
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

A Reinforced Generation of Adversarial Samples for Neural Machine
Translation

Anonymous ACL submission

Abstract
Neural machine translation systems tend to
fail on less decent inputs despite its great ef-
ficacy, which may greatly harm the credibil-
ity of these systems. Fathoming how and when
neural-based systems fail on such cases is crit-
ical for industrial maintenance. Instead of col-
lecting and analyzing bad cases using lim-
ited handcrafted error features, here we in-
vestigate this issue by generating adversarial
samples via a new paradigm based on rein-
forcement learning. Our paradigm could ex-
pose pitfalls for a given performance metric,
e.g. BLEU, and could target any given neu-
ral machine translation architecture. We con-
duct experiments of adversarial attacks on two
mainstream neural machine translation archi-
tectures, RNN-search and Transformer. The
results show that our method efficiently pro-
duces stable attacks with meaning-preserving
adversarial samples. We also present a quali-
tative and quantitative analysis for the prefer-
ence pattern of the attack, showing its capabil-
ity of pitfall exposure.

1 Introduction
Neural machine translation (NMT) based on the
encoder-decoder framework, such as RNN-Search (??,
RNNSearch) or Transformer (?, Transformer), has
achieved remarkable progress and become a de-facto
in various machine translation applications. However
there are still pitfalls for a well-trained neural trans-
lation system, especially when applied to less decent
real-world inputs compared to training data. For ex-
ample, typos may severely deteriorate system outputs
(Table 1). Moreover, recent studies show that a neural
machine translation system can also be broke by syn-
thetic noisy inputs (??). Due to the black-box nature of
a neural system, it has been a challenge to fathom when
and how it tends to fail.

Instead of analyzing a system based on reported bad
cases, researchers seek to apprehend such errors in ad-
vance. A straightforward strategy (?) is to induce a set

in ye lu sa leng fa sheng zi sha bao zha shi jian
out suicide bombing in jerusalem
in ye lu sa leng fa sheng zi sha bao shi jian

out eastern jerusalem explores a case of eastern europe

Table 1: Fragility of neural machine translation. A typo
leaving out a Chinese character “zha” leads to signif-
icant change in English translation. Both “bao” and
“bao zha” mean “bombing” in English.

of handcrafted error features which are likely to cause
system failures. Such strategy is very expensive be-
cause it requires the expert knowledge for both linguis-
tics and the targeted neural architecture. Handcrafted
features are also less applicable because some common
errors in deep learning systems can be hard to formu-
late, while some others are very specific to certain ar-
chitectures.

Instead of designing error features, recent re-
searchers adopt ideas from adversarial learning (?) to
generate adversarial samples to mine NLP system pit-
falls (???). Adversarial samples are minor perturbed
inputs which keep the semantic meaning of the input,
yet yield degraded outputs. Despite of the success for
continuous input, e.g. images, there are two major is-
sues for generating valid adversarial samples in NLP
tasks.

One issue is to generate discrete tokens for natural
language, e.g. words or characters. ? follow the adver-
sarial learning paradigm in computer vision to learn
perturbed continuous representation, then sample dis-
crete tokens accordingly. However, there is no guaran-
teed correspondence between the perturbed represen-
tation and valid tokens. Therefore, sampling may gen-
erate tokens departing from perturbed representation,
which undermines the generation process. ? turn to a
search paradigm by a brute-force search for perturba-
tions directly on the token level. To lead the search, a
gradient-based surrogate loss must be designed upon
every token modification indicating pitfalls. However,
this paradigm is inefficient due to the formidable com-
putation for gradients over every modified input. Fur-
thermore, surrogate losses defined upon each token

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

in Two man are playing on the street corner.
adv in Two man are playing frisbee in the park.

out Zwei Männer spielen an einer Straßenecke.
adv out Zwei Männer spielen frisbee im park.

Table 2: Example of undesirable perturbation in adver-
sarial samples for machine translation in (?), though it
yields very different output compare to the origin, it
does not indicate malfunction in system.

risks being invalidated by any perturb that changes to-
kenization, which will affect the search process.

