Constrained Recombination in an Example-based Machine Translation System

Monica Gavrila

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

```
EAMT
(Research Paper) 29.05.2011
```


Contents

(1) The Framework
(2) MT Systems
(3) Experiments
(4) Conclusions

Framework

Example-based Machine Translation

- Translation by analogy (Nagao, 1984).
- A (small) parallel aligned corpus is enough: database of examples.
- Three steps: matching, alignment and recombination.
- Several Approaches: linear, template-based, hybrid etc.

Template: (...) gave (...) up \leftrightarrow (...) a abandonat (...)

- Languages: Romanian, German, English
- Romanian as under-resourced language

Contents

(1) The Framework
(2) MT Systems
(3) Experiments
(4) Conclusions

The Implemented MT Systems

(1) $\operatorname{Lin}-E B M T$

- The EBMT baseline system
- A linear EBMT system
(2) Lin $-E B M T^{R E C+}$
- Extends Lin - EBMT
- Hybrid system (linear + template-based)
- Word-order constraints are used in the recombination step. The constraints are extracted from templates.

Lin - EBMT Matching

- Recursive approach
- Based on surface-forms
- Based on the longest common subsequence (LCS) algorithm (Bergroth et al, 2000)
- A token-index is used to reduce the matching space.

LCS Similarity (LCSS)

Given two strings - $s 1$ and $s 2$ - the LCSS measure is calculated as

$$
\begin{equation*}
\operatorname{LCSS}(s 1, s 2)=\operatorname{LCSS}_{T}(s 1, s 2)-P * n o T G, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
L C S S_{T}(s 1, s 2)=\frac{\operatorname{Length}(\operatorname{LCS}(s 1, s 2))}{\operatorname{Length}(s 1)} \tag{2}
\end{equation*}
$$

Example

Input s1 = "Saving names and phone numbers (Add name)"
Sentence in the corpus s2 $=$ "Erasing names and numbers"
$L C S(s 1, s 2)=" n a m e s$ and numbers"
$\operatorname{LCSS}(s 1, s 2)=\frac{3}{9}-0.01 * 1=0.323$.

Lin - EBMT: Alignment

- Uses GIZA++ results and the longest TL aligned subsequence are used

LCS: "technical regulations standards"
Alignments

- "technical - tehnice" (position 8 in TL),
- "regulations - reglementările" (position 7 in TL) and
- "standards - standarde" (position 23 in TL)

We use further the sequences: "reglementările tehnice" and "standarde".

Lin - EBMT: Recombination

- Input the "the bag of word sequences" $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ provided by the alignment step
- The result is the needed translation.
- Uses a "recombination matrix"

The Recombination Matrix

Let $A=a(i, j)$ be the "recombination matrix". If the outcome of the alignment is n word-sequences $\left\{w_{1}, w_{2}, \ldots\right.$, $\left.w_{n}\right\}$ which form the output and are not necessarily different, with $w_{i}=w_{i_{1}} w_{i_{2}} \ldots w_{i_{\text {last }}}$, then A is a square matrix of order n that is defined as follows:

$$
A= \begin{cases}-3, & \text { if } i=j ; \\ -2, & \text { if } i<>j, \\ & w_{i_{\text {last }}} w_{j_{1}} \text { is } \\ & \text { not in the } \tag{3}\\ & \text { corpus; } \\ \frac{2 * \operatorname{count}\left(w_{\left.i_{\text {last }} w_{j_{1}}\right)}\right.}{\operatorname{count}\left(w_{\left.i_{\text {last }}\right)}+\operatorname{count}\left(w_{\left.j_{1}\right)}\right)\right.}, & \text { else. }\end{cases}
$$

