
J Sign Process Syst (2011) 65:289–299
DOI 10.1007/s11265-010-0482-9

A Closed-form Solution for the Pre-image Problem
in Kernel-based Machines

Paul Honeine · Cédric Richard

Received: 15 January 2010 / Revised: 15 January 2010 / Accepted: 29 March 2010 / Published online: 17 April 2010
© Springer Science+Business Media, LLC 2010

Abstract The pre-image problem is a challenging re-
search subject pursued by many researchers in machine
learning. Kernel-based machines seek some relevant
feature in a reproducing kernel Hilbert space (RKHS),
optimized in a given sense, such as kernel-PCA al-
gorithms. Operating the latter for denoising requires
solving the pre-image problem, i.e. estimating a pattern
in the input space whose image in the RKHS is approx-
imately a given feature. Solving the pre-image problem
is pioneered by Mika’s fixed-point iterative optimiza-
tion technique. Recent approaches take advantage of
prior knowledge provided by the training data, whose
coordinates are known in the input space and implicitly
in the RKHS, a first step in this direction made by
Kwok’s algorithm based on multidimensional scaling
(MDS). Using such prior knowledge, we propose in
this paper a new technique to learn the pre-image,
with the elegance that only linear algebra is involved.
This is achieved by establishing a coordinate system
in the RKHS with an isometry with the input space,
i.e. the inner products of training data are preserved
using both representations. We suggest representing
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any feature in this coordinate system, which gives us
information regarding its pre-image in the input space.
We show that this approach provides a natural pre-
image technique in kernel-based machines since, on
one hand it involves only linear algebra operations, and
on the other it can be written directly using the kernel
values, without the need to evaluate distances as with
the MDS approach. The performance of the proposed
approach is illustrated for denoising with kernel-PCA,
and compared to state-of-the-art methods on both syn-
thetic datasets and realdata handwritten digits.
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1 Introduction

In the last decade or so, kernel-based machines
have enjoyed increasing popularity, providing a break-
through in both statistical learning theory and low
computational complexity of nonlinear algorithms. Pi-
oneered by Vapnik’s Support Vector Machines (SVM)
[20], this concept attracted significant attention due
to the ever-expanding challenges in machine learn-
ing. Since then, many nonlinear algorithms have been
developed, for supervised learning (or classification)
such as kernel Fisher discriminant analysis [13] and
least-squares SVM [18], and for unsupervised learning
(with unlabelled data) with kernel principal component
analysis (kernel-PCA) [17] and support vector domain
description [19]. The main idea behind nonlinear algo-
rithms in kernel-based machines is the kernel trick [1].
This concept gives rise to nonlinear algorithms based
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on classical linear ones, under the only requirement
that the algorithm can be expressed only in terms of
inner products between data. Then, data from the input
space are (nonlinearly) mapped into a feature space.
This mapping is achieved implicitly by substituting the
inner product operator by a positive definite kernel,
thus without much additional computational cost. This
is the essence of the kernel trick. In order to provide
the unified functional framework, common to many
communities, this kernel is called the reproducing ker-
nel while the induced feature space is the reproducing
kernel Hilbert space (RKHS).

With the ever-increasing demands in machine learn-
ing, new challenges require computing the inverse map.
For instance, while the kernel trick provides an elegant
approach to apply denoising or compression techniques
in the RKHS, we need to go back into the input space
for the final result. This is the case in denoising an
image (or a signal), the reconstructed image belongs
to the input space of training images. However, get-
ting back to the input space from the RKHS is not
obvious in general, as most features of the latter may
not have an exact pre-image in the former. This is the
pre-image problem in kernel-based machines, as one
seeks an approximate solution. Solving this problem
has received a growing amount of attention, with the
most breakthrough given in [14] and [11]. In the for-
mer work, Mika et al. present the problem and its ill-
posedness, and derive a fixed-point iterative scheme
to find an approximate solution. Hence, there is no
guarantee that this leads to a global optimum, and may
be unstable. In the latter work, Kwok et al. determine
a relationship between the distances in the RKHS and
the distances in the input data, based on a set of training
data. Applying a multidimensional scaling technique
(MDS) leads to an inverse map estimate and thus to the
pre-image. This approach opens the door to a range of
other techniques taking prior knowledge from training
data in both spaces, such as manifold learning [6] and
out-of-sample methods [2, 5].