Another issue is to keep the semantics of original
inputs. Different from the fact that minor noises on im-
ages does not change the semantics, sampling discrete
tokens from arbitrary perturbed representation (?) may
generate tokens with different semantics and lead to
ill-perturbed samples (Table 2). Searching for the per-
turbed input also requires a semantic constraint of the
search space, for which handcrafted constraints are em-
ployed (?). Though constraints can also be introduced
by multitask modeling with additional annotations (?),
this is still not sufficient for tasks requiring strict se-
mantic equivalence, such as machine translation.

In this paper, we adopt a novel paradigm that gener-
ates more reasonable tokens and secures semantic con-
straints as much as possible. Our contributions can be
summarized as the following:

• We develop a reinforcement learning (?, RL)
paradigm, which learns to perform discrete per-
turbations on token level, aiming for direct overall
degradation. That is, the victim translation model
is regarded as an interactive environment for an
agent with the aim to directly maximize its final
degradation on specific translation evaluation.

• We combine a GAN-style (?) discriminator in en-
vironment for the terminal signal in our archi-
tecture to further constrain semantics, which is
free of additional annotations. Experiments show
that our approach not only achieves semantic con-
strained adversarial samples but also effective at-
tacks for machine translation.

• Since our method does not need to inspect in-
ner of the victim architecture and free of fea-
ture engineering targeting architectures, it is vi-
able among different machine translation models.
Furthermore, our method outclasses the state-of-
the-art adversarial sample generation in efficiency.

• We also present some analysis upon the state-of-
the-art Transformer based on its attack, showing
our method’s competence in system pitfall expo-
sure.

2 Preliminaries
Neural Machine Translation
The most popular architectures for neural machine
translation are RNN-search (?) and Transformer (?).
Generally they share the paradigm to learn the con-
ditional probability P (Y |X) of a target translation
Y = [y1, y2, ..., ym] given a source input X =
[x1, x2, ..., xn]. A typical NMT architecture consists
of an encoder, a decoder and attention networks.
The encoder encodes the source embedding Xemb =
[emb1, emb2, ...embn] into hidden representation H =
[h1, h2, ..., hn]:

H = fenc(Xemb; θenc)

where θenc denotes the encoder parameter set, and
fenc denotes the encoder network. Then a decoder with
attention network fdec attentively access source hid-
den representations for an auto-regressive generation
of each yi until the end of sequence symbol (EOS) is
generated:

P (yi|y<i, X) = softmax(fdec(yi−1, st, ct; θdec)) (1)

where ct is the attentive result for current decoder state
st among H .

Actor-Critic for Reinforcement Learning
Reinforcement learning (?) is a widely used machine
learning technique which follows the paradigm of ex-
plore and exploit. Unlike supervised learning, that is
to collect training signals through stochastic policies
(explore) and reinforce reward-oriented policies (ex-
ploit). Thus reinforcement learning is apt for unsuper-
vised policy learning in many challenging tasks (e.g.
games (?)). It is also used for direct optimization for
non-derivative learning objectives (??) in NLP.

Actor-critic (?) is one of the most popular reinforce-
ment learning architectures where the agent consists
of separate policy and value networks called actor and
critic. They both take in environment state st at each
time step as input, while actor determines an action at
among possible action set A and critic yields value es-
timation Vt(st) . In general, the agent is trained to max-
imize discounted rewards Rt =

∑∞
k=0 γ

krt+k for each
state, where γ ∈ (0, 1] is the discount factor. Such goal
can be further derived as individual losses applied to
actor and critic. Thus the actor policy loss Lπ on step t
is:

Lπt (θπ) = logP (at|st)At(st, at); at ∈ A (2)

where θπ denotes actor parameters, At(st, at) denotes
general advantage function (?) on state st for action at
given by

∑k−1
i=0 γ

irt+i + γkV (ss+k) − V (st), which
can be further derived as:

At(st, at) = γAt+1(st+1, at+1) + rt

+γVt+1(st+1)− Vt(st) (3)

