
Copyright 2012 by Tohru Seraku
26th Pacific Asia Conference on Language,Information and Computation pages 153–162

Two Types of Nominalization in Japanese as an Outcome of Semantic

Tree Growth

Tohru Seraku

St. Catherine’s College, University of Oxford

Manor Road, Oxford, UK.

OX1 3UJ

tohru.seraku@stcatz.ox.ac.uk

Abstract

The particle no in Japanese exhibits two

types of nominalization: “participant” and

“situation” nominalization. Despite several

motivations for a uniform account, only a

few attempts have been made to address

no-nominalization uniformly. In this paper,

I shall develop a unified account within the

formalism Dynamic Syntax, and show that

a number of properties of the phenomenon

follow from the analysis.

1 Introduction

The particle no in Japanese displays two types of

nominalization: “participant” nominalization (1)

and “situation” nominalization (2).

(1) [Akai no]-o Tom-ga nagu-tta.

[red NO]-ACC Tom-NOM hit-PAST

‘Tom hit a/the red one.’

(2) [Mary-ga kireina no]-o

[Mary-NOM beautiful NO]-ACC

Tom-ga shi-tteiru.

Tom-NOM know-PRES

 ‘Tom knows that Mary is beautiful.’

In participant nominalization, the particle no turns

a preceding clause into a nominal that denotes an

object or a person. In situation nominalization, the

particle no turns a preceding clause into a nominal

that denotes an event or a proposition. A case of

ambiguity is presented in (3).

(3) [Nai-ta no]-o Tom-ga mi-ta.

[cry-PAST NO]-ACC Tom-NOM see-PAST

a. ‘Tom saw someone who cried.’

b. ‘Tom saw the event of someone’s having cried.’

Participant nominalization is exemplified by (3a),

and situation nominalization by (3b).
1

 One issue that immediately arises is whether no

in (1, 2, 3) should be treated uniformly. In other

words, does no in (1, 2, 3) form a single item or are

there two nos one of which appears in (1, 3a) and

the other of which appears in (2, 3b)? Seraku (in

press) defends a uniform analysis based on several

motivations (e.g. methodological, cross-linguistic,

functional, diachronic). Despite these motivations,

a unified analysis of no has been largely untouched

(e.g. Kitagawa, 2005; Kitagawa and Ross, 1982;

Murasugi, 1991; Shibatani, 2009; Tonoike, 1990).

 Against this background, the aim of the present

paper is twofold as follows. First, I shall articulate

a unified analysis of no-nominalization within the

grammar formalism Dynamic Syntax (Cann et al.,

2005; Kempson et al., 2001). Second, I shall show

1
Seraku (in press) summarizes diachronic data that give

credence to the exclusion of such data as (i) from the

analysis to be developed in this paper.

(i) Tom-no

 Tom-NO

 ‘Tom’s’

153

that the analysis captures a range of characteristics

of the phenomenon.

2 Dynamic Syntax

Dynamic Syntax (DS) is a formalism that models

“knowledge of language”, which is conceived as a

set of constraints on language use (Cann et al.,

2005; Kempson et al, 2001). Language use consists

of production and comprehension. DS is shown to

model production (Cann et al., 2007; Purver et al.,

2006), but this paper focuses on comprehension.

DS is then said to provide a set of constraints on

how a parser builds up an interpretation gradually

as it processes a string word-by-word online.

 DS models gradual growth of an interpretation

as successive updating of a semantic tree. A string

of words is directly mapped onto a semantic tree;

in this view, a separate level of syntactic structures

is not postulated. The initial state of semantic tree

growth is specified by the AXIOM, which sets out

an initial node to be subsequently developed.

(4) AXIOM

 ?t, ♢

?t is a requirement that this node be of type-t. That

is, DS tree growth is goal-driven, the goal being to

construct a type-t formula. This requirement must

be satisfied before tree transitions come to an end.

The pointer ♢ indicates a node under development.

Once the initial node in (4) is set out, it is gradually

updated by a combination of general, lexical, and

pragmatic actions.

 For illustration, consider the string (5).

(5) Gakusee-ga nai-ta.

 student-NOM cry-PAST

 ‘A/the student cried.’

The initial state (4) is updated into (6) by the parse

of gakusee-ga (= ‘student-NOM’). First, the general

action LOCAL *ADJUNCTION introduces an unfixed

node, and the lexical actions encoded in gakusee

decorate the node with semantic content and type.

This unfixed node is fixed as a subject node by the

lexical actions of the nominative case particle ga.