In this paper, we propose a novel approach to solve
the pre-image problem. To achieve this, we learn a
coordinate system, not necessarily orthogonal, in the
RKHS having an isometry with the input space. In
other words, the inner products of the training data are
(approximately) equal in both representations. Thus,
by representing any feature of the RKHS in this coor-
dinate system, we get an estimate of the inner products
between the training data and its counterpart in the
input space. It turns out that this approach is natural
to kernel-based machines, and essentially requires only
linear algebra, with any off-the-shelf linear solver. The
proposed method is universal in the sense of being

independent, in its formulation, of both the type of the
adopted kernel and of the feature under investigation.
Moreover, it extends naturally to get the pre-images
of a set of features, since the coordinate system is
computed only once.

The rest of the paper is organized as follows. In the
next Section, we briefly present the framework behind
kernel-based machines, with an illustration on kernel-
PCA for denoising. In Section 3, the pre-image problem
is described, and previous work on solving the problem
are examined. The proposed method is described in
Section 4, with connections to other methods. Exper-
iments on synthetic and real datasets are presented
in Section 5. Section 6 ends this paper with a brief
conclusion.

2 Kernel-based Machines, with Application
to Nonlinear Denoising Using Kernel-PCA

2.1 Kernel-based Machines

Let X be a compact of IRp, equipped with the natural
Euclidean inner product defined for any xi, x j ∈ X by
x�

i x j = ∑p
�=1 xi,�x j,�, with x·,� the �-th entry of vector x·.

Let κ(·, ·) be a positive (semi-)definite kernel on X ×
X , where the positive (semi-)definiteness is defined by
the property
∑

i, j

αiα jκ(xi, x j) ≥ 0

for all αi, α j ∈ IR and xi, x j ∈ X . The Moore-Aronszajn
theorem [3] states that for every positive definite ker-
nel, there exists a unique reproducing kernel Hilbert
space (RKHS), and vice versa. With this one-to-one
correspondence between RKHS and positive definite
kernels, the latter will be called reproducing kernels
hereafter. Let H be the RKHS associated with κ , and
let 〈· , ·〉H be the endowed inner product. This means
that any arbitrary function ψ(·) in H can be evaluated
at any x j ∈ X with

ψ(x j) = 〈ψ(·), κ(·, x j)〉H. (1)

This expression shows that the kernel is the representer
of evaluation. Moreover, replacing in this expression
ψ(·) by κ(·, xi) yields to the popular property

κ(xi, x j) = 〈κ(·, xi), κ(·, x j)〉H, (2)

for all xi, x j ∈ X . This is the reproducing property from
which the name of reproducing kernel is derived. De-
noting by φ(·) the map that assigns to each input x ∈ X
the kernel function κ(·, x), the reproducing property
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Table 1 Commonly used reproducing kernels in machine learn-
ing, with parameters β > 0, q ∈ IN, and σ > 0.

Polynomial κ(xi, x j) = (〈xi, x j〉 + β)q

Laplace κ(xi, x j) = exp
(−‖xi − x j‖/σ

)

Gaussian κ(xi, x j) = exp
(−‖xi − x j‖2/2σ 2

)

(2) implies that κ(xi, x j) = 〈φ(xi), φ(x j)〉H. The kernel
then evaluates the inner product of any pair of elements
of X mapped into H, without any explicit knowledge of
either the mapping function φ(·) or the RKHS H. This
is the well-known kernel trick. Examples of commonly
used reproducing kernels are given in Table 1.

In combination with the kernel trick, the representer
theorem provides a powerful theoretical foundation for
kernel-based machines. Initially derived in [10] and
recently generalized in [16], results of this theorem
include SVM and kernel-PCA, where one seeks to
maximize the separating margin between classes or the
variance of projected data, respectively. This theorem
states that any function ϕ∗(·) of a RKHS H minimizing
a regularized cost functional of the form

n∑

i=1

J(ϕ(xi), yi) + g(‖ϕ‖2
H),

with predicted output ϕ(xi) for input xi, and eventually
the desired output yi, and g(·) a strictly monotonically
increasing function on IR+, can be written as a kernel
expansion in terms of available data

ϕ∗(·) =
n∑

i=1

γi κ(·, xi). (3)

This theorem shows that even in an infinite dimensional
RKHS, as with the Gaussian kernel, we only need to
work in the subspace spanned by the n kernel functions
of the training data, κ(·, x1), . . . , κ(·, xn).

