline for detecting 
anomalies in individual O matrices. 

The aggregate matrix for time:9 

 

 

 

According to this, an average O' matrix for the node time is 
expected to have 2.75% of its total frequency in the matrix 
element O'2,1. If an individual O' matrix has significantly 
more than 2.75% of its total frequency in O'2,1, this would 
indicate that the sub-sequence represented by that element 
(L1…KW) has a higher-than-average probability of being a 
MWE. 

3.6 Calculating Scores 

A distinctive feature of the proposed algorithm is that a 
separate O and a separate E, and consequently a separate 
score matrix S is generated for each of the N items in the 
input data. This allows the algorithm to locally select only 
those sub-sequences that have the highest probability of 
being a MWE, thus preventing the remaining sub-
sequences from ‘contaminating’ the statistics. Considering 
that most existing methods indiscriminately generate all 
possible sub-sequences of a given ngram, the proposed 
method ensures a dramatic10 reduction in the amount of 
data that will have to be considered during score-
aggregation and ranking. 

9 Unlike the earlier examples, this example uses a window size of five on 

both sides. For ease of presentation, the matrix has been normalized by 
dividing it by the sum of its elements. 
10 A (5+1)×(5+1)=36-fold reduction for a typical window-size of 5 on 

both sides, assuming the algorithm selects a single top-performing 
candidate from each score matrix. 



As mentioned in Section 3.5.1, S is calculated by 
comparing O' to either A or E. In the former case, S is 
simply equal to O'/A. In the latter case: 

 

 

where a is a constant correction factor to avoid logarithms 
of zero (and one of the parameters in the experiment in 
Section 4). 

A possible modification to the score matrix is length 
adjustment, where every element of S is divided by the 
length of the sub-sequence represented by that element. 
Length adjustment is another parameter in the experiment 
described in Section 4. 

3.7 Selecting Candidates 

Having obtained N score matrices for the N concordance 
lines, the next step is to select the best MWE candidate(s) 
that each concordance line will forward to the score 
aggregation and ranking stage. Two parameters relevant at 
this point are c, the number of candidates to be selected 
from each score matrix, and t, the minimum score required 
for being selected. In formal terms, the set of candidates 
consists of the c ngrams whose score in S is equal to or 
greater than t. If c=3 and t=1.5, for instance, three sub-
sequences with the highest scores will be selected, and 
those with a score of 1.5 or higher will be forwarded to the 
score aggregation stage. 

3.8 Score Aggregation and Candidate-Ranking 

The next step is to aggregate the scores of the candidates 
selected in the previous step. Three methods will be tested 
for this purpose. In the first method named ‘add-one’, the 
aggregate score of a MWE candidate is incremented by one 
every time the score-selection algorithm selects it. In the 
second one named ‘add-score’, aggregate score is 
incremented by the candidate’s score in S every time it is 
selected. In the third one named ‘max’, aggregate score is 
equal to the highest score a candidate obtains in any of the 
score matrices that select it. 

The result of this final step is a score-ranked list of MWE 
candidates. Top thirty candidates generated by the 
algorithm for the English word time and the Turkish word 
zaman, ‘time’, are given in Table 2, for N=50,000, and 
using Method A described in Section 4.3. 

Rank English Turkish 

1 at the same time son zamanlarda 

2 from time to time her zamanki gibi 

3 for the first time o zaman 

4 at the time uzun zamandır 

5 this time -dıkları zaman 

6 for a long time kimi zaman 

7 over time bu zamana kadar 

8 at that time o zamana kadar 

9 at this time bir zamanlar 

10 for the first time in her zamankinden daha 

11 all the time işte o zaman 

12 most of the time ne zaman 

13 a lot of time hiç bir zaman 

14 at the time of the -e baktığımız zaman 

15 at a time zaman 

16 at any time her zaman olduğu gibi 

17 for some time istediği zaman 

18 in time -masının zaman 

19 in real time gerçek zamanlı 

20 at the time of olduğu zaman 

21 it is time to her zaman 

22 of time kısa zaman 

23 during this time dediği zaman 

24 at a time when uzun zamandan beri 

25 every time ne kadar zaman 

26 of all time ilerleyen zamanlarda 

27 the time baktığın zaman 

28 and at the same time o zamandan beri 

29 for the time being zaman diliminde 

30 at the right time -mak için zaman 

Table 2. Top-30 candidates for time and zaman, ‘time’ 