The Recombination Matrix - 2

	w1	w2	...	wi	...	wj	...	wn
w1	-3	$\mathrm{a}(1,2)$...	a(1,i)	..	$\mathrm{a}(1, \mathrm{j})$...	$a(1, n)$
w2	$a(2,1)$	-3	...	a(2,i)	..	$\mathrm{a}(2, \mathrm{j})$...	$a(2, n)$
...
wi	a(i,1)	a(i,2)	\ldots	-3	...	a(i,j)	\ldots	a(i,n)
\ldots
wj	a(j,1)	a(j,2)	...	a(j,i)	...	-3	...	$\mathrm{a}(\mathrm{j}, \mathrm{n})$
\ldots	\ldots	...
wn	$a(\mathrm{n}, 1)$	$\mathrm{a}(\mathrm{n}, 2)$...	$a(n, i)$...	$\mathrm{a}(\mathrm{n}, \mathrm{j})$	\ldots	-3

$w_{i}, 1 \leq i \leq n$, is a sequence.

The Recombination Matrix - 2

	w1	w2	\ldots	wi	...	wj	...	wn
w1	-3	a(1,2)	\ldots	a(1,i)	..	a(1,j)	...	$\mathrm{a}(1, \mathrm{n})$
w2	$a(2,1)$	-3	...	$\mathrm{a}(2, \mathrm{i})$..	$\mathrm{a}(2, \mathrm{j})$...	$a(2, n)$
\ldots
wi	a(i,1)	a(i,2)	...	-3	...	a(i,j)	...	a(i,n)
\ldots	\ldots	...
wj	a(j,1)	a(j,2)	...	a(j,i)	...	-3	...	$\mathrm{a}(\mathrm{j}, \mathrm{n})$
\ldots	\ldots
wn	$a(n, 1)$	$a(n, 2)$...	a(n,i)	\ldots	$a(\mathrm{n}, \mathrm{j})$	\ldots	-3

$w_{i}, 1 \leq i \leq n$, is a sequence.

The Recombination Matrix - 2

	w1	w2	...	wi	...	wj	..	wn
w1	-3	$\mathrm{a}(1,2)$	\ldots	a(1,i)	..	$\mathrm{a}(1, \mathrm{j})$	\ldots	$\mathrm{a}(1, \mathrm{n})$
w2	$a(2,1)$	-3	...	$\mathrm{a}(2, \mathrm{i})$..	a(2,j)	...	$a(2, n)$
\ldots	\ldots	...	\ldots
wi	a(i,1)	a(i,2)	\ldots	-3	\ldots	$\mathrm{a}(\mathrm{i}, \mathrm{j})$	\ldots	a (i, n)
...	\ldots	\ldots	...	\ldots
wj	a(j,1)	a(j,2)	...	a(j, i)	\ldots	-3	...	a(j,n)
...	\ldots	...	\ldots	\ldots
wn	$a(n, 1)$	$\mathrm{a}(\mathrm{n}, 2)$...	a(n, i)	...	$\mathrm{a}(\mathrm{n}, \mathrm{j})$...	-3

$w_{i}, 1 \leq i \leq n$, is a sequence.

The Recombination Matrix - 2

	w1	w2	\ldots	wi	\ldots	wj	\ldots	wn
w1		-3	$a(1,2)$	\ldots	$a(1, i)$	\ldots	$a(1, j)$	\ldots
w2	$a(2,1)$		-3	\ldots	$a(2, i)$	\ldots	$a(2, j)$	\ldots
$a(2, n)$								
\ldots								
wiwj	$a(j, 1)$	$a(j, 2)$	\ldots	$a(j, i)$	\ldots		-3	\ldots
\ldots								
wn	$a(n, 1)$	$a(n, 2)$	\ldots	$a(n, i)$	\ldots	$a(n, j)$	\ldots	

$w_{i}, 1 \leq i \leq n$, is a sequence.

