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• Evaluating Machine Translation (MT)
– automatic metrics
– human judgement
– “My MT is better than yours”: unreliability of system rankings

• The need for statistical significance 
– bootstrap
– approximate randomization

• Cluster representation
– “My MT might not be better than yours, but it’s definitely better than his”: 

groupings and confidence levels

• Automatic metrics vs. human judgement on the cluster level: cluster 
comparison

Overview



Automatic metrics in MT evaluation

• Fast and cheap way to evaluate Machine Translation quality

• Used for system development or cross-system comparison

• Most popular: BLEU, NIST, GTM, METEOR

• Criticism of string-level comparison and inadequate correlations with human 
judgement

• Small differences in automatic scores between systems due to chance: data type, 
missing punctuation, unknown word, weather, butterfly flapping its wings in Ecuador

• Hard rankings of systems based on raw evaluation results not advisable

• Statistical significance testing necessary



• Slow and expensive way to evaluate Machine Translation quality

• Used in shared tasks (ACL SMT workshop 2007)

• Standard scale: Adequacy 1-5, Fluency 1-5

• Standard frame of reference for developing automatic metrics

• Human evaluation not so consistent either: 
– inter-annotator K ~0.23
– intra-annotator K ~0.5 (Callison-Burch et al. 2007)

• Small differences in human scores between systems due to chance: personal writing 
style preferences, imperfect knowledge or understanding, tiredness, distraction, the 
fact that it’s Tuesday – humans are unreliable and inconsistent! (I, for one, welcome our 
new AI overlords)

• Hard rankings of systems based on human evaluation results not advisable

• Statistical significance testing necessary

Humans in MT Evaluation



Statistical Significance Testing

• Null hypothesis: two MT systems are of the same quality

• Difference between their scores only significant if statistical 
evidence against null hypothesis

• Significance testing for MT evaluation: non-parametric methods
– bootstrap (Efron and Tibshirani 1993, Koehn 2004)
– approximate randomization (Noreen 1989, Riezler and Maxwell 2005)
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Approximate randomization

• More appropriate to MT eval (Riezler and Maxwell 2005; Collins 
et al. 2005)
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Cluster-based representation

• Approximate randomization likely to show some MT systems cannot be 
distinguished (at a certain confidence level)

• Clusters contain MT systems that are pairwise indistinguishable

• Clusters can overlap: A !> B, B !> C, A > C
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Comparing clusters

• Adaptation of the Rand statistics (Haldiki et al. 2001)

• Compare relationships of pairs of MT systems across cluster rankings
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Experiment – clusters and comparisons

• Data: IWSLT 2006 Chinese-English translations
– 500 segments
– six MT systems
– three conditions: spontaneous speech (SS-ASR), read speech with automatic speech 

recognition (RS-ASR), read speech with correct recognition (RS-CRR)
– human evaluation (adequacy and fluency) for all translations
– evaluated with BLEU, NIST, GTM, METEOR

• Approximate randomization on all scorings
– varying confidence levels (p=0.001, p=0.002, p=0.005, p=0.01, p=0.02, p=0.05)
– analysis of resulting clusters 

• Comparison of clusters based on human and automatic scores

• Comparison of clusters based on different automatic scores

• Relationship between confidence level and human – automatic correlation



Clusters and confidence levels
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Comparison of human and automatic clusters
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Correlations and confidence levels
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Discussion and conclusions

• Small differences in (human or automatic) scores may be accidental

• Statistical significance testing necessary for Truth and Justice (and A 
Hard-Boiled Egg)

• Produce clusters of MT systems at given significance level

• Trade-off: as level of required confidence increases, it‘s more difficult to 
distinguish between MT systems

• Cluster comparison – another method for comparison of system-level 
human and automatic scores

• Evaluating automatic metrics necessary at both system and segment level
– metrics with high system-level correlations good for multiple MT system 

comparisons (shared tasks etc.)
– metrics with high segment-level correlations good for MT development

• Automatic metrics cannot reflect well fluency and adequacy at the same 
time
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