(“Unfixed nodes” is a central DS mechanism, but it

is not directly relevant to the present paper.)

(6) Parsing Gakusee-ga

 ?t

(ε, x, gakusee’(x)) : e, ♢

The content of gakusee is (ε, x, gakusee’(x)), a
type-e term expressed in the Epsilon Calculus.

 In the Epsilon Calculus, every quantified noun

is mapped onto a type-e term defined as a triple: an

operator, a variable, and a restrictor. Syntactically,

these type-e terms correspond to arbitrary names in

natural-deduction proofs in predicate logic. So, the

quantified noun gakusee (= ‘a student’)
2
 is mapped

onto the epsilon term (7), a type-e term consisting

of the existential operator ε, the variable x, and
the restrictor gakusee’(x).

(7) (ε, x, gakusee’(x))

If the term (7) is combined with the predicate

gakusee’, as in (8), the equivalence relation holds

for (8) and the predicate-logic formula (9).

(8) gakusee’(ε, x, gakusee’(x))

(9) ∃x.gakusee’(x)

Semantically, the term (7) stands for an arbitrary

witness of the predicate logic formula (9).

 The next item to be parsed is nai (= ‘cry’). As

Japanese is fully pro-drop (i.e. arguments do not

have to be explicitly uttered), a predicate builds up

a template for a propositional structure. In the case

of nai, it builds up an open propositional structure,

where a subject node is decorated with a place-

holding variable. Moreover, à la Davidson (1967),

it is claimed that all predicates take a type-e event

term as an argument (Gregoromichelaki, 2011). So,

the predicate nai constructs an open propositional

structure with the argument slots for a subject term

and an event term, as in (10). The subject node is

decorated with the place-holding variable V, and

the event node with the place-holding variable U.

In order to distinguish event terms from non-event

terms, the type for event terms is notated as eS,

where “s” stands for a “situation”.

2
 Japanese lacks determiners, and the quantificational

force of a bare noun is contextually inferred (cf. §4.2).

154

(10) ?t, ♢

U : eS ?(eS→t)

V : e nai’ : e→(eS→t)

Notice that a subject node has already been created

in (6). Thus, the subject node in (6) and that in (10)

collapse. The content at the subject node in (10) is

the place-holding variable V, and it is weaker than

the content at the subject node in (6). Therefore,

the collapse of the two subject nodes is harmless.

At this stage, the tree (6) is updated into (11).

(11) Parsing Gakusee-ga nai

 ?t, ♢

(ε, s, E(s)) : eS ?(eS→t)

 (ε, x, gakusee’(x)) : e nai’ : e→(eS→t)

U is now replaced with the event term (ε, s, E(s)),
where E is an event predicate. For discussion of

event predicates, see Cann (2011).

 As two daughter nodes are specified for content

and type, functional application and type-deduction

may occur. These processes are formalized as the

general action ELIMINATION. Thus, the tree (11) is

updated into (12) after ELIMINATION is run twice.

(12) ELIMINATION

nai’(ε, x, gakusee’(x))(ε, s, E(s)) : t, ♢

(ε, s, E(s)) : eS nai’(ε, x, gakusee’(x)) : eS→t

 (ε, x, gakusee’(x)) : e nai’ : e→(eS→t)

Notice that the requirement ?t has been deleted at

the root node in (12) since the type-t formula has

appeared at this node.

 Finally, the parse of the past tense suffix ta adds

tense information to the tree. Tense is represented

as a restrictor within an event term (Cann, 2011),

but this issue is disregarded in this paper. Thus, for

the sake of simplicity, I take it that (12) is the final

state of the tree transitions for the string (5).

 The proposition in (12) contains two terms, and

their scope relation needs to be explicated.
3
 In a

fully articulated tree, a top node of a propositional

structure is decorated with a “scope statement”,

which is incrementally constructed as a string is

parsed. The detail is not pertinent; what is at stake

is that once tree transitions come to a final state, a

proposition at the root node and a complete scope

statement are subject to QUANTIFIER EVALUATION

(Q-EVALUATION). Through this process, each term

in the proposition is enriched so as to explicate the

scope dependencies in the whole proposition. For

illustration, consider the schematic formula (13).

(13) φ(ε, x,ψ(x))

Firstly, the predicates φ and ψ, with the term “a”
whose content is worked out below, are connected.

The type of a connective is determined by the type

of an operator; for the existential operatorε, the
connective & is employed.

(14) φ(a)&ψ(a)

Secondly, “a” is constructed so that it reflects the

predicates in the whole proposition.