2.2 Kernel-PCA for Denoising

An elegant kernel-based machine is the kernel-PCA
[17], a nonlinear extension of one of the most used
dimension reduction and denoising technique, the prin-
cipal component analysis (PCA).

With PCA, one seeks principal axes that capture the
highest variance in the data, that is, useful information
as opposed to noise, and thus projecting data onto the
space spanned by these relevant axes yields a denoising
scheme. These principal axes are the eigenvectors ϕk

associated with the largest eigenvalues λk of the covari-
ance matrix R of data, i.e. solving the eigen-problem
Rϕk = λkϕk. There exists another formulation of the
PCA algorithm, using only inner products of the train-
ing data. By substituting the inner product operator
with any valid reproducing kernel, we get an implicit
nonlinear mapping of the data into a RKHS. This is
the kernel-PCA, where each of the resulting principal
functions takes the representer form (3), with

ϕ∗
k(·) =

n∑

i=1

γi,k κ(·, xi).

The weighting coefficients γi,k are obtained from the
eigen-decomposition of the so-called Gram matrix K,
whose entries are κ(xi, x j), for i, j = 1, . . . , n, by solving

Kγ = nλ γ .

In order to have a PCA interpretation in feature space,
two issues should be carried out. First, data is implic-
itly centered in feature space by substituting in this
expression K with (1 − 1n)K(1 − 1n), with 1n the n-by-n
matrix of entries 1/n and 1 the identity matrix; second,
principal functions are normalized to 1, by scaling ex-
pansion coefficients such that

∑n
i=1 γ 2

i,k = 1/λk.

Figure 1 Illustration of the pre-image problem in kernel-based machines.
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In the same spirit of the conventional PCA, one con-
structs a subspace of H spanned by the most relevant
principal functions. Using kernel-PCA for denoising
any given x ∈ X , we project the associated kernel func-
tion κ(·, x) onto that subspace. Since this subspace is
spanned by most relevant principal functions, each of
the form (3), any function from this subspace takes the
same form, i.e. can be written as a kernel expansion
in terms of available data. Let ϕ∗(·) be this projection,
with

ϕ∗(·) =
n∑

i=1

γi κ(·, xi),

which is assumed to be noise-free by virtue of the PCA
interpretation. From this denoised feature, we need to
get its counterpart in the input space, e.g. a denoised
image in the image space. As illustrated in Fig. 1, this
requires the estimation of the pattern x∗ from κ(·, x),
by solving the pre-image problem.

3 A Brief Review of the Pre-image Problem

For supervised learning, one seeks a prediction value
associated to any input such as in regression problems,
while in classification this value is compared to a thresh-
old, which yields a decision rule. While every optimal
function ϕ∗(·) takes the form (3), we obtain its evalu-
ation at any x with

∑n
i=1 γi κ(xi, x), thus requiring only

computing values of the kernel. For pattern recognition
with unsupervised learning, one is often interested in
the feature in the feature space, or more precisely in its
counterpart in the input space.

Estimating the input whose map is an arbitrary func-
tion in the RKHS is an ill-posed problem. To show this,
recall that the dimensionality of the feature space can
be very high, and even infinite with some kernels such
as the Gaussian kernel. Thus, (most) features ϕ∗(·) ∈
H might not have an existing pre-image in X , i.e. a
x∗ such that κ(·, x∗) = ϕ∗(·). In order to circumvent
this difficulty, one seeks an approximate solution, i.e.
x∗ ∈ X whose map κ(·, x∗) is as close as possible to
ϕ∗(·). This is the pre-image problem in kernel-based
machines. Methods for solving the pre-image problem
are roughly classified into two categories: Fixed-point
iterative methods and methods based on learning the
inverse map.

