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Abstract 

This is the first time SRCB participates in WAT. 
This paper describes the Neural Machine 
Translation systems for the shared translation 
tasks of WAT 2018. We participated in ASPEC 
tasks, and submitted results on English-
Japanese, Japanese-English and Japanese-
Chinese three language pairs. We employed 
Transformer as baseline model, and 
experimented subword segmentation, relative 
position representation and model ensembling. 
Experiments show that all these methods can 
yield substantial improvements. 

1 Introduction 

The advent of neural networks in machine 
translation has brought great improvement on 
translation quality over traditional statistical 
machine translation (SMT) in recent years 
(Kalchbrenner and Blunsom, 2013; Sutskever et al., 
2014; Cho et al., 2014; Bahdanau et al., 2014). A 
lot of research efforts have been attracted to 
investigate neural networks in machine translation. 
This paper describes the Neural Machine 
Translation systems of Ricoh Software Research 
Center Beijing (SRCB) for the shared translation 
tasks of WAT 2018 (Nakazawa et al., 2018). We 
participated in ASPEC tasks, and submitted results 
on three language pairs, including English-
Japanese, Japanese-English and Japanese-Chinese.  

In the ASPEC tasks, we employed Transformer 
(Vaswani et al., 2017) as our baseline model and 
built our translation system based on OpenNMT 
(Klein et al., 2017) open source toolkit 1 . To 
enhance the performance of the model, we made 
the following changes: 1) To deal with out of 
vocabulary (OOV) and rare words problem in 

1 http://opennmt.net/ 

translation, we used subword unit, that is Joint 
Byte Pair Encoding (BPE) (Sennrich et al., 2016c) 
scheme, to encoder vocabulary for both source and 
target language. 2) We proposed a synthetic data 
augmentation method and it was observed to be 
useful in Japanese-English corpus. 3) We 
incorporated relative position representation (Shaw 
et al., 2018) into Transformer model. 4) We used 
two ensemble techniques to further improve 
translation quality. 

The remainder of this paper is organized as 
follows: Section 2 describes our NMT system. 
Section 3 describes the processing of the data and 
all experimental results and analysis. Finally, we 
conclude in section 4. 

2 Systems 

2.1 Base Model 

Our NMT system is built upon Transformer 
(Vaswani et al., 2018) model. We used open 
source OpenNMT1 and imported some changes 
and new features such as relative position 
embedding (Shaw et al., 2018) and ensembling. 
    The Transformer (Vaswani et al., 2017) also 
adopts sequence to sequence architecture and it 
consists of an encoder layer and a decoder layer. 
Different from traditional Seq2Seq model 
(Bahdanau et al., 2014), the encoder layer consists 
of two sublayers: a multi-head self-attention layer 
and a position-wise fully connected feed-forward 
layer. Instead of employing a single attention 
function mechanism (Luong et al., 2015), the 
multi-head self-attention adopts several different 
learnt linear projections to queries, keys and values 
respectively. This mechanism allows model to 
jointly attend to information from different 
representation subspaces at different positions. The 
decoder layer consists of three sublayers: a masked 
multi-head self-attention, followed by encoder-
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decoder attention and a position-wise feed-forward 
layer. Residual connections (He et al., 2016) 
followed by layer normalization (Ba et al., 2016) 
are used between each sublayer, which can prevent 
gradient vanishing (Hochreiter et al., 1998) and 
propagate information to higher layers. The 
masked multi-head self-attention uses masking in 
its self-attention to prevent a given output position 
from incorporating information about future output 
positions during training. 
    To make use of the order of the sequence, the 
Transformer models add positional encodings to 
capture information about the absolute position of 
the tokens in the sequence. The positional 
encodings are based on sinusoids of varying 
frequency and are added to the input embeddings 
at the bottoms of the encoder and decoder stacks. 
The absolute position representations hypothesized 
that sinusoidal position encodings would help the 
model to generalize to sequence lengths unseen 
during training.  

2.2 Relative Position Representation 

Instead of using absolute position encodings, Shaw 
et al. (2018) presented an alternative approach, 
extending the self-attention mechanism to 
efficiently consider representations of the relative 
positions, or distance between sequence elements. 
The approach can be cast as a special case of 
considering arbitrary relations between any two 
elements of the inputs. 
    The approach learns two relative position 
representations. The first representation is to 
propagate edge information to the sublayer output 
when computing weighted sum of a linearly 
transformed input elements. Similarly, the second 
representation is to consider edges when 
computing a compatibility function that compares 
two input elements. 
    In their experiments, they observed significant 
improvement over absolute position 
representations. Furthermore, they observed that 
combing relative and absolute position 
representations yields no further improvement in 
translation quality. Thus, in our translation system, 
we incorporated relative position representation 
and removed absolute position encodings from 
encoder layers. 

2.3 Ensembling 

  It has been investigated that ensembling different 
model can yield significant improvement in 
translation quality (Denkowski and Neubig, 2017). 
In our systems, we adopted two ensembling 
schemes. For one configured translation model, 
once the model finishes training, the last 8 
checkpoints of the model are averaged to get one 
trained model. Then, we make different 
configurations and train several models 
independently. After averaging checkpoints for 
each model, we do step-wise ensembling. 
Specifically, these models are run at each time step 
and an arithmetic mean of predicted probability is 
obtained, which is used to determine the next word. 