4. Evaluation 

4.1 General 

The standard approach to evaluating an information 
extraction system is to report both precision and recall, but 
this is not a straightforward task in a MWE extraction 
context. The main problem is that a gold standard against 
which to compare the results is difficult to define and 
obtain. One could use an existing resource like a machine-
readable dictionary or a wordnet (Schone and Jurafsky, 
2001), or a database specifically designed to evaluate 
MWE extraction systems (Kumova-Metin and Taze, 2017). 
But such resources are not available for all languages, and 
their coverage of MWEs is far from complete. 
Alternatively, one could use what Constant et al. (2017) 
refer to as post hoc human judgment, where each entry in a 
score-ranked candidate list is manually marked either as a 
MWE or a non-MWE by one or more experts (p. 853). 

The second question is whether to report both precision and 
recall, or just precision. Most authors have chosen the 
former alternative (Smadja, 1993; Evert and Krenn, 2001; 
Eryiğit et al., 2015; Taşçıoğlu and Kumova-Metin, 2021), 
although several others report only precision (Shimohata, 
Sugio, and Nagata, 1997; Zhai, 1997; Frantzi, Ananiadou, 
and Mima, 2000; Dias, 2003). Reporting recall assumes 
that the researcher has access to the set of all MWEs in a 
language (or at least the set of all MWEs in the sample used 
in the study), while reporting precision involves the more 
reasonable assumption that it is possible to know whether 
or not a given sequence is a MWE. 

This study will refrain from reporting recall. This is 
because the number of MWEs one finds in a corpus is 
closely linked to how broadly one chooses to define 
phraseology. MWE extraction has a relatively short history, 
and the true extent of the phraseological tendency in human 
languages is still not sufficiently explored. In other words, 
we cannot safely assume that we know “the set of all 
MWEs”, or even what it means to know such a thing. It 
thus seems to be more appropriate to initially adopt a broad 
definition of phraseology, and then reduce its scope to the 
extent required by the data. 

The ‘broad definition of phraseology’ adopted in this paper 
uses the following settings for the six parameters proposed 
by Gries (2008, p. 4): 



i. a MWE may consist of roots or affixes, but must 
contain at least one lexically specified element; 

ii. a MWE must have at least two elements, and cross 
at least one word boundary (no upper limit to the 
number of elements); 

iii. the observed frequency of a MWE must be higher 
than its expected frequency; 

iv. the elements of a MWE may not be interrupted by 
other elements (i.e. continuous MWEs only); 

v. MWEs may exhibit lexical, syntactic and 
morphological variability; 

vi. a MWE must constitute a semantic unit but does 
not have to be semantically non-compositional. 

The design of the algorithm and the nodes selected already 
make sure that MWE candidates comply with (i), (ii) and 
(iii). So, the expert only has to focus on (iv), according to 
which have a good time is a MWE but have an 
unexpectedly and unbelievably good time is not; on (v), 
according to which spend quality time and spent quality 
time are both valid MWEs; and on (vi), according to which 
time limit is a MWE but time by is not (semantic unity 
required), and both time and again and time and date are 
MWEs (semantic non-compositionality allowed but not 
required). 

Using the above criteria, the expert marked 1672, 2132 and 
1053 sequences as valid MWEs for the three node words 
selected in Section 4.2, respectively.11 Although items 
marked as valid MWEs involve some redundancy (i.e. 
several variants of the same MWE marked separately), 
these numbers are still unexpectedly high, suggesting that 
the phraseological tendency in both English and Turkish is 
stronger than generally assumed, at least when a broad 
definition of phraseology is adopted. Existing MWE 
repositories for Turkish (Eryiğit, İlbay, and Can, 2011; 
Adalı et al., 2016; Kumova-Metin and Taze, 2017; Berk, 
Erden, and Güngör, 2018) contain 4,000-30,000 MWEs for 
the entire language. Thus, they cannot be used as a gold 
standard in a study that adopts a broad definition of 
phraseology, where a single word can have around one 
thousand MWEs. 