(15) φ(a)&ψ(a)

 a = (ε, x, φ(x)&ψ(x))

Now, let us return to the proposition in (12), which

is repeated here as (16).

(16) nai’(ε, x, gakusee’(x))(ε, s, E(s))

Suppose that the scope statement declares that the

event term out-scopes the non-event term. In this

case, a parser first evaluates the non-event term.

(17) Evaluating the non-event term

gakusee’(a)&nai’(a)(ε, s, E(s))

 a = (ε, x, gakusee’(x)&nai’(x)(ε, s, E(s)))

3
 In (12), different scope relations do not affect the

truth-conditional content, because only existential

quantifications are involved. But the issue is not trivial

when different types of quantifications are involved.

155

Next, the event term in (17) is evaluated.

(18) Evaluating the event term

 E(b)&[gakusee’(ab)&nai’(ab)(b)]

 b = (ε, s, E(s)&[gakusee’(as)&nai’(as)(s)])

 ab = (ε, x, gakusee’(x)&nai’(x)(b))

 as = (ε, x, gakusee’(x)&nai’(x)(s))

The technical detail is not germane; what should be

noted is that the event term “b” and the non-event

term “ab” explicate the scope dependencies in the

whole formula. (“as” is not a full-blown term since

the variable “s” is not bound in the term; “as” is

just part of “b”.) The formula (18) represents the

indefinite reading of (5): ‘A student cried.’

 To sum up, DS models the incremental nature

of language use; a parser progressively constructs

an interpretation in context on the basis of word-

by-word parsing. This exegesis has not mentioned

the mechanism of LINK, a core machinery of DS.

This is illustrated in the next section since it is

essential for the analysis of the particle no.

3 A Uniform Analysis

3.1 Proposal

A novel feature of DS tree transitions is a pair of

structures that are connected by a LINK relation. A

LINKed structure is an adjunct structure to a main

structure, and their relation is guaranteed by the

presence of a shared element.

 Cann et al. (2005: p.285) analyze the particle no

as a LINK-inducing device.

(19) Lexical entry of no

IF t

THEN IF Φ[a]
 THEN make(L-1); go(L-1); put(a : e)

 ELSE abort

 ELSE abort

In general, every lexical item encodes a constraint

on tree growth. The IF-line specifies a condition; if

the condition is met, a parser looks at the THEN-

line; otherwise the ELSE-line. In (19), “abort” is

an action that quits tree transitions, in which case a

string is said to be ungrammatical. “make(L)” is an

action that introduces a LINK relation, “go(L)” is

an action that moves the pointer ♢ to a LINKed

node, and “put(a : e)” is an action that decorates a

node with “a : e”. In plain English, the entry of no

amounts to the constraint (20); the corresponding

tree-update is shown in (21).

(20) If a current node is decorated with a type-t

 proposition, a parser copies a type-e term

 in the evaluated proposition and pastes it at

 a type-e node across a LINK relation.

(21)

 Φ[a] : t a : e, ♢

In (21), a parser copies the type-e term “a” in the

evaluated version of the proposition Φ and pastes
it at a type-e node across a LINK relation. The

LINK relation is shown by the curved arrow.

 Given the entry of no in (19), my proposals are

formulated as (22).

(22) The two types of no-nominalization can be

 reduced to a parser’s choice of what type-e

 term it copies in processing no.

 a. Copying of a non-event term gives rise to

 participant nominalization.

 b. Copying of an event term gives rise to

 situation nominalization.

3.2 Participant Nominalization

Let us start with the participant nominalization (1),

reproduced here as (23).

(23) [Akai no]-o Tom-ga nagu-tta.

[red NO]-ACC Tom-NOM hit-PAST

‘Tom hit a/the red one.’

The initial state is determined by the AXIOM:

(24) AXIOM

 ?t, ♢

The predicate akai (= ‘red’) in (23) constructs a

propositional template with subject and event slots.

156

The event node is decorated with (ε, s, E(s)), and

the subject node is decorated with (ε, x, P(x)),

where P is an abstract restrictor (Kempson and

Kurosawa, 2009: p.65). Then, the general action

ELIMINATION is conducted twice, and the tree (24)

is updated into (25).

(25) Parsing Akai

 akai’(ε, x, P(x))(ε, s, E(s)) : t, ♢

(ε, s, E(s)) : eS akai’(ε, x, P(x)) : eS→t

(ε, x, P(x)) : e akai’ : e→(eS→t)

 Once a proposition emerges, it is subject to Q-

EVALUATION. As the proposition in (25), repeated

here as (26), involves two terms, Q-EVALUATION

is conducted twice.

