
A Details of the Corpus

The CNN/Daily Mail corpus (Hermann et al.,
2015) contains English news articles and associ-
ated human-written summaries and is the most pop-
ular large-scale benchmark in news summarization.
We used the pre-processed dataset as in (See et al.,
2017), which has 287,226 training pairs, 13,368
validation pairs, and 11,490 test pairs. We did not
replace the name entities with anonymised identi-
fiers, and used the same sentence segmentation for
documents and summaries as in (Liu and Lapata,
2019). To obtain the word embedding representa-
tion, we tokenized the sentences with the sub-word
algorithm from BERT (Devlin et al., 2019).

B Implementation Details of
Unsupervised Analysis Model

In this section, we provide implementation details
of the model in Section 4.3: an autoencoder with
adversarial training strategy.
Encoding Component: Given a document repre-
sentation vector vdoc, and a sentence representation
vector vsen as input, the encoding component (two
linear layers) compresses it to a lower dimension,
namely the latent feature vector vlatent. In our
setting, the hidden dimensions of vdoc, vsen and
vlatent are 768, 768 and 10, respectively. henc is
the hidden vector, defined as:

henc = LeakyRelu(W[vdoc;vsen] + b)

the lantent feature vector is defined as:

vlatent = Sigmoid(Whenc + b)

where W and b are trainable parameters in each
layer, and ; denotes the concatenation operation.
Decoding Component: Given a latent feature rep-
resentation vector vlatent and a document represen-
tation vdoc as input, the decoding component (two
linear layers) is targeted to reconstruct the sentence
representation vsen.

hdec = LeakyRelu(W[vdoc;vlatent] + b)

sdec = Whdec + b

where hdec and sdec are the hidden state and recon-
struction output, respectively.
Adversarial Decoding Component: Given a la-
tent feature representation vector vlatent as input,
the adversarial decoding component (one linear

layer) is targeted to reconstruct the sentence repre-
sentation vsen.

sadv = Wvlatent + b

where sadv is the reconstruction output.
Training Procedure and Setting: During each
training batch, there is a two-step parameter up-
date:
1) Update the adversarial decoder with Mean
Square Error (MSE) loss between sadv and vsen.

lossadv = MSE(sadv,vsen)

2) Update the autoencoder with MSE loss between
sadv and vsen, combined with a penalty from the
adversarial MSE to reduce the unnecessary infor-
mation leaked from vsen in the encoding compo-
nent. The adversarial loss is defined as:

lossadv = MSE(sdec,vsen)� �MSE(sadv,vsen)

where � = 0.2 in our training setting.
Adam optimizer (Kingma and Ba, 2015) was

used with learning rate of 1e�3 and weight decay
of 1e�3. Batch size was set to 64. Drop-out (Sri-
vastava et al., 2014) of rate = 0.1 was applied
in each linear layer. BERT parameters were fixed
during training. The trainable parameter size was
0.6M. Tesla V100 with 16G memory was used for
training and we used the Pytorch 1.4.0 as computa-
tional framework4.

C Implementation Details of Neural
Selector Model

In this section, we provide implementation details
of the model in Section 5.2: a neural sentence se-
lector for extractive summarization.
BERT Encoding Component: Given a document
D containing a number of sentences [s0, s1, ..., sn]
as input, the encoding component produces the
sentence representation hi from each s, which is
a list of tokens [w0,w1, ...,wm]. Here we use the
average of the token-level hidden states in the last
layer of BERT as hi.

hi =
1

m

mX

i

w
BertRep
i

Selection Modeling Component: Given the spe-
cific control code vctrl and sentence vectors H =

4https://github.com/pytorch/pytorch



[h0,h1, ...,hn] as input, this component use a two-
layer bi-directional LSTM to model the contextual
information with sub-aspect conditioning. The for-
ward and backward hidden states are concatenated
as output.

u
forward
i = LSTMf ([hi�1;vctrl])

u
backward
i = LSTMb([hi+1;vctrl])

ui = [uforward
i ;ubackward

i ]

where the input embedding dimension, hidden size,
and control code dimension is 768, 384 and 3 re-
spectively. ; denotes the concatenation operation.
Output Component: A linear layer is used to pro-
duce output yi for each sentence, as the probability
of being included in the generated summary.

yi = Sigmoid(Wui + b)

Training Setting: Binary cross entropy (BCE) is
used to measure the loss between the prediction yi
and the ground-truth ŷi for all time steps:

loss =
X

BCELoss(ŷi,yi).

Adam optimizer (Kingma and Ba, 2015) was
used with learning rate of 3e�4 and weight decay
of 1e�4. Batch size was set to 64. Drop-out (Sri-
vastava et al., 2014) of rate = 0.2 was applied in
the modeling layer and output linear layer. BERT
parameters were fixed during training. Lengthy
documents were not truncated. The trainable pa-
rameter size was 14M (excluding the pre-trained
language model). We trained the model for 20
epochs (about 12 hours) on the Tesla V100 GPU.
The reported models were selected based on the
best validation performance, according to the in-
flection point of loss value.

D Generated Summary Examples

We show summary examples from the golden
groundtruth, oracle, the baseline BertEXT, and the
proposed conditional neural summarizer for three
news articles in Figure 10.



Figure 10: Three news article examples. Oracle summaries are underlined, summaries from a baseline model are
highlighted in blue, summaries from our model with specified control codes are in orange, and their overlaps are
in purple.