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

softmax

linear+dropout

!✓ �×{

tgt bi-GRUsrc bi-GRU

Tokens embedding

actor linear

linear

!Y !N{

src bi-GRU

!V(st)

critic linear

Mean Mean Mean Sum

Environment

TGTSRC

}
xt xt+ 1xt−1

!✓
�×

Yemb

YX

Xemb

X

Xemb

discriminator

agent

actor critic

survival/terminal
signals

st

at

}&

(a) Overview (b) Discriminator (c) Agent

victim
NMT

final
degradation

rt

softmax

M
od

ifi
ca

tio
n

ra
te

 (%
)

0

0.25

0.5

0.75

1

POS tags

A B C D I J K M N ND NH Ni NL NS NT Nz P q R U V

W
p

W
s

Search (0.4)
Ours

Ti
m

e
(s

ec
on

ds
)

0

15000

30000

45000

60000

Transformer-bpe RNN-search-bpe

56467

31508 35671

18843

295297

Ours Search(0.2) Search(0.4)

Figure 1: Overall, the victim NMT model is regarded as a part of the environment which yields a rewards indicat-
ing degradation based on agent’s modification on inputs. Discriminator provides survival signals by determining
whether SRC is ill-perturbed. The agent sequentially decides whether to attack on a token from left to right until it
reaches the end of sequence or terminated by the discriminator in the environment.

On the other hand, critic learns to estimate expected
discounted rewards Rt via minimizing a temporal dif-
ference loss Lv on each step t:

Lvt (θv) =
1

2
(rt + γRt+1 − Vt(st))2 (4)

where θv denotes critic parameter.
One of the reasons for a vanilla reinforcement learn-

ing model to fail is that the early failure of explo-
ration before exploiting optimum policy during train-
ing. Maximum entropy actor-critic (?) promotes policy
entropy to ensure training exploration, that is, to also
maximize policy entropy Hπ of a stochastic actor dur-
ing learning. Thus the total loss becomes:

L(θ) =
∑
t

(αLvt − Lπt − βHπ(·|st)) (5)

where α and β are hyper parameters for value loss and
entropy coefficients.

Adversarial Samples in NLP
A general adversarial sample generation can be de-
scribed as the learning process to find a perturbation
δ on input X that maximize system degradation Ladv
within a certain constraint C(δ):

argmax
δ

Ladv(X + δ)− λC(δ) (6)

where λ denotes the constraint coefficient. Ladv is de-
termined by the goal of the attack. With the perturbed
representation, tokens with the nearest embedding are
sampled as the results. However, currently popular ad-
versarial generation for NLP is to search by maximiz-
ing a surrogate gradient-based loss:

argmax
1≤i≤n,x′∈vocab

Ladv(x0, x1, ...x
′
i...xn) (7)

where Ladv is a differentiable function indicating ad-
versarial object. Due to its formidable search space, this
paradigm simply perturb on a small ratio of token po-
sitions and greedy search by brute force among candi-
dates.

3 Approach

In this section, we will describe our reinforced genera-
tion of adversarial samples (Figure 1) in details.

Environment

We encapsulate the victim translation model with a re-
ward process as an environmentEnv for an reinforced
agent to interact.

Environment State

Env is initialized with N sequences SRC =
[src0, src1, ..., srcN] with similar length, which are
processed based on victim translation’s vocabulary
and tokenization. It is essential to train on batches of
sequences to stabilize reinforced training and avoid
early exploration failure, which will be further ex-
plained in the reward process. Each sequence srci =
[x1, x2, ..., xn] is concatenated with BOS,EOS,
which indicates the begin and end of the sequence. Fi-
nally, the batch is padded to same length with a mask
indicating valid inputs. The state of the Env is de-
scribed as st = (SRC, t), where time step t ∈ [1, n]
also indicates the token position to be perturbed by the
agent. Environment will consecutively update st and
yield reward signals until t reaches the end, or interme-
diately terminated. That is, all sequences in SRC is de-
termined as ill-perturbed during reward process. Once
the Env is terminated, it finishes the current episode
and reset its state with a new batch of sequences as
SRC.

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Reward Process with Discriminator
Reward process is only used during training an agent.
It consists of a survival reward rs on every step and a
final degradation rd concerning an overall metric if the
agent survives till the end. Overall, we denote reward
as:

rt =


−1, terminated
1
N

∑
N a · rs, survive & t ∈ [1, n)

1
N

∑
N (a · rs + b · rd), survive & t = n

(8)

where a, b are hyper parameters that keeps the overall
rs and rd within similar magnitude.