(26) akai’(ε, x, P(x))(ε, s, E(s))

Let us suppose that the scope statement declares

that the non-event term out-scopes the event term;

in this case, the event term is evaluated first.

(27) Evaluating the event term (ε, s, E(s))

E(a)&akai’(ε, x, P(x))(a)

 a = (ε, s, E(s)&akai’(ε, x, P(x))(s))

The formula (27) still contains a type-e term. This

term is evaluated as follows:

(28) Evaluating the non-event term (ε, x, P(x))

P(b)&[E(ab)&akai’(b)(ab)]

 b = (ε, x, P(x)&[E(ax)&akai’(x)(ax)])

 ab = (ε, s, E(s)&akai’(b)(s))

 ax = (ε, s, E(s)&akai’(x)(s))

The formula (28) is the final representation for the

interpretation of the pre-no clause akai.

 Now, it is time to parse no; a parser copies a

type-e term and pastes it at a type-e node across a

LINK relation. In (29), what is copied is the non-

event term “b” in the evaluated proposition.4

(29) Parsing Akai no

akai’(ε, x, P(x))(ε, s, E(s)) : t b : e, ♢

 b = (ε, x, P(x)&[E(ax)&akai’(x)(ax)])

 ax = (ε, s, E(s)&akai’(x)(s))

The node decorated with “b” becomes an object

node by the lexical actions of the accusative case

particle o. Then, the matrix predicate nagu (= ‘hit’)

constructs a propositional template; in (30), the

event node is decorated with (ε , t, F(t)), the

subject node is decorated with Tom’, and the object

node is decorated with “b”. (As for the object

node, the node decorated with “b” in (29) collapses

with the object node introduced by nagu.)

(30) Parsing [Akai no]-o Tom-ga nagu

 ?t, ♢

 (ε, t, F(t)) : eS ?(eS→t)

 Tom’ : e ?(e→(eS→t))

 b : e nagu’ : e→(e→(eS→t))

akai’(ε, x, P(x))(ε, s, E(s)) : t

 b = (ε, x, P(x)&[E(ax)&akai’(x)(ax)])

 ax = (ε, s, E(s)&akai’(x)(s))

 Finally, the general action ELIMINATION is run

three times. The past tense marker tta being set

aside, the tree (31) is the final state, and the top

node represents the indefinite reading of the string

(23): ‘Tom hit a red one.’ (For the definite reading

of (23), see Section 4.2.)

4
 A parser could copy the event term “ab” but it leads to

tree transition crash, since the matrix predicate nagu (=

‘hit’) cannot take an event term as an argument. As for

“ax”, a parser cannot copy it, since it is not a full-blown

term in that the variable “x” is not bound within the

term; “ax” is part of the evaluated non-event term “b”.

157

(31) ELIMINATION

nagu’(b)(Tom’)(ε, t, F(t)) : t, ♢

(ε, t, F(t)) : eS nagu’(b)(Tom’) : eS→t

 Tom’ : e nagu’(b) : e→(eS→t)

 b : e nagu’ : e→(e→(eS→t))

akai’(ε, x, P(x))(ε, s, E(s)) : t

 b = (ε, x, P(x)&[E(ax)&akai’(x)(ax)])

 ax = (ε, s, E(s)&akai’(x)(s))

3.3 Situation Nominalization

Let us move on to situation nominalization. The

example (2) is repeated here as (32).

(32) [Mary-ga kireina no]-o

[Mary-NOM beautiful NO]-ACC

Tom-ga shi-tteiru.

Tom-NOM know-PRES

 ‘Tom knows that Mary is beautiful.’

As always, the initial state of tree transitions is set

out by the AXIOM. Given the tree transitions in the

last sub-section, the parse of (32) prior to no yields

the tree (33).

(33) Parsing Mary-ga kireina

kireina’(Mary’)(ε, s, E(s)) : t, ♢

(ε, s, E(s)) : eS kireina’(Mary’) : eS→t

 Mary’ : e kireina’: e→(eS→t)

The lexical actions of kireina (= ‘beautiful’) builds

up a propositional structure with two slots. The

event slot is filled by the event term (ε, s, E(s)),
and the subject slot collapses with the node that

has been created by the parse of Mary-ga.

 The top node in the tree (33) is decorated with

the proposition, which is re-cited here as (34). This

proposition is subject to Q-EVALUATION, and the

proposition (35) is engendered.

