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Abstract. Language Understanding in limited domains is here approached as a problem 
of language tra~lation in which the target language is a ]o~nal language rather than a 
natural one. Finite-state transducers are used to model the translation process. Further- 
more, these models are automatically learned from ironing data consisting of pairs of 
natural-language/formal-language sentences. The need for training data is dramatically 
reduced by performing a two-step learning process based on !exical/phrase categoriza- 
tion. Successful experiments are presented on a task consisting in the ~anderstanding ~ of 
Spanish natural-language sentences describing dates and times, where the target formal 
language is the one used in the popular Unix command ~at". 

1 I n t r o d u c t i o n  

Language Understanding (LU) has been the focus of much research work in the last twenty years. 
Many classical approaches typically consider LU from a linguistically motivated, generalistic 
point of view. Nevertheless, it is interesting to note tllat, in contrast with some general-purpose 
formulations of LU, many applications of interest to industry and business have limited domains; 
that is, lexicons are of small size and the semantic universe is limited. If we restrict ourselves 
to these kinds of tasks, many aspects of system design can be dramatically simplified. 

In fact, under the limited-domain framework, the ultimate goal Of a system is to driue the 
actions associated to the meaning conveyed by the sentences issued by the users. Since actions 
are to be performed by machines, the understanding problem can then be simply formulated 
as translating the natural language sentences into .?orma/sentences of an adequate (computer) 
command language in which the actions to be carried out can.be specified. For example, "un- 
derstanding" natural language (spOken) queries to a database can be seen as "translating" these 
queries into appropriate computer-language code to access the database. Clearly, under such an 
assumption, LU can be seen as a possibly simpler case of Language Translation in which the 
output language is forma/rather than natural 

Hopefully, these simplifications can lead to new systems that are more compact and faster 
to build thant those developed under more traditional paradigms. This would entail i) to devise 
simple and easily understandable models for LU, ii) to formulate LU as some kind of optimal 
search through an adequate structure based on these models, and iii) to develop techniques to 
actually learn the LU models from training data of each considered task. All these requirements 
can be easily met through the use of Finite-State Translation Models. 

The capabilities of Finite-State Models (FSM) have been the object of much debate in the 
past few years. On the one hand, in the Natural Language (NL) community, FSMs have often 
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been ruled out for many NL processing applications, including LU, even in limited domains. Re- 
cently, many NL and Computational Linguistic researchers are (re-)considering the interesting 
features of FSMs for their use in NL processing applications [10]. 

Undoubtedly, the most attractive feature of FSMs consists in their simplicity: representation 
is just a matter of setting a network of nodes and links in memory, and parsing can be simply 
carried out by appropriately following the links of this network, according to the observed 
input data. More specifically, as it is well known, using Viterbi-like techniques, computing time 
for parsing is linear with the length of the data sequence to be parsed and, using adequate 
techniques, such as beam search, it can be easily made independent on the size of the network 
in practice. [2] 

Simple as they are, FSMs generally need to be huge in order to be useful approximations to 
complex languages. For instance, an adequate 3--Gram Language Model for the language of the 
Wall Street Journal is a FSM that may have as many as 20 million edges [23]. Obviously, there 
is no point in trying to manually build such models on the base of a priori knowledge about the 
language to be modeled: the success lies in the possibility of automatically learning them from 
large enough sets of training data [8, 23]. This is also the case for the finite-state LU models 
used in the work presented in this paper [15, 24, 26]. 

2 Subsequential Transduction 

The following definitions follow closely those given in Berstel [4], with some small variations 
for the sake of brevity. A Finite State Transducer (FST) is a six tuple r = (Q, X, Y, q0, QF, E), 
where Q is a finite set of states, X, Y are input and output alphabets, qo E Q is an initial state, 
QF c Q is a set of final states and E C Q x x*  x Y* × Q are the edges or transitions. The 
output associated by v to an input string, z, is obtained by concatenating the output strings 
of the edges of r that are used to parse the successive symbols of z. 