Instead of direct optimization of the constrained ad-
versarial loss in Eq.6, we model discriminator D’s out-
put as survival rewards similar to that in gaming (?).
That is, the agent must survive for its goal by also fool-
ingD which attempts to terminate ill-perturbed modifi-
cations. We define ill-perturbed source by determining
whether it still matches original target tgt. We do not
follow traditional discriminator training in GAN using
original source and perturbed source as inputs, because
it promotes agent to do nothing for survival which will
result in early training failure.

Discriminator As it is shown in Figure 1(b), dis-
criminator D consists of bi-directional GRU encoders
for both source and target sequence. Their correspond-
ing representation is averaged and concatenated before
passed to a feedforward layer with 0.5 dropout. Finally,
the output distribution is calculated by a softmax layer.

Once D determines the pair as positive, its corre-
sponding possibility is regarded as the reward, other-
wise 0:

rs =

{
P (positive|(src′, tgt); θd), positive
0, otherwise

(9)

As long as the environment survives, it yields aver-
aged reward among samples from SRC (Eq.8) to miti-
gate rewards’ fluctuation that destabilize training. Note
that D can be too powerful during early training stage
compared to agent’s actor that it can easily terminate an
exploration. Therefore, we must train on batches and
determine an overall terminal signal as aforementioned
to ensure early exploration.

Discriminator Training Similar to GAN training,
environment’sD must be updated as the agent updates.
During its training, the agent’s parameter is freezed
to provide training samples. We treat original pair
(src, tgt) as positive sample, while (src′, tgt) as nega-
tive. For every D training epoch, we randomly choose
half of the batch and perturb its source using current
agent as negative samples. After few epochs of updates,

we randomly generate a new batch of pairs from paral-
lel data likewise to test accuracy. D is updated at most
stepD epochs, or its test accuracy reaches acc bound.

Environment only yields -1 1 as overall terminal
rewards when all sequences in SRC is intermedi-
ately terminated. For samples classified as negative
during survival, their follow-up rewards and actions are
masked as 0. If the environment survives until the end,
it yields additional averaged rd as final rewards for an
episode. We adopt the relative degradation like (?), that
is:

rd =
score(y)− score(y′)

score(y)
(10)

where y and y′ denote original and perturbed output,
and score is a translation metric. If score(y) is zero,
we return zero as rd. To calculate score we retokenize
perturbed SRC by victim models vocabulary and tok-
enizer before translation.

Agent
As it is shown in Figure 1 (c), agent’s actor and critic
shares the same input layers and encoder, but later pro-
cessed by individual feedforward layers and output lay-
ers. Actor takes in SRC and current token with its sur-
rounding (xt−1, xt, xt+1), then yields a binary distri-
bution to determine whether to attack a token on step
t, while critic emits a value V (st) for every state. Once
the actor decides to perturb a specific token, this token
will be replaced by another token in its candidate set.

Candidate Set
We collect at most K candidates for each token in vic-
tim’s vocabulary within a distance ε. ε is the averaged
Euclidean distance of K-nearest embedding for all to-
kens in victim vocabulary. For those without a nearby
candidate, we assign UNK as its candidate. Because we
note that there shall always be candidates for a token
in test scenarios that are beyond victim’s vocabulary.
Once the Agent choose to replace a token with UNK,
we follow (?) to generate a valid token to present adver-
sarial samples that is also UNK to victim’s vocabulary
using homophone.

Agent Training & Adversarial Generation
The agent is trained by algorithm in appendix A. Since
agent is required to explore with stochastic policy dur-
ing training, it will first sample based on its actor’s
output distribution on whether to perturb the current
position, then randomly choose among its candidates.
Agent and discriminator take turns to update. If test
accuracy for discriminator does not reach over a cer-
tain value within certain continuous learning rounds of
agent and discriminator, we assume the training is con-
verged.