(34) kireina’(Mary’)(ε, s, E(s))

(35) Evaluating the event term (ε, s, E(s))

E(a)&kireina’(Mary’)(a)

 a = (ε, s, E(s)&kireina’(Mary’)(s))

 Next, no copies the evaluated event term “a”

and pastes it at a node across a LINK relation.5

(36) Parsing Mary-ga kireina no

kireina’(Mary’)(ε, s, E(s)) : t a : eS, ♢

 a = (ε, s, E(s)&kireina’(Mary’)(s))

 The current node in (36) is fixed as an object

node by the accusative case particle o, and the

parse of Tom-ga creates a subject node. These two

nodes collapse with the nodes introduced by the

predicate shi (= ‘know’). After ELIMINATION is run

three times, the tree (36) is updated into (37).

(37) Parsing [Mary-ga kireina no]-o Tom-ga

 shi-tteitu

 shi’(a)(Tom’)(ε, t, F(t)) : t, ♢

(ε, t, F(t)) : eS shi’(a)(Tom’) : eS→t

 Tom’ : e shi’(a) : e→(eS→t)

a : eS shi’ : eS→(e→(eS→t))

kireina’(Mary’)(ε, s, E(s)) : t

 a = (ε, s, E(s)&kireina’(Mary’)(s))

This is a final state of the tree transitions, and the

root node represents the interpretation of the string

(32): ‘Tom knows that Mary is beautiful.’

5
 A parser could copy another type-e term: the evaluated

term for Mary. (For this purpose, Mary is mapped onto

an iota term.) In fact, copying of this term leads to Cann

et al.’s (2005) analysis of head-internal relatives.

However, the string in question cannot be so interpreted

due to the Relevancy Condition (Kuroda, 1992: p.147).

158

4 Consequences

4.1 No as a Dependent Item

Makino (1968: p.51) observes that no cannot stand

on its own. Compare (38) with (1)/(23).

(38) * No-o Tom-ga nagu-tta.

NO-ACC Tom-NOM hit-PAST

Makino considers only participant nominalization,

but it is also true of situation nominalization. (39)

should be compared with (2)/(32).

(39) * No-o Tom-ga shi-tteiru.

NO-ACC Tom-NOM know-PRES

These data are amenable to my analysis. The entry

of no requires that a proposition should have been

constructed before the parse of no. Formally, this

requirement is expressed in the two IF-clauses in

the entry of no in (19). In (38, 39), however, no

items precede no in the strings, and a parser cannot

build up a proposition before processing no.

4.2 Indeterminacy of Denotation

Denotation of the no-headed part is indeterminate

in two respects. Firstly, as shown in (1), repeated

here as (40), it is indeterminate with regard to the

definiteness of the denotation.

(40) [Akai no]-o Tom-ga nagu-tta.

[red NO]-ACC Tom-NOM hit-PAST

‘Tom hit a/the red one.’

In Section 3.2, it was argued that the parse of Akai

no yields the epsilon term (41).

(41) (ε, x, P(x)&akai’(x))

Since DS is not encapsulated in Fodor’s (1983)

sense, pragmatics comes in during DS tree growth.

For the model of pragmatics, I assume Relevance

Theory (Sperber and Wilson, 1995). Thus, if it is

inferable that the speaker has in mind a definite

entity, a parser may strengthen the epsilon operator

ε in (41) as the iota operatorι, as in (42).

(42) (ι, x, P(x)&akai’(x))

This models the definite reading of the string (40)

à la Russellian treatment of definite descriptions

(Russell, 1905).

 Secondly, the content of the no-headed part is

indeterminate. So, when it is pragmatically inferred

that a speaker has in mind a specific entity, say, a

red person, the term (41) may be enriched as (43),

where hito’ is the content of hito (= ‘person’).

(43) (ε, x, P(x)&[akai’(x)&hito’(x)])

 These two types of indeterminacies are captured

in my analysis, since pragmatic inference interacts

with DS structure building.

4.3 Expressivity

It is well known that if the no-headed part denotes

a human in participant nominalization, derogatory

expressivity is observed (Kitagawa, 2005: p.1259).

Consider (1, 2, 3), repeated here as (44, 45, 46);

expressivity is found in participant nominalization

(44, 46a), but not in situation nominalization (45,

46b).

(44) [Akai no]-o Tom-ga nagu-tta.

[red NO]-ACC Tom-NOM hit-PAST

‘Tom hit a/the red one.’

(45) [Mary-ga kireina no]-o

[Mary-NOM beautiful NO]-ACC

Tom-ga shi-tteiru.