One problem of using Finite State Transducers in our framework is that the problem of 
learning of general Finite State Transducers is at least as hard as the problem of learning 
a general Finite State Automaton, which is well known to be probably intractable. So we 
need a less general type of transducers. A Sequential Transducer (ST) is a five tuple ~" = 
(Q, X, Y, qo, E), where E C Q x X × Y* x Q and all the states are accepting (QF = Q) and 
determini.qtic; i.e., (q,a,u,r), (q,a,v, s) e E =~ (u = v ^ r = s). An important restriction 
of STs is that they preserve increasing length input-output prefixes; i.e., if t is a sequential 
transduction', then t(X) = A, t(uv) e t(u)Y*, where ~ is the empty or Nil string. 

While the use of sequential translation models has proved useful for LU in a number of rather 
simpletasks [21, !9, 20, 26], the limitations of this approach dearly show up as the conceptual 
complexity of the task increases. The main concern is that the required sequentiality assumption 
often prevents the use of "semantic languages" that are expressive enough.to correctly cover the 
underlying semantic space and/or to actually introduce the required semantic constraints. As 
we will see below, input-output sequentiality requirements can be significantly relaxed through 
the use of Subsequential Transduction. This would allow us to use more powerful semantic 
languages that need only be subsequential with the input. 

A Subsequential Transducer (SST) is defined to be a six-tuple r = (Q,X,Y, qo;E,a), 
where v' = (Q,X,Y, qo,E) is a Sequential Transducer and a : Q ~ Y* is a partial state 
output function [4]. An output string of r is obtained by concatenating a(q) to the usual se- 
quential output string, r'(x), where q is the last state reached with the input x. Examples of 
SSTs are shown in Fig.1. 
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Two SSTs are equivalent if they perform the same input-output mapping. Among equivalent 
SSTs there always exists one that is canonical. This transducer always adopts an "onward" form, 
in which the output substrings are assigned to the edges in such a way that they are as "close" 
to the initial state as they can be (see Oncina et al., 1993 [15], Reutenauer, 1990 [22]; for a recent 
reelaboration of these concepts see Mohri, 1997 [13]). On the other hand, any finite (training) set 
of input-output pairs of strings can be properly represented as a Tree Subsequential Transducer 
(TST), which can then be easily converted into a corresponding Onward Tree 8ubsequential 
Transducer (OTST). Fig.1 (left and center) illustrates these concepts (and construction), which 
are the basis of the so-called Onward Snbsequential Transducer Inference Algorithm (OSTIA), 
by Oncina [14, 15]. 

Given an input-output training sample T, the OSTI Algorithm works by merging states 
in the OTST(T) as follows [15]: All pairs of states of OTST(T)  are orderly considered level 
by level, starting at the root, and, for each of these pairs, the states are tentatively merged. 
If this results in a non-deterministic state, then an attempt is made to restore determinism 
by reeursively pushing-back some output substrings towards the leaves of the transducer (i.e., 
partially undoing the onward construction), while performing the necessary additional state 
merge operations. If the resulting transducer is subsequential, then (all) the merging(s) is (are) 
accepted; otherwise, a next pair of states is considered in the previous transducer. A transducer 
produced by this procedure from the OTST of Fig.1 (center) is shown in Fig.1 (right). Note 
that this resulting transducer is consistent with all the training pairs in T and makes a suitable 
generallization thereof. 

All these operations can be very eiticiently implemented, yielding an extremely fast algorithm 
that can easily handle huge sets of training data. It has formally been shown that OSTIA always 
converges to any target subeequential transduction for a sufficiently large number of training 
pairs of this transduction [15]. 

~k/a 

Figure 1. Learning a Subsequential Transducer from the input-output sample T={(A,b), (B,ab), 
(AA,ba), (AB,bb), (BB,aab)). Left: Tree Subsequential Transducer TST(T); Center: Onward Tree 
Subsequential Transducer OTST(T); Right: transducer yield by OSTIA. Each state contains the output 
string that the function ~, associates to this state. 