The Recombination Matrix - 2

	w1	w2	\ldots	wi	...	wj		...	wn	
w1	-3	a(1,2)	...	a(1,i)	..	a(1,j)		...	$\mathrm{a}(1, \mathrm{n})$	
w2	$a(2,1)$	-3	...	$\mathrm{a}(2, \mathrm{i})$..	$a(2, j)$...	$a(2, n)$	
\ldots	
wiwj	a(j,1)	a(j,2)	...	a(j, i)	...		-3	...	a(j,n)	
\ldots	\ldots	...	\ldots	\ldots		
wn	$a(n, 1)$	$a(n, 2)$	\ldots	$\mathrm{a}(\mathrm{n}, \mathrm{i})$...	$a(\mathrm{n}, \mathrm{j})$...		-3

$w_{i}, 1 \leq i \leq n$, is a sequence.

The Recombination Matrix - 2

	$w 1$	$w 2$	\ldots	wiwj	\ldots	wn
w1	-3		$a(1,2)$	\ldots	$a(1, j)$	\ldots
$a(1, n)$						
$w 2$	$a(2,1)$		-3	\ldots	$a(2, j)$	\ldots
$a(2, n)$						
\ldots						
wiwj	$a(j, 1)$	$a(j, 2)$	\ldots		-3	\ldots
\ldots						
wn	$a(n, 1)$	$a(n, 2)$	\ldots	$a(n, j)$	\ldots	

$w_{i}, 1 \leq i \leq n$, is a sequence.

The Recombination Matrix - 2

	w1	w2	...	wiwj	...	wn
w1	-3	a(1,2)	...	a(1,j)	\ldots	$\mathrm{a}(1, \mathrm{n})$
w2	$a(2,1)$	-3	...	$a(2, j)$	\ldots	$a(2, n)$
...
wiwj	a(j,1)	a(j,2)	...	-3	...	$\mathrm{a}(\mathrm{j}, \mathrm{n})$
\ldots
wn	$\mathrm{a}(\mathrm{n}, 1)$	$\mathrm{a}(\mathrm{n}, 2)$...	a(n,j)	...	-3

$w_{i}, 1 \leq i \leq n$, is a sequence.

Lin - EBMT REC+

- Motivation: use the information which is lost in the recombination step of $\operatorname{Lin}-E B M T$;
- Mixture of linear and template-based approach;
- Matching and alignment remain as in Lin - EBMT;
- Constraints are set on the values from the recombination matrix, by using information extracted from templates.

Template Extraction

Monolingual Bilingual
phase
phase
$\left(\left(T F_{S L}\right)^{*}\left(V A R_{S L}\right)^{*}\right)^{*} T F_{S L}\left(\left(T F_{S L}\right)^{*}\left(V A R_{S L}\right)^{*}\right)^{*} \leftrightarrow$
$\left(\left(T F_{T L}\right)^{*}\left(V A R_{T L}\right)^{*}\right)^{*}$

Template-Example

The input

press and hold clear to delete the characters more quickly .
Matched sentence and alignment
pentru a sterge simultan toate caracterele cand scrieti un mesaj, apasati optiuni si selectati stergeti textul . to delete all the characters at once when writing a message press options and select clear text .

Template-Example

The input

press and hold clear to delete the characters more quickly .

Template

to\&\&1\&\& delete\&\&2\&\& VAR3 the\&\&4\&\& characters\&\&5\&\& VAR6 NOALIGN7 VAR8_18
.$\& \& 19 \& \& \leftrightarrow$ pentru\&\&1\&\& a\&\&1\&\& sterge\&\&2\&\& VAR6 VAR3 caracterele\&\&5\&\& VAR8_18 .\&\&19\&\&

Constraints

(1) The First-Word-Constraint (C.1): A constraint C. 1 refers to the first word of the output.
(2) TLSide-Template-Constraint (C.2): the C. 2 constraints are deduced only from the TL side of each of the templates extracted.
(3) Whole-Template-Constraint (C.3): the C. 3 constraints are extracted considering each of the templates, together with the input sentence, and the alignment information.