2.4 Data Augmentation 

For ASPEC dataset (Nakazawa et al., 2014), the 
quality of first 1M data is better than other 2M data. 
Thus, first 1M data are included in our training 
data. Furthermore, in order to use more data, we 
proposed an approach to select pairs from the 
second 1M data. Specifically, we first train a 
translation model using first 1M data, and then for 
each source sentence in the second 1M data, we 
generate a predicted sentence based on trained 
model. A BLEU score is calculated by comparing 
predicted sentence with target sentence. If the 
BLEU score is zero, then the source sentence and 
corresponding target sentence is added to training 
dataset. Finally, we train a new model based on 
augmented dataset. The intuition is that predicted 
sentences with zero BLEU scores are supposed to 
be not fully understood by trained model, so these 
sentences are added to training dataset and 
translation model is expected to learn more pattern 
from these data. 

3 Experiments 

We experimented our NMT system on Japanese-
English, English-Japanese, and Japanese-Chinese 
scientific paper translation subtasks. 

3.1 Datasets 

We used Asian Scientific Paper Excerpt Corpus 
(ASPEC) (Nakazawa et al., 2014) as parallel 
corpora for all language pairs. For Japanese-
Chinese subtask, all the sentences in ASPEC 
corpora are used as training data. For Japanese-
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English and English-Japanese subtasks, we used 
only the first 1 million sentences sorted by 
sentence-alignment similarity. Furthermore, for 
Japanese-English subtask, we augmented training 
data to nearly 2 million by our proposed method. 
And, for all corpora, Japanese sentences were 
segmented by the morphological analyzer Juman2 
and English sentences were tokenized by 
tokenizer.perl of Moses (Koehn et al., 2007). 
Sentences with more than 60 words were excluded. 
We used subword unit, that is Joint Byte Pair 
Encoding (BPE) (Sennrich et al., 2016c) scheme, 
to encoder vocabulary for both source and target 
sentences. Table 1 shows the numbers of the 
sentences in each parallel corpus. 

 
 Ja-En En-Ja Ja-Ch 
Train 1,770,818 1,000,000 672,315 
Dev 1,790 1,790 2,741 
test 1,812 1,812 2,300 

Table 1: Number of parallel sentences 

3.2 Results  

  Table 2 lists our final results for three languages 
subtasks. According to evaluation systems, for all 
these subtask, we got best performance in BLEU 
measure. We described experimental results in 
detail in the following subsections. 
 

 Ja-En En-Ja Ja-Zh 
BLEU 30.59 43.43 37.60 

Table 2: Results of Subtasks 
 

Japanese-English subtask: 
The Japanese-English subtask is the main subtask 
that we participated in and all the technical points 
mentioned in section 2 have been used. All the 
useful ones with corresponding contributions are 
listed in Table 3. 
 

System BLEU 
Baseline 26.27 

BPE Subword 1M 28.34 
Data Augmentation 29.41 
Relative Position 29.77 

Average checkpoint 30.18 
Step-wise 30.59 

Table 3: Technical point contributions 
 

2 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN 

  The baseline model is the transformer model with 
3M parallel sentences. There can be more than 2 
BLEU scores improvement only by using the first 
1M parallel sentences with BPE subword. In 
relation to data augmentation, if the second 1M 
data are all added to the first 1M training data, the 
BLEU score decreases to 28.28. On the other hand, 
if only the sentences with zero BLEU scores are 
added, the BLEU score for the model increases by 
more than 1 point. According to the BLEU 
measurement, the zero score indicates that there is 
no matched 4-gram between predictions and 
references, which means these sentences have not 
been trained well. Relative position can also yield 
more than 1 score improvement based on the 
baseline system. As for the ensemble part, both 
average checkpoint and step-wise can increase 
almost 0.5 BLEU score. And the ensemble turn is 
using average checkpoint first followed by step-
wise.  
  The results show each technical points has an 
obvious contribution, however, they are not 
precisely superimposed, adding the contributions 
together is an important part in our real work.  
 
English-Japanese subtask: 
 

 Baseline 3 models 4 models 
BLEU 41.98 42.49 43.43 

Table 4: Results of step-wise Ensemble 
 
The English-Japanese subtask is the opposite 
direction of the Japanese-English subtask, so the 
language characteristics are almost the same. Thus 
we used the same technical points as Japanese-
English subtask except that turn over the training 
dataset. In addition, due to the limited time, we 
don’t use data augmentation in this subtask. The 
results are shown in table 4. As we can figure out 
the BLEU score of 4 models is higher nearly 1 
score than 3 models, so there is potential to get 
higher scores with more models.  
 
Japanese-Chinese subtask: 
 

 2 models 4 models 10 models 
BLEU 36.31 37.03 37.53 

Table 5: Results of step-wise ensembling 
 

The results of step-wise ensembling for Japanese-
Chinese are showed in table 5. To introduce 
variation, models are trained with different hyper-
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parameters. Due to the resource limitation, only 10 
models with BLEU score between 35.93 and 36.33 
are selected to perform the final ensemble. It can 
be observed that the BLEU score goes up as the 
number of models increases. Based on the 
translation candidates generated by the model with 
BLEU score 37.53, we apply rerank method to 
achieve the final result shown in table 2. 

4 Conclusion 

In this paper, we described our NMT system, 
which is based on Transformer model. We made 
several changes to original Transformer model, 
including relative position representation and 
ensembling. We evaluated our Transformer system 
on Japanese-English, English-Japanese and 
Japanese-Chinese scientific paper translation 
subtasks at WAT 2018. The experimental results 
show that the implementation of relative position 
representation and ensembling decoding can 
effectively improve the translation quality.  
   In our future work, we plan to explore more 
vocabulary encoding schemes and compare with 
byte pair encoding (BPE) (Sennrich et al., 2016). 
In addition, we will attempt to implement the 
weighted transformer (Ahmed et al., 2017), which 
replaces the multi-head attention by multiple self-
attention branches that the model learns to 
combine during training process. We also plan to 
investigate the impact of parameters, such as batch 
size and learning rate, on translation quality in 
future.  
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