Tom-NOM know-PRES

 ‘Tom knows that Mary is beautiful.’

(46) [Nai-ta no]-o Tom-ga mi-ta.

[cry-PAST NO]-ACC Tom-NOM see-PAST

a. ‘Tom saw someone who cried.’

b. ‘Tom saw the event of someone’s having cried.

What has not been reported in the literature is that

expressivity is not always derogatory. To take (44)

as an example, if the denoted person’s face turns

red after a pint of beer and the speaker hits the

person in jest, expressivity may be “affectionate

familiarity with the denoted person”. Any adequate

account of no must model this context-dependency

of expressivity (Yuji Nishiyama, p.c.).

 To account for the above data, I shall posit the

constraint that the denotation of the no-headed part

should be an object (rather than a human), the idea

159

being that if the no-headed part denotes a human,

expressivity emerges through pragmatic inference.
6

 First, in (44), given the predicate nagu (= ‘hit’),

a parser expects that akai no denotes a human, and

constructs, say, the term (47), which denotes a red

person (cf. §4.2).

(47) (ε, x, P(x)&[akai’(x)&hito’(x)])

That the term (47) denotes a human indicates that

the speaker treats a denoted person as if s/he were

a thing, which has a pragmatic implication that the

speaker does not treat the person respectfully. This

pragmatic inference yields derogatory expressivity.

 This pragmatic analysis naturally accounts for

the context-dependence of expressivity. Consider

the context where the speaker is a good friend of

the denoted person. In this context, that the term

(47) denotes a human indicates that the speaker

frankly describes a person, which has a pragmatic

implication that the speaker shows a sign of close

friendship. In this case, the type of expressivity is

affectionate familiarity with the denoted person.

This pragmatic analysis is extendable to (46a).

 It is predicted that if the no-headed part denotes

a non-human, expressivity should be absent:

(48) [Akai no]-o Tom-ga tabe-ta.

[red NO]-ACC Tom-NOM eat-PAST

‘Tom ate a/the red one.’

In (48), due to the predicate tabe (= ‘eat’), the term

copied by no denotes a non-human (e.g. apple). So,

the pragmatic inference mentioned above is not

triggered, and expressivity is not engendered.

 Next, how about the absence of expressivity in

(45, 46b)? In these cases, no copies an event term

6
 This constraint may be modeled along the lines with

Cann and Wu’s (2011) analysis of the bei construction

in Chinese. They argue that bei marks the pre-bei item

as the locus of affect; bei projects a propositional

structure where the Locus-of-Affect (LoA) predicate

takes as an internal argument the content of the pre-bei

item, and as an external argument the content of the rest

of the string. In their analysis, the LoA predicate is

underspecified for the type of affect, and thus it fits well

with the context-dependency of no-expressivity. I shall

assume that the entry of no has a constraint that if a term

to be copied does not denote an object, it projects a

structure involving the LoA predicate. This ramification

of the entry of no is not attempted in this paper.

(cf. §3.3). Since an event is not a human, the

pragmatic inference mentioned above does not take

place, and expressivity does not emerge.

 The present account has some implications for a

cross-linguistic study of nominalization. Consider

(49), the Korean counterpart of (46).

(49) [Wu-nun kes]-ul

[cry-MOD KES]-ACC

Tom-i pwa-ss-ta.

Tom-NOM see-PAST-DECL

a. *‘Tom saw someone who cried.’

b. ‘Tom saw the event of someone’s having cried.

While (49b) is acceptable, (49a) is not
7
. Of note is

that, unlike no, the nominalizer kes derived from

the noun kes meaning ‘thing’, and that this lexical

meaning somehow persists in the nominalizer kes

(Horie, 2008: p.178). So, the restriction that the

denoted entity be an object is stronger in kes than

in no; this is why the reading (46a) in Japanese is

possible but the reading (49a) in Korean is not.

 In closing, let me examine some previous works

that are relevant to the present discussion. Firstly,

McGloin (1985) also suggests, albeit very briefly,

a pragmatic analysis of expressivity. However, in

her analysis, neither situation nominalization nor

the context-dependency of expressivity is treated.

 Second, from the perspective of the Principles-

and-Parameters Theory, Kitagawa (2005) suggests

that expressivity emerges only if the external-head

pro has an indefinite referent. However, suppose

that (50) is uttered with a pointing gesture; further,

the demonstrative sono (= ‘that’) is used in order to

ensure that the small pro has a definite referent.