The pre-image problem was initially studied by Mika
et al. in [14]. They proposed to solve the optimization
problem

x∗ = arg min
x∈X

‖ϕ∗(·) − κ(·, x)‖2
H, (4)

where ‖ · ‖H denotes the norm in the RKHS. For
this purpose, a fixed-point iterative scheme is used
to solve the pre-image problem. However, since this
optimization problem is highly non-convex, such it-
erative technique suffers from numerical instabilities
and local minima. The pre-image will highly depend
on the initial guess and is likely to get stuck in a
local minimum. A further improvement of the fixed-
point iterative scheme is presented in [15], where the
authors operate additional approximations by, roughly
speaking, substituting the mapping κ(·, x) in (4) with
its projection onto the subspace. It is worth noting that
as an alternative to Mika’s distance minimization, one
may consider a collinearity maximization problem [2],
with

x∗ = arg max
x∈X

〈 ϕ∗(·)
‖ϕ∗(·)‖H ,

κ(·, x)

‖κ(·, x)‖H
〉

H
.

A key ingredient of these methods is a high dependence
on the kernel type, since the fixed-point can only be
applied to some specific kernels such as the Gaussian
kernel, and only more recently extended to polynomial
kernels in [11].

Recent approaches take advantage of prior knowl-
edge provided by some available training data, whose
coordinates are available in both the input and the
feature spaces. This approach is initiated by an al-
gorithm based on multidimensional scaling (MDS),
presented by Kwok et al. [11]. This is achieved by com-
puting distances between every pair of training data,
in both spaces. For each pair, the classical Euclidean
distance is used in the input space, as well as the
distance in the RKHS which can be computed using
kernel values. With these pairs of distances, a MDS
technique is considered by performing a singular-value-
decomposition.1 This yields an inverse map, in the same
spirit of the out-of-sample extension [2]. In order to
make this method tractable in practice, only the neigh-
boring data affect the pre-image estimation. Learning
the inverse map is studied in [4] by solving a regression
problem, while alternative approaches can be based
on the manifold learning [6]. All these methods take
advantage of prior knowledge, i.e. training data with
information available in both input and feature spaces.

Using such prior knowledge, we propose in this
paper to learn the inverse map without the need to

1This is done by operating on the distances, transforming them
into inner products, and then apply eigen-decomposition into the
resulting Gram matrix to get the coordinates. This nicely captures
our guiding intuition of the problem in contrast with the MDS:
we propose to work exclusively on the inner products, without
the need to compute distances.
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compute distances, and does not require sophisticated
optimization schemes. Only conventional linear alge-
bra are needed. Furthermore, it is universe, in the sense
that it does not depend on the kernel type, as opposed
to fixed-point iterative techniques.

4 The Proposed Pre-image Method

Given a set of training data {x1, x2, . . . , xn}, we seek the
pre-image in X of some arbitrary ϕ∗(·) of the RKHS
H, denoted x∗. The proposed method can be organized
into two stages: learning the inverse map and operating
a pre-image. To learn the inverse map, a coordinate
system is constructed in the RKHS, having an isometry
with the input space coordinates, where the isometry is
defined with respect to the training data. In order to op-
erate a pre-image, we represent ϕ∗(·) in this coordinate
system which, by virtue of the isometry, gives the values
of the inner products of its pre-image with the training
data in the input space. From these values we obtain the
pre-image x∗.

4.1 Stage 1: Learn the Inverse Map

In this stage, we provide a coordinate system in
the RKHS that is isometric with the input space.
In order to achieve such isometry, we consider a
set of n training data {x1, x2, . . . , xn} ∈ X . By virtue
of the representer theorem, we only need to con-
sider the subspace spanned by their kernel functions
{κ(·, x1), κ(·, x2), . . . , κ(·, xn)}. Within this subspace, we
define the set of � coordinate functions, denoted
{ψ1(·), ψ2(·), . . . , ψ�(·)} with � ≤ n, and write

ψk(·) =
n∑

i=1

αk,i κ(·, xi),

for k = 1, 2, . . . , �. For any kernel function κ(·, x), its
coordinate on ψk(·) is given by

〈ψk(·), κ(·, x)〉H = ψk(x) =
n∑

i=1

αk,i κ(xi, x),

where (1) is used. Therefore, its representation in this
coordinate system is obtained by the � coordinates,
written vector-wise as

�x = [ψ1(x) ψ2(x) · · · ψ�(x)]�,

where the k-th entry depends on the αk,i, for i =
1, . . . , n.