1It is commonly accepted that frequent negative rewards
result in agents’ tendency to regard zero-reward as optimum
and fail exploration, which further leads to training failure.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

To generate adversarial samples, the agent will take
in source sequences and decide whether to perturb on
each position based on actor’s distribution from left to
right. As agent’s critic learns to estimate expected fu-
ture rewards for a step, only when it yields positive
value will agent perturb, otherwise it indicates an un-
desirable perturbation, thus the agent is muted.

4 Experiments

Data Set

We conduct all our adversarial sample generation ex-
periments on Zh→En, En→Fr, and En→De translation
tasks, which provide relative strong baselines for vic-
tim models and mass test samples.

We train our agent using only parallel data that is
used for victims’ training. For Zh→En translation, our
training set consists of about 1.3 million sentence pairs
from LDC2. For subword level translation, we apply
byte pair encoding (?, BPE) for both source and target
languages with the vocabulary size of 37k. For word
level translation, we use NLPIR-ICTCLAS for Chi-
nese tokenization and Moses tokenizer for English to-
kenization, and adopt 30k as vocabulary size for both
source and target language. We adopt NIST test sets
3 for Zh→En translation and then generate adversarial
samples for these sources for analysis.

Victim Model

We choose the state-of-the-art RNN-search and Trans-
former as victim translation models. For RNN-search,
we train a subword level model and strictly follow the
architecture in ? with GRU as recurrent units on ev-
ery layer and 80 as maximum sequence length. As for
Transformer, we train both word-level and subword-
level model and strictly follow the architecture and the
hyper parameter settings in ? with 128 as maximum se-
quence length. For above models, we apply the same
batch scheme and Adam optimizer following ? with
MT03 as validation set.

Baseline Attack

We choose the search-based adversarial generation
which is currently widely applied in various robustness
machine translation system as our baseline. We gener-
ally follow the strategy of ?? which is applicable for
both RNN-search and Transformer. More specifically,
the Ladv in Eq.7 is derived as:

argmax
1≤i≤n,emb′i∈vocab

|emb′ − embi|∇embiLadv, (11)

Ladv(X
′, Y) =

|y|∑
t=1

log(1− P (yt|X ′, y1....yt−1))

2LDC2002E18, LDC2003E14, LDC2004T08,
LDC2005T06

3MT02,03,04,05,06,08

Avg MT02 – 08
BLEU HE chrF1 RD

Transformer-word 39.75
Search (0.2) 32.42 3.22 0.82 0.184
Search (0.3) 28.83 2.45 0.77 0.275
Ours 33.28 3.69 0.80 0.163
Transformer-BPE 43.38
Search (0.2) 34.27 3.87 0.89 0.210
Search (0.4) 27.27 2.91 0.80 0.371
Ours 31.35 3.66 0.80 0.277
RNN-search-BPE 39.38
Search (0.2) 31.83 3.83 0.89 0.192
Search (0.4) 26.13 2.82 0.79 0.336
Ours 31.18 3.60 0.83 0.208

Table 3: Experiment results for Zh→En MT attack.
Note that sequence length for word level system is
shorter, thus we search by ratio 0.3 which shares sim-
ilar chrF1 with search on subword level system with
ratio 0.4. An ideal adversarial sample generation must
achieve degradation with respect to higher semantic
similarity with origin inputs (HE).

where each P (yt|X) is calculated by Eq.1 given a cor-
responding reference, therefore we choose the first ref-
erence given by corresponding test set during genera-
tion. For every source sequence, a small ratio of posi-
tions are sampled for search. Then we greedy search4

by the corresponding loss upon those positions with
given candidates. For better comparison, we adopt the
candidate set used in our model instead of naive KNN
candidates. Both baseline and our model share the same
UNK generation strategies.

Results

We adopt sacreBLEU 5 to test case-insensitive BLEU.
For adversarial sample evaluation, we follow ? to use
character-level F1 score (chrF1) to indicate modifica-
tion rates of the inputs when reporting relative degrada-
tion (RD) of BLEU. Since the search paradigm attacks
by a predefined ratio indicating modification rate, while
our reinforced agent actively determines the modifi-
cation, we compare the search results with similar F1
score. We also test source semantic similarity with hu-
man evaluation (HE) ranging from 0 to 5 used by ?
by randomly sample 20% of total sequences from each
results mixed with corresponding baseline results for
double-blind test.