(50) Sono [akai no]-o

that [red NO]-ACC

Tom-ga nagu-tta.

Tom-NOM hit-PAST

‘Tom hit that red one.’

In (50), expressivity is still observed, contrary to

what Kitagawa (2005) would predict. My analysis

7
 The degraded status of (49a) does not mean that kes

lacks participant nominalization. In fact, if wu-nun in

(49) is replaced with kkayeci-nun (= break-MOD), the

string exhibits the participant-nominalization reading:

‘Tom saw something (e.g. machine) that was being

broken.’

160

postulates neither a null element nor an external-

head position; the presence of expressivity in (50)

is expected as a result of pragmatic inference.

4.4 Nature of Denotation

In Kamio (1983) and McGloin (1985), it is stated

that no in participant nominalization cannot refer

to abstract entities. Consider the contrast between

(51) and (52) (Kamio, 1983: p.82).

(51) [[katai shinnen]-o motta] hito

[[solid belief]-ACC have] person

 ‘a person who has a solid belief’

(52) * [[katai no]-o motta] hito

[[solid NO]-ACC have] person

 Int. ‘a person who has a solid belief’

The string (52) is acceptable if the no-headed part

is meant to denote some non-abstract entity, such

as a stone.

 It seems, however, that the above generalization

is suspicious. In (52), the use of the predicate katai

(= ‘solid’) is metaphorical; it drives the interpreter

to look for a physical object to which the predicate

katai normally applies (e.g. stone). This is why it is

hard to get the intended interpretation in (52). If a

predicate that is congruous with an abstract object

is used, such as settokutekina (= ‘convincing’), the

no-headed part may denote an abstract entity:

(53) [gakkai-de [settokutekina no]-o

[conference-at [convincing NO]-ACC

 teijishita] hito

presented] person

 ‘a person who presented a convincing

 one (e.g. argument) at a conference’

 Given my unitary analysis of no, it is expected

that if the no-headed part may denote an abstract

entity in participant nominalization, it should also

hold of situation nominalization. This expectation

is confirmed. First, consider (54).

(54) Tom-wa [[ni tasu ni]-ga

Tom-TOP [[2 plus 2]-NOM

yon dearu no]-o shitteiru

 4 COPULA NO]-ACC know

‘Tom knows that 2 plus 2 equals 4.’

In this example, the no-headed part denotes the

abstract proposition that 2 plus 2 equals 4. Second,

as pointed out by an anonymous reviewer, modal

statements, which seem to denote propositions, can

be nominalized by no. This is illustrated in (55).

(55) [Mary-ga kuru kamoshirenai

[Mary-NOM come might

no]-o omoidashita.

 NO]-ACC remembered

‘I remembered that Mary might come.’

 But there is some indication that no in situation

nominalization tends to denote a perceptible event.

Kuno (1973: p.222) notes that in (56), if no is used,

it denotes Tom’s death as a tangible event, whereas

if the situation nominalizer koto is employed, it

denotes Tom’s death as a less tangible event. (See

also Watanabe (2008).)

(56) [John-ga shinda no/koto]-wa

[John-NOM died NO/KOTO]-TOP

tashika desu.

certain COPULA

‘It is certain that John has died.’

I contend that this difference between no and koto

reflects the origins of these two items. As noted in

Horie (2008: p.174), there are no confirmed lexical

origins for no, but koto is a diachronically bleached

development of the noun koto, meaning ‘matter’ or

‘event’. It may then be assumed that koto retains

the property of denoting an event as a matter, and

that this lexical residue is encoded as a constraint

in the nominalizer koto (but not in the nominalizer

no). Then, the difference in (56) can be analyzed as

the difference in the encoded constraints of koto

and no. But this reasoning raises another problem:

as shown below, koto does not exhibit participant

nominalization; compare (57) with (44).

(57) * [Akai koto]-o Tom-ga nagu-tta.

[red KOTO]-ACC Tom-NOM hit-PAST

As stated above, the nominalizer kes in Korean,

which also derived from the noun meaning ‘thing’,

allows not only situation but also participant

nominalization. This functional difference between

koto and kes is a remaining issue.

161

5 Conclusion

This article has proposed an integrated analysis of

no-nominalization within Dynamic Syntax, and has

accounted for a number of characteristics of the

phenomenon. The particle no is assigned a single

lexical entry, and the participant/situation divide

boils down to an outcome of semantic tree growth,

more specifically, a parser’s choice of what type-e

term it copies. In this account, incrementality is a

key notion, as the participant/situation distinction

arises at the timing of processing no.