In order to estimate the coordinate functions, we
propose an equivalence, between the inner products

in this coordinate system and their counterparts in the
canonic input space, using the model

��
xi
�x j = x�

i x j + εij, (5)

for all the training set, i.e. i, j = 1, 2, . . . , n, and where
εij corresponds to the lack-of-fit of the model. We
insist on the fact that this model is not coupled with
any constraint on the coordinate functions, as opposed
to the orthogonality between the functions resulting
from the kernel-PCA. The only requirement we impose
is the isometry defined in (5). The minimization of the
variance of εij, a lack-of-fit criterion, consists of solving
the optimization problem

min
ψ1,...,ψ�

1

2

n∑

i, j=1

(
x�

i x j − ��
xi
�x j

)2 + λ R(ψ1, . . . , ψ�).

As suggested in machine learning literature, we in-
clude in this expression a regularization term, where λ

a tunable parameter controlling the tradeoff between
the fitness to the model (5) and the smoothness of the
solution. In order to penalize high norm functions, the
regularization R(ψ1, . . . , ψ�) = ∑�

k=1 ‖ψk‖2
H is used in

this paper.
This optimization problem can be written in matrix

form. This is done by a factorization of �x into a matrix
of unknowns and a vector of available information, with

�x = A κ x,

where κ x = [κ(x1, x) κ(x2, x) · · · κ(xn, x)]� and A is
a � × n matrix of unknowns whose (k, i)-th entry is αk,i.
This leads to the optimization problem

̂A = arg min
A

1

2

n∑

i, j=1

(
x�

i x j − κ�
xi

A� A κ x j

)2

+ λ

�∑

k=1

n∑

i, j=1

αk,iαk, j κ(xi, x j).

By denoting ‖ · ‖F the Frobenius norm2 of a matrix and
tr(·) its trace, this yields

̂A = arg min
A

1

2
‖P− K A� A K‖2

F + λ tr(A� AK),

where Pand K are the Gram matrices with entries x�
i x j

and κ(xi, x j), respectively. Taking the derivative of the
above cost function with respect to A� A, rather than
A, and setting it to zero, we get

̂A
�

̂A = K−1 (
P− λ K−1) K−1. (6)

2The Frobenius norm of a matrix is the root of sum of squared
(absolute) values of all its elements, or equivalently ‖M‖2

F =
tr(M� M).
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In what follows, we show that only A� A is required to
find the pre-image, rather than A. Fortunately, we do
not need to compute the coefficients αk, j to generate
the coordinate system in the RKHS; only their inner
products are required.

4.2 Stage 2: Operate a Pre-image

Since the model (5) is valid for all the training data,
we apply it to do the pre-image, as discussed in this
stage. Let ϕ∗(·) be any optimal function resulting from
a kernel-based machine, with ϕ∗(·) = ∑n

i=1 γi κ(·, xi) as
given in (3). By virtue of the representer theorem, it
belongs to the subspace spanned by the training kernel
functions, and therefore can be expressed in terms of
the provided coordinate system. The coordinate of ϕ∗(·)
associated to the coordinate function ψk(·) is

〈ϕ∗(·), ψk(·)〉H =
n∑

i, j=1

αk,i γ j κ(xi, x j).

Each of these � coordinates are computed and collected
into one vector, denoted �ϕ∗ with some abuse of nota-
tion. Thus, we extend the model (5), and write

��
xi
�ϕ∗ = x�

i x∗,

for i = 1, 2, . . . , n, where x∗ is the pre-image to be
estimated. This identity can be expressed matrix-wise
with

K ̂A
�

̂A Kγ = X�x∗

where γ = [γ1 γ2 · · · γn]� and X = [x1 x2 · · · xn]. By
injecting the provided system (6) into this expression,
we get

X�x∗ = (P− λ K−1) γ . (7)

This is a classical system of linear equations. Thus,
the pre-image can be estimated by applying any off-the-
shelf solver. For instance, one can solve the linear least-
squares optimization problem

x∗ = arg min
x

‖X�x − (P− λ K−1) γ ‖2, (8)

where any iterative or non-iterative technique can
be used, such as the pseudo-inverse or the eigen-
decomposition,3 in the spirit of the Nyström method. It
is worth noting that the optimization scheme is applied
here to the input space, as opposed to high dimensional

3Doing eigen-decomposition gives the pre-image relative to the
eigen-basis in the input space. A post-processing is required to
set the pre-image relative to the training data; this is called the
procrustes problem.