The learning strategy followed by OSTIA tries to generalize the training pairs as much as 
possible. This often leads to very compact transducers that accurately translate correct input 
text. However, this compactness often entails excessive over-generalization of the input and 
output languages, allowing nearly meaningless input sentences to be accepted, and translated 
into even more meaningless output! While this is not actuaily a problem for perfectly correct 
tezt input, it leads to dramatic failures when dealing with not exactly correct text or (even 
"correct") speech input. 

A possible Way to overcome this problem is to limit generalization by imposing adequate 
Language Model (LM) constraints: the learned SSTs should not accept input sentences or 
produce output sentences which are not consistent with given LMs of the input and output 
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languages. These LMs are also known as Domain and Range models [17]. Learning with Domain 
and/er Range constraints can be carried out with a version of OSTIA called OSTIA-DR [16, 17]. 
This version was used in the work presented in this paper. 

Subsequential Transducers and the OSTI (or OSTI-DR) Algorithm have been very suc- 
cessfully applied to learning several quite contrived (artificial) translation tasks [15]. Also, it 
has recently been applied to Language Translation [25, 9, 1] and Language Understanding, as 
will be discussed here below. Among many possibilities for (finite-state) modeling the input 
and output languages, here we have adopted the well-known bigrama [8], which can be easily 
learned from the same (input and output) training sentences used for OSTIA-DR. 

3 R e d u c i n g  t h e  d e m a n d  fo r  t r a i n i n g  d a t a  

The amount of training data required by OSTIA(-DR)-learning is directly related with the size of 
the vocabularies and the amount of input-output asynchrony of the translation task considered. 
This is due to the need of "delaying" the output until enough input has been seen. In the worst 
case, the number of states required by a SST to achieve this delaying mechanism can grow as 
much as O(nk), where n is the number of (functionally equivalent) words and k the length of 
the delay. 

Techniques to reduce the impact of k were studied in [29]. The proposed methods rely 
on reorderin 9 the words of the (training) output sentences on the base of partial alignments 
obtained by statistical translation methods [5]. Obviously, adequate mechanisms are provided 
to recover the correct word order for the translation of new test input sentences [29]. 

3.1 Using word /phrase  Categorization 

On the other hand, techniques to cut down the impact of vocabulary size were studied in [28]. 
The basic idea was to substitute words or groups of words by labels representing their syntactic 
(or semantic) category within a limited rank of options. Learning was thus carried out with the 
categorized sentences, which involved a (much) smaller effective vocabulary. The steps followed 
for introducing categories in the learning and transducing processes began with category iden- 
tification and categorization of the corpus. Once the  categorized corpus was available, it was 
used for training a model: the base transducer. Also, for each category, a simple transducer was 
built: its category transducer. Finally, category expansion was needed for obtaining the final 
sentence-transducer: the arcs in the base transducer corresponding to the different categories 
were expanded using their category transducers. 

Note that, while all the transducers learned by OSTIA-DR are subsequential and therefore 
deterministic, this embedding of categories generally results in final transducers that are no 
longer subsequential and often they can be ambiguous. Consequently, translation can not be 
performed through deterministic parsing and Viterhi-like Dynamic Programming is required. 

Obviously, categorization has to be done for input/output paired clusters; therefore adequate 
techniques are needed to represent the actual identity of input and output words in the clusters 
and to recover this identity when parsing test input sentences. This recovering is made by 
keeping referencies between category labels and then solving them with a postprocess filter. 
This method is explained in detail in [1]. Text-input experiments using these techniques were 
presented in [28]. While the direct approach degrades rapidly with increasing vocabulary sizes, 
categorization keeps the accuracy essentially unchanged. 
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3.2 Coping with undertrainlng through Error Correcting 

The performance achieved by a SST model (and for many other types of models whatsoever) 
tends to be poor if the input sentences do not strictly comply with the syntactic restrictions 
imposed by the model. This is tile case of syntactically incorrect sentences, or correct sentences 
whose precise "structure" has not been exactly captured because it was not present in the 
training data. 