Acknowledgments

I would like to thank Ronnie Cann, David Cram,

Stephen Horn, Ruth Kempson, Jieun Kiaer, Yuji

Nishiyama, and the anonymous PACLIC reviewers

for helpful suggestions. I am grateful to Aimi Kuya

and Eun Hyuk Chang for discussion of Korean

examples. Any remaining inadequacies are solely

my own.

References

Cann, Ronnie. 2011. Towards an Account of the

Auxiliary System in English. In Kempson, R. et al.

(eds.) The Dynamics of Lexical Interfaces. CSLI,

Stanford.

Cann, Ronnie, Kempson, Ruth, and Marten, Lutz. 2005.

The Dynamics of Language. Elsevier, Oxford.

Cann, Ronnie, Kempson, Ruth, and Purver, Matthew.

2007. Context-dependent Well-formedness. Research

on Language and Computation, 5: 333-358.

Cann, R. and Wu, Y. 2011. The Bei Construction in

Chinese. In Kempson, R. et al. (eds.) The Dynamics

of Lexical Interfaces. CSLI, Stanford.

Davidson, Donald. 1967. The Logical Form of Action

Sentences. In Rescher, N. (ed.) The Logic of

Decision and Action. University of Pittsburgh Press,

Pittsburgh.

Fodor, Jerry. 1983. The Modularity of Mind. The MIT

Press, Cambridge, MA.

Gregoromichelaki, Eleni. 2011. Conditionals in

Dynamic Syntax. In Kempson, R. et al. (eds.) The

Dynamics of Lexical Interfaces. CSLI, Stanford.

Horie, K. 2008. The Grammaticalization of

Nominalizers in Japanese and Korean. In López-

Couso, M. J. and Seoane, E. (eds.) Rethinking

Grammaticalization. John Benjamins, Amsterdam.

Kamio, Akio. 1983. Meeshiku no Koozoo. (Structure of

Noun Phrases) In Inoue, K. (ed.) Nihongo no

Koozoo. (Structure of Japanese) Sanseido, Tokyo.

Kempson, Ruth and Kurosawa, Akiko. 2009. At the

Syntax-Pragmatics Interface. In Hoshi, H. (ed.) The

Dynamics of Language Faculty. Kuroshio, Tokyo.

Kempson, Ruth, Meyer-Viol, Wilfried, and Gabby,

Dov. 2001. Dynamic Syntax. Blackwell, Oxford.

Kitagawa, Chisato. 2005. Typological Variants of Head-

internal Relatives in Japanese. Lingua, 115: 1243-

1276.

Kitagawa, Chisato and Ross, Claudia. 1982. Prenominal

Modification in Chinese and Japanese. Linguistic

Analysis, 9: 19-53.

Kuno, Susumu. 1973. The Structure of the Japanese

Language. The MIT Press, Cambridge, MA.

Kuroda, Shigeyuki. 1992. Japanese Syntax and

Semantics. Kluwer, Dordrecht.

Makino, Seiichi. 1968. Some Aspects of Japanese

Nominalization. Tokai University Press, Kanagawa,

Japan.

McGloin, Naomi. 1985. No-pronominalization in

Japanese. Papers in Japanese Linguistics, 10: 1-15.

Murasugi, Keiko. 1991. Noun Phrases in Japanese and

English. Ph.D. Dissertation, UConn.

Purver, Matthew, Cann, Ronnie, and Kempson, Ruth.

2006. Grammars as Parsers. Research on Language

and Computation, 4: 289-326.

Russell, Bertrand. 1905. On Denoting. Mind, 14: 479-

493.

Seraku, Tohru. in press. An Incremental Semantics

Account of the Particle No in Japanese. Proceedings

of the Western Conference on Linguistics 2011.

Shibatani, Masayoshi. 2009. Elements of Complex

Structures, where Recursion Isn’t. In Givon, T. and

Shibatani, M. (eds.) Syntactic Complexity. John

Benjamins, Amsterdam.

Sperber, Dan and Wilson, Deirdre. 1995. Relevance, 2
nd

edn. Blackwell, Oxford.

Tonoike, Shigeo. 1990. No no Ronrikeeshiki. (LF

Representation of No) Meijigakuin Ronsou, 467: 69-

99.

Watanabe, Yukari. 2008. Bunhogohyooshiki “Koto”

“No” no Imitekisooi nikansuru Kenkyuu. (Study of

Semantic Differences between Complementizer

“Koto” and “No”) Keisuisya, Hiroshima, Japan.

162