Table 2 Values of the parameters for the synthetic datasets.

ntrain npre−image ν neigen σ

Frame 350 850 0.1 5 0.4
Banana 300 200 0.2 3 0.5
Spiral 70 250 0.3 10 0.3
Sine 420 330 0.5 10 0.4

RKHS with the fixed-point iteration schemes. More-
over, one needs only to consider solution from the span
of the training data, in coherence with previous work on
the pre-image problem [11, 14]. The proposed method
is universal in the sense of being independent, in its
formulation, of both the type of the adopted kernel and
of the feature under investigation.

In order to better understand this result, consider
the potential theoretical setting of linear independent
training data. In this case, the minimization problem (8)
has a unique solution, given by solving the normal equa-
tions X X�x∗ = X

(
P− λ K−1) γ . By using the pseudo-

inverse matrix algebra with the identity (XX�)−1 X =
X(X�X)−1, we get

x∗ = X P−1
(
P− λ K−1) γ . (9)

4.3 Extension to a Set of Features

These expressions can be applied readily to a set of
features in the RKHS to get their pre-images in the
input space. This can be done straightforwardly by
writing (7) as

X�X∗ = (P− λ K−1)�,

where each column of matrix � represents the
coefficient vector γ , and each column of X∗ the corre-
sponding pre-image. From the solution (9), we see that
the matrix

M = X P−1
(
P− λ K−1)

needs to be computed only once, and then applied with

X∗ = M �.

This corresponds to a matrix completion scheme, or
more specifically the kernel matrix regression ap-
proach, as given in [9, 21].



J Sign Process Syst (2011) 65:289–299 295

–1 0 1

–1

0

1

–1 0 1

–1

0

1

–1 0 1

–1

0

1

Fixed-point iterative method [14] MDS-based method [11] Method proposed in this paper

–1 0 1
–1

0

1

–1 0 1
–1

0

1

–1 0 1
–1

0

1

–1 0

–0.6

0

0.6

–1 0

–0.6

0

0.6

–1 0

–0.6

0

0.6

–4 0 4

–1

0

1

–4 0 4

–1

0

1

–4 0 4

–1

0

1

Figure 2 Experimental results for the frame (f irst row), the
banana (second row), the spiral (third row), and the sine (fourth
row) datasets, using the fixed-point iterative (left), the MDS-
based (middle), and the proposed (right) algorithms. Training

data are represented by blue dots, estimated pre-images by red
dots, and green lines illustrate the distance between these esti-
mates and the initial noisy data (not shown).
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5 Experiments

In this section, we compare the proposed method with
two state-of-the art methods:4 the fixed-point iterative
technique [14] and the MDS-based approach [11]. For
this purpose, the kernel-PCA for denoising is applied
on synthetic and real datasets. The Gaussian kernel
κ(xi, x j) = exp(‖xi − x j‖2/2σ 2) is used, its bandwidth σ

fixed to the same value for the three methods.

5.1 Synthetic Datasets

We consider a family of four datasets in 2-D, each hav-
ing a geometric form corrupted by a noise of bandwidth
parameter ν. The data are sampled uniformly randomly
within this area. We generate ntrain data to train the
neigen eigenfunctions and to construct the coordinate
system. Then, we apply these results on another set of
npre-image generated data, in order to denoise using the
pre-image techniques. For each dataset, the parameters
values are summarized in Table 2.

The frame dataset consists of a square with sides of
length 2. Data are generated uniformly randomly on
each side and corrupted by a noise uniformly distrib-
uted on the interval [−ν, ν] normal to the side. The
banana dataset is given by the parabola defined by the
coordinates (x, x2 + ξ), with x on the x-axis uniformly
distributed on the interval [−1, 1], and ξ normally dis-
tributed with a standard deviation of ν. The spiral is
defined by the coordinates (A(ϕ) cos(ϕ), A(ϕ) sin(ϕ)),
with A(ϕ) = 0.07ϕ + ξ , where ϕ and ξ are generated
uniformly on the intervals [0, 6π ] and [0, ν], respec-
tively. The sine dataset is defined by the coordinates
(ϕ, 0.8 sin(2ϕ)), where ϕ is generated uniformly on the
interval [0, 2π ], and corrupted with an additive uni-
formly distributed noise in the range [0, ν]2. See [7] for
more information.