As it is shown in Table 3, our model can stably gen-
erate adversarial samples without significant change in
semantics with the same training setting for different
models, while search methods must tune for proper ra-
tio of modification, which can hardly strike a balance
between semantic constraints and degradation.

For word level translation (Transformer-word), both
search results and our methods share similar chrF1,

4? suggest that greedy search is a good enough approxi-
mation.

5https://github.com/awslabs/sockeye/tree/master/contrib/sacre
bleu

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

softmax

linear+dropout

!✓ �×{

tgt bi-GRUsrc bi-GRU

Tokens embedding

actor linear

linear

!Y !N{

src bi-GRU

!V(st)

critic linear

Mean Mean Mean Sum

Environment

TGTSRC

}

xt xt+ 1xt−1

!✓
�×

Yemb

YX

Xemb

X

Xemb

discriminator

agent

actor critic

survival/terminal
signals

st

at

}&

(a) Overview (b) Discriminator (c) Agent

victim
NMT

final
degradation

rt

softmax

Ti
m

e
(s

ec
on

ds
)

0
15000
30000
45000
60000

Transformer-bpe RNN-search-bpe

56467

31508 35671
18843

295297

Ours Search(0.2) Search(0.4)

0

0.225

0.45

0.675

0.9

A B C D I J K M N ND NH Ni NL NS NT Nz P q R U V

W
p

W
s

Search(0.4)
Ours

Figure 2: Time consumption of different methods: we
limit memory usage to 2.5G on single nvidia 1080, and
generate adversarial samples for the same 800 inputs
with different methods, our method significantly out-
class the state-of-the-art search paradigm.

however they achieve degradation with lower human
evaluation scores, while our method achieves degra-
dation more effectively with higher human evaluation.
For subword level Transformer (Transformer-BPE),
our model achieves significantly more BLEU degra-
dation with very little sacrifice in semantics compared
to search (0.2), while search (0.4) shares the simi-
lar modification rate with tremendous loss in human
evaluation. For subword level RNN-search, our model
also achieves similar degradation compared to search
(0.2), while search (0.4) with similar modification rate
still suffers tremendous loss in human evaluation while
achieving the most degradation.

5 Analysis
Efficiency
As it is shown in Figure 2, given same amount of
memory cost, our method is significantly more effi-
cient compared to search paradigm. Gradient compu-
tation with respect to every modified source sequence
can cost greatly in time or space for a state-of-the-
art system, which could be even worse for systems
with recurrent units. When it comes to mass production
of adversarial samples for a victim translation system,
our method can also generate by given only monolin-
gual inputs, while search methods must be given same
amount of well-informed targets.

Attack Patterns
To further analyze pitfalls, we first adopt LTP POS tag-
ger6 to label NIST test sets, then check the modification
rate for each POS. To ensure the reliability of our anal-
ysis, we run three sets of experiments on both baseline
and our agent with similar modification rate target-
ing state-of-the-art Transformer with BPE, and collect
overall results.

As it is shown in Figure 3 our reinforced paradigm
shows specific preference upon certain POS tags, in-
dicating pitfalls of a victim translation system, while
search paradigm distributed almost evenly upon differ-
ent POS tags. Note that unlike existing work relying
on feature engineering, we have no error features im-
plemented for agents. However, our agent can still spot

6https://github.com/HIT-SCIR/ltp

error patterns by favoring some of the POS, such as Ni
(organization name), Nh (person name), Nl (location
name), M (numbers), which are commonly accepted as
hard-to-translate parts. Moreover, the agent also tend to
favor K (suffix) more, which is less noticed.

6 Related Work
? and ? applied continuous perturbation learning on to-
ken’s embedding and then manage a lexical representa-
tion out of a perturbed embedding. ? learned such per-
turbation on the encoded representation of a sequence,
and then decode it back as an adversarial sample. These
methods are applicable for simple NLP classification
tasks, while failing machine translation which requires
higher semantic constraints. ? further attempted to con-
strain semantic in such paradigm by introducing multi-
task modeling with accessory annotation, which further
limits applicability.