The third question is how to calculate precision. One option 
is to report the number of true positives among the top 100 
or 200 items on the ranked candidate list. Evert and Krenn 
(2001) criticize this approach, stating that evaluation 
results would then be based on a small and arbitrary subset 
of the candidates, which means that “results achieved by 
individual measures may very well be due to chance” (p. 
2). Instead, they calculate precision at every point of the 
candidate list, which allows them to plot it as a curve (also 
see Zhai, 1997, p. 6). The precision curve has been adopted 
by several authors, and seems to have become a standard in 
the field (Schone and Jurafsky, 2001; Pecina, 2005; 
Kumova-Metin, 2016). 

A final point is whether or not to use a baseline against 
which the algorithm’s performance can be compared. The 
naïve ngram method is frequently used for this purpose. 
This consists of generating every possible sub-sequence of 
every ngram included in the study. The baseline is then 
created either by calculating the probability of a randomly 

                                                           
11 The manually marked gold-standard files for the three node words are 

available at https://github.com/melanuria/mwe_extractor/tree/main/data. 

selected sub-sequence being a MWE (Pecina, 2005), by 
sorting the sub-sequences in decreasing order of frequency 
and calculating one or more precision values for some 
portion of that sorted list (Wermter and Hahn, 2004), or 
both (Krenn and Evert, 2001). As noted by several 
researchers (Frantzi, Ananiadou, and Mima, 2000, p. 117; 
Krenn and Evert, 2001, Section 10; Wermter and Hahn, 
2004, Section 4.1), the naïve ngram method performs 
surprisingly well despite its simplicity. Section 4.3 
confirms this finding. 

In light of the above discussion, this paper will evaluate the 
proposed algorithm by reporting precision only (using 
precision curves based on post hoc human judgment), by 
using the naïve ngram method as a baseline, and by 
designing an experiment that covers all possible 
combinations of the algorithm’s parameters. 

4.2 Experiment Design 

The algorithm’s performance will be evaluated in an 
experiment that uses various parameter settings. 
Throughout the discussion in Section 3, the following 
emerged as possible parameters: 

 Observation matrix O can be used with or without 
nesting adjustment (Section 3.4); 

 score matrix S can be calculated using either 
expected frequencies matrices (E) or the 
aggregate matrix (A) (Section 3.5); 

 score matrix S can be used with or without length 
adjustment (Section 3.6); 

 the correction factor a (Section 3.6) can have 
different values (2, 4 and 8 selected for 
experiment); 

 different values can be used for c (Section 3.7) (1, 
2 and 3 selected for experiment); 

 different values can be used for t (Section 3.7) (0, 
0.5, 1 and 2 selected for experiment); 

 three methods are available for score aggregation 
(add-one, add-score, max) (Section 3.8) 

Accordingly, there are 2×2×2×3×3×4×3=864 possible 
parameter combinations. The experiment will run the 
algorithm once for each of these combinations, and 
evaluate results. 

Since the algorithm will be run with 864 different settings, 
the resulting unified lists contain a large number of 
candidates, which makes it impracticable to evaluate more 
than a few items. In view of this, only three items have been 
included in the experiment (see Section 5 for a discussion 
of this choice). Since the aim is to test Turkish and English, 
and MWE-rich and MWE-poor items, the selection 
consists of the words time (expected to be MWE-rich), 
zaman, ‘time’ (expected to be MWE-rich), and literatür, 
‘academic literature’ (expected to be MWE-poor). 

The MWE candidate lists for these items were manually 
annotated by the author (6,190 candidates for time, 17,236 
candidates for zaman, and 10,305 candidates for literatür). 
To minimize bias, the 864 candidate lists generated by the 
algorithm and the candidate list generated by the naïve 
ngram method were combined, and the lines randomized. 

https://github.com/melanuria/mwe_extractor/tree/main/data


This ensured that the annotator had no way of knowing if a 
given candidate was generated by the algorithm or by the 
naïve ngram method. Even if the annotator somehow 
guesses that a candidate was generated by the algorithm, 
he/she cannot know which of the 864 versions generated it. 

4.3 Experiment Results 

The nodes time and zaman were included in the experiment 
because they refer to the same, very basic, concept in 
English and Turkish, and are thus expected to be a part of 
a large number of MWEs, while literatür was included for 
its highly-specialized meaning, expected to result in fewer 
MWEs. As expected, the two cases had two different best-
performing parameter combinations (Table 3), and 
different precision profiles (Figures 1-4). 