The fixed-point iterative algorithm is set with a stop-
ping criterion of maximum 100 iterations, reaching the
limit of reasonable cpu time. The initial estimate is
chosen from the valid model x∗ = ∑

i γi xi, with the
weighting coefficients γi generated uniformly on the
interval [−1, 1]. The MDS-based algorithm operates
using a global optimization scheme, which gives better
results than the neighborhood setting. Since this algo-
rithm is based on an eigen-decomposition technique, it
results in a new coordinate system in the input space.
Hence, we consider a procrustes technique to align it

4Matlab codes for these algorithms are available from the
Statistical Pattern Recognition Toolbox http://cmp.felk.cvut.cz/
cmp/software/stprtool/.

with the initial canonical one, by minimizing the mean-
squares error.

In Fig. 2, we show the four datasets, with on the
one hand the training data (blue dots), and on the
other the denoised estimates (red dots) obtained from
another set of noisy data (not shown here, yet given by
the unmarked ends of green lines). Green lines show
the distance between the denoised and the initial noisy
data.

The fixed-point iterative method suffers on one side
from numerical instabilities, illustrated through many
estimates falling outside the bounds of the images (fol-
lowing the long green lines), and on the other from
local minima, illustrated with improper denoising (for
instance, the upper border of the frame dataset (y-axis
close to 1) are not denoised to the same area). It is obvi-
ous that the MDS-based approach is clearly inappropri-
ate to any of the given datasets. The method presented
in this paper gives good results with the four proposed
datasets, with the smallest reconstruction error of all
algorithms. It seems less sharper in denoising than the
fixed-point iterative algorithm, without suffering from
the drawbacks of the latter. However, it causes the esti-
mates to fold over itself, in the same sense of manifold
learning. This is illustrated for instance with the banana
data, yet much less pronounced than the MDS-based
results.

5.2 Real Datasets

We illustrated the efficiency of our method on denois-
ing real datasets. We consider the handwritten digit “2”,
obtained from the MNIST database of handwritten dig-
its [12]. The images are (almost) binary images of 28 ×
28 pixels. Hence, from a machine learning point of view,
each image is simply a point in the 784-dimensional
space. The original images were corrupted by adding
a zero-mean white Gaussian noise with variance ν =
0.1. A set of ntrain = 1,000 images are used to train
the kernel-PCA with the neigen = 100 leading principal
functions retained. We apply the Gaussian kernel to all
three algorithms, with bandwidth set to σ = 105. The
parameter settings are summarized in Table 3.

To illustrate the denoised ability of each algorithm,
another set of npre-image = 10 images is considered under
the same noise conditions. These images are illustrated
in Fig. 3 (first row), with results from the fixed-point

Table 3 Values of the parameters for the real digit dataset.

ntrain npre−image ν neigen σ

1,000 10 0.1 100 105

http://cmp.felk.cvut.cz/cmp/software/stprtool/
http://cmp.felk.cvut.cz/cmp/software/stprtool/
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10 digits corrupted by noise

Fixed-point iterative method [14]

MDS-based method [11]

Method proposed in this paper

Figure 3 Comparative analysis for denoising a set of ten “2” digits (f irst row), with the denoised images from the fixed-point iterative
(second row), the MDS-based (third row), and the proposed (fourth row) algorithms.

iterative (second row), the MDS-based (third row) and
the proposed (fourth row) algorithms. It is obvious
that fixed-point iterative algorithm is inappropriate for
such application, even with the number of maximum
iterations set to 10,000 corresponding to an average
total CPU time of up to one hour and a half. To take
advantage of prior knowledge, the same training set
is used for learning the inverse map. Realistic results
can be obtained using the MDS-based algorithm, with
five minutes and a half. The algorithm proposed in this
paper achieves better denoised results, as illustrated in
Fig. 3. For this simulation, the regularization parameter
was set to λ = 10−9, and the resulting average total
CPU time is 1.3 s.5

6 Conclusion

In this paper, we presented a new method to solve
the pre-image problem. As opposed to previous work,

5CPU times are given only as an indication of the computations
required for the various algorithms.

the proposed method neither suffers from numerical
instability, nor requires computing the distances in the
input and the RKHS spaces. We showed that using
the inner product information in both spaces, we can
provide a coordinate system in the RKHS to learn the
inverse map. The efficiency of the proposed method
were studied with experiments on both synthetic data
and real handwritten digits, and compared to state-of-
the-art methods. The major advantage of the proposed
method resides on its simplicity in dealing with the op-
timization issue, thanks to conventional linear algebra.
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