On the other hand, ? and ? regarded it as a search
problem by maximizing surrogate gradient losses. Due
to the formidable gradient computation, such methods
are less viable to more complex neural architectures.
? introduced a learned language model to constrain
generation. However, a learned language model is not
apt for adversarial samples involving common typos
or UNK. Another pitfall of this paradigm is that sur-
rogate losses defined by a fixed tokenization for non-
character level systems, risks being invalidated once
the attack changes tokenization. Therefore, ? simply
focused on char-level systems, while ? specially noted
to exclude scenarios in their search paradigm where at-
tack changes tokenization.

7 Conclusion
We propose a new paradigm to generate adversarial
samples for neural machine translation, which is capa-
ble of exposing translation pitfalls without handcrafted
error features. Experiments show that our method
achieves stable degradation with meaning preserving
adversarial samples over different victim models.

Please notice that our method can generate adversar-
ial samples efficiently from monolingual data. As a re-
sult, mass production of adversarial samples for victim
model’s analysis and further improvement of robust-
ness become convenient, which we leave as the future
work.

References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The

Theory of Parsing, Translation and Compiling, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ.

American Psychological Association. 1983. Publica-
tions Manual. American Psychological Association,
Washington, DC.

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

ACL 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

softmax

linear+dropout

!✓ �×{

tgt bi-GRUsrc bi-GRU

Tokens embedding

actor linear

linear

!Y !N{

src bi-GRU

!V(st)

critic linear

Mean Mean Mean Sum

Environment

TGTSRC

}

xt xt+ 1xt−1

!✓
�×

Yemb

YX

Xemb

X

Xemb

discriminator

agent

actor critic

survival/terminal
signals

st

at

}&

(a) Overview (b) Discriminator (c) Agent

victim
NMT

final
degradation

rt

softmax

Ti
m

e
(s

ec
on

ds
)

0
15000
30000
45000
60000

Transformer-bpe RNN-search-bpe

56467

31508 35671
18843

295297

Ours Search(0.2) Search(0.4)

0

0.225

0.45

0.675

0.9

A B C D I J K M N N
D

N
H N
i

N
L

N
S N
T N
z P q R U V

W
p

W
s

Search(0.4)
Ours

Figure 3: Attack preferences for search (0.4) and our agent on Transformer-BPE model upon different POS. Two
attacks share similar modification rate (chrF1). Our agent show a significant preference for some POS (e.g. Ni, Nh,
Nz, I), which are commonly regarded as hard-to-translate phrases among industrial implementations, while some
(e.g. K) are less noticed.

and unlabeled data. Journal of Machine Learning
Research, 6:1817–1853.

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of L1-regularized log-linear models. In Proceed-
ings of the 24th International Conference on Ma-
chine Learning, pages 33–40.

Benjamin Borschinger and Mark Johnson. 2011. A
particle filter algorithm for Bayesian wordsegmen-
tation. In Proceedings of the Australasian Language
Technology Association Workshop 2011, pages 10–
18, Canberra, Australia.

Ashok K. Chandra, Dexter C. Kozen, and Larry J.
Stockmeyer. 1981. Alternation. Journal of the Asso-
ciation for Computing Machinery, 28(1):114–133.

Association for Computing Machinery. 1983. Comput-
ing Reviews, 24(11):503–512.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Noise reduction and targeted explo-
ration in imitation learning for abstract meaning rep-
resentation parsing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1–11.
Association for Computational Linguistics.

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences. Cambridge University Press, Cam-
bridge, UK.

Mary Harper. 2014. Learning from 26 languages: Pro-
gram management and science in the babel program.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Technical Papers, page 1. Dublin City University
and Association for Computational Linguistics.

Mohammad Sadegh Rasooli and Joel R. Tetreault.
2015. Yara parser: A fast and accurate depen-
dency parser. Computing Research Repository,
arXiv:1503.06733. Version 2.

https://doi.org/10.1145/322234.322243
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
http://aclweb.org/anthology/C14-1001
http://aclweb.org/anthology/C14-1001
http://arxiv.org/abs/1503.06733
http://arxiv.org/abs/1503.06733