Parameter Method A Method B 

nesting adjustment yes no 

comparison method E matrix A matrix 

length adjustment none none 

correction factor (a) 2 2 

number of candidates (c) 1 2 

score threshold (t) 0 0 

score aggregation method add-one add-one 

Table 3. Two best-performing parameter combinations 

The combination that performed best for time and zaman 
will be named Method A, and the one that performed best 
for literatür Method B. Figures 1-3 show the precision 
curves Method A generated for the three nodes, in each 
case for the top-1000 candidates. Figure 4 shows the 
precision curves Method B generated for literatür, again 
for the top-1000 candidates. A dashed line shows the 
precision of the naïve ngram method, a solid line the 
precision of the best parameter combination, and thin grey 
lines the precisions of the remaining 863 combinations. 

 

 

 

 

 

 

 

Figure 1. Precision curves for time (Method A) 

 

 

 

 

 

 

Figure 2. Precision curves for zaman (Method A) 

 

 

 

 

 

 

 

Figure 3. Precision curves for literatür (Method A) 

The performance of the naïve ngram method confirms 
findings in the literature. Despite its extreme simplicity, it 
provides 50-60% precision for the first few hundred items, 
and 30-40% at n=1000, regardless of the node-word used. 

The proposed algorithm gives promising results, especially 
for the top few hundred items of the candidate lists. For all 
three nodes, Method A generates top-50 precision values 
between 0.71 and 0.88, top-100 precision values between 
0.60 and 0.88, and top-200 precision values between 0.54 
and 0.78. Thus, in applications where a minimum precision 
of around 0.70 is acceptable and only the most prominent 
50 or so MWEs of a word are required, Method A can be 
used without post-processing. In applications that require 
larger and more precise MWE lists, the same method can 
be used to obtain more than 100 MWEs per word, with the 
manual effort of reviewing the top 150-200 candidates. 
When the algorithm is used to process, say, the most 
frequent 20,000 words of a language, the resulting MWE 
lexicon would probably contain more than one million 
entries, even after accounting for redundancies. 

For the MWE-rich items time and zaman, Method A 
consistently performs 20-35 percentage points above the 
baseline up to n=200, and retains a 10-point lead even at 
n=1000. For the MWE-poor literatür, however, Method A 
falls towards the baseline more quickly, finally converging 
with it at around n=600 (Figure 3). In contrast, Method B 
performs consistently above baseline for this node word, 
even at n=1000 (Figure 4). 

 

 

 

 

 

 

 

Figure 4. Precision curves for literatür (Method B) 

Although additional evaluation data is required to reach 
statistically meaningful conclusions, existing results 
suggest that Method A provides an efficient method for 
automatically extracting the phraseology of relatively more 
frequent and general-purpose words, and/or extracting the 
most prominent MWEs of each word, while Method B can 



be used to extract the phraseology of relatively less 
frequent words with a more specialized meaning, and/or to 
obtain higher precision at the bottom of the candidate lists. 

5. Conclusion 

This paper proposed and evaluated an algorithm for 
automatically extracting MWEs from a corpus. Initial 
results show that it works equally well for two 
typologically different languages, English and Turkish. 

The algorithm uses a co-selection matrix that gradually 
adds elements to the left and right contexts of a starting 
element (the node), and works by detecting the frequency 
anomalies that occur at the starting and ending points of a 
MWE. It is in this regard conceptually similar to a family 
of existing algorithms including the neighbour-selectivity 
index algorithm by Choueka et al. (1983), the Xtract 
algorithm by Smadja (1993), and the LocalMaxs algorithm 
by da Silva and Lopes (1999). The most important 
difference between the proposed algorithm and these 
earlier algorithms is that the proposed algorithm is node-
based, knowledge-poor and computationally efficient. 
Another important difference is that it can be used to for 
both extraction and identification, the latter being “the 
process of automatically annotating MWE tokens in 
running text by associating them with known MWE types” 
(Constant et al., 2017). This is because the algorithm 
generates matrices for individual input sequences, and can 
thus determine the top-performing sub-sequences of any 
sequence entered by the user. 