Both Of these problems can be approached by me~n.~ of Error-Correcting Decoding (ECD) [3, 
29]. Under this approach, the input sentence, x, is considered as a corrupted version of some 
sentence, ~ E L, where L is the domain or input language of the SST. The corruption process 
is modeled by means of an Error Model that accounts for insertion, stibstitution and deletion 
"edit errors". In practice, these "errors" should account for likely vocabulary variations, word 
disappearances, superfluous words, repetitions, and so on. Recognition can then be seen as an 
ECD process: given x, find a sentence ~ in L such that the distance form ~ to x, measured in 
terms of edit operations (insertions, deletions and substitutions) is minimum 2. 

Given the finite-state nature of SST Models, Error Models can be tightly integrated, and 
combined error-correcting decoding and translation can be performed very efficiently using fast 
ECD beam-search, Viterbi-based techniques such as those proposed in [3]. 

4 Experiments 

The chosen task in our experiments was the translation from Spanish sentences specifying 
times and dates into sentences of a formal semantic language. This is in fact an important 
subtask that is common to many real-world LU applications of much interest to industry and 
society. Examples of this kind of applications are flight, train or hotel reservations, appointment 
schedules, etc. [7,11, 12]. Therefore, having an adequate solution to this subtask can significantly 
simplify the building of successful systems for these applications (another work on this subtask 
can be found in [6]). 

The chosen formal language has been the one used in UNIX" command "at". This simple 
language allows both absolute and relative descriptions of time. From these descriptions, the 
"at" interpreter can be directly used to obtain date/time interpretations in the desired format. 
The correct syntax of "at" commands is described in the standard Unix documentation (see, 
e.g. [30]). Fig. 2 shows some training pairs that have been selected from the training material. 

Starting from the given context-free-style syntax description of the "at" command [30], and 
knowledge-based patterns of typical ways of expressing dates and times in natural, spontaneous 
Spanish, a large corpus of pairs of "natural-language"/at-language sentences has been artificially 
constructed. This is intended to be the first step in a bootstrapping development. On-going 
work on this task is aimed at (semi-automatically) obtaining additional corpora produced by 
native speakers. The corpus generation procedure incorporated certain "category labels", such 
as hour, month, day of week, etc. We have used a similar process for defining and generating 
subcorpora in which every input and its corresponding semantic coding belong to the different 
categories. We finally have obtained an uncategorized version of the categorized corpus, by 
means of randomly instantiating the category marks in the samples. The examples found on 
figure 2 come from this uncategorized corpus, while figure 3 shows the corresponding categorized 
pairs. 

2 Note that while only simple deterministic ECD is considered in this paper, ECD can be easily 
formulated in a more powerful, 8tochaatic manner [2]. 
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',"dos minutos despuds de la usa y media", 01 : 30 + 2 MINUTE) 
ft~#o minutes after one thirty) 
',"dentro de usa hora", NOW + 1 HOUR) 
'in one hour) 
'"el maxtes, a la hora de! td, mas un minuto", TEATIME TUE + 1 MINUTE) 
'on thursday, at teatime plus one minute) 
i"el catorce de octubre del afio dos nail tres, alas diecisiete horas 

y cinco minutos', 17 : 05 OCT 14,2003) 
(on october the first, year two tho.aand and three, at seventeen hours 
and fi~e minutes) 

Figure 2. Sample of selected training pairs for the date specification task. 

("inc-number mlnutos despu& de h24 ram", h24 :mm + inc-number 
IMINUTE) 
i(,dentro de una hora', 'NOW + 1 HOUR) 
~"el day-of-week, a t-dest, mas un minuto", t-dest day-of-week 
+ 1 MINUTE) 
("el day-txt de month-name del afio year-name, a h24 mm', h24 : mm 
month-name day-txt , year-name) 

Figure 3. Sample of categorized pairs for the date specification task. 