The result: a set $C=\left\{\left(\operatorname{wor}_{i}\right.\right.$, word $\left.\left._{j}\right)\right\}$ of constraints: The sequence word $_{i}$ word $_{j}$ is not allowed.

C. 1 Constraints

The input

to delete the characters more quickly press and hold clear.

Template

to\&\&1\&\& delete\&\&2\&\& VAR3 the\&\&4\&\& characters\&\&5\&\& VAR6 NOALIGN7 VAR8_18 .\&\&19\&\& \leftrightarrow pentru\&\&1\&\& a\&\&1\&\& sterge\&\&2\&\& VAR6 VAR3 caracterele\&\&5\&\& VAR8_18 .\&\&19\&\&

C. 2 Constraints

Template

to\&\&1\&\& delete\&\&2\&\& VAR3 the\&\&4\&\& characters\&\&5\&\& VAR6 NOALIGN7 VAR8_18 .\&\&19\&\& \leftrightarrow pentru\&\&1\&\& a\&\&1\&\& sterge\&\&2\&\& VAR6 VAR3 caracterele\&\&5\&\& VAR8_18 .\&\&19\&\&

New Recombination Matrix

$$
A= \begin{cases}-3, & \text { if } i=j ; \\ -2, & \text { if } i<>j, \\ & w_{i_{\text {last }}} w_{j_{1}} \text { is not in } \\ & \text { the corpus or } \\ & \left(w_{i_{\text {last }}} w_{j_{1}}\right) \in C ; \\ \frac{2 * \operatorname{count}\left(w_{i_{\text {last }}} w_{j_{1}}\right)}{\operatorname{count}\left(w_{i_{l_{\text {ana }}}}\right)+\operatorname{count}\left(w_{\left.j_{1}\right)}\right)}, & \text { else. }\end{cases}
$$

Another Recombination Matrix

$$
A= \begin{cases}-3, & \text { if } i=j ; \tag{5}\\ -1, & \text { if } i<>j, \\ & w_{i_{\text {last }}} w_{j_{1}} \text { is not in } \\ & \text { the corpus; } \\ -2, & \left(w_{i_{\text {last }}} w_{j_{1}}\right) \in C ; \\ \frac{2 * \text { count }\left(w_{i_{\text {last }}} w_{j_{1}}\right)}{\operatorname{count}\left(w_{\text {last }^{\prime}}\right)+\operatorname{count}\left(w_{j_{1}},\right.}, & \text { else. }\end{cases}
$$

Contents

(1) The Framework
(2) MT Systems
(3) Experiments
(4) Conclusions

The Experimental Settings

- 2 EBMT systems: Lin - EBMT, Lin - EBMT ${ }^{\text {REC }+}$
- 2 language pairs, both directions of translations: English-Romanian, German-Romanian
- 1 corpus: RoGER

The Corpus: RoGER

- Developed between 2005 and 2006, at the University of Hamburg, NatS, together with Natalia Eliţa
- Romanian, German, English, Russian
- Manual of an electronic device
- 2333 sentences, between 25 K and 27 K words
- Manually verified
- No diacritics, some data replaced with meta-notations

Experimental Setting

- Training: 2200 sentences, approx 27 K items, 13 words the average sentence length
- Test: 133 sentences, approx 1.6 K items, 12.3 words the average sentence length

BLEU（Papineni et al．，2002）Scores

Evaluation

Best Score Differences:

- English-Romanian: 0.0088
- Romanian-English: 0.0115
- German-Romanian: 0.0039
- Romanian-German: 0.0027

Contents

(1) The Framework
(2) MT Systems
(3) Experiments
(4) Conclusions

Conclusions \& Further Work

- Impact of word-order constraints

Further work:

- Additional constraints;
- Priorities for the constraints are used (weighting);
- Different corpus and languages;
- Manual analysis of the data;
- N-grams of several lengths etc.

Discussions

Thank you for your attention!

Suggestions ... Questions ...