The algorithm has certain properties that address some of 
the recurring issues in MWE extraction (Section 2). First, 
it avoids using association measures, which are generally 
limited to detecting the association between two items. This 
means that the algorithm can extract sequences of arbitrary 
length, as long as length does not exceed window size. 
Second, it solves the frequency sensitivity problem to a 
certain extent in that the final ranking strictly follows the 
overall frequency order of the relevant candidates, which 
means that low-frequency items are not disproportionately 
pushed to the top of the list, and vice versa. Third, it avoids 
the nesting problem by applying the adjustment described 
in Section 3.4, and also by selecting a user-defined number 
of top-performing sub-sequences from a given ngram and 
ignoring all remaining sub-sequences. Fourth, it achieves a 
relatively high precision although it does not require 
morpho-syntactic patterns or other linguistics filters. In this 
sense, the algorithm seems to refute Frantzi and Ananiadou 
(1999), who claim that “the statistical information that is 
available, without any linguistic filtering, is not enough to 
produce useful results” (p. 147), and also Wermter and 
Hahn (2006), who claim that “purely statistics-based 
measures reveal virtually no difference compared with 
frequency of occurrence counts, while linguistically more 
informed metrics do reveal such a marked difference” (p. 
785). 

The present version of the algorithm also has certain 
limitations. First, it does not deal with certain types of 
MWE variability, a main challenge in MWE processing 
(Constant et al., 2017, p. 848). Morphosyntactic variability 
has already been dealt with to some extent (Section 3.2). In 
contrast, it does not seem easy to generalize the algorithm 
to deal with positional variability, where the order of the 

elements changes (e.g. agreement signed by X vs. X signed 
an agreement). 

Second, the algorithm cannot extract discontinuous MWEs, 
another main challenge in MWE processing (Constant et 
al., 2017, p. 848). Future work could focus on this 
limitation as well. One promising avenue is to extend the 
algorithm to phrase frames (“ngrams with one variable 
slot”) and PoS-grams (“a string of part-of-speech 
categories”) (Stubbs, 2007, pp. 90-1). This might be 
achieved by manipulating the co-selection matrices such 
that they contain a mixture of lexical items and POS tags, 
and by treating certain matrix rows and/or columns as slots 
that accept only certain lexical items that have the same 
part-of-speech or belong to the same semantic class, or only 
certain affixes that belong to the same paradigm. Another 
idea would be to combine the method with knowledge-rich 
pre- or post-processing steps to improve precision. 

Third, the algorithm has been evaluated on three words 
only, and this limits the validity of the results reported in 
Section 4. The total annotator time available could be 
allocated to increase (a) the number of experiment 
parameters tested, (b) the number of words tested, or (c) the 
number of candidates per word. This being an initial report 
on the proposed algorithm, it seemed more reasonable to 
maximize (a) and (c) at the expense of (b), i.e. to test a few 
candidate lists thoroughly (n=1000) for all possible 
combinations of the algorithm’s parameters. Future work 
should focus on increasing (b) without compromising (a) 
or (c), and also increasing the number of reviewers and 
adding inter-judge agreement to the picture.  

The original aim of this study was to design an algorithm 
to extract Turkish MWEs of arbitrary length. This was 
partially in response to Biber (2009), who stated that 
research was required to document sequences that are 
longer than two words, and asked “how are formulaic 
expressions realized in other languages; for example, in 
morphology-rich languages like Finnish or Turkish?” Biber 
thinks that “different linguistic devices will be required to 
realize formulaic expressions in these languages” and that 
“it is not even clear that formulaic language will be equally 
important in all languages” (p. 301). 

The proposed algorithm focuses on three of the more 
superficial and quantifiable properties of MWEs: (a) A 
MWE crosses at least one word boundary; (b) a MWE is a 
sequence of co-selected linguistic elements that function as 
a single semantic unit; and (c) the elements of a MWE co-
occur more frequently than expected. The fact that such a 
linguistically impoverished algorithm works equally well 
for English and Turkish suggests that the essential 
characteristics of the phraseologies of typologically 
different languages might not be as divergent as Biber 
thought. Moreover, the fact that 50,000 concordance lines 
can produce more than one thousand MWE types 
containing the same word suggests that formulaic language 
might very well be “equally important in all languages”, 
and probably more important than generally assumed. 
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