We have generated a training corpus of 48353 different, uncategorized translation pairs, and 
a disjoint test set with 1331 translation pairs. We have presented the OSTIA-DR with 8 training 
subsets of sizes increasing from 1817 up to 48353. We also have presented OSTIA-DR with the 
same, but categorized, training subsets. In this case, the number of different pairs went from 
1384 up to 12381. Figure 4 shows the size of categorized corpora vs. uncategorized corpora. The 
input language vocabulary has 108 words, and the output language has 125 semantic symbols. 
We have used 11 different category labels. 

In the categorized experiments, a sentence-transducer was inferred from the categorized 
sentences, and a (small) category-transducer for each one of the categories. The final transducer, 
which is able to translate noncategorized sentences, was build up by the embedding of the 
category-transducers into the sentence-transducers. The output yielded by this final transducer 
includes category labels and their corresponding instances, as found in the translation process. 
The definitive translations of the test set inputs are obtained by means of a simple filter that 
resolves the dependencies. The sizes of the inferred transducers are shown on figure 5. 

Performance has been measured in terms of both semantic-symbol error and fUll-sentence 
matching rates. The translation of the test set inputs has been computed using both the stan- 
dard Viterbi algorithm and the Error Correction techniques, outlined on sections 3.1 and 3.2. 
The results are shown in figure 6. 

A big difference in performance between the uncategorized and categorize d training pro- 
cedures can be observed. Semantic-symbol error rates are much lower in the categorized ex- 
periments than in the uncategorized ones. We can also appreciate a remarkable decrease in 
semantic-symbol error rates of Error Correcting with respect to Viterbi translations, specially 
for smaller training corpus. The full-sentence matching rate also exhibited a strong improve- 
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Figure 4. Corpora size before and after categorization. 
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Figure 5. Inferred transducers sizes. The size is expressed in number of edges: "base" stands for the 
transducer containing category labels, while "cats" stands for the final sentence-transducer which is 
calculated by embedding the (small) category-transducers into the "base" one; "plain" stands for the 
uncategorized sentence-transducer. 
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Figure 6. Semantic-symbol error rates. On the legend, "cats" stands for the categorised experiments, 
and '~on-cats" for the non-categorized ones. Transductions in =EC" have been computed using Error 
Correcting techniques, and in 'Wit" using the standard Viterbi algorithm. 

ment by using categorization: while uncategorized training only achieves 30%-40% matching 
rate, the categorized one yields up to 98%. 

5 Conclusions 

In this work, we have presented some successful experiments on a non-trivial, useful task in nat- 
urai language understanding. Finite-State models have been learnt by the OSTIA-DR algorithm. 
Our attention has been centered in the possibility of reducing the demand for training data by 
categorizing the corpus. The experiments show a very big difference in performance between 
the categorized and plain training procedures. In this task, we only obtain useful results if we 
use categories. 

The Error Correcting technique for translation also permits reducing the size of corpora 
and still obtain useful error rates. In our task, we got a 3% in semantic-symbol error rate 
for a training set of approximately 6000 pairs, while for the same level of performance using 
the standard Viterbi algorithm requires some 10000 training pairs. This 3% error rate result 
corresponds to a full-sentence matching rate of 90%. 

On-going work on these techniques is aimed at obtaining additional training data by na- 
tive speakers, so as to improve the system by following a bootstrapping procedure: the system 
will be trained on this additional natural or spontaneous data, the acquisition of which is 
driven by the system itself, guided by given task-relevant semantic stimuli. This process can 
be repeated until the resulting system exhibits a satisfactory performance. On the other hand, 
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transducers generated by the embedding procedur e described in this paper may turn out to be 
ambiguous. Work is also being done on applying stochastical extensions of transducers, so as to 
deal with ambiguities by reflecting the appearance probability distribution of sentences in the 
training corpus. These distributions are being estimated by Maximum-Likelihood, Conditional 
Maximum-Likelihood, or Maximum Mutual Information Estimation [18]. The results of this 
work will be Useful as a subtask of the so-called "Tourist Task", which is a hotel reservations 
task introduced in the EuTraus project[l, 25